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LVOV–KAPLANSKY CONJECTURE ON UT+
m

WITH THE TRANSPOSE INVOLUTION
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(Communicated by I. Klep)

Abstract. Let UTm be the algebra of all m×m upper matrices with entries in a field F . Let us
consider UTm equipped with the transpose involution ∗ . Under a mild technical assumption on
F , we will show that the image of any multilinear Jordan polynomial in three variables evaluated
on UT+

m = {U ∈UTm |U∗ = U} is a vector space. In particular, we will determine a basis for
such image. As an application, we will describe the set of values of some multilinear Jordan
polynomials in four variables.

1. Introduction

The following question is known as the Lvov-Kaplansky conjecture:
Let f (x1, . . . ,xn) be a multilinear polynomial over a field F . Is the set of values

of f on the matrix algebra Mm(F) a vector space?
A major breakthrough in this direction was made by Kanel-Belov, Malev and

Rowen [8, 12]. They have provided a positive answer for this question when n = 2.
Later, they also have obtained significant results for 3×3 matrices [9], but the complete
problem for matrices of order � 3 is still open.

This conjecture has motivated many different studies related to other algebras and
other types of polynomials. The reader is referred to [13] for more information about
recent and important results on this subject. In the present work, we are interested in the
Lvov-Kaplansky conjecture for Jordan algebras, and we refer to [7] for basic properties
about the Jordan theory.

Let x,y,z be three non-associative and commutative variables. The polynomial
(xy)z− x(yz) is called the associator of x,y,z . In 1974, S. R. Gordon [6] presented a
result for a finite dimensional simple Jordan algebra J over a field F which is alge-
braically closed. Gordon proved that the image of the associator on J is the subspace
formed by all elements of zero trace in J . Associators are important polynomials in the
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free Jordan algebra. In the special free Jordan algebra, associators coincide with com-
mutators of length three. In Lemmas 1, 2 and 3, we obtain, in terms of commutators, a
characterization for multilinear Jordan polynomials in three and four variables.

In 2015 A. Ma and J. Oliva [11] proved that the image of any multilinear Jordan
polynomial in three variables evaluated on the Jordan algebra formed by the real (resp.
complex) symmetric matrices is a vector space, namely, the set of all real (resp. com-
plex) symmetric matrices of zero trace. In the same year, C. Li and M. C. Tsui [10]
published a result for finite dimensional central simple algebras over fields of charac-
teristic zero. They showed that for a suitable element γ in the field, the image of the
polynomial [[z,y],x]+ γ[[x,y],z] is the vector space formed by all zero trace elements
of the algebra.

Let us denote by UTm the algebra of all of m×m upper triangular matrices over a
field F . In 2019, P. S. Fagundes [3] investigated the image of an noncommutative and
associative multilinear polynomial evaluated on the set of all strictly upper triangular
matrices, and he obtained as image a nilpotent subalgebra of UTm (this subalgebra only
depends on the number of the variables of the polynomial). Later, P. S. Fagundes and
T. C. de Mello [4] studied the same type of polynomials, but now, evaluated on UTm

and obtain a result for polynomials with at most four variables.
In the present work, we will be considering the algebra UTm equiped with an

involution. The involutions of the first type on UTm have a very good description as we
can see in [2]. The only involutions of the first type on UTm (up to a ∗ -isomorphism)
are the transpose and symplectic involutions (the symplectic involution on UTm occurs
only when m is even). We are particularly interested in UT+

m , the Jordan algebra
formed by all symmetric elements of UTm , with the transpose involution.

In this paper, we give a positive answer to Lvov-Kaplansky conjecture for a multi-
linear Jordan polynomial in three variables defined on UT+

m . Our proof will be divided
in two cases. For m odd, we will see in Section 3 that the image of such polynomial is
exactly the nilpotent algebra formed by all elements of UT+

m with zero diagonal. For m
even, we will obtain as the set of values, another vector space which is a proper subset
of the nilpotent algebra formed by all elements of UT+

m with zero diagonal (Section 4).
At the last section, as an application, we will describe the image of certain types

of multilinear Jordan polynomials in four variables.

2. Preliminaries

Let F be a field of characteristic different from 2. Let R be an unital (associative)
algebra over F with multiplicative identity 1. We write Z(R) to designate the center
of R . Note that F = F ·1. Thus, F ⊆ Z(R) .

A map ∗ : R → R is called an involution on R if

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x

for all x,y ∈ R . Involutions which leave the center elementwise invariant are called
involutions of the first kind. Otherwise, we say that the involution is of the second kind.
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From now on, we only consider involutions of the first kind. In this case, (αx)∗ =
αx∗ for all α ∈ F and x ∈ R . We say that an element x ∈ R is symmetric (resp. skew-
symmetric) if x∗ = x (resp. x∗ = −x ). We set R+ = {x ∈ R| x∗ = x} and R− = {x ∈
R | x∗ = −x} . Hence, if x ∈ R , we see that

x = (1/2)(x+ x∗)+ (1/2)(x− x∗).

Therefore, R = R+⊕R− .
For each x,y,z ∈ R , we define [x,y] = xy− yx . Every associative algebra can

be regarded as a Lie algebra under the operation [x,y] which is called the additive
commutator of x and y . Similarly, the cirle operation x ◦ y = xy + yx turns R into a
Jordan algebra. Some properties of the Lie and Jordan algebras can be found in [1, 7].
A vector subspace V of R is called a Jordan subalgebra when a◦b∈V for all a,b∈V .

In the next lemma, we will prove some identities regarding the circle and the
bracket operations in R .

LEMMA 1. Let x,y,z be elements of an associative algebra R. We set [x,y,z] =
[[x,y],z] . Then, the following identities hold:

i) (x◦ y)◦ z = x◦ (y◦ z)+ [z,x,y] .

ii) x◦ (y◦ z) = y◦ (x◦ z)+ [x,y,z] .

iii) [z,x◦ y] = x◦ [z,y]+ y◦ [z,x].

Proof. i) By definition of the circle operation, (x ◦ y) ◦ z = xyz+ yxz+ zxy+ zyx
and x ◦ (y ◦ z) = (z ◦ y) ◦ x = zyx + yzx + xzy + xyz . After subtracting these last two
equalities, we have that yxz+ zxy− yzx− xzy = [z,x]y− y[z,x] = [z,x,y].

ii) Using i) and the commutativity of the circle operation, we have that

x◦ (y◦ z)+ [z,x,y] = (x◦ y)◦ z = (y◦ x)◦ z = y◦ (x◦ z)+ [z,y,x].

Now, the Jacobi identity [z,y,x]− [z,x,y] = [x,y,z] finishes the proof.
iii) The proof in this case it is similar to i) . �

Let {yi | i ∈ N} be a countable set of variables. We write F 〈y1,y2, . . .〉 to denote
the unital, associative and non-commutative algebra over F , which is freely generated
by the set {yi | i ∈ N} . The elements of F 〈y1,y2, . . .〉 are polynomials in the non-
commutative variables yi with scalars in F , where i ∈ N .

An element f ∈ F 〈y1,y2, . . .〉 is a multilinear polynomial in the variables yi1 ,
. . . ,yin , i1 < .. . < in , when f can be written in the following way:

f = ∑
σ∈Sζ

ασ yσ(i1) . . .yσ(in),

where Sζ denotes the permutation group of the set ζ = {i1, i2, . . . , in} and ασ ∈ F for
each σ ∈ Sζ .
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An element g of F 〈y1,y2, . . .〉 is called a Jordan polynomial when g belongs to
the Jordan subalgebra of F 〈y1,y2, . . .〉 generated by the set {yi | i ∈ N} . Observe that
the polynomial f (y1,y2) = y1y2 is not a Jordan polynomial. In the present work, we
are interested in multilinear Jordan polynomials, and for this reason, we believe that it
is appropriate to list some examples of polynomials of this type:

yi,yi1 ◦ yi2 (polynomials in 1 and 2 variables respectively);
y j1 ◦ (y j2 ◦ y j3) (polynomial in 3 variables);
y j1 ◦ (y j2 ◦ (y j3 ◦ y j4)),(y j1 ◦ y j2)◦ (y j3 ◦ y j4) (polynomials in 4 variables);
yk1 ◦ (yk2 ◦ (yk3 ◦ (yk4 ◦ yk5))),yk1 ◦ ((yk2 ◦ yk3)◦ (yk4 ◦ yk5)) (polynomials in 5 variables).

In what follows, all the polynomials belong to the algebra F 〈y1,y2, . . .〉 . Now, we
will prove a couple of results about multilinear Jordan polynomials.

LEMMA 2. Let f be a multilinear Jordan polynomial in the variables {yi1 ,yi2 ,yi3 |
i1 < i2 < i3} . Then, f can be written in the form

αyi1 ◦ (yi2 ◦ yi3)+ β [yi2 ,yi1 ,yi3 ]+ γ[yi3 ,yi1 ,yi2 ],

where α,β ,γ ∈ F .

Proof. We can assume without loss of generality that (i1, i2, i3) = (1,2,3) . Let f
be a multilinear Jordan polynomial in the variables y1,y2,y3 . Since the circle operation
is commutative, we may assume that f is a linear combination of y1 ◦ (y2 ◦ y3) , y2 ◦
(y1 ◦ y3) and y3 ◦ (y1 ◦ y2) . Now, using Lemma 1 (item ii)), we have y2 ◦ (y1 ◦ y3) =
y1 ◦ (y2 ◦ y3)+ [y2,y1,y3] and y3 ◦ (y1 ◦ y2) = y1 ◦ (y2 ◦ y3)+ [y3,y1,y2] . Thus, f is a
linear combination of y1 ◦ (y2 ◦ y3) , [y2,y1,y3] and [y3,y1,y2] . �

LEMMA 3. Consider the following sets:

J =
{
yi ◦ [y j,yk,yl] | {i, j,k, l} = {1,2,3,4}, j > k < l

}
K =

{
[y2,y1]◦ [y3,y4], [y3,y1]◦ [y2,y4], [y4,y1]◦ [y2,y3]

}
.

Let f be a multilinear Jordan polynomial in the variables {y1,y2,y3,y4} . Then, f can
be written as a linear combination of the set B = {y1 ◦ (y2 ◦ (y3 ◦ y4))}∪ J∪K.

Proof. Let f be a multilinear Jordan polynomial in the variables {y1,y2,y3,y4},
and let S be the permutation group of the set {1,2,3,4} . We can write f = f1 + f2 ,
where

f1 = ∑
σ∈S

βσ (yσ(1) ◦ yσ(2))◦ (yσ(3) ◦ yσ(4)),

f2 = ∑
σ∈S

ασ yσ(1) ◦ (yσ(2) ◦ (yσ(3) ◦ yσ(4))).



LVOV-KAPLANSKY CONJECTURE ON UT+
m 179

The equality (yi ◦ y j) ◦ (yk ◦ y1) = (yk ◦ y1) ◦ (yi ◦ y j) = (y1 ◦ yk) ◦ (yi ◦ y j) can be
used to rewrite f1 in the form

f1 = β2(y1 ◦ y2)◦ (y3 ◦ y4)+ β3(y1 ◦ y3)◦ (y2 ◦ y4)+ β4(y1 ◦ y4)◦ (y2 ◦ y3).

It suffices to show that each of the gi = (y1 ◦yi)◦ (y j ◦yk) ∈ Span(B) , where {i, j,k} =
{2,3,4} . By Lemma 1(item i)), we have

gi = y1 ◦ (yi ◦ (y j ◦ yk))+ [y j ◦ yk,y1,yi].

Since the term y1 ◦ (yi ◦ (y j ◦ yk)) appears in f2 , we can suppose that gi = [y j ◦
yk,y1,yi] . By Lemma 1(item iii)) we see that [y j ◦ yk,y1] = y j ◦ [yk,y1]+ yk ◦ [y j,y1] .
Using Lemma 1(item iii)) one more time, we have

gi = [y j ◦ [yk,y1],yi]+ [yk ◦ [y j,y1],yi]
= y j ◦ [yk,y1,yi]+ [yk,y1]◦ [y j,yi]+ yk ◦ [y j,y1,yi]+ [y j,y1]◦ [yk,yi].

Thus, gi ∈ Span(B) . Consequently, f1 ∈ Span(B) .
Now, we will show the result for f2 = yi ◦ (y j ◦ (yk ◦ yl)) , where {i, j,k, l} =

{1,2,3,4} . In this part, We will divide the proof in 2 cases:

Case 1) i = 1.
Lemma 2 guarantees that there exist α,β ,γ ∈ F such that

y j ◦ (yk ◦ yl) = αy2 ◦ (y3 ◦ y4)+ β [y3,y2,y4]+ γ[y4,y2,y3],

since { j,k, l} = {2,3,4} . Thus, f2 = αy1 ◦ (y2 ◦ (y3 ◦ y4))+ βy1 ◦ [y3,y2,y4] + γy1 ◦
[y4,y2,y3] ∈ Span(B) .

Case 2) i > 1.
In this case, 1 ∈ { j,k, l} . Once again, Lemma 2 guarantees that there exist α,β ,γ

∈ F such that

y j ◦ (yk ◦ yl) = αy1 ◦ (yr ◦ ys)+ β [yr,y1,ys]+ γ[ys,y1,yr],

where {1,r,s} = { j,k, l} . Since yi ◦ [yr,y1,ys] , yi ◦ [ys,y1,yr] ∈ J , it is enough to con-
sider the case when f2 = yi ◦ (y1 ◦ (yr ◦ ys)) . By Lemma 1(item ii)), we have

f2 = y1 ◦ (yi ◦ (yr ◦ ys))+ [yi,y1,(yr ◦ ys)].

Since y1 ◦ (yi ◦ (yr ◦ ys)) has the same form as in Case 1), we can suppose that f2 =
[yi,y1,(yr ◦ ys)] . After applying Lemma 1(item iii)), we obtain

f2 = yr ◦ [[yi,y1],ys]+ ys ◦ [[yi,y1],yr] = yr ◦ [yi,y1,ys]+ ys ◦ [yi,y1,yr].

And this completes the proof. �
For each m∈N , let Mm be the algebra of all m×m matrices with entries in F , and

UTm the subalgebra of all m×m upper triangular matrices. We define ∗ : Mm → Mm
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by U∗ = JUtJ , where Ut is the transpose of the matrix U , and J is the following
permutation matrix

J =

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0

⎞
⎟⎟⎟⎠ .

The map above is an involution of the first kind called the transpose involution. For
each U ∈UTm , the matrix U∗ is obtained by reflecting U along its secondary diagonal.
Let ei j be the standard matrix unit of Mm . Thus, we can write J = ∑m

i=1 em+1−i,i .
Hence, e∗i j = Je jiJ = em+1− j,m+1−i . So, we see that the subalgebra UTm is closed
under this involution.

For each U ∈UTm , we set U = s(U) = U +U∗ and Ũ = a(U) = U −U∗ . The
elements U and Ũ are respectively, symmetric and skew-symmetric elements of Mm .
With this notation in mind, we see that a linear basis for UT+

m is given by the elements
of the form ei,i+t , where i,t are integers such that i � 1, t � 0 and 2i+ t � m+1.

Let f = f (y1, . . . ,yn) be a multilinear Jordan polynomial. The image of f evalu-
ated on UT+

m is defined by

Imm( f ) = { f (Y1, . . . ,Yn) | Y1, . . . ,Yn ∈UT+
m }.

From a direct inspection, we can see that UT+
m is a Jordan subalgebra of UTm ,

because (w ◦ v)∗ = w ◦ v whenever w,v ∈ UT+
m . Therefore, UT+

m is invariant by f ,
since f is a Jordan polynomial. In other words, Imm( f ) is a subset of UT+

m .
Now, let us discuss some possible images for f . Note that if α �= 0, then Imm(α f )

= Imm( f ) . Besides, it is not difficult to see that a multilinear Jordan polynomial in the
variable {y1} has the form αy1, where α ∈ F . Thus, its image evaluated on UT+

m is
either UT+

m or {0} .
A multilinear Jordan polynomial in the variables {y1,y2} has the form α(y1 ◦y2) ,

where α ∈ F . For a given W ∈UT+
m , we have that W ◦1m = 2W , where 1m denote the

identity matrix of Mm . Thus, we conclude that the image of (y1◦y2) evaluated on UT+
m

is UT+
m if α �= 0. For a multilinear Jordan polynomial in three variables (evaluated on

UT+
m ), we will see that it is possible to obtain nontrivial images.

Now, let f be a multilinear Jordan polynomial in the variables {y1,y2,y3} . By
Lemma 2, we can assume that f = αy1 ◦ (y2 ◦ y3) + β [y2,y1,y3] + γ[y3,y1,y2]. Note
that f (1m,1m,W ) = 4αW for all W ∈UT+

m . Then, Imm( f ) = UT+
m when α �= 0. For

α = 0, observe that f (Y1,Y2,Y3) = β [Y2,Y1,Y3]+γ[Y3,Y1,Y2] is a element of UT+
m with

null diagonal for all Y1,Y2,Y3 ∈UT+
m . Thus,

Imm( f ) ⊆ (UT+
m )0,

where (UT+
m )0 denotes the subspace of UT+

m consisting of all matrices with null diag-
onal. At this point, we can suppose that either β or γ is nonzero (otherwise f = 0 and
therefore Imm( f ) = {0} ). Without loss of generality, we may assume that β �= 0. So,
the image of f on UT+

m is equal to image on UT+
m of

[y2,y1,y3]+ β−1γ[y3,y1,y2]. (1)
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In the next two sections, we will study the image of (1) evaluated on UT+
m . From

now on, we set δi = (−1)i for all i ∈ Z .

3. m is odd

Let k be a positive integer. In this section, we will prove the following theorem.

THEOREM 1. Let γ ∈ F . The image of the Jordan polynomial f = [y2,y1,y3]+
+γ[y3,y1,y2] evaluated on UT+

2k+1 is (UT+
2k+1)0 .

In order to prove Theorem 1, we will need some technical results. And for conve-
nience, we establish the following convention:

CONVENTION 1. e0,t = et,2k+2 = 0 for all t � 0. Therefore, e0,t = 0 for all t � 0.

LEMMA 4. Let g : UT+
2k+1 −→UT2k+1 be the linear map defined by

g(W ) =
[2k+1

∑
j=2

δ je j−1, j , W

]
.

Then, g(ei,i+t) = δiei−1,i+t +δi+tei,i+t+1 for all integers i � 1 and t � 0 where i+ t �
2k .

Proof. Let i, t integers such that i � 1, t � 0 where i+ t � 2k . Set v = 2k+2−
(i+ t) and w = 2k+2− i then e∗i,i+t = evw . Then,

g(ei,i+t) = [e12− e23 + . . .+ e2k−1,2k− e2k,2k+1 , ei,i+t + evw]
= δiei−1,iei,i+t + δvev−1,vevw − δi+t+1ei,i+t ei+t,i+t+1 − δw+1evwew,w+1

= δiei−1,i+t + δi+tev−1,w + δi+tei,i+t+1 + δiev,w+1.

It is easy to see that ev−1,w = e∗i,i+t+1 and ev,w+1 = e∗i−1,i+t . Thus, this proof is com-
plete. �

COROLLARY 1. Let r,t integers such that r � 1 , t � 0 , r + t � 2k . If t is even
(resp. odd) then ∑r

i=1 g(ei,i+t) = δrer,r+t+1 (resp. ∑r
i=1 δi+1g(ei,i+t) = er,r+t+1 ).

Proof. Let us suppose that t is even. By Lemma 4 we have ∑r
i=1 g(ei,i+t) =

∑r
i=2 δiei−1,i+t + ∑r

i=1 δi+t ei,i+t+1 = δr+t er,r+t+1. Now, suppose that t is odd. Let 1 �
i � r . By Lemma 4 again, we have δi+1g(ei,i+t) = δ2i+1ei−1,i+t + δ2i+t+1ei,i+t+1 =
−ei−1,i+t + ei,i+t+1. Thus, ∑r

i=1 δi+1g(ei,i+t) = er,r+t+1. �

LEMMA 5. Let h : UT+
2k+1 →UT2k+1 be the linear map defined by

h(W ) =
[
W ,

k

∑
l=1

e2l,2l ,
2k

∑
j=1

e j, j+1

]
.
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Let i, t be non-negative integers such that 1 � i and i + t � 2k . If t is odd then
h(ei,i+t) = g(ei,i+t) . Otherwise, h(ei,i+t) = 0 .

Proof. Set v = 2k+2−(i+t) and w = 2k+2− i , then e∗i,i+t = evw . Let us suppose
that t is odd. If i is even then i+ t and v are odd, and w is even. So,

[ei,i+t + evw ,
k

∑
i=1

e2l,2l] = evw − ei,i+t = e∗i,i+t − ei,i+t .

If i is odd then w is odd, and i+ t and v are even. Then,

[ei,i+t + evw ,
k

∑
i=1

e2l,2l] = ei,i+t − evw = ei,i+t − e∗i,i+t .

In summation, [ei,i+t , ∑k
i=1 e2l,2l] = δi+1(ei,i+t − e∗i,i+t) . Therefore,

h(ei,i+t) = δi+1[ei,i+t − evw ,
2k

∑
j=1

e j, j+1]

= δi+1(ei,i+t+1 − ev,w+1− ei−1,i+t + ev−1,w)
= δi+1(ei,i+t+1 − e∗i−1,i+t − ei−1,i+t + e∗i,i+t+1)

= δi+1(ei,i+t+1 − ei−1,i+t) = g(ei,i+t).

Finally, suppose that t is even. If i is even then i+ t , v and w are even. So, [ei,i+t +
evw , ∑k

i=1 e2l,2l] = ei,i+t +evw−ei,i+t −evw = 0. If i is odd then i+ t , v and w are odd.
So, [ei,i+t + evw , ∑k

i=1 e2l,2l] = 0 as desired. �

Proof of Theorem 1. The elements Y1 = ∑k
l=1 e2l,2l and Y2 = ∑2k

i=1 ei,i+1 are in
UT+

2k+1 . It is not difficult to verify that [Y2,Y1] = ∑2k
i=1 δi+1ei,i+1 . Then, for all W ∈

UT+
2k+1 , we have f (Y1,Y2,W ) = g(W ) + γh(W ), where g and h are in accordance

Lemmas 4 and 5. Thus, it is enough to show that the map W �→ g(W )+ γh(W) is a
surjective linear transformation from UT+

2k+1 onto (UT+
2k+1)0 .

A linear basis for (UT+
m )0 is given by the elements er,r+t+1 where r,t are integers

such that r � 1, t � 0 and r+ t � 2k . We will to show that each er,r+t+1 belongs to the
image of the map W �→ g(W )+ γh(W ) . Indeed, let r,t non-negative integers such that
1 � r , r+t � 2k . Consider the following two elements of UT+

2k+1 : W0 = ∑r
i=1 ei,i+t and

W1 = ∑r
i=1 δi+1ei,i+t . If t is even (resp. t is odd) then h(W0) = ∑r

i=1 h(ei,i+t) = 0 (resp.
h(W1) = ∑r

i=1 δi+1h(ei,i+t) = g(W1)) by Lemma 5, and consequently f (Y1,Y2,W0) =
g(W0) = δr er,r+t+1 (resp. f (Y1,Y2,W1) = (1+ γ)g(W1) = (1+ γ)er,r+t+1 )) by Corol-
lary 1.

If 1 + γ �= 0 the proof is complete. Otherwise, we have that f = [y2,y1,y3]−
[y3,y1,y2] = [y2,y3,y1] . The same argument can be repeated with γ = 0. �
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4. m is even

Let k be a positive integer. Each element U ∈UT2k can be written in the following
way:

U =
(

A Ψ
0 B

)
,

where A,B ∈UTk and Ψ ∈ Mk . Thus, the transpose involution of U can be written in
the following way

U∗ =
(

B∗ Ψ∗
0 A∗

)
,

where A∗,B∗,Ψ∗ denotes, respectively, the transpose involution of A,B and Ψ on Mk .
If U ∈UT+

2k , then B = A∗ and Ψ ∈ M+
k . In the case that U ∈UT−

2k , we see that
B = −A∗ and Ψ ∈ M−

k . Besides, we can conclude that the elements in M−
k have all

the entries equal to zero in the secondary diagonal, that is, if Ψ = ∑k
i, j=1 Ψi jei j ∈ M−

k ,
then Ψk1 = Ψk−1,2 = . . . = Ψ1k = 0. For more details about these and other properties
regarding this involution, we recommend [2].

In order to avoid ambiguity, we denote by di j , ei j and ci j the standard matrices
unit for Mk , M2k and M2k+2 , respectively.

Let us recall that the polynomial [y1,y2] is an identity for UT+
2 (see [2]), that is,

[Y1,Y2] = 0 for all Y1,Y2 ∈UT+
2 . Thus, the image of (1) evaluated on UT+

2 is {0} . For
k � 2, we have the following necessary condition for an element W ∈ UT+

2k to lie in
the image of (1):

PROPOSITION 1. Let f = [y2,y1,y3]+ γ[y3,y1,y2], where γ ∈ F and let k � 2 . If
W ∈ Im2k( f ) , then ekkWek+1,k+1 = 0 .

Proof. It suffices to show that ekk[Y1,Y2,Y3]ek+1,k+1 = 0 for all Y1,Y2,Y3 in UT+
2k .

For this, since [Y1,Y2] ∈UT−
2k , we can write

[Y1,Y2] =
(

C Λ
0 −C∗

)
,

where C ∈ UTk and Λ ∈ M−
k . Moreover, C is an element with null diagonal, since

[Y1,Y2] has null diagonal. Now, write Y3 in the form Y3 =
(

A Γ
0 A∗

)
, where A ∈UTk ,

Γ ∈ M+
k . Thus,

[Y1,Y2,Y3] =
(

C Λ
0 −C∗

)(
A Γ
0 A∗

)
−
(

A Γ
0 A∗

)(
C Λ
0 −C∗

)

=
(

[C,A] CΓ+ ΛA∗−AΛ+ ΓC∗
0 [C,A]∗

)
=
(

[C,A] Φ
0 [C,A]∗

)
.
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We can also write ekk =
(

dkk 0
0 0

)
and ek+1,k+1 =

(
0 0
0 d11

)
. Then,

(
dkk 0
0 0

)(
[C,A] Φ

0 [C,A]∗

)(
0 0
0 d11

)
=
(

dkk[C,A] dkkΦ
0 0

)(
0 0
0 d11

)

=
(

0 dkkΦd11

0 0

)
.

Note that in Mk , ΓC∗ = (CΓ)∗ , ΛA∗ = −(AΛ)∗ and d∗
11 = dkk . Hence, it is enough

to show that dkkCΓd11 = dkkAΛd11 = 0. Indeed, since C ∈ (UTk)0 we can write C =
∑k

i, j=1 αi jdi j where each αi j ∈ F with αi j = 0 if i � j . Thus, dkkC = ∑k
j=1 αk jdk j = 0.

Finally, let A = ∑1�i� j�k βi jdi j with βi j ∈ F . Then, dkkA = βkkdkk . Therefore,

dkkAΛd11 = βkkdkkΛd11.

It follows immediately that dkkΛd11 = 0, since Λ ∈ M−
k has (k,1)-entry equal to zero.

Thus, the proof is complete. �
As in the odd case, we will fix two convenient symmetric elements. For each

k � 2, we define the following elements in UT+
2k

Y2 =
(

Jk dk−1,1

0 Jk

)
and Y1 =

(
Bk 0
0 B∗

k

)
, (2)

where Jk = ∑k
i=2 di−1,i , and Bk =

{
d11 +d33 + · · ·+dkk if k is odd

d22 +d44 + · · ·+dkk if k is even
. For this choice

of Y1 and Y2 , we have: [Y2,Y1] =
(

[Jk,Bk] θ
0 −[Jk,Bk]∗

)
, where

θ = dk−1,1B
∗
k −Bkdk−1,1 = (Bkdk−1,1)∗ −Bkdk−1,1 = −a(Bkdk−1,1)

= −a(Bk(dk−1,1 +dk2)) = −a(Bkdk2) = −a(dk2) = d̃k−1,1.

On one hand, for k odd, we have [Jk,Bk] = [∑k
i=2 di−1,i ,d11 +d33 + · · ·+dkk] =−d12 +

d23 − . . . + dk−1,k . On the other hand, for k even, then [Jk,Bk] = [∑k
i=2 di−1,i ,d22 +

d44 + · · ·+dkk] = d12−d23 + . . .+dk−1,k . Therefore, for all k � 2

[Jk,Bk] = δkDk, where Dk =
k

∑
i=2

δidi−1,i.

And, because D∗
k = δkDk and δ 2

k = 1, we conclude that

[Y2,Y1] =
(

δkDk d̃k−1,1

0 −δkD∗
k

)
=
(

δkDk d̃k−1,1

0 −Dk

)
= δk

(
k

∑
i=2

δiẽi−1,i

)
+ ẽk−1,k+1. (3)

In the sequence, we will show that the converse of Proposition 1 holds. More
precisely, we will prove the following theorem.
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THEOREM 2. Let k � 2 and let γ ∈ F . The image of the Jordan polynomial
f = [y2,y1,y3]+ γ[y3,y1,y2] evaluated on UT+

2k is a linear space with basis ei j, where
1 � i < j � 2k , i+ j � 2k+1 and (i, j) �= (k,k+1) .

Proof. As in the proof of the Theorem 1, we can suppose, without loss of gen-
erality, that γ �= −1. Let Vk be the linear subspace of (UT2k)+0 with basis ei j, where
1 � i < j � 2k , i + j � 2k + 1 and (i, j) �= (k,k + 1) . Let us define the linear map
fk : UT+

2k −→ Vk by fk(W ) = f (Y1,Y2,W ) = [Y2,Y1,W ]+ γ[W,Y1,Y2] . The map fk is
well-defined by Proposition 1. Note that if fk is surjective then Im2k( f ) = Vk . Our
goal, it will be to show the surjectivity of the linear map fk . The proof of this theorem
will be divided in two lemmas. �

LEMMA 6. Let k be an integer � 2 . Then e1,t+1 ∈ fk(UT+
2k ) for all t such that

1 � t < 2k .

Proof. We start proving 4 facts regarding the map fk . Set εz = 1+(−1)z
2 for all

z ∈ Z .

Fact 1) fk(e2k) = (1+ γεk+1)(δke1k + e2,k+2) .

First of all, we write e2k in blocks: e2k =
(

d2k 0
0 d∗

2k

)
. Thus, using the block

notation part of (3), we have

[Y2,Y1,e2k] =
(

δk[Dk,d2k] θ
0 δk[Dk,d2k]∗

)
,

where

θ = d̃k−1,1d
∗
2k −d2kd̃k−1,1 = −s(d2kd̃k−1,1)

=− s(d2k(dk−1,1−dk2)) = −s(−d22) = d22.

From the definition of Dk , we see that

δk[Dk,d2k] = δk[
k

∑
i=2

δidi−1,i ,d2k] = δkd1k.

Therefore,

[Y2,Y1,e2k] =
(

δkd1k d22

0 δkd∗
1k

)
= δke1k + e2,k+2. (4)

On the other hand, using the definition of Y1 in (2), we have

[e2k ,Y1] =
(

[d2k,Bk] 0
0 −[d2k,Bk]∗

)
.
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For k odd, we obtain directly from the definition of Bk that

[d2k,Bk] = [d2k,d11 +d33 + · · ·+dkk] = d2k = εk+1d2k.

In the same fashion, for k even, [d2k,Bk] = [d2k,d22 +d44 + · · ·+dkk] = d2k −d2k = 0.
Thus, [d2k,Bk] = εk+1d2k for all k � 2. Combining this last identity with the definition
of Y2 in (2), and the fact that Jk is symmetric, we arrive at

[e2k ,Y1,Y2] = εk+1

(
[d2k,Jk] φ

0 −[d2k,Jk]∗

)
,

where φ = d2kdk−1,1 +dk−1,1d∗
2k = d2kdk−1,1 +(d2kdk−1,1)∗ = s(d2kdk−1,1) =

= s(d2k(dk−1,1 +dk2)) = d22 , and [d2k,Jk] = [d2k,∑k
i=2 di−1,i] = −d1k . Thus,

[e2k ,Y1,Y2] = εk+1

(−d1k d22

0 −d∗
1k

)
= εk+1(−e1k + e2,k+2)

= εk+1(δke1k + e2,k+2), since − εk+1 = εk+1δk.

Now, the result follows from the equality above combined with (4).

Fact 2) fk(e2,k+1) = (1+ γεk+1)(δke1,k+1 + e2,k+2) .
Note that e2,k+1 = e2,k+1 + e∗2,k+1 = e2,k+1 + ek,2k−1 . So, in blocks, we have

e2,k+1 =
(

0 d21

0 0

)
. By the block notation part of (3), we obtain

[Y2,Y1,e2,k+1] =
(

0 ψ
0 0

)
,

where

ψ = δkDkd21 +d21Dk = δk(Dkd21 +(Dkd21)∗) = δks(Dkd21)

= δks

(
k

∑
i=2

δidi−1,i(d21 +dk,k−1)

)
= δks(d11 + δkdk−1,k−1)) = δkd11 +d22.

Thus,

[Y2,Y1,e2,k+1] =
(

0 δkd11 +d22

0 0

)
= δke1,k+1 + e2,k+2. (5)

Using the definition of Y1 in (2), it is straightforward to verify that

[e2,k+1 ,Y1] =
(

0 θ
0 0

)
,

where θ = d21B∗
k −Bkd21 = (Bkd21)∗ −Bkd21 = −a(Bkd21) .

When k is odd, Bkd21 = (d11 + d33 + · · ·+ dkk)(d21 + dk,k−1) = dk,k−1 . So, θ =
−d̃k,k−1 = d̃21 . Similarly, for k even,

Bkd21 = (d22 +d44 + · · ·+dkk)(d21 +dk,k−1) = d21 +dk,k−1 = d21.
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Then, θ = −a(d21) = 0. Therefore, θ = εk+1d̃21 for all k � 2.
Thus, it follows from the previous computations and the definition of Y2 in (2),

and the fact that Jk and d̃21 are, respectively, symmetric and skew-symmetric elements
that

[e2,k+1 ,Y1,Y2] =
(

0 ψ
0 0

)
,

where

ψ = [θ ,Jk] = εk+1(d̃21Jk − Jkd̃21) = εk+1(d̃21Jk +(d̃21Jk)∗) = εk+1s(d̃21Jk)

= εk+1s

(
(d21−dk,k−1)

k

∑
i=2

di−1,i

)
= εk+1s(d22 −dkk) = εk+1(d22−d11)

= εk+1(d22 + δkd11), since εk+1δk = −εk+1.

Thus,

[e2,k+1 ,Y1,Y2] = εk+1

(
0 d22 + δkd11

0 0

)
= εk+1(e2,k+2 + δke1,k+1).

The desired result can be obtained, from the identity above together with (5).

Fact 3) Let t such that k < t < 2k . Then, fk(e1t) = δ1−t+k(1+ γε1−t)e1,t+1 .
Set t = k+ s . So, 1 � s � k−1. By definition, e1,k+s = e1,k+s + e∗1,k+s =

= e1,k+s + ek+1−s,2k . Hence, e1,k+s =
(

0 d1s

0 0

)
. Once again, using the block notation

part of (3), we see

[Y2,Y1,e1,k+s] =
(

0 θ
0 0

)
,

where

θ = δkDkd1s +d1sDk

= δk

k

∑
i=2

δidi−1,i(d1s +dk+1−s,k)+
k

∑
i=2

δi(d1s +dk+1−s,k)di−1,i

= δkδk+1−sdk−s,k + δs+1d1,s+1 = δ1−s(dk−s,k +d1,s+1) = δ1−sd1,s+1.

So,

[Y2,Y1,e1,k+s] = δ1−se1,k+s+1. (6)

According the definition of Y1 in (2), we have

[e1,k+s ,Y1] =
(

0 ϕ
0 0

)
,
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where ϕ = d1sB∗
k −Bkd1s = (Bkd1s)∗ −Bkd1s = −a(Bkd1s ).

First, we will suppose that (k + 1− s) is even. For k even, we have Bkd1s =
(d22 + d44 + · · ·+ dkk)(d1s + dk+1−s,k) = dk+1−s,k . So, ϕ = −d̃k+1−s,k = d̃1s . If k is
odd, we see that Bkd1s = (d11 +d33+ · · ·+dkk)(d1s +dk+1−s,k) = d1s . Then, ϕ =−d̃1s .
Hence,

ϕ = δkd̃1s = δ1−sd̃1s, when (k+1− s) is even.

Secondly, let us suppose that (k + 1− s) is odd. For k odd, we have Bkd1s =
(d11 +d33 + · · ·+dkk)(d1s +dk+1−s,k) = d1s +dk+1−s,k = d1s . Consequently, ϕ = d

∗
1s−

d1s = 0. When k is even, we have Bkd1s = (d22 +d44 + · · ·+dkk)(d1s +dk+1−s,k) = 0.
So,

ϕ = 0, when (k+1− s) is odd.

Therefore,

ϕ = δ1−sεk+1−sd̃1s for all k � 2, where t = k+ s and k < t < 2k.

From the previous discussion and the definition of Y2 in (2), and the fact that Jk

and ϕ are, respectively, symmetric and skew-symmetric elements, we conclude

[e1,k+s ,Y1,Y2] =
(

0 ϕJk − Jkϕ
0 0

)
,

where [ϕ ,Jk] = ϕJk − Jkϕ = s(ϕJk) = δ1−sεk+1−ss(d̃1sJk) . And since

d̃1sJk = (d1s−dk+1−s,k)
k

∑
i=2

di−1,i = d1,s+1,

we see that [ϕ ,Jk] = δ1−sεk+1−sd1,s+1 . Thus,

[e1,k+s ,Y1,Y2] = δ1−sεk+1−se1,k+s+1.

The conlusion follows from the equality above combined with (6), and using that
s = t − k .

Fact 4) Let t such that 1 � t � k−1. Then,

fk(e1t) =

{
−(1+ γεk−1)(e1k + e1,k+1) if t = k−1

δk+t(1+ γεt)e1,t+1 if t < k−1
.

Writing e1t in blocks, we obtain e1t =
(

d1t 0
0 d∗

1t

)
. By the block part of (3), we see

[Y2,Y1,e1t ] =
(

δk[Dk,d1t ] θ
0 δk[Dk,d1t ]∗

)
,
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where

θ = d̃k−1,1d
∗
1t −d1t d̃k−1,1 = −(d1t d̃k−1,1)∗ −d1t d̃k−1,1.

Note that d1t d̃k−1,1 = d1t(dk−1,1 −dk2) = d11 if t = k−1 and d1t d̃k−1,1 = 0 oth-
erwise. Thus,

θ =

{
−d11 if t = k−1

0 if t < k−1
.

On the other hand,

[Dk,d1t ] = [
k

∑
i=2

δidi−1,i ,d1t ] = δtd1,t+1.

In particular, if t = k−1 then δk[Dk,d1,k−1] = δkδk−1d1k = −d1k . Thus,

[Y2,Y1,e1t ] =

{
δk+t e1,t+1 if t < k−1

−e1k − e1,k+1 if t = k−1
. (7)

Using, (2), it is immediate to check that

[e1t ,Y1] =
(

[d1t ,Bk] 0
0 −[d1t,Bk]∗

)
.

When k is even, we see that [d1t ,Bk] = [d1t ,d22 + d44 + · · ·+ dkk] = εt d1t . In the
same way, if k is odd, we have [d1t ,Bk] = [d1t ,d11 +d33 + · · ·+dkk] = −εt d1t .

Therefore,

[d1t ,Bk] = δkεt d1t .

Thus, using the previous computations and the definition of Y2 in (2), and the fact
that Jk and dk−1,1 are symmetric, we see that

[e1t ,Y1,Y2] = δkεt

(
[d1t ,Jk] Γ

0 [d1t ,Jk]∗

)
,

where

Γ = d1tdk−1,1 +dk−1,1d
∗
1t = s(d1t dk−1,1) = s(d1tdk−1,1) =

{
d11 if t = k−1

0 if t < k−1
.

Now, observe that [d1t ,Jk] = [d1t ,∑k
i=2 di−1,i] = d1,t+1 . Hence, for t < k−1,

[e1t ,Y1,Y2] = δkεt

(
d1,t+1 0

0 d∗
1,t+1

)
= δkεt e1,t+1 = δk+tεt e1,t+1.
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And, for t = k−1,

[e1,k−1 ,Y1,Y2] = δkεk−1

(
d1k d11

0 d∗
1k

)
= −εk−1

(
d1k d11

0 d∗
1k

)
= −εk−1(e1k + e1,k+1).

The desired result follows from (7) and the last two equalities above.
So far, we have proved that if γ �= −1, then the following elements belong to the

image of fk :

e12, . . . ,e1,k−1 (By Fact 4),
e1,k+2, . . . ,e1,2k (By Fact 3),
x1 = e1k + e1,k+1 (By Fact 4),
x2 = δke1k + e2,k+2 (By Fact 1),
x3 = δke1,k+1 + e2,k+2 (By Fact 2).

Note that δk(x2 − x3)+ x1 = 2e1k ∈ fk(UT+
2k ) , because fk is linear. In particular,

e1,k+1 ∈ fk(UT+
2k ) . And this completes the proof. �

Before proving the next lemma, we will make some considerations. Let us con-
sider the following embedding of algebras ϕ : UT2k →UT2k+2 given by

ϕ(U) =

⎛
⎝0 0 0

0 U 0
0 0 0

⎞
⎠ , where U ∈UT2k.

It follows directly from the definition of the map ϕ that ϕ(ei j) = ci+1, j+1 for
all i, j such that 1 � i � j � 2k . In particular, we see that ϕ(ei j) = ci+1, j+1 and
ϕ(ẽi j) = c̃i+1, j+1 , and that the map ϕ preserves involution, i.e., ϕ(U)∗ = ϕ(U∗) for
all U ∈UT2k . Consequently, ϕ(UT+

2k ) ⊆UT+
2k+2 .

For convenience, let us rewrite the elements defined in (2) as

Y2 = ek−1,k+1 +
k

∑
i=2

ei−1,i , Y1 =
{

e11 + e33 + . . .+ ekk if k is odd,
e22 + e44 + . . .+ ekk if k is even,

and let us define two new elements that lie in UT+
2k+2 as below

Y ′
2 = ck,k+2 +

k+1

∑
i=2

ci−1,i , Y ′
1 =

{
c11 + c33 + . . .+ ck+1,k+1 if k+1 is odd,
c22 + c44 + . . .+ ck+1,k+1 if k+1 is even.

Then, by (3)

[Y2,Y1] = δk

(
k

∑
i=2

δiẽi−1,i

)
+ ẽk−1,k+1 , [Y ′

2,Y
′
1] = δk+1

(
k+1

∑
i=2

δic̃i−1,i

)
+ c̃k,k+2.

Now, for a given element W ∈UT2k , by definition of fk+1 , we have that

fk+1(ϕ(W )) = [Y ′
2,Y

′
1,ϕ(W )]+ γ[ϕ(W ),Y ′

1,Y
′
2].
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Note that,

ϕ(Y2) = ϕ(ek−1,k+1)+ ϕ(
k

∑
i=2

ei−1,i) = ck,k+2 +
k

∑
i=2

ci,i+1 = Y ′
2 − c12,

and

ϕ([Y2,Y1]) = δk

(
k

∑
i=2

δiϕ(ẽi−1,i)

)
+ ϕ(ẽk−1,k+1) = δk

(
k

∑
i=2

δic̃i,i+1

)
+ c̃k,k+2

= δk+1

(
k+1

∑
j=3

δ j c̃ j−1, j

)
+ c̃k,k+2 = [Y ′

2,Y
′
1]− δk+1c̃12.

If k is odd, then

ϕ(Y1) = ϕ(e11 + e33 + · · ·+ ekk) = c22 + c44 + · · ·+ ck+1,k+1 = Y ′
1.

For k even, we have

ϕ(Y1) = ϕ(e22 + e44 + · · ·+ ekk) = c33 + c55 + · · ·+ ck+1,k+1 = Y ′
1 − c11.

Since ϕ(W ) =

⎛
⎝0 0 0

0 W 0
0 0 0

⎞
⎠ , we see that [ϕ(W ),c11] = 0. Hence,

[ϕ(W ),ϕ(Y1)] = [ϕ(W ),Y ′
1].

After all this, we see, at last, that

ϕ( fk(W )) = [ϕ([Y2,Y1]),ϕ(W )]+ γ[ϕ(W),ϕ(Y1),ϕ(Y2)]
= [Y ′

2,Y
′
1,ϕ(W )]− δk+1[c̃12,ϕ(W )]+ γ[ϕ(W),Y ′

1,Y
′
2]− γ[ϕ(W),Y ′

1,c12]
= fk+1(ϕ(W ))− δk+1[c̃12,ϕ(W )]− γ[ϕ(W),Y ′

1,c12]. (8)

LEMMA 7. Let k � 2 . Then, ei j belongs to fk(UT+
2k ) for all i, j such that 1 �

i < j � 2k , i+ j � 2k+1 and (i, j) �= (k,k+1) .

Proof. We will proceed by induction on k . The base case k = 2 was coverded
by Lemma 6, since we have that e12,e13,e14 ∈ f2(UT+

4 ) . Let us assume that the result
holds for k . We will show that the result is valid for k + 1. Once again, Lemma 6
tells us that it suffices to show that crs ∈ fk+1(UT+

2k+2) for all (r,s) such that 2 � r <
s � 2k + 1, r + s � 2k + 3 and (r,s) �= (k + 1,k + 2) . Indeed, take (r,s) as above.
By induction hypothesis, there exists W ∈ UT+

2k such that fk(W ) = er−1,s−1 . Then,
ϕ( fk(W )) = ϕ(er−1,s−1) = crs .

By (8),

crs = ϕ( fk(W )) = fk+1(ϕ(W ))− δk+1[c̃12,ϕ(W )]− γ[ϕ([W,Y1]),c12].
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It remains to show that [c̃12,ϕ(W )] and [c12,ϕ([W,Y1])]∈ fk+1(UT+
2k+2) , since ϕ(W )∈

ϕ(UT+
2k ) ⊆UT+

2k+2 . From the fact that W and Y1 ∈UT+
2k , we see that [W,Y1] is skew-

symmetric. Thus, we can write

W = ∑
(i, j)∈Λ

αi jei j and [W,Y1] = ∑
(i, j)∈Λ,i< j

βi j ẽi j,

where αi j,βi j ∈ F and Λ = {(i, j) | 1 � i � j � 2k, i+ j � 2k+1} .
Note that ϕ(W ) = ∑(i, j)∈Λ αi jci+1, j+1 . And this yields,

[c̃12,ϕ(W )] = ∑
i, j∈Λ

αi j[c̃12,ci+1, j+1].

Fix (i, j) ∈ Λ . If i �= 1 then j �= 2k . Thus, since i � 2k , we see

[c̃12,ci+1, j+1] = [c12− c2k+1,2k+2 , ci+1, j+1 + c2k+2− j,2k+2−i] = 0.

Therefore, by Lemma 6, we have

[c̃12,ϕ(W )] =
2k

∑
j=1

α1 j[c̃12,c2, j+1] =
2k−1

∑
j=1

α1 jc1, j+1 +2α1,2kc1,2k+1 ∈ fk+1(UT+
2k+2).

Similarly, we can show that [c12,ϕ([W,Y1])] ∈ fk+1(UT+
2k+2) . �

5. Application

As an application of the last two sections, we will characterize the image of some
multilinear Jordan polynomials in the variables {y1,y2,y3,y4} , namely, we will find the
image of polynomials in the following form:

f (y1,y2,y3,y4) = αy1 ◦ (y2 ◦ (y3 ◦ y4))+g(y1,y2,y3,y4),

where J is in accordance with Lemma 3, g ∈ Span(J) and α ∈ F . Note that

f (Y,1m,1m,1m) = αY ◦ (1m ◦ (1m ◦ 1m)) = 8αY

for all Y ∈ UT+
m . Thus, Imm( f ) = UT+

m for all nonzero α in F . When α = 0, we
have the following result.

THEOREM 3. Let g be a nonzero element of Span(J) . Then Imm(g) = (UT+
m )0

if m is odd. When m is even, Imm(g) =Vm/2 where Vm/2 is the linear space with basis
ei j where 1 � i < j � m, i+ j � m+1 and (i, j) �= (m/2,m/2+1) .

Proof. We can write g in the form

g = α1y1 ◦ [y3,y2,y4]+ α ′
1y1 ◦ [y4,y2,y3]+

4

∑
r=2

(αryr ◦ [y jr ,y1,ykr ]+ α ′
ryr ◦ [ykr ,y1,y jr ]),
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where jr,kr ∈ {2,3,4} \ {r} with jr < kr , and αr,α
′
r ∈ F . We can suppose, without

less of generality, that either α1 or α ′
1 is nonzero. Let Y1 = 1m and Y2,Y3,Y4 be three

arbitrary elements of UT+
m . Then,

g(1m,Y2,Y3,Y4) = 2α1[Y3,Y2,Y4]+2α ′
1[Y4,Y2,Y3] = 2p(Y2,Y3,Y4),

where p(w1,w2,w3) = α1[w2,w1,w3]+ α ′
1[w3,w1,w2] is a multilinear Jordan polyno-

mial in three variables. Thus, Imm(p) ⊆ Imm(g) . Hence, by Theorems 1 and 2 the
result follows. �
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