# REFINED HEINZ OPERATOR INEQUALITIES AND NORM INEQUALITIES 

A. G. Ghazanfari

(Communicated by F. Kittaneh)


#### Abstract

In this article we study the Heinz and Hermite-Hadamard inequalities. We derive the whole series of refinements of these inequalities involving unitarily invariant norms, which improve some recent results, known from the literature.

We also prove that if $A, B, X \in M_{n}(\mathbb{C})$ such that $A$ and $B$ are positive definite and $f$ is an operator monotone function on $(0, \infty)$. Then


$$
\|\|f(A) X-X f(B)\|\| \leqslant \max \left\{\left\|f^{\prime}(A)\right\|,\left\|f^{\prime}(B)\right\|\right\}\| \| A X-X B\| \|
$$

Finally we obtain a series of refinements of the Heinz operator inequalities, which were proved by Kittaneh and Krnić.

## 1. Introduction and preliminaries

Let $M_{m, n}(\mathbb{C})$ be the space of $m \times n$ complex matrices and $M_{n}(\mathbb{C})=M_{n, n}(\mathbb{C})$. Let $|\|\|$.$| denote any unitarily invariant norm on M_{n}(\mathbb{C})$. So, $\|\|U A V\|\|=\||A \||$ for all $A \in M_{n}(\mathbb{C})$ and for all unitary matrices $U, V \in M_{n}(\mathbb{C})$. The Hilbert-Schmidt and trace class norm of $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$ are denoted by

$$
\|A\|_{2}=\left(\sum_{j=1}^{n} s_{j}^{2}(A)\right)^{\frac{1}{2}}, \quad\|A\|_{1}=\sum_{j=1}^{n} s_{j}(A)
$$

where $s_{1}(A) \geqslant s_{2}(A) \geqslant \ldots \geqslant s_{n}(A)$ are the singular values of $A$, which are the eigenvalues of the positive semidefinite matrix $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity. For Hermitian matrices $A, B \in M_{n}(\mathbb{C})$, we write that $A \geqslant 0$ if $A$ is positive semidefinite, $A>0$ if $A$ is positive definite, and $A \geqslant B$ if $A-B \geqslant 0$.

The Heron means introduced by Bhatia in [2] as follows:

$$
K_{v}(a, b)=(1-v) \sqrt{a b}+v \frac{a+b}{2}, \quad 0 \leqslant v \leqslant 1
$$

Bhatia derived the inequality

$$
H_{v}(a, b) \leqslant K_{\alpha(v)}(a, b)
$$

Mathematics subject classification (2010): 47A30, 47A63, 15A45.
Keywords and phrases: Norm inequality, operator inequality, Heinz mean.
where $\alpha(v)=1-4\left(v-v^{2}\right)$.
The another one of means that interpolates between the geometric and the arithmetic means is the logarithmic mean:

$$
L(a, b)=\int_{0}^{1} a^{v} b^{1-v} d v
$$

Drissi in [5] showed that $\frac{\sqrt{3}-1}{2 \sqrt{3}} \leqslant v \leqslant \frac{\sqrt{3}+1}{2 \sqrt{3}}$ if and only if

$$
\begin{equation*}
H_{v}(a, b) \leqslant L(a, b) \tag{1.1}
\end{equation*}
$$

R. Kaur and M. Singh [8] have proved that for $A, B, X \in M_{n}$, such that $A, B$ are positive definite, then for any unitarily invariant norm $\|\mid \cdot\|$, and $\frac{1}{4} \leqslant v \leqslant \frac{3}{4}$ and $\alpha \in$ $\left[\frac{1}{2}, \infty\right)$,the following inequality holds

$$
\begin{equation*}
\frac{1}{2} \left\lvert\,\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\|\|\leqslant\|\left\|(1-\alpha) A^{\frac{1}{2}} X B^{\frac{1}{2}}+\alpha\left(\frac{A X+X B}{2}\right)\right\|\right. \| . \tag{1.2}
\end{equation*}
$$

They also proved the following result:

$$
\begin{align*}
\left\|\left\lvert\, A^{\frac{1}{2}} X B^{\frac{1}{2}}\right.\right\| \| & \leqslant \frac{1}{2}\left\|\left\lvert\, A^{\frac{2}{3}} X B^{\frac{1}{3}}+A^{\frac{1}{3}} X B^{\frac{2}{3}}\right.\right\| \| \\
& \leqslant \frac{1}{2+t}\| \| A X+X B+t A^{\frac{1}{2}} X B^{\frac{1}{2}}\| \| \tag{1.3}
\end{align*}
$$

where $A, B, X \in M_{n}, A, B$ are positive definite and $-2<t \leqslant 2$.
Obviously, if $A, B, X \in M_{n}$, such that $A, B$ are positive definite, then for $\frac{1}{4} \leqslant v \leqslant \frac{3}{4}$ and $\alpha \in\left[\frac{1}{2}, \infty\right)$, and any unitarily invariant norm $\|\|\|$.$\| , the following inequalities hold$

$$
\begin{align*}
\left\|\left\lvert\, A^{\frac{1}{2}} X B^{\frac{1}{2}}\right.\right\| \| & \leqslant \frac{1}{2}\| \| A^{v} X B^{1-v}+A^{1-v} X B^{v}\| \| \\
& \leqslant\| \|(1-\alpha) A^{\frac{1}{2}} X B^{\frac{1}{2}}+\alpha\left(\frac{A X+X B}{2}\right) \| \tag{1.4}
\end{align*}
$$

Suppose that

$$
g_{\circ}(v)=\| \| \frac{A^{v} X B^{1-v}+A^{1-v} X B^{v}}{2}\| \|
$$

and

$$
f_{\circ}(\alpha)=\| \|(1-\alpha) A^{\frac{1}{2}} X B^{\frac{1}{2}}+\alpha\left(\frac{A X+X B}{2}\right)\| \|
$$

Then, the inequalities (1.2), (1.3),(1.4), can be simply rewritten respectively as follows

$$
\begin{align*}
& g_{\circ}(v) \leqslant f_{\circ}(\alpha) \\
& g_{\circ}\left(\frac{1}{2}\right) \leqslant g_{\circ}\left(\frac{2}{3}\right) \leqslant f_{\circ}\left(\frac{2}{2+t}\right) \tag{1.5}
\end{align*}
$$

$$
g_{\circ}\left(\frac{1}{2}\right) \leqslant g_{\circ}(v) \leqslant f_{\circ}(\alpha)
$$

I. Ali, H. Yang and A. shakoor [1] gave a refinement of the inequality (1.4) as follows:

$$
\begin{equation*}
g_{\circ}(v) \leqslant\left(4 r_{0}-1\right) g_{\circ}\left(\frac{1}{2}\right)+2\left(1-2 r_{0}\right) f_{\circ}(\alpha), \tag{1.6}
\end{equation*}
$$

where $\frac{1}{4} \leqslant v \leqslant \frac{3}{4}, \alpha \in\left[\frac{1}{2}, \infty\right)$ and $r_{0}=\min \{v, 1-v\}$.
Kittaneh [10], gave a generalization of the Heinz inequality using convexity and the Hermite-Hadamard integral inequality for $0 \leqslant v \leqslant 1$, as follows:

$$
\begin{align*}
2\left|\left|\left|A^{\frac{1}{2}} X B^{\frac{1}{2}}\right| \|\right.\right. & \leqslant \frac{1}{|1-2 v|}\left|\int_{v}^{1-v}\left\|\left|A^{t} X B^{1-t}+A^{1-t} X B^{t}\right|\right\| d t\right| \\
& \leqslant\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\| \mid \tag{1.7}
\end{align*}
$$

A refinement of (1.7) is given in [9]. They also proved that

$$
\begin{align*}
& \left\|\left\lvert\, A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\right.\right\| \| \\
& \leqslant \frac{1}{|\beta-\alpha|}\left|\left\|\int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \mid\right\|\right. \\
& =\frac{1}{2}\left\|\left|A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\right|\right\| \tag{1.8}
\end{align*}
$$

Heretofore the inequalities discussed above are proved in the setting of matrices. Kapil and Singh in [7], using the contractive maps proved that the relation (1.8) holds for invertible positive operators in $B(H)$. The aim of this paper is to obtain refinements of the Hermite-Hadamard inequality (1.8) in the setting of operators (see Theorem (2)). We also present a generalization of the difference version of Heinz inequality (see Theorem (1)). At the end, we study the Heinz operator inequalities, which were proved in [10] and give a series of refinements of these operator inequalities (see Theorem (4) and (5)).

## 2. Norm inequalities for matrices

Let $A, B, X \in M_{n}(\mathbb{C})$ such that $A$ and $B$ be positive definite and $0 \leqslant v \leqslant 1$. A difference version of the Heinz inequality

$$
\begin{equation*}
\left\|\left\|A^{v} X B^{1-v}-A^{1-v} X B^{v}|\|\leqslant|2 v-1|| ||A X-X B|\|\right.\right. \tag{2.1}
\end{equation*}
$$

was proved by Bhatia and Davis in [4].
Kapil, et.al., [6] proved that if $0<r \leqslant 1$. Then

$$
\begin{equation*}
\left\|\left|A^{r} X-X B^{r}\right|\right\| \leqslant r \max \left\{\left\|A^{r-1}\right\|,\left\|B^{r-1}\right\|\right\} \mid\|A X-X B\| \| \tag{2.2}
\end{equation*}
$$

They also proved that if $\alpha \geqslant 1$, and $\frac{1-\alpha}{2} \leqslant v \leqslant \frac{1+\alpha}{2}$, then

$$
\begin{align*}
\alpha \mid \| A^{v} X B^{1-v} & -A^{1-v} X B^{v} \mid \| \\
& \leqslant|2 v-1| \max \left\{\left\|A^{1-\alpha}\right\|, \| B^{1-\alpha}| |\right\}| |\left|A^{\alpha} X-X B^{\alpha}\right| \| . \tag{2.3}
\end{align*}
$$

The following theorem is a generalization of (2.2).
Theorem 1. Let $A, B, X \in M_{n}(\mathbb{C})$ such that $A$ and $B$ be positive definite and $f$ be an operator monotone function on $(0, \infty)$. Then

$$
\begin{equation*}
\|\mid f(A) X-X f(B)\|\left\|\leqslant \max \left\{\left\|f^{\prime}(A)\right\|,\left\|f^{\prime}(B)\right\|\right\}\right\|\|A X-X B\| \| \tag{2.4}
\end{equation*}
$$

Proof. It suffices to prove the required inequality in the special case which $A=B$ and $A$ is diagonal. Then the general case follows by replacing $A$ with $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ and $X$ with $\left[\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right]$. Therefore let $A=\operatorname{diag}\left(\lambda_{i}\right)>0$. Then $f(A) X-X f(A)=Y \circ(A X-X A)$ where $Y=f^{[1]}(A)$, i.e.,

$$
y_{i j}= \begin{cases}\frac{f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}, & \lambda_{i} \neq \lambda_{j} \\ f^{\prime}\left(\lambda_{i}\right), & \lambda_{i}=\lambda_{j}\end{cases}
$$

By [3, Theorem V.3.4], $f^{[1]}(A) \geqslant 0$. Consequently

$$
\begin{aligned}
\|\mid f(A) X-X f(A)\| \| & =\|\mid Y \circ(A X-X A)\|\left\|\leqslant \max y_{i i}\right\|\|A X-X A\| \| \\
& =\left\|f^{\prime}(A)\right\|\|A X-X A\| \| . \quad \square
\end{aligned}
$$

EXAmple 1. (i) For the function $f(t)=t^{r}, 0<r<1$,

$$
\begin{aligned}
\left\|\left\|A^{r} X-X B^{r}\right\|\right\| & \leqslant r\left(\max \left\{\left\|A^{r-1}\right\|,\left\|B^{r-1}\right\|\right\}\right) \\
& =r\left(\max \left\{\left\|A^{-1}\right\|,\left\|B^{-1}\right\|\right\}\right)^{1-r}\|A X-X B\| \| .
\end{aligned}
$$

(ii) For the function $f(t)=\log t$ on $(0, \infty)$,

$$
\|\|\log (A) X-X \log (B)\|\| \leqslant\left(\max \left\{\left\|A^{-1}\right\|,\left\|B^{-1}\right\|\right\}\right)\|A X-X B\| \|
$$

REMARK 1. Let $\alpha \geqslant 1$ and $0 \leqslant v \leqslant 1$. From inequality (2.4) for $A^{\alpha}, B^{\alpha}$ and $f(t)=t^{\frac{1}{\alpha}}$, we get

$$
\begin{equation*}
\left.\||A X-X B|\| \leqslant \frac{1}{\alpha} \max \left\{\left\|A^{1-\alpha}\right\|,\left\|B^{1-\alpha}\right\|\right\}\| \| A^{\alpha} X-X B^{\alpha} \right\rvert\, \| \tag{2.5}
\end{equation*}
$$

On combining (2.1), and (2.5), we obtain (2.3).

## 3. Norm inequalities for operators

Let $B(H)$ denote the set of all bounded linear operators on a complex Hilbert space $H$. An operator $A \in B(H)$ is positive, and we write $A \geqslant 0$, if $(A x, x) \geqslant 0$ for every vector $x \in H$. If $A$ and $B$ are self-adjoint operators, the order relation $A \geqslant B$ means, as usual, that $A-B$ is a positive operator.

To reach inequalities for bounded self-adjoint operators on Hilbert space, we shall use the following monotonicity property for operator functions:

If $X \in B(H)$ is self adjoint with a spectrum $S p(X)$, and $f, g$ are continuous real valued functions on an interval containing $\operatorname{Sp}(X)$, then

$$
\begin{equation*}
f(t) \geqslant g(t), t \in S p(X) \Rightarrow f(X) \geqslant g(X) \tag{3.1}
\end{equation*}
$$

For more details about this property, the reader is referred to [14].
Let $L_{X}, R_{Y}$ denote the left and right multiplication maps on $B(H)$, respectively, that is, $L_{X}(T)=X T$ and $R_{Y}(T)=T Y$. Since $L_{X}$ and $R_{Y}$ commute, we have

$$
e^{L_{X}+R_{Y}}(T)=e^{X} T e^{Y} .
$$

Let $U$ be an invertible positive operator in $B(H)$, then there exists a self-adjoint operator $V \in B(H)$ such that $U=e^{V}$. Let $n \in \mathbb{N}$ and $A, B$ be two invertible positive operators in $B(H)$. To simplify computations, we denote $A$ and $B$ by $e^{2^{n+1} X_{1}}$ and $e^{2^{n+1} Y_{1}}$, respectively, where $X_{1}$ and $Y_{1}$ in $B(H)$ are self-adjoint. The corresponding operator map $L_{X_{1}}-R_{Y_{1}}$ is denoted by $D$. With these notations, we now use the results proved in [7, 13] to derive the Hermite-Hadamard type inequalities for unitarily invariant norms.

The Hermite-Hadamard inequality and various refinements of it in the setting of operators (resp. matrices) were given in [7] (resp. [9]). The following theorem is another generalization of the Hermite-Hadamard inequality for operators.

THEOREM 2. Let $A, B, X \in B(H)$ such that $A$ and $B$ be invertible positive operators and let $\alpha, \beta$ be any two real numbers and $n, m \in \mathbb{N}$. Let $\gamma(t)=(1-t) \alpha+t \beta$,

$$
E_{n}=\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}}\left(A^{\gamma\left(\frac{2 i-1}{2^{n}}\right)} X B^{1-\gamma\left(\frac{2 i-1}{2^{n}}\right)}+A^{1-\gamma\left(\frac{2 i-1}{2^{n}}\right)} X B^{\gamma\left(\frac{2 i-1}{2^{n}}\right)}\right)
$$

and

$$
\begin{aligned}
& F_{m}=\frac{1}{2^{m}} \sum_{i=1}^{2^{m-1}}\left(A^{\gamma\left(\frac{i-1}{2^{m-1}}\right)} X B^{1-\gamma\left(\frac{i-1}{2^{m-1}}\right)}+A^{1-\gamma\left(\frac{i-1}{2^{m-1}}\right)} X B^{\gamma\left(\frac{i-1}{2^{m-1}}\right)}\right. \\
&\left.+A^{\gamma\left(\frac{i}{2^{m-1}}\right)} X B^{1-\gamma\left(\frac{i}{2^{m-1}}\right)}+A^{1-\gamma\left(\frac{i}{2^{m-1}}\right)} X B^{\gamma\left(\frac{i}{2^{m-1}}\right)}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|\left\lvert\, A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\right.\right\|\|=\| E_{1}\| \| \leqslant \ldots \leqslant\left\|E_{n}\right\| \| \\
& \leqslant \frac{1}{|\beta-\alpha|}\left|\left\|\int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \mid\right\|\right.
\end{aligned}
$$

$$
\begin{align*}
& \leqslant\left\|F_{m}\right\|\|\leqslant \ldots \leqslant\| \mid F_{1}\| \| \\
& =\frac{1}{2}\| \| A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\| \| \tag{3.2}
\end{align*}
$$

Proof. Put $A=e^{2^{n+1} X_{1}}, B=e^{2^{n+1} Y_{1}}$ and $T=A^{\frac{1}{2}} X B^{\frac{1}{2}}$, then

$$
\begin{aligned}
A^{\gamma\left(\frac{2 i-1}{2^{n}}\right)} X B^{1-\gamma\left(\frac{2 i-1}{2^{n}}\right)} & +A^{1-\gamma\left(\frac{2 i-1}{2^{n}}\right)} X B^{\gamma\left(\frac{2 i-1}{2^{n}}\right)} \\
& =2 \cosh \left(2^{n+1}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right) T
\end{aligned}
$$

Similarly, a simple calculation shows

$$
\begin{aligned}
& A^{\gamma\left(\frac{i-1}{2^{n-1}}\right)} X B^{1-\gamma\left(\frac{i-1}{2^{n-1}}\right)}+A^{1-\gamma\left(\frac{i-1}{2^{n-1}}\right)} X B^{\gamma\left(\frac{i-1}{2^{n-1}}\right)} \\
& \quad+A^{\gamma\left(\frac{i}{2^{n-1}}\right)} X B^{1-\gamma\left(\frac{i}{2^{n-1}}\right)}+A^{1-\gamma\left(\frac{i}{2^{n-1}}\right)} X B^{\gamma\left(\frac{i}{2^{n-1}}\right)} \\
& =2 \cosh \left(2^{n}\left(\gamma\left(\frac{i-1}{2^{n-1}}\right)-\frac{1}{2}\right) D\right) T+2 \cosh \left(2^{n}\left(\gamma\left(\frac{i}{2^{n-1}}\right)-\frac{1}{2}\right) D\right) T
\end{aligned}
$$

Continuing the calculation, we have

$$
\begin{aligned}
& A^{\gamma\left(\frac{i-1}{2^{n-1}}\right)} X B^{1-\gamma\left(\frac{i-1}{2^{n-1}}\right)}+A^{1-\gamma\left(\frac{i-1}{2^{n-1}}\right)} X B^{\gamma\left(\frac{i-1}{2^{n-1}}\right)} \\
&+A^{\gamma\left(\frac{i}{\left.2^{n-1}\right)}\right.} X B^{1-\gamma\left(\frac{i}{2^{n-1}}\right)}+A^{1-\gamma\left(\frac{i}{2^{n-1}}\right)} X B^{\gamma\left(\frac{i}{2^{n-1}}\right)} \\
&= 4 \cosh \left(2^{n-1}\left(\gamma\left(\frac{i-1}{2^{n-1}}\right)+\gamma\left(\frac{i}{2^{n-1}}\right)-1\right) D\right) \\
& \times \cosh \left(2^{n-1}\left(\gamma\left(\frac{i-1}{2^{n-1}}\right)-\gamma\left(\frac{i}{2^{n-1}}\right)\right) D\right) T \\
&= 4 \cosh \left(2^{n-1}\left(\gamma\left(\frac{i-1}{2^{n-1}}\right)+\gamma\left(\frac{i}{2^{n-1}}\right)-1\right) D\right) \\
& \times \cosh ((\beta-\alpha) D) T
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{2^{n}}{\beta-\alpha} \int_{\gamma\left(\frac{i-1}{2^{n}}\right)}^{\gamma\left(\frac{i}{2^{n}}\right)} & \left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \\
= & \frac{2^{n}}{\beta-\alpha} \int_{\gamma\left(\frac{i-1}{2^{n}}\right)}^{\gamma\left(\frac{i}{2^{n}}\right)} 2 \cosh \left(2^{n+1}\left(v-\frac{1}{2}\right) D\right) T d v \\
= & \frac{D^{-1}}{\beta-\alpha}\left[\sinh \left(2^{n+1}\left(\gamma\left(\frac{i}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right. \\
& \left.\quad-\sinh \left(2^{n+1}\left(\gamma\left(\frac{i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right] T
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\frac{2^{n}}{\beta-\alpha} \int_{\gamma\left(\frac{i-1}{2^{n}}\right)}^{\gamma\left(\frac{i}{2^{n}}\right)} & \left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \\
= & \frac{2 D^{-1}}{\beta-\alpha} \cosh \left(2^{n}\left(\gamma\left(\frac{i-1}{2^{n}}\right)+\gamma\left(\frac{i}{2^{n}}\right)-1\right) D\right) \\
& \times \sinh \left(2^{n}\left(\gamma\left(\frac{i}{2^{n}}\right)-\gamma\left(\frac{i-1}{2^{n}}\right)\right) D\right) T \\
= & \frac{2 D^{-1}}{\beta-\alpha} \cosh \left(2^{n}\left(\gamma\left(\frac{i-1}{2^{n}}\right)+\gamma\left(\frac{i}{2^{n}}\right)-1\right) D\right) \\
& \times \sinh ((\beta-\alpha) D) T
\end{aligned}
$$

Calculus computations show that for $n \geqslant 2$, we have

$$
\begin{aligned}
E_{n}= & \frac{1}{2^{n-2}} \sum_{i=1}^{2^{n-1}} \cosh \left(2^{n+1}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right) T \\
= & \frac{1}{2^{n-2}}\left[\sum_{i=1}^{2^{n-2}} \cosh \left(2^{n+1}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right. \\
& \left.+\sum_{i=1+2^{n-2}}^{2^{n-1}} \cosh \left(2^{n+1}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right] T \\
= & \frac{1}{2^{n-2}} \sum_{i=1}^{2^{n-2}}\left[\cosh \left(2^{n+1}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right. \\
& \left.+\cosh \left(2^{n+1}\left(\gamma\left(1-\frac{2 i-1}{2^{n}}\right)-\frac{1}{2}\right) D\right)\right] T \\
= & \frac{1}{2^{n-3}} \sum_{i=1}^{2^{n-2}}\left[\cosh \left(2^{n}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)+\gamma\left(1-\frac{2 i-1}{2^{n}}\right)-1\right) D\right)\right. \\
& \left.\times \cosh \left(2^{n}\left(\gamma\left(\frac{2 i-1}{2^{n}}\right)-\gamma\left(1-\frac{2 i-1}{2^{n}}\right)\right) D\right)\right] T .
\end{aligned}
$$

Using the relations $\gamma(t)+\gamma(1-t)=\alpha+\beta$ and $\gamma(t)-\gamma(1-t)=(2 t-1)(\beta-\alpha)$, we obtain

$$
\begin{align*}
E_{n} & =\frac{1}{2^{n-3}} \cosh \left(2^{n}(\alpha+\beta-1) D\right) \sum_{i=1}^{2^{n-2}} \cosh \left(2^{n}\left(\frac{2 i-1}{2^{n-1}}-1\right)(\beta-\alpha) D\right) T \\
& =\frac{1}{2^{n-3}} \cosh \left(2^{n}(\alpha+\beta-1) D\right) \sum_{i=1}^{2^{n-2}} \cosh (2(2 i-1)(\beta-\alpha) D) T \\
& =2 \cosh \left(2^{n}(\alpha+\beta-1) D\right) \prod_{i=1}^{n-1} \cosh \left(2^{n-i}(\beta-\alpha) D\right) T \tag{3.3}
\end{align*}
$$

Similarly, by simple calculations, we obtain

$$
\begin{align*}
& F_{n+1}=\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n}} \cosh \left(2^{n}\left(\gamma\left(\frac{i-1}{2^{n}}\right)+\gamma\left(\frac{i}{2^{n}}\right)-1\right) D\right) \cosh ((\beta-\alpha) D) T \\
& =\frac{1}{2^{n-2}} \sum_{i=1}^{2^{n-1}} \cosh \left(2^{n}(\alpha+\beta-1) D\right) \cosh ((2 i-1)(\beta-\alpha) D) \cosh ((\beta-\alpha) D) T \\
& =\cosh \left(2^{n}(\alpha+\beta-1) D\right) \prod_{i=1}^{n-1} \cosh \left(2^{n-i}(\beta-\alpha) D\right)(\cosh (2(\beta-\alpha) D)+1) T \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
W & :=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \\
& =\frac{2 D^{-1}}{\beta-\alpha} \sum_{i=1}^{2^{n}} \cosh \left(2^{n}\left(\gamma\left(\frac{i-1}{2^{n}}\right)+\gamma\left(\frac{i}{2^{n}}\right)-1\right) D\right) \sinh ((\beta-\alpha) D) T \\
& =\frac{2 D^{-1}}{\beta-\alpha} \cosh \left(2^{n}(\alpha+\beta-1) D\right) \prod_{i=1}^{n} \cosh \left(2^{n-i}(\beta-\alpha) D\right) \sinh ((\beta-\alpha) D) T \\
& =\frac{D^{-1}}{2^{n-1}(\beta-\alpha)} \cosh \left(2^{n}(\alpha+\beta-1) D\right) \sinh \left(2^{n}(\beta-\alpha) D\right) T \tag{3.5}
\end{align*}
$$

By [13, Proposition 21], the operator map $\frac{2(\beta-\alpha) D}{\sinh (2(\beta-\alpha) D)}$ is contractive, so from equalities (3.3) and (3.5), we obtain

$$
\begin{equation*}
\left\|\left|E_{n}\right|\right\| \leqslant\||\|\mid\| \tag{3.6}
\end{equation*}
$$

From equality (3.3) for $E_{n-1}$ with $A=e^{2^{n+1} X_{1}}, B=e^{2^{n+1} Y_{1}}$, we get

$$
E_{n-1}=2 \cosh \left(2^{n}(\alpha+\beta-1) D\right) \prod_{i=1}^{n-2} \cosh \left(2^{n-i}(\beta-\alpha) D\right) T
$$

The operator map $\frac{1}{\cosh (2(\beta-\alpha) D)}$ is contractive, so

$$
\begin{equation*}
\left\|\left|E_{n-1}\right|\right\|\left|\leqslant\left\|\left|E_{n}\right|\right\| .\right. \tag{3.7}
\end{equation*}
$$

By [7, Proposition 2.4], the operator map $\frac{\sinh ((\beta-\alpha) D)}{(\beta-\alpha) D \cosh ((\beta-\alpha) D)}$ is contractive, therefore from equalities (3.4) and (3.5), we get

$$
\begin{equation*}
\|\|W\|\| \leqslant\left\|F_{n+1}\right\| \tag{3.8}
\end{equation*}
$$

From equality (3.5) for $n=2$, i.e., for $A=e^{8 X_{1}}, B=e^{8 Y_{1}}$, we have

$$
W=\frac{D^{-1}}{2(\beta-\alpha)} \cosh (4(\alpha+\beta-1) D) \sinh (4(\beta-\alpha) D) T
$$

and

$$
F_{2}=\cosh (4(\alpha+\beta-1) D)(\cosh (4(\beta-\alpha) D)+1) T
$$

In this case, we also get $\||W|\| \leqslant\left\|\left|F_{2} \|\right|\right.$ because the operator map $\frac{\sinh (2(\beta-\alpha) D)}{2(\beta-\alpha) D \cosh (2(\beta-\alpha) D)}$ is contractive.

From equality (3.4) for $F_{n}$ with $A=e^{2^{n+1} X_{1}}, B=e^{2^{n+1} Y_{1}}$, we get

$$
\begin{aligned}
F_{n}=\cosh \left(2^{n}(\alpha+\beta-1) D\right) \prod_{i=1}^{n-2} & \cosh \left(2^{n-i}(\beta-\alpha) D\right) \\
& \times(\cosh (4(\beta-\alpha) D)+1) T
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{F_{n+1}}{F_{n}} & =\frac{\cosh (2(\beta-\alpha) D)(1+\cosh (2(\beta-\alpha) D))}{1+\cosh (4(\beta-\alpha) D)} \\
& =\frac{1}{2}\left(\frac{1}{\cosh (2(\beta-\alpha) D)}+1\right)
\end{aligned}
$$

and this implies that

$$
\begin{equation*}
\left\|\left|\left|F_{n+1}\| \| \leqslant\left\|\mid F_{n}\right\| \| .\right.\right.\right. \tag{3.9}
\end{equation*}
$$

From (3.6), (3.7), (3.8) and (3.9), we obtain the relation (3.2) and the proof is completed.

THEOREM 3. Let $A, B, X \in B(H)$ such that $A$ and $B$ be invertible positive operators. Let $\frac{1}{4} \leqslant v \leqslant \frac{3}{4}$ and $\alpha \in\left[\frac{1}{2}, \infty\right)$. Then

$$
\begin{align*}
\left.\frac{1}{2} \right\rvert\,\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\| \| & \leqslant\| \| \int_{0}^{1} A^{t} X B^{1-t} d t \|  \tag{3.10}\\
& \leqslant\| \|(1-\alpha) A^{\frac{1}{2}} X B^{\frac{1}{2}}+\alpha\left(\frac{A X+X B}{2}\right) \|
\end{align*}
$$

Proof. Suppose that $A=e^{2 X_{1}}, B=e^{2 Y_{1}}$ and $T=A^{\frac{1}{2}} X B^{\frac{1}{2}}$,then

$$
\frac{1}{2}\left|\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\|\|=\|\right| \cosh ((2 v-1) D) T\|\|
$$

and

$$
\left\|\left\|\int_{0}^{1} A^{t} X B^{1-t} d t\right\|\right\|=\left\|\mid \int_{0}^{1} \exp ((2 t-1) D) T d t\right\|\|=\|\left\|D^{-1} \sinh (D) T\right\|
$$

By [13, Proposition 21], the operator map $\frac{D \cosh ((2 v-1) D)}{\sinh (D)}$ is contractive. This proves the first inequality in (3.10). The second inequality in (3.10) has been proved in Theorem 3.9 of [7].

## 4. Improved Heinz operator inequalities

Let $A, B \in B(H)$ be two positive operators and $v \in[0,1]$, then the $v$-weighted arithmetic mean of $A$ and $B$ denoted by $A \nabla_{v} B$, is defined as $A \nabla_{v} B=(1-v) A+v B$. If $A$ is invertible, the $v$-geometric mean of $A$ and $B$ denoted by $A \not \sharp_{v} B$ is defined as $A \not \sharp_{v} B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{v} A^{\frac{1}{2}}$. For more detail, see Kubo and Ando [12]. When $v=\frac{1}{2}$, we write $A \nabla B, A \sharp B$, for brevity, respectively.

Let $A, B \in B(H)$ be two invertible positive (strictly positive) operators and $v \in$ $[0,1]$. The operator version of the Heinz means are defined by

$$
H_{v}(A, B)=\frac{A \not \sharp_{v} B+A \not \sharp_{1-v} B}{2},
$$

and the operator version of the Heron means are defined by

$$
K_{v}(A, B)=(1-v)(A \sharp B)+v(A \nabla B) .
$$

Zhao et al. in [15] gave an inequality for the Heinz-Heron means as follows:

$$
H_{v}(A, B) \leqslant K_{\alpha(v)}(A, B)
$$

where $\alpha(v)=1-4\left(v-v^{2}\right)$.
It is easy to show that the above Heinz mean $H_{v}(\cdot, \cdot)$ interpolates between the non-weighted arithmetic mean and geometric mean, that is

$$
\begin{equation*}
A \sharp B \leqslant H_{v}(A, B) \leqslant A \nabla B . \tag{4.1}
\end{equation*}
$$

Kittaneh and Krnić in [11] obtained the some refinements of the left and right inequalities in (4.1) for $v \in[0,1]-\left\{\frac{1}{2}\right\}$, as follows:

$$
\begin{align*}
A \sharp B & \leqslant H_{\frac{2 v+1}{4}}(A, B) \leqslant \frac{1}{2 v-1} A^{\frac{1}{2}} F_{v}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}} \\
& \leqslant \frac{1}{4} H_{v}(A, B)+\frac{1}{2} H_{\frac{2 v+1}{4}}(A, B)+\frac{1}{4} A \nabla B \\
& \leqslant \frac{1}{2} H_{v}(A, B)+\frac{1}{2} A \sharp B+\leqslant H_{v}(A, B), \tag{4.2}
\end{align*}
$$

and

$$
\begin{align*}
H_{v}(A, B) & \leqslant H_{\frac{r_{0}}{2}}(A, B) \leqslant \frac{1}{2 r_{0}} A^{\frac{1}{2}}\left[F_{1}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)+F_{r_{0}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)\right] A^{\frac{1}{2}} \\
& \leqslant \frac{1}{4} H_{v}(A, B)+\frac{1}{2} H_{\frac{r_{0}}{2}}(A, B)+\frac{1}{4} A \nabla B  \tag{4.3}\\
& \leqslant \frac{1}{2} H_{v}(A, B)+\frac{1}{2} A \nabla B \leqslant A \nabla B
\end{align*}
$$

where $r_{0}=\min \{v, 1-v\}$ and

$$
F_{v}(x)= \begin{cases}\frac{x^{v}-x^{1-v}}{\log x}, & x>0, x \neq 1  \tag{4.4}\\ 2 v-1, & x=1\end{cases}
$$

Let $f, \alpha, \beta$ be continuous real functions on $\mathbb{R}$ and $f$ be convex. Let $\alpha(v)<$ $\beta(v)(v \in \mathbb{R})$, and $\gamma_{v}(t)=(1-t) \alpha(v)+t \beta(v)$. For $n \in \mathbb{N}$, Define

$$
\begin{align*}
\varphi_{n}(f, v) & =\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} f\left(\left(1-\frac{2 i-1}{2^{n}}\right) \alpha(v)+\frac{2 i-1}{2^{n}} \beta(v)\right) \quad(v \in \mathbb{R}) \\
& =\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} f\left(\gamma_{v}\left(\frac{2 i-1}{2^{n}}\right)\right) \tag{4.5}
\end{align*}
$$

For $m \in \mathbb{N}$, we define

$$
\Phi_{1}(f, v)=\frac{f(\alpha(v))+f(\beta(v))}{2}
$$

and for $m \geqslant 1$

$$
\begin{align*}
\Phi_{m+1}(f, v) & =\frac{1}{2^{m+1}}\left[f(\alpha(v))+f(\beta(v))+2 \sum_{i=1}^{2^{m}-1} f\left(\left(1-\frac{i}{2^{m}}\right) \alpha(v)+\frac{i}{2^{m}} \beta(v)\right)\right] \\
& =\frac{1}{2^{m+1}}\left[f(\alpha(v))+f(\beta(v))+2 \sum_{i=1}^{2^{m}-1} f\left(\gamma_{v}\left(\frac{i}{2^{m}}\right)\right)\right] \tag{4.6}
\end{align*}
$$

It can be easily shown that for every $n, m \in \mathbb{N}$, the sequence $\left(\varphi_{n}\right)$, $\left(\operatorname{resp} .\left(\Phi_{m}\right)\right)$ is an increasing (resp. a decreasing) sequence of continuous functions such that

$$
\begin{equation*}
f\left(\frac{\alpha+\beta}{2}\right) \leqslant \varphi_{n}(f, v) \leqslant \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(t) d t \leqslant \Phi_{m}(f, v) \leqslant \frac{f(\alpha)+f(\beta)}{2} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{n}(f, v)=\lim _{m \rightarrow \infty} \Phi_{m}(f, v)=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(t) d t \tag{4.8}
\end{equation*}
$$

Now, we consider the function $f_{x}:[0,1] \rightarrow \mathbb{R}, x>0$, by

$$
\begin{equation*}
f_{x}(t)=\frac{x^{t}+x^{1-t}}{2} \tag{4.9}
\end{equation*}
$$

and $0 \leqslant \alpha(v)<\beta(v) \leqslant 1$. The functions $\varphi_{n}\left(f_{x}, v\right)$ and $\Phi_{n}\left(f_{x}, v\right)$ are continuous functions of $x$. If $A, B \in B(H)$ are two invertible positive operators, using the functional calculus at $x=A^{\frac{-1}{2}} B A^{\frac{-1}{2}}$ for $\varphi_{n}\left(f_{x}, v\right)$, we have

$$
\begin{equation*}
\varphi_{n}\left(f_{A^{\frac{-1}{2}} B A^{\frac{-1}{2}}}, v\right)=\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} \frac{\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\gamma_{v}\left(\frac{2 i-1}{2^{n}}\right)}+\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{1-\gamma_{v}\left(\frac{2 i-1}{2^{n}}\right)}}{2} . \tag{4.10}
\end{equation*}
$$

Multiplying (4.10) by $A^{\frac{1}{2}}$ on the left and right sides, we get

$$
\begin{equation*}
A^{\frac{1}{2}} \varphi_{n}\left(f_{A^{\frac{-1}{2}} B A} \frac{-1}{2}, v\right) A^{\frac{1}{2}}=\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} H_{\gamma_{v}\left(\frac{2 i-1}{2^{n}}\right)}(A, B) \tag{4.11}
\end{equation*}
$$

We denote it by $\varphi_{n}(\alpha, \beta ; A, B)$. Similarly,

$$
\begin{align*}
\Phi_{m+1}(\alpha, \beta ; A, B) & :=A^{\frac{1}{2}} \Phi_{m+1}\left(f_{x}, v\right) A^{\frac{1}{2}}  \tag{4.12}\\
& =\frac{1}{2^{m+1}}\left[H_{\alpha(v)}(A, B)+H_{\beta(v)}(A, B)+2 \sum_{i=1}^{2^{m}-1} H_{\gamma_{v}\left(\frac{i}{2^{m}}\right)}(A, B)\right]
\end{align*}
$$

In the following Theorem we give a series of refinements of (4.2).

THEOREM 4. Let $n, m \in \mathbb{N}$ and $n>1, m>2$. If $A, B \in B(H)$ are two invertible positive operators, then the series of inequalities holds

$$
\begin{align*}
A \sharp B & \leqslant H_{\frac{2 v+1}{4}}(A, B)=\varphi_{1}\left(v, \frac{1}{2} ; A, B\right) \leqslant \varphi_{n}\left(v, \frac{1}{2} ; A, B\right) \\
& \leqslant \frac{1}{2 v-1} A^{\frac{1}{2}} F_{v}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}} \leqslant \Phi_{m}\left(v, \frac{1}{2} ; A, B\right) \\
& \leqslant \Phi_{2}\left(v, \frac{1}{2} ; A, B\right)=\frac{1}{4} H_{v}(A, B)+\frac{1}{2} H_{\frac{2 v+1}{4}}(A, B)+\frac{1}{4} A \sharp B \\
& \leqslant \frac{1}{2} H_{v}(A, B)+\frac{1}{2} A \sharp B+\leqslant H_{v}(A, B), \tag{4.13}
\end{align*}
$$

for all $v \in[0,1]-\left\{\frac{1}{2}\right\}$, where $F_{v}$ is the function given in (4.4).

Proof. Let $0 \leqslant v<\frac{1}{2}$. Applying inequality (4.7) to the function $f_{x}$ and $\alpha(v)=$ $v, \beta(v)=\frac{1}{2}$, we get

$$
\begin{align*}
f_{x}\left(\frac{2 v+1}{4}\right) & \leqslant \varphi_{n}\left(f_{x}, v\right) \leqslant \frac{2}{1-2 v} \int_{v}^{\frac{1}{2}} f(t) d t \\
& \leqslant \Phi_{m}\left(f_{x}, v\right) \leqslant \frac{f_{x}(v)+f_{x}\left(\frac{1}{2}\right)}{2} \tag{4.14}
\end{align*}
$$

Clearly, $\varphi_{n}(\alpha, \beta ; A, B)=\varphi_{n}(\beta, \alpha ; A, B)$ and $\Phi_{m}(\alpha, \beta ; A, B)=\Phi_{m}(\beta, \alpha ; A, B)$ since $H_{1-v}(A, B)=H_{v}(A, B)$. Therefore (4.14) also holds for $\frac{1}{2}<v \leqslant 1$ because $F_{1-v}(x)=$ $-F_{V}(x)$.

Utilizing of the monotonicity property (3.1), the relation (4.14) holds when $x$ is replaced with the positive operator $A^{\frac{-1}{2}} B A^{\frac{1}{2}}$. Finally, multiplying both sides of such obtained series of inequalities by $A^{\frac{1}{2}}$ and applying (4.11) and (4.12), we deduced the inequalities (4.13).

In the following Theorem we give a series of refinements of (4.3).

THEOREM 5. Let $1 \leqslant n, m \in \mathbb{N}$ and $v \in[0,1]-\left\{\frac{1}{2}\right\}$. If $A, B \in B(H)$ are two invertible positive operators, then the series of inequalities holds

$$
\begin{align*}
H_{v}(A, B) & \leqslant H_{\frac{r_{0}}{2}}(A, B) \leqslant \varphi_{n}\left(0, r_{0} ; A, B\right) \\
& \leqslant \frac{1}{2 r_{0}} A^{\frac{1}{2}}\left[F_{1}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)+F_{r_{0}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)\right] A^{\frac{1}{2}} \\
& \leqslant \Phi_{m}\left(0, r_{0} ; A, B\right) \\
& \leqslant \frac{1}{4} H_{v}(A, B)+\frac{1}{2} H_{\frac{r_{0}}{2}}(A, B)+\frac{1}{4} A \nabla B  \tag{4.15}\\
& \leqslant \frac{1}{2} H_{v}(A, B)+\frac{1}{2} A \nabla B \leqslant A \nabla B
\end{align*}
$$

where $r_{0}=\min \{v, 1-v\}$ and $F_{v}$ is the function given in (4.4).

Proof. By the symmetry of the Heinz means and the fact that $F_{1-v}=-F_{V}$, it is sufficient that, we prove (4.15) for $0 \leqslant v<\frac{1}{2}$. Applying inequality (4.7) to the function $f_{x}$ and $\alpha(v)=0, \beta(v)=r_{0}=\min \{v, 1-v\}=v$, we get

$$
\begin{align*}
f_{x}\left(\frac{v}{2}\right) & \leqslant \varphi_{n}\left(f_{x}, v\right) \leqslant \frac{1}{v} \int_{0}^{v} f(t) d t \\
& \leqslant \Phi_{m}\left(f_{x}, v\right) \leqslant \frac{f_{x}(0)+f_{x}(v)}{2} \tag{4.16}
\end{align*}
$$

By the same argument used in the proof of Theorem 4, we obtain the inequalities (4.15).

## REFERENCES

[1] I. Ali, H. Yang and A. Shakoor, Refinements of the Heron and Heinz means inequalities for matrices, J. Math. Inequal. 1 (2014), 107-112.
[2] R. Bhatia, Interpolating the arithmetric mean inequality and its operator version, Linear Algebra Appl. 413 (2006), 355-363.
[3] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
[4] R. Bhatia, C. Davis, A Cauchy-Schwarz inequality for operators with applications, Linear Algebra Appl. 223/224 (1995) 119-129.
[5] D. Drissi, Sharp inequalities for some operator means, J. Matrix Anal. Appl. 28 (2006), 822-828.
[6] Y. Kapil, C. Conde, M. S. Moslehian, M. Singh, M. Sababheh, Norm Inequalities Related to the Heron and Heinz Means, Mediterr. J. Math. (2017), 14:213.
[7] Y. KAPIL, M. Singh, Contractive maps on operator ideals and norm inequalities, Linear Algebra Appl. 459 (2014), 475-492.
[8] R. KAUR, M. Singh, Complete interpolation of matrix version of Heron and Heinz means, J. Math. inequal., 16, 1 (2013), 93-99.
[9] R. Kaur, M. Sal Moslehian, M. Singh, C. Conde, Further refinements of the Heinz inequality, Linear Algebra and its Applications 447 (2014) 26-37.
[10] F. Kittaneh, On the convexity of the Heinz means, Integr. Equ. Oper. Theory 68 (2010), 519-527.
[11] F. Kittaneh and M. Krnić, Refined Heinz operator inequalities, Linear and Multilinear Algebra, 61 (8) (2013), 1148-1157.
[12] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1980) 205-224.
[13] G. Larotonda, Norm inequalities in operator ideals, J. Funct. Anal. 255 (2008) 3208-3228.
[14] J. E. PečARIĆ, T. Furuta, J. Mićıć Hot, Y. Seo, Mond-Pečarić Method in operator inequalities, Element, Zagreb, 2005.
[15] J. G. ZHAO, J. L. WU, Operator inequalities involving improved Young and its reverse inequalities, J. Math. Anal. Appl. 421, 2 (2015), 1779-1789.
(Received January 25, 2020)
A. G. Ghazanfari Department of Mathematics Lorestan University P.O. Box 465, Khoramabad, Iran
e-mail: ghazanfari.a@lu.ac.ir

