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REFINED HEINZ OPERATOR

INEQUALITIES AND NORM INEQUALITIES

A. G. GHAZANFARI

(Communicated by F. Kittaneh)

Abstract. In this article we study the Heinz and Hermite-Hadamard inequalities. We derive
the whole series of refinements of these inequalities involving unitarily invariant norms, which
improve some recent results, known from the literature.

We also prove that if A,B,X ∈Mn(C) such that A and B are positive definite and f is an
operator monotone function on (0,∞) . Then

||| f (A)X −X f (B)||| � max{|| f ′(A)||, || f ′(B)||}|||AX −XB|||.
Finally we obtain a series of refinements of the Heinz operator inequalities, which were proved
by Kittaneh and Krnić.

1. Introduction and preliminaries

Let Mm,n(C) be the space of m×n complex matrices and Mn(C) = Mn,n(C) . Let
|||.||| denote any unitarily invariant norm on Mn(C) . So, |||UAV ||| = |||A||| for all
A ∈ Mn(C) and for all unitary matrices U,V ∈ Mn(C) . The Hilbert-Schmidt and trace
class norm of A = [ai j] ∈ Mn(C) are denoted by

‖A‖2 =

(
n

∑
j=1

s2
j(A)

) 1
2

, ‖A‖1 =
n

∑
j=1

s j(A)

where s1(A) � s2(A) � . . . � sn(A) are the singular values of A , which are the eigen-

values of the positive semidefinite matrix | A |= (A∗A)
1
2 , arranged in decreasing order

and repeated according to multiplicity. For Hermitian matrices A,B ∈Mn(C) , we write
that A � 0 if A is positive semidefinite, A > 0 if A is positive definite, and A � B if
A−B � 0.

The Heron means introduced by Bhatia in [2] as follows:

Kν (a,b) = (1−ν)
√

ab+ ν
a+b

2
, 0 � ν � 1.

Bhatia derived the inequality

Hν (a,b) � Kα(ν)(a,b),
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where α(ν) = 1−4(ν −ν2) .
The another one of means that interpolates between the geometric and the arith-

metic means is the logarithmic mean:

L(a,b) =
∫ 1

0
aνb1−νdν.

Drissi in [5] showed that
√

3−1
2
√

3
� ν �

√
3+1

2
√

3
if and only if

Hν(a,b) � L(a,b). (1.1)

R. Kaur and M. Singh [8] have proved that for A,B,X ∈ Mn , such that A,B are
positive definite, then for any unitarily invariant norm |||.||| , and 1

4 � ν � 3
4 and α ∈

[ 1
2 ,∞) ,the following inequality holds

1
2
|||AνXB1−ν +A1−νXBν ||| �

∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A

1
2 XB

1
2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ . (1.2)

They also proved the following result:

|||A 1
2 XB

1
2 ||| � 1

2
|||A 2

3 XB
1
3 +A

1
3 XB

2
3 |||

� 1
2+ t

|||AX +XB+ tA
1
2 XB

1
2 |||, (1.3)

where A,B,X ∈ Mn , A,B are positive definite and −2 < t � 2.
Obviously, if A,B,X ∈Mn , such that A,B are positive definite, then for 1

4 � ν � 3
4

and α ∈ [ 1
2 ,∞) , and any unitarily invariant norm |||.||| , the following inequalities hold

|||A 1
2 XB

1
2 ||| � 1

2
|||AνXB1−ν +A1−νXBν |||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A

1
2 XB

1
2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ , (1.4)

Suppose that

g◦(ν) =
∣∣∣∣
∣∣∣∣
∣∣∣∣AνXB1−ν +A1−νXBν

2

∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

and

f◦(α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A

1
2 XB

1
2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ .

Then, the inequalities (1.2), (1.3),(1.4), can be simply rewritten respectively as follows

g◦(ν) � f◦(α),

g◦
(

1
2

)
� g◦

(
2
3

)
� f◦

(
2

2+ t

)
, (1.5)
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g◦
(

1
2

)
� g◦(ν) � f◦(α),

I. Ali, H. Yang and A. shakoor [1] gave a refinement of the inequality (1.4) as
follows:

g◦(ν) � (4r0 −1)g◦
(

1
2

)
+2(1−2r0) f◦(α), (1.6)

where 1
4 � ν � 3

4 , α ∈ [ 1
2 ,∞) and r0 = min{ν,1−ν} .

Kittaneh [10], gave a generalization of the Heinz inequality using convexity and
the Hermite-Hadamard integral inequality for 0 � ν � 1, as follows:

2|||A 1
2 XB

1
2 ||| � 1

|1−2ν|
∣∣∣∣
∫ 1−ν

ν
|||AtXB1−t +A1−tXBt |||dt

∣∣∣∣
� |||AνXB1−ν +A1−νXBν |||, (1.7)

A refinement of (1.7) is given in [9]. They also proved that

∣∣∣∣∣∣∣∣∣A α+β
2 XB1− α+β

2 +A1− α+β
2 XB

α+β
2

∣∣∣∣∣∣∣∣∣
� 1

|β −α|
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ β

α
(AνXB1−ν +A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣

=
1
2

∣∣∣∣∣∣∣∣∣AαXB1−α +A1−αXBα +AβXB1−β +A1−βXBβ
∣∣∣∣∣∣∣∣∣ . (1.8)

Heretofore the inequalities discussed above are proved in the setting of matrices.
Kapil and Singh in [7], using the contractive maps proved that the relation (1.8) holds
for invertible positive operators in B(H) . The aim of this paper is to obtain refinements
of the Hermite-Hadamard inequality (1.8) in the setting of operators (see Theorem (2)).
We also present a generalization of the difference version of Heinz inequality (see The-
orem (1)). At the end, we study the Heinz operator inequalities, which were proved
in [10] and give a series of refinements of these operator inequalities (see Theorem (4)
and (5)).

2. Norm inequalities for matrices

Let A,B,X ∈ Mn(C) such that A and B be positive definite and 0 � ν � 1. A
difference version of the Heinz inequality

|||AνXB1−ν −A1−νXBν ||| � |2ν −1| |||AX −XB||| (2.1)

was proved by Bhatia and Davis in [4].
Kapil, et.al., [6] proved that if 0 < r � 1. Then

|||ArX −XBr||| � rmax{||Ar−1||, ||Br−1||}|||AX −XB|||. (2.2)
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They also proved that if α � 1, and 1−α
2 � ν � 1+α

2 , then

α|||AνXB1−ν −A1−νXBν |||
� |2ν −1|max{||A1−α ||, ||B1−α ||}|||AαX −XBα |||. (2.3)

The following theorem is a generalization of (2.2).

THEOREM 1. Let A,B,X ∈ Mn(C) such that A and B be positive definite and f
be an operator monotone function on (0,∞) . Then

||| f (A)X −X f (B)||| � max{|| f ′(A)||, || f ′(B)||}|||AX −XB|||. (2.4)

Proof. It suffices to prove the required inequality in the special case which A = B

and A is diagonal. Then the general case follows by replacing A with

[
A 0
0 B

]
and X

with

[
0 X
0 0

]
. Therefore let A = diag(λi) > 0. Then f (A)X −X f (A) = Y ◦ (AX −XA)

where Y = f [1](A) , i.e.,

yi j =

{
f (λi)− f (λ j)

λi−λ j
, λi �= λ j

f ′(λi), λi = λ j.

By [3, Theorem V.3.4], f [1](A) � 0. Consequently

||| f (A)X −X f (A)||| = |||Y ◦ (AX −XA)|||� maxyii |||AX −XA|||
= || f ′(A)|| |||AX −XA|||. �

EXAMPLE 1. (i) For the function f (t) = tr, 0 < r < 1,

|||ArX −XBr||| � r
(
max{‖Ar−1‖,‖Br−1‖})

= r
(
max{‖A−1‖,‖B−1‖})1−r |||AX −XB|||.

(ii) For the function f (t) = logt on (0,∞) ,

|||log(A)X −X log(B)||| � (max{‖A−1‖,‖B−1‖}) |||AX −XB|||.

REMARK 1. Let α � 1 and 0 � ν � 1. From inequality (2.4) for Aα ,Bα and
f (t) = t

1
α , we get

|||AX −XB|||� 1
α

max{||A1−α ||, ||B1−α ||}|||AαX −XBα |||. (2.5)

On combining (2.1), and (2.5), we obtain (2.3).
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3. Norm inequalities for operators

Let B(H) denote the set of all bounded linear operators on a complex Hilbert
space H . An operator A ∈ B(H) is positive, and we write A � 0, if (Ax,x) � 0 for
every vector x ∈ H . If A and B are self-adjoint operators, the order relation A � B
means, as usual, that A−B is a positive operator.

To reach inequalities for bounded self-adjoint operators on Hilbert space, we shall
use the following monotonicity property for operator functions:

If X ∈ B(H) is self adjoint with a spectrum Sp(X) , and f ,g are continuous real
valued functions on an interval containing Sp(X) , then

f (t) � g(t), t ∈ Sp(X)⇒ f (X) � g(X). (3.1)

For more details about this property, the reader is referred to [14].
Let LX ,RY denote the left and right multiplication maps on B(H) , respectively,

that is, LX (T ) = XT and RY (T ) = TY . Since LX and RY commute, we have

eLX+RY (T ) = eXTeY .

Let U be an invertible positive operator in B(H) , then there exists a self-adjoint
operator V ∈B(H) such that U = eV . Let n∈N and A,B be two invertible positive op-
erators in B(H) . To simplify computations, we denote A and B by e2n+1X1 and e2n+1Y1 ,
respectively, where X1 and Y1 in B(H) are self-adjoint. The corresponding operator
map LX1 −RY1 is denoted by D . With these notations, we now use the results proved in
[7, 13] to derive the Hermite-Hadamard type inequalities for unitarily invariant norms.

The Hermite-Hadamard inequality and various refinements of it in the setting of
operators (resp. matrices) were given in [7] (resp. [9]). The following theorem is
another generalization of the Hermite-Hadamard inequality for operators.

THEOREM 2. Let A,B,X ∈ B(H) such that A and B be invertible positive oper-
ators and let α,β be any two real numbers and n,m ∈ N . Let γ(t) = (1− t)α + tβ ,

En =
1

2n−1

2n−1

∑
i=1

(
Aγ( 2i−1

2n )XB1−γ( 2i−1
2n ) +A1−γ( 2i−1

2n )XBγ( 2i−1
2n )
)

,

and

Fm =
1
2m

2m−1

∑
i=1

(
Aγ( i−1

2m−1 )XB1−γ( i−1
2m−1 ) +A1−γ( i−1

2m−1 )XBγ( i−1
2m−1 )

+Aγ( i
2m−1 )XB1−γ( i

2m−1 ) +A1−γ( i
2m−1 )XBγ( i

2m−1 )
)

.

Then ∣∣∣∣∣∣∣∣∣A α+β
2 XB1− α+β

2 +A1− α+β
2 XB

α+β
2

∣∣∣∣∣∣∣∣∣= |||E1||| � . . . � |||En|||

� 1
|β −α|

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ β

α
(AνXB1−ν +A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣
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� |||Fm||| � . . . � |||F1|||
=

1
2

∣∣∣∣∣∣∣∣∣AαXB1−α +A1−αXBα +AβXB1−β +A1−βXBβ
∣∣∣∣∣∣∣∣∣ . (3.2)

Proof. Put A = e2n+1X1 , B = e2n+1Y1 and T = A
1
2 XB

1
2 , then

Aγ( 2i−1
2n )XB1−γ( 2i−1

2n ) +A1−γ( 2i−1
2n )XBγ( 2i−1

2n )

= 2cosh

(
2n+1

(
γ
(2i−1

2n

)
− 1

2

)
D

)
T.

Similarly, a simple calculation shows

Aγ( i−1
2n−1 )XB1−γ( i−1

2n−1 ) +A1−γ( i−1
2n−1 )XBγ( i−1

2n−1 )

+Aγ( i
2n−1 )XB1−γ( i

2n−1 ) +A1−γ( i
2n−1 )XBγ( i

2n−1 )

= 2cosh

(
2n
(

γ
( i−1

2n−1

)
− 1

2

)
D

)
T +2cosh

(
2n
(

γ
( i

2n−1

)
− 1

2

)
D

)
T.

Continuing the calculation, we have

Aγ( i−1
2n−1 )XB1−γ( i−1

2n−1 ) +A1−γ( i−1
2n−1 )XBγ( i−1

2n−1 )

+Aγ( i
2n−1 )XB1−γ( i

2n−1 ) +A1−γ( i
2n−1 )XBγ( i

2n−1 )

= 4cosh

(
2n−1

(
γ
( i−1

2n−1

)
+ γ
( i

2n−1

)
−1

)
D

)

× cosh

(
2n−1

(
γ
( i−1

2n−1

)
− γ
( i

2n−1

))
D

)
T

= 4cosh

(
2n−1

(
γ
( i−1

2n−1

)
+ γ
( i

2n−1

)
−1

)
D

)
× cosh((β −α)D)T,

and

2n

β −α

∫ γ( i
2n )

γ( i−1
2n )

(AνXB1−ν +A1−νXBν)dν

=
2n

β −α

∫ γ( i
2n )

γ( i−1
2n )

2cosh

(
2n+1

(
ν − 1

2

)
D

)
Tdν

=
D−1

β −α

[
sinh

(
2n+1

(
γ
( i

2n

)
− 1

2

)
D

)

−sinh

(
2n+1

(
γ
( i−1

2n

)
− 1

2

)
D

)]
T.
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Consequently,

2n

β −α

∫ γ( i
2n )

γ( i−1
2n )

(AνXB1−ν +A1−νXBν)dν

=
2D−1

β −α
cosh

(
2n
(

γ
( i−1

2n

)
+ γ
( i

2n

)
−1

)
D

)

× sinh

(
2n
(

γ
( i

2n

)
− γ
( i−1

2n

))
D

)
T

=
2D−1

β −α
cosh

(
2n
(

γ
( i−1

2n

)
+ γ
( i

2n

)
−1

)
D

)
× sinh((β −α)D)T.

Calculus computations show that for n � 2, we have

En =
1

2n−2

2n−1

∑
i=1

cosh

(
2n+1

(
γ
(2i−1

2n

)
− 1

2

)
D

)
T

=
1

2n−2

[
2n−2

∑
i=1

cosh

(
2n+1

(
γ
(2i−1

2n

)
− 1

2

)
D

)

+
2n−1

∑
i=1+2n−2

cosh

(
2n+1

(
γ
(2i−1

2n

)
− 1

2

)
D

)]
T

=
1

2n−2

2n−2

∑
i=1

[
cosh

(
2n+1

(
γ
(2i−1

2n

)
− 1

2

)
D

)

+cosh

(
2n+1

(
γ
(
1− 2i−1

2n

)
− 1

2

)
D

)]
T

=
1

2n−3

2n−2

∑
i=1

[
cosh

(
2n
(

γ
(2i−1

2n

)
+ γ
(
1− 2i−1

2n

)
−1

)
D

)

×cosh

(
2n
(

γ
(2i−1

2n

)
− γ
(
1− 2i−1

2n

))
D

)]
T.

Using the relations γ(t)+ γ(1− t) = α + β and γ(t)− γ(1− t) = (2t−1)(β −α) , we
obtain

En =
1

2n−3 cosh(2n(α + β −1)D)
2n−2

∑
i=1

cosh

(
2n
(2i−1

2n−1 −1
)
(β −α)D

)
T

=
1

2n−3 cosh(2n(α + β −1)D)
2n−2

∑
i=1

cosh(2(2i−1)(β −α)D)T

= 2cosh(2n(α + β −1)D)
n−1

∏
i=1

cosh
(
2n−i(β −α)D

)
T. (3.3)
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Similarly, by simple calculations, we obtain

Fn+1 =
1

2n−1

2n

∑
i=1

cosh

(
2n
(

γ
( i−1

2n

)
+ γ
( i

2n

)
−1

)
D

)
cosh((β −α)D)T

=
1

2n−2

2n−1

∑
i=1

cosh(2n(α + β −1)D)cosh((2i−1)(β −α)D)cosh((β −α)D)T

= cosh(2n(α + β −1)D)
n−1

∏
i=1

cosh
(
2n−i(β −α)D

)(
cosh(2(β −α)D)+1

)
T, (3.4)

and

W :=
1

β −α

∫ β

α
(AνXB1−ν +A1−νXBν)dν

=
2D−1

β −α

2n

∑
i=1

cosh

(
2n
(

γ
( i−1

2n

)
+ γ
( i

2n

)
−1

)
D

)
sinh((β −α)D)T

=
2D−1

β −α
cosh(2n(α + β −1)D)

n

∏
i=1

cosh
(
2n−i(β −α)D

)
sinh((β −α)D)T

=
D−1

2n−1(β −α)
cosh(2n(α + β −1)D)sinh(2n(β −α)D)T. (3.5)

By [13, Proposition 21], the operator map 2(β−α)D
sinh(2(β−α)D) is contractive, so from equali-

ties (3.3) and (3.5), we obtain
|||En||| � |||W |||. (3.6)

From equality (3.3) for En−1 with A = e2n+1X1 ,B = e2n+1Y1 , we get

En−1 = 2cosh(2n(α + β −1)D)
n−2

∏
i=1

cosh
(
2n−i(β −α)D

)
T.

The operator map 1
cosh(2(β−α)D) is contractive, so

|||En−1||| � |||En|||. (3.7)

By [7, Proposition 2.4], the operator map sinh((β−α)D)
(β−α)Dcosh((β−α)D) is contractive, there-

fore from equalities (3.4) and (3.5), we get

|||W ||| � |||Fn+1|||. (3.8)

From equality (3.5) for n = 2, i.e., for A = e8X1 ,B = e8Y1 , we have

W =
D−1

2(β −α)
cosh(4(α + β −1)D)sinh(4(β −α)D)T
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and
F2 = cosh(4(α + β −1)D)

(
cosh(4(β −α)D)+1

)
T.

In this case, we also get |||W |||� |||F2||| because the operatormap sinh(2(β−α)D)
2(β−α)Dcosh(2(β−α)D)

is contractive.
From equality (3.4) for Fn with A = e2n+1X1 ,B = e2n+1Y1 , we get

Fn = cosh(2n(α + β −1)D)
n−2

∏
i=1

cosh
(
2n−i(β −α)D

)
×
(

cosh(4(β −α)D)+1
)
T.

Therefore

Fn+1

Fn
=

cosh(2(β −α)D)(1+ cosh(2(β −α)D))
1+ cosh(4(β −α)D)

=
1
2

(
1

cosh(2(β −α)D)
+1

)
,

and this implies that
|||Fn+1||| � |||Fn|||. (3.9)

From (3.6), (3.7), (3.8) and (3.9), we obtain the relation (3.2) and the proof is
completed. �

THEOREM 3. Let A,B,X ∈ B(H) such that A and B be invertible positive oper-
ators. Let 1

4 � ν � 3
4 and α ∈ [ 1

2 ,∞) . Then

1
2
|||AνXB1−ν +A1−νXBν ||| �

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
AtXB1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣ (3.10)

�
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A

1
2 XB

1
2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ .

Proof. Suppose that A = e2X1 ,B = e2Y1 and T = A
1
2 XB

1
2 ,then

1
2
|||AνXB1−ν +A1−νXBν ||| = |||cosh

(
(2ν −1)D

)
T |||,

and ∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
AtXB1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣=
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
exp
(
(2t−1)D

)
Tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣= ∣∣∣∣∣∣D−1 sinh(D)T

∣∣∣∣∣∣ .
By [13, Proposition 21], the operator map

Dcosh
(
(2ν−1)D

)
sinh(D) is contractive. This proves

the first inequality in (3.10). The second inequality in (3.10) has been proved in Theo-
rem 3.9 of [7]. �
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4. Improved Heinz operator inequalities

Let A,B ∈ B(H) be two positive operators and ν ∈ [0,1] , then the ν -weighted
arithmetic mean of A and B denoted by A∇νB , is defined as A∇νB = (1−ν)A+ νB .
If A is invertible, the ν -geometric mean of A and B denoted by A�νB is defined as
A�νB = A

1
2 (A

−1
2 BA

−1
2 )νA

1
2 . For more detail, see Kubo and Ando [12]. When v = 1

2 ,
we write A∇B , A�B , for brevity, respectively.

Let A,B ∈ B(H) be two invertible positive (strictly positive) operators and ν ∈
[0,1] . The operator version of the Heinz means are defined by

Hν(A,B) =
A�νB+A�1−νB

2
,

and the operator version of the Heron means are defined by

Kν (A,B) = (1−ν)(A�B)+ ν(A∇B).

Zhao et al. in [15] gave an inequality for the Heinz-Heron means as follows:

Hν(A,B) � Kα(ν)(A,B),

where α(ν) = 1−4(ν −ν2) .
It is easy to show that the above Heinz mean Hν(·, ·) interpolates between the

non-weighted arithmetic mean and geometric mean, that is

A�B � Hν(A,B) � A∇B. (4.1)

Kittaneh and Krnić in [11] obtained the some refinements of the left and right
inequalities in (4.1) for ν ∈ [0,1]−{ 1

2} , as follows:

A�B � H 2ν+1
4

(A,B) � 1
2ν −1

A
1
2 Fν(A

−1
2 BA

−1
2 )A

1
2

� 1
4
Hν(A,B)+

1
2
H 2ν+1

4
(A,B)+

1
4
A∇B

� 1
2
Hν(A,B)+

1
2
A�B+ � Hν(A,B), (4.2)

and

Hν(A,B) � Hr0
2
(A,B) � 1

2r0
A

1
2

[
F1(A

−1
2 BA

−1
2 )+Fr0(A

−1
2 BA

−1
2 )
]
A

1
2

� 1
4
Hν(A,B)+

1
2
Hr0

2
(A,B)+

1
4
A∇B (4.3)

� 1
2
Hν(A,B)+

1
2
A∇B � A∇B,

where r0 = min{ν,1−ν} and

Fν(x) =

{
xν−x1−ν

logx , x > 0,x �= 1

2ν −1, x = 1.
(4.4)
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Let f ,α,β be continuous real functions on R and f be convex. Let α(ν) <
β (ν) (ν ∈ R) , and γν(t) = (1− t)α(ν)+ tβ (ν) . For n ∈ N , Define

ϕn( f ,ν) =
1

2n−1

2n−1

∑
i=1

f

((
1− 2i−1

2n

)
α(ν)+

2i−1
2n β (ν)

)
(ν ∈ R)

=
1

2n−1

2n−1

∑
i=1

f

(
γν

(
2i−1

2n

))
. (4.5)

For m ∈ N , we define

Φ1( f ,ν) =
f (α(ν))+ f (β (ν))

2
,

and for m � 1

Φm+1( f ,ν) =
1

2m+1

[
f (α(ν))+ f (β (ν))+2

2m−1

∑
i=1

f

((
1− i

2m

)
α(ν)+

i
2m β (ν)

)]

=
1

2m+1

[
f (α(ν))+ f (β (ν))+2

2m−1

∑
i=1

f

(
γν

(
i

2m

))]
. (4.6)

It can be easily shown that for every n,m ∈ N , the sequence (ϕn), (resp.(Φm)) is an
increasing (resp. a decreasing) sequence of continuous functions such that

f

(
α + β

2

)
� ϕn( f ,ν) � 1

β −α

∫ β

α
f (t)dt � Φm( f ,ν) � f (α)+ f (β )

2
(4.7)

and

lim
n→∞

ϕn( f ,ν) = lim
m→∞

Φm( f ,ν) =
1

β −α

∫ β

α
f (t)dt. (4.8)

Now, we consider the function fx : [0,1] → R , x > 0, by

fx(t) =
xt + x1−t

2
, (4.9)

and 0 � α(ν) < β (ν) � 1. The functions ϕn( fx,ν) and Φn( fx,ν) are continuous
functions of x . If A,B∈B(H) are two invertible positive operators, using the functional

calculus at x = A
−1
2 BA

−1
2 for ϕn( fx,ν) , we have

ϕn( f
A
−1
2 BA

−1
2

,ν) =
1

2n−1

2n−1

∑
i=1

(A
−1
2 BA

−1
2 )γν( 2i−1

2n ) + (A
−1
2 BA

−1
2 )1−γν( 2i−1

2n )

2
. (4.10)

Multiplying (4.10) by A
1
2 on the left and right sides, we get

A
1
2 ϕn( f

A
−1
2 BA

−1
2

,ν)A
1
2 =

1
2n−1

2n−1

∑
i=1

Hγν( 2i−1
2n )(A,B). (4.11)
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We denote it by ϕn(α,β ;A,B) . Similarly,

Φm+1(α,β ;A,B) := A
1
2 Φm+1( fx,ν)A

1
2 (4.12)

=
1

2m+1

[
Hα(ν)(A,B)+Hβ (ν)(A,B)+2

2m−1

∑
i=1

Hγν( i
2m )(A,B)

]
.

In the following Theorem we give a series of refinements of (4.2).

THEOREM 4. Let n,m ∈ N and n > 1,m > 2 . If A,B ∈ B(H) are two invertible
positive operators, then the series of inequalities holds

A�B � H 2ν+1
4

(A,B) = ϕ1

(
ν,

1
2
;A,B

)
� ϕn

(
ν,

1
2
;A,B

)

� 1
2ν −1

A
1
2 Fν(A

−1
2 BA

−1
2 )A

1
2 � Φm

(
ν,

1
2
;A,B

)

� Φ2

(
ν,

1
2
;A,B

)
=

1
4
Hν(A,B)+

1
2
H 2ν+1

4
(A,B)+

1
4
A�B

� 1
2
Hν(A,B)+

1
2
A�B+ � Hν(A,B), (4.13)

for all ν ∈ [0,1]−{ 1
2} , where Fν is the function given in (4.4).

Proof. Let 0 � ν < 1
2 . Applying inequality (4.7) to the function fx and α(ν) =

ν,β (ν) = 1
2 , we get

fx

(
2ν +1

4

)
� ϕn( fx,ν) � 2

1−2ν

∫ 1
2

ν
f (t)dt

� Φm( fx,ν) �
fx(ν)+ fx( 1

2 )
2

. (4.14)

Clearly, ϕn(α,β ;A,B)= ϕn(β ,α;A,B) and Φm(α,β ;A,B)= Φm(β ,α;A,B) since
H1−ν(A,B) = Hν(A,B) . Therefore (4.14) also holds for 1

2 < ν � 1 because F1−ν(x) =
−Fν(x) .

Utilizing of the monotonicity property (3.1), the relation (4.14) holds when x is
replaced with the positive operator A

−1
2 BA

1
2 . Finally, multiplying both sides of such

obtained series of inequalities by A
1
2 and applying (4.11) and (4.12), we deduced the

inequalities (4.13). �

In the following Theorem we give a series of refinements of (4.3).
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THEOREM 5. Let 1 � n,m ∈ N and ν ∈ [0,1]−{ 1
2} . If A,B ∈ B(H) are two

invertible positive operators, then the series of inequalities holds

Hν(A,B) � Hr0
2
(A,B) � ϕn(0,r0;A,B)

� 1
2r0

A
1
2

[
F1(A

−1
2 BA

−1
2 )+Fr0(A

−1
2 BA

−1
2 )
]
A

1
2

� Φm(0,r0;A,B)

� 1
4
Hν(A,B)+

1
2
Hr0

2
(A,B)+

1
4
A∇B (4.15)

� 1
2
Hν(A,B)+

1
2
A∇B � A∇B,

where r0 = min{ν,1−ν} and Fν is the function given in (4.4).

Proof. By the symmetry of the Heinz means and the fact that F1−ν = −Fν , it is
sufficient that, we prove (4.15) for 0 � ν < 1

2 . Applying inequality (4.7) to the function
fx and α(ν) = 0,β (ν) = r0 = min{ν,1−ν}= ν , we get

fx
(ν

2

)
� ϕn( fx,ν) � 1

ν

∫ ν

0
f (t)dt

� Φm( fx,ν) � fx(0)+ fx(ν)
2

. (4.16)

By the same argument used in the proof of Theorem 4, we obtain the inequalities
(4.15). �
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