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UNIFORMLY EXPONENTIAL DICHOTOMY FOR

STRONGLY CONTINUOUS QUASI GROUPS

SUTRIMA SUTRIMA ∗ , MARDIYANA MARDIYANA AND RIRIN SETIYOWATI

(Communicated by B. Jacob)

Abstract. A strongly continuous quasi group (C0 -quasi group) is established as an extension of
a C0 -quasi semigroup on a Banach space. The fundamental properties of the C0 -quasi groups
are derived from the properties of C0 -quasi semigroups. It is identified a sufficient condition
for an infinitesimal generator of a C0 -quasi group. The infinitesimal generator of a C0 -quasi
group generates a non-autonomous the abstract Cauchy problem that is well-posed. Uniformly
exponential stability of the C0 -quasi groups and the C0 -quasi semigroups on a Banach space X
can be identified by the associated evolution semigroups on the spaces Lp(R,X) and Lp(R+,X) ,
1 � p < ∞ , respectively. The sufficient and necessary conditions, called Dichotomy Theorem,
for the uniformly exponential dichotomy of the C0 -quasi groups and the C0 -quasi semigroups
are characterized by the associated evolution semigroups. The hyperbolicity of the evolution
semigroups is used in the characterization. Dichotomy Theorem can also be identified by a
Green’s function induced by the associated evolution semigroup. Moreover, the infinitesimal
generator of the associated evolution semigroup becomes the main subject in establishment of
the sufficiency and necessity for the uniformly exponential stability of the C0 -quasi semigroups.

1. Introduction

Let X be a complex Banach space and we consider a non-autonomous abstract
Cauchy problem

ẋ(t) = A(t)x(t), t ∈ R−{0},
x(0) = x0,

(1)

where A(t) is a linear closed operator in X with domain D(A(t)) = D is independent
of t and dense in X . The solution of problem (1) can be given by means of an evolution
family, a two-parameter family {U(t,s)}t�s of bounded operators on X [8, 9] including
the special case of t nonnegative [32, 33]. For the autonomous case, the solution of
problem (1) can be represented by a strongly continuous group (C0 -group) and by a
strongly continuous semigroup (C0 -semigroup) when t � 0 [27]. Characterizations of
the C0 -groups can be found in [10, 15, 18].

The stabilities of the evolution family corresponding to problem (1) affect directly
to the solution x(t) . The theory of stabilities of the evolution family developed from
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the Theorem Datko-Pazy for an exponential stability of the C0 -semigroups introduced
by Datko [6] and Pazy [26]. The uniformly exponential stability of the evolution family
has wide applications in the evolution equations [2, 3]. However, the hyperbolicity is
more general than the uniformly exponential stability for the semigroups. Recall that
a semigroup on X is hyperbolic if X can be decomposed as a direct sum of two sub-
spaces (stable and unstable) such that the semigroup is uniformly exponentially stable
for positive time on the stable subspace and uniformly exponentially stable for negative
time on the unstable subspace [4]. The hyperbolicity of the associated evolution family
(associated semigroup for autonomous case) is called uniformly exponential dichotomy.
There are many results of the uniformly exponential dichotomy of the evolution fami-
lies and the C0 -semigroups [17, 20, 28, 29, 30]. In particular, the uniformly exponential
dichotomy of the evolution family can be characterized by Green’s function approach
[1, 14, 21].

In applications, it frequently forces that the evolution families have to be reduced
to the one parameter semigroup on the space of X -valued functions, called evolution
semigroup [4, 8, 9]. The evolution semigroups are applicable to solve problems (1) for
t � 0 [22, 23, 24, 25]. Moreover, the uniformly exponential dichotomy of the evolution
family can be characterized by the spectra or the hyperbolicity of the associated evo-
lution semigroup on the appropriate space [12, 13, 31, 34]. In particular, there exists a
relationship between the Green’s operator for the evolution family and the infinitesimal
generator of the associated evolution semigroup [4].

It was well-known that strongly continuous quasi semigroup (C0 -quasi semigroup)
on a Banach space, as an extension of C0 -semigroup, was an alternatively sophisticate
tool to solve the non-autonomous equations. Since it was introduced by Leiva and
Barcenas [16] in 1991, the progress of the quasi semigroups is very massive. The
properties, spectra and stabilities of the C0 -quasi semigroups have been investigated
[5, 19, 35, 36, 39, 40]. Even, the C0 -quasi semigroups are applicable to analyze the
controllability, observability, stability, and stabilizability of the non-autonomous linear
control systems [37, 38]. The fact that the C0 -semigroups can be generalized to the
C0 -quasi semigroups, suggests a generalization of C0 -groups to strongly continuous
quasi groups (C0 -quasi groups). Furthermore, the uniformly exponential dichotomy of
the C0 -quasi groups is also important to be investigated.

In this paper we are concern on establishment C0 -quasi group as an extension of
the C0 -quasi semigroup and characterizations to the uniformly exponential dichotomy.
The characterizations are based on the associated evolution semigroups and the appro-
priate Green’s function. The organization of this paper is as follows. In Section 2, the
establishment of a C0 -quasi group on a Banach space and its consequence to problem
(1) are considered. Investigations of the evolution semigroups corresponding to the C0 -
quasi group and the exponential dichotomic property are considered in Section 3. The
evolution semigroups on the half line corresponding to the C0 -quasi semigroups are
studied in Section 4. Section 5 identifies the dichotomy using the Green’s function.
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2. Strongly continuous quasi groups

The fact in solving the non-autonomous abstract Cauchy problem (1), the evolu-
tion family is reduced to be an evolution semigroup on the space of X -valued functions
[4, 8, 9]. Is there a straightforward method to solve the problem? However, the solution
of problem (1) with t � 0 can be given by means a C0 -quasi semigroup. This encour-
ages to extend the C0 -quasi semigroup to a C0 -quasi group. If this is realized, then the
existence of the solution of problem (1) can be identified by the family {A(t)} . Further,
the controllability of the non-autonomous linear control problems (1) can be analyzed.
The latter can not be characterize by the evolution families yet.

DEFINITION 1. Let L (X) be the set of all bounded linear operators on a Banach
space X . A two-parameter commutative family {R(t,s)}s,t∈R in L (X) is called a
strongly continuous quasi group (C0 -quasi group) on X if for each r,s, t ∈R and x∈X :

(a) R(t,0) = I , the identity operator on X ,

(b) R(t,s+ r) = R(t + r,s)R(t,r) ,

(c) lims→0 ‖R(t,s)x− x‖= 0,

(d) there exists a continuous increasing function M : R → [1,∞) such that

‖R(t,s)‖ � M(t + s).

Let D be the set of all x ∈ X such that the following limits exist

lim
s→0

R(t,s)x− x
s

, s,t ∈ R.

For t ∈ R we define an operator A(t) on D as

A(t)x = lim
s→0

R(t,s)x− x
s

.

The family of operators {A(t)}t∈R is called an infinitesimal generator of the C0 -quasi
group {R(t,s)}s,t∈R . In sequel for simplicity, we denote the quasi group {R(t,s)}s,t∈R

and the family {A(t)}t∈R by R(t,s) and A(t) , respectively.

REMARK 1. (a) Condition (c) of Definition 1 implies that for each t ∈ R , R(t, ·)
is strongly continuous in X . Similarly, for each s ∈ R , it can be shown that R(·,s) is
also strongly continuous in X .

(b) Definition 1 gives the definition of the C0 -quasi semigroup if the parameters
r,s,t ∈ R are replaced by r,s,t � 0, respectively, [35].

EXAMPLE 1. (a) Let T (t) be a C0 -group on a Banach space X with the infinite-
simal generator A . The family of operators R(t,s) defined by

R(t,s)x = T (s)x, t,s ∈ R, x ∈ X ,
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is a C0 -quasi group on X with the infinitesimal generator A(t) = A on D = D(A) .
(b) Let X be the space of all bounded continuous real functions on R with the

supremum norm. Define R(t,s) on X by

(R(t,s)x)(ξ ) = x(ξ + s2 +2st), ξ ,t,s ∈ R, x ∈ X .

The family R(t,s) is a C0 -quasi group on X with the infinitesimal generator A(t) ,
where A(t)x(ξ ) = 2t dx

dξ on domain D = {x ∈ X : dx
dξ ∈ X} .

(c) Let T (t) be a C0 -group on a Banach space X generated by A . The family
R(t,s) defined by

R(t,s)x = eT (t+s)−T(t)x, s,t ∈ R, x ∈ X ,

is a C0 -quasi group on X with the generator A(t) = AT (t) on the domain D = D(A) .

The fundamental properties of the C0 -quasi groups follow the properties of the
C0 -quasi semigroups.

THEOREM 1. Let R(t,s) be a C0 -quasi group on a Banach space X with the
infinitesimal generator A(t) . The following statements hold.

(a) If x ∈ D , then R(t,s)x ∈ D and

R(t,s)A(t)x = A(t)R(t,s)x, t,s ∈ R.

(b) For each x ∈ D and r ∈ R ,

∂
∂ t

(R(r,t)x) = A(t + r)R(r,t)x = R(r,t)A(t + r)x.

(c) If A(·) is locally integrable, then for each x ∈ D and r ∈ R ,

R(r,t)x = x+
∫ t

0
A(t + s)R(r,s)xds.

(d) If f : R → X is a continuous function, then for each t ∈ R

lim
h→0

1
h

∫ t+h

t
R(r,s) f (s)ds = R(r,t) f (t).

Proof. The proofs are similar to the proofs of Theorem 3.2 of [35]. �

In general, the domain D of the infinitesimal generator is not dense in X , see
Example 3.3 of [35]. In the rest, we assume that the C0 -quasi groups are the quasi
groups with the infinitesimal generator on the dense domain in X . By this assumption,
each the C0 -quasi group has a unique infinitesimal generator.
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LEMMA 1. Let R1(t,s) and R2(t,s) be the C0 -quasi group on a Banach space X
with the infinitesimal generator A1(t) and A2(t) , respectively. If A1(t) = A2(t) for all
t ∈ R , then R1(t,s) = R2(t,s) for all t,s ∈ R .

Proof. Let x0 ∈D(A1(t)) = D(A2(t)) . For t,s ∈ R fixed, without loss of the gen-
erality we assume s > 0. Define a continuous function f (r) = R1(t + r,s− r)R2(t,r)x0

for r ∈ [0,s] . The part (a) of Theorem 1 gives R2(t,r)x0 ∈ D(A1(t)) . Differentiating f
with respect to r , part (b) of Theorem 3.2 gives

ḟ (r) = −R1(t + r,s− r)A1(t + s)R2(t,r)x0 +R1(t + r,s− r)A2(t + s)R2(t,r)x0 = 0.

Since A1(t) = A2(t) for all t ∈ R , f is a constant function on [0,s] . Therefore,

R1(t,s)x0 = f (0) = f (s) = R2(t,s)x0.

Thus, the both quasi groups are identic on the dense set D(A1(t)) . The boundedness
of the quasi group operators forces that the both quasi groups are identic for all x0 ∈
X . �

LEMMA 2. Let R(t,s) be a C0 -quasi group on a Banach space X . The following
statements hold.

(a) If R+(t,s) := R(t,s) for t,s � 0 and R−(t,s) := R(−t,−s) for t,s � 0 , then
R+(t,s) and R−(t,s) are C0 -quasi semigroups on X .

(b) The A(t) is the infinitesimal generator of the C0 -quasi group R(t,s) if and only
if A(t) is the infinitesimal generator of R+(t,s) and −A(−t) is the infinitesimal
generator of R−(t,s) . In this case,

R(t,s) =

{
R+(t,s), t,s � 0

R−(t,s), t,s � 0.

Proof. (a) Definition 1 implies the assertions.
(b) (⇒) . Let A(t) be the infinitesimal generator of the quasi group R(t,s) ,

A(t)x = lim
s→0

R(t,s)x− x
s

, t,s ∈ R, x ∈ D .

For t � 0 and s > 0, the limit above gives

lim
s→0+

R+(t,s)x− x
s

= lim
s→0+

R(t,s)x− x
s

= A(t)x,

lim
s→0+

R−(t,s)x− x
s

= lim
s→0+

R(−t,−s)x− x
s

= − lim
s→0−

R(−t,s)x− x
s

= −A(−t)x.
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(⇐) . Conversely, let A(t) and −A(−t) be the infinitesimal generators of R+(t,s)
and R−(t,s) with t,s � 0, respectively. These give

lim
s→0+

R(t,s)x− x
s

= lim
s→0+

R+(t,s)x− x
s

= A(t), t,s � 0,

lim
s→0−

R(t,s)x− x
s

= − lim
s→0−

R−(−t,−s)x− x
−s

= −[−A(t)] = A(t), t,s � 0.

These conclude that A(t) is the infinitesimal generator of the quasi group R(t,s) . �

Similar to the C0 -quasi semigroup, the following result gives a sufficient condition
in order to problem (1) is well-posed.

THEOREM 2. If A(t) be the infinitesimal generator of a C0 -quasi group R(t,s)
on a Banach space X , then for each x0 ∈ D , problem (1) admits a unique solution.

Proof. Part (a) of Theorem 1 implies that x(t) = R(0,t)x0 is a solution of problem
(1). Let y(t) be another solution. Without loss of the generality, we assume t > 0.
We consider a function f (s) = R(s,t − s)y(s) for all s ∈ [0,t] . The simple calculat-
ion shows that ḟ (s) = 0 for all s ∈ (0,t) i.e f is a constant function. This gives
y(t) = f (t) = f (0) = R(0,t)y(0) = R(0,t)x0 = x(t) . The assertion follows. �

Theorem 2 suggests a sufficient condition for A(t) in order to be an infinitesimal
generator of a C0 -quasi group. The following theorem is Hille-Yosida’s version for the
C0 -quasi groups.

THEOREM 3. For each t ∈ R , let A(t) be a closed and densely defined operator
on D and the map t �→ A(t)y is a continuous function from R to X for all y ∈ D . If
R(λ ,A(·)) is locally integrable and there exist constants N,ω � 0 such that [ω ,∞) ⊆
ρ(A(t)) and

‖R(λ ,A(t))r‖ � N
(|λ |−ω)r ,

for all λ ∈ R with |λ | > ω and r ∈ N , then A(t) is the infinitesimal generator of
C0 -quasi group R(t,s) .

Proof. By hypothesis, if necessary the proof is adjusted first, Theorem 1 of [39]
implies that A(t) and −A(t) for t � 0 are the infinitesimal generator of a C0 -quasi
semigroup R+(t,s) and R−(t,s) , respectively. We see that

R+(t,s)x = lim
n→∞

eGn(t+s)−Gn(t)x and R−(t,s)x = lim
n→∞

e−Gn(t+s)+Gn(t)x,

where Gn(t) :=
∫ t
0 An(τ)dτ and An(t) be Yosida approximation of A(t) ,

An(t) := nA(t)R(n,A(t)) = n2R(n,A(t))−nI, n > ω , n ∈ N.
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If K(t,s) = R+(t,s)R−(t,s) , then K(t,s) is a C0 -quasi semigroup of bounded operators
for t,s � 0. For x ∈ D = D(−A(t)) , we have

K(t,s)x− x
s

= R−(t,s)
R+(t,s)x− x

s
+

R−(t,s)x− x
x

→ A(t)x−A(t)x = 0 as s → 0.

Thus, for x ∈ D , we have K(t,s)x = x . Since D is dense in X and K(t,s) is bounded,
K(t,s) = I or R−(t,s) = [R+(t,s)]−1 and

R(t,s) =

{
R+(t,s), for t,s � 0

R−(−t,−s), for t,s � 0.

gives a C0 -quasi group that is desired. �
The following example illustrates that the C0 -quasi group is able to solve the non-

autonomous problem.

EXAMPLE 2. Consider the Schrodinger equation

xt(ξ , t) = ixξ ξ (ξ ,t)−V(ξ ,t)x(ξ ,t), 0 < ξ < 1, t ∈ R−{0},
x(0, t) = x(1,t) = 0, t 
= 0

x(ξ ,0) = x0(ξ ).

(2)

Set X = L2(0,1) with the usual complex inner product. Let

H1
0 (0,1) = {h ∈ H1(0,1) : h(0) = 0 = h(1)},

where H1(0,1) denotes the Sobolev space of order 1 on [0,1] . Define

A0h = −h
′′

on D(A0) = {h ∈ H2(0,1) : h(0) = h(1) = 0}.
Since A0 is a self-adjoint operator, Theorem 1.10.8 of [27] implies that iA0 is the
infinitesimal generator of the C0 -group T (t) = eiA0t , t ∈ R , on X .

Setting x(t) = x(·,t) , V (t) = V (·,t) , and A(t) = iA0 −V(t) , we can rewrite the
problem (2) as

ẋ(t) = A(t)x(t), t ∈ R−{0},
x(0) = x0.

(3)

We choose V (ξ , t) = α(t)Z(ξ ) with Z(ξ ) = −ξ 2 is the repulsive oscillator potential
on [0,1] and

α(t) =

{
1

t+1 , if t � 0

1, if t < 0.

For t � 0, Theorem 3 implies that −V(t) is an infinitesimal generator of the C0 -quasi
semigroup R1(t,s) on X given by

R1(t,s)x(ξ ) =
(

t + s+1
t +1

)ξ 2

x(ξ ), x ∈ X , 0 � ξ � 1.
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For t � 0, we see that −V (t) generates the C0 -quasi semigroup R2(t,s) on X given
by

R2(t,s)x(ξ ) = esξ 2
x(ξ ), x ∈ X , 0 � ξ � 1.

Therefore, −V(t) generates the C0 -quasi group R(t,s) given

R(t,s) =

{
R1(t,s), if t,s � 0

R2(t,s), if t,s � 0.

We see that K(t,s) = T (s)R(t,s) is a C0 -quasi group on X generated by A(t) . Thus,
for x0 ∈ D(A0) , problem (3) has a unique solution x(t) = K(0,t)x0 . The solution of
problem (2) follows.

3. Evolution semigroups and Dichotomy Theorem

In some cases, we are forced to reduce the quasi-semigroups (quasi-groups) to
be an evolution semigroups. An example, the behavior of the uniformly exponential
stability of a quasi-group is difficult identified directly but the behavior can be described
easily by the spectrum of the infinitesimal generator of the corresponding evolution
semigroup. The evolution semigroup is based on the classical idea of defining ”time”
to be a new variable in order to make the non-autonomous Cauchy problem (1) to be
the autonomous one [8, 9, 24]. The evolution semigroup is a multiplicative perturbation
of the semigroup of translations in which the spectrum of its infinitesimal generator has
been identified.

Let X be a Banach space and let Lp(R,X) , 1 � p < ∞ , be a space of all functions

f : R→X such that
∫ ∞
−∞ ‖ f (t)‖p

Xdt < ∞ with the norm ‖ f‖Lp(R,X) =
(∫ ∞

−∞ ‖ f (t)‖p
Xdt

) 1
p .

Throughout this paper we always assume that Lp(R,X) and Lp(R+,X) are the spaces
with 1 � p < ∞ . The following we define the evolution semigroup corresponding to
the C0 -quasi group R(t,s) on Lp(R,X) , a generalization of the same term for C0 -quasi
semigroup [37].

We use the uniformly exponential stability in identifying the dichotomic behaviour
of the C0 -quasi groups. This term is a generalization of the similar term for C0 -quasi
semigroups [38].

DEFINITION 2. A C0 -quasi group R(t,s) is said to be uniformly exponentially
stable on a Banach space X if there exist constants α > 0 and N � 1 such that

‖R(t,s)x‖ � Ne−α |s|‖x‖, t,s ∈ R, x ∈ X . (4)

Definition 2 gives the definition of the uniformly exponential stability for a C0 -
quasi semigroup if R(t,s) is a C0 -quasi semigroup. In this case, the exponential bound
in the right hand of (4) becomes Ne−αs for all t,s � 0.

DEFINITION 3. Let R(t,s) be a C0 -quasi group on a Banach space X . Evolution
semigroup associated to R(t,s) on Lp(R,X) is a family of operators {Es}s�0 given by

(Es f )(t) = R(t− s,s) f (t − s), s � 0, t ∈ R, f ∈ Lp(R,X). (5)
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In sequel for simplicity, the evolution semigroup {Es}s�0 is denoted by Es . We
see that Es is strongly continuous on Lp(R,X) . Moreover, if A(t) is the infinitesimal
generator of the C0 -quasi group R(t,s) with domain D , then an operator Γ defined by

(Γ f )(t) = −d f
dt

+A(t) f (t), t ∈ R, (6)

is the infinitesimal generator of Es with domain

D(Γ) = { f ∈ Lp(R,X) : f is absolutely continuous, f (t) ∈ D}.

LEMMA 3. The spectrum σ(Γ) is invariant under translations along imaginary
axis and the spectrum σ(Es) is invariant under rotations centered at the origin.

Proof. For each ξ ∈R we define an invertible operator on Lp(R,X) by (Lξ f )(t)=
eiξ t f (t) . For f ∈ Lp(R,X) we have

(ΓLξ f )(t) = −d(Lξ f )
dt

+A(t)(Lξ f )(t)

= (−iξLξ f )(t)+ eiξ t
[
−d f

dt
+A(t)

]
(t)

= [(−iξLξ +Lξ Γ) f ](t).

This implies that

ΓLξ = −iξLξ +Lξ Γ or L−1
ξ ΓLξ = −iξ + Γ.

This gives that σ(Γ) is invariant under translations along imaginary axis.
Again, for f ∈ Lp(R,X) we obtain

(EsLξ f )(t) = R(t− s,s)Lξ f (t)

= e−iξ seiξ tR(t− s,s) f (t − s) = (e−iξ sLξ Es f )(t).

Therefore, EsLξ = e−iξ sLξ Es or L−1
ξ EsLξ = e−iξ sEs . Thus, the spectrum σ(Es) is

invariant under rotations centered at the origin. �
Next, we define the concept of uniformly exponential dichotomy for a C0 -quasi

group which is an extension of the C0 -quasi semigroup introduced by Cuc [5]. Let
P : R → L (X) be a projection-valued function, the complementary projection is given
by Q(t) = I−P(t) for all t ∈ R . If P(t + s)R(t,s) = R(t,s)P(t) , then

RP(t,s) := P(t + s)R(t,s)P(t) and RQ(t,s) := Q(t + s)R(t,s)Q(t),

are the restrictions of R(t,s) on ranP(t) and ranQ(t) , respectively. The RP(t,s) is an
operator from ranP(t) to ranP(t + s) while RQ(t,s) maps ranQ(t) to ranQ(t + s) .

DEFINITION 4. A C0 -quasi group R(t,s) is said to be uniformly exponentially
dichotomic on X if there exist constants N > 1, α > 0 and a projection-valued function
P : R → L (X) such that for each x ∈ X , the function x �→ P(t)x is continuous and
bounded, and, for all t,s ∈ R , the following conditions hold:

(a) P(t + s)R(t,s) = R(t,s)P(t) ,
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(b) RQ(t,s) is invertible as an operator from ranP(t) to ranP(t + s) ,

(c) ‖RP(t,s)‖ � Ne−α |s| ,

(d) ‖[RQ(t,s)]−1‖ � Ne−α |s| .

By Definition 4, if the quasi group R(t,s) is uniformly exponentially dichotomic
on X , then R(t,s) is uniformly exponentially stable on ranP(t) and R−1(t,s) is uni-
formly exponentially stable on ranQ(t) . Furthermore, for t,s ∈ R , we have

Q(t)R(t− s,s) = R(t− s,s)Q(t − s).

In particular, for s � 0 we obtain

‖[RQ(t− s,s)]−1‖ � Ne−αs.

We recall the following spaces of functions. Let C0(R,X) be a space of all con-
tinuous functions f : R → X such that limt→±∞ f (t) = 0 with the supremum norm. Let
Cb(R,X) be a space of all bounded continuous functions f : R → X with the supre-
mum norm. The set F∞ denotes the subspace of functions f ∈ C0(R,X) such that
f (t) ∈ ranQ(t) for all t ∈R . Therefore, if f ∈F∞ , then f (t) = Q(t) f (t) for all t ∈ R .
Also, for each s � 0 we define an operator Rs on F∞ by

(Rs f )(t) := [RQ(t,s)]−1 f (t + s), t ∈ R.

LEMMA 4. The operator Rs is bounded on the space F∞ , and

‖Rs f‖∞ � Ne−αs‖ f‖∞,

where N and α are the dichotomy constants as in Definition 4.

Proof. By (a) and (d) of Definition 4 and fact f ∈F∞ , for s � 0 and u,r ∈ R , we
have

‖(Rs f )(r− s)− (Rs f )(u− s)‖ = ‖R−1
Q (r− s,s) f (r)−R−1

Q (u− s,s) f (u)‖
� ‖R−1

Q (r− s,s) f (r)−R−1
Q (r− s,s)RQ(r− s,s)Q(r− s)R−1

Q (u− s,s) f (u)‖
+‖Q(r− s)R−1

Q (u− s,s) f (u)−Q(u− s)R−1
Q (u− s,s) f (u)‖

� Ne−αs‖ f (r)−Q(r)RQ(r− s,s)R−1
Q (u− s,s) f (u)‖

+‖(Q(r− s)−Q(u− s))R−1
Q (u− s,s) f (u)‖.

The strong continuity of Q(·) implies that

lim
r→u

f (r) = f (u) = Q(u) f (u) = lim
r→u

Q(r)RQ(r− s,s)R−1
Q (u− s,s) f (u).

Thus, (Rs f )(·) is continuous, and

‖Rs f‖∞ = sup
s�0

‖R−1
Q (t,s) f (t + s)‖ � Ne−αs‖ f‖∞.

Furthermore, since R−1
Q (t,s) f (t + s) ∈ ranQ(t) for all s � 0, we have

(Rs f )(t) = R−1
Q (t,s) f (t + s) = Q(t)Rs f (t) ∈ ranQ(t),

i.e. Rs f ∈ F∞ . �
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We will prove the sufficient and necessary conditions for the uniformly exponential
dichotomy of the C0 -quasi groups. Recall that the unit circle T and the open unit disk
D are given by D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1} , respectively.

THEOREM 4. (Dichotomy Theorem) Assume that R(t,s) is a C0 -quasi group on
a Banach space X . Let Es be the corresponding evolution semigroup given by (5)
on Lp(R,X) and let Γ denote its infinitesimal generator given by (6). The following
statements are equivalent:

(a) The quasi group R(t,s) has a uniformly exponential dichotomy on X .

(b) For each s > 0 , σ(Es)∩T = /0 .

(c) 0 ∈ ρ(Γ) .

Proof. The equivalence (b) ⇔ (c) follows the result on page 24 of [7].
(a) ⇒ (b) . Let P(·) ∈ Cb(R,Ls(X)) denote the corresponding projection and

Ls(X) denotes the space of bounded operators on X equipped with strong operator
topology. Define the multiplication operators P and Q on Lp(R,X) by (P f )(t) =
P(t) f (t) and (Q f )(t) = Q(t) f (t) , respectively. By (a) of Definition 4, EsP = PEs

and EsQ = QEs . Define semigroups Es
P and Es

Q on ranP and ranQ by

(Es
P f )(t) = RP(t− s,s) f (t − s)), f ∈ ranP, t ∈ R,

(Es
Q f )(t) = RQ(t− s,s) f (t − s)), f ∈ ranQ, t ∈ R.

We note that Es = ES
P +Es

P . Part (c) of Definition 4 gives ‖Es
P‖ � Ne−αs . This implies

that σ(Es
P)⊂D . By part (b) of Definition 4, Es

Q is invertible on ranQ while Lemma 4

gives that (Es
Q)−1 = Rs and ‖(Es

Q)−1‖ � Ne−αs . This implies that σ(Es
Q) ⊂ C \D .

These give that σ(Es)∩T = /0 .
(b)⇐ (a) . Assume that σ(E(s))∩T = /0 . Let P be the spectral projection corre-

sponding to E := E(1) and the spectral set σ(E)∩D . By Spectral Projection Theorem
(Theorem 3.14 of [4]), there exists a projection-valued function P(·) ∈ Cb(R,Ls(X))
such that (P f )(t) = P(t) f (t) . We have to prove that P satisfy Definition 4.

Define the operators Es
P := Es|ranP and Es

Q = Es|ranQ . For t � s � 0 we have

[EsP f ](t) = R(t− s,s)P(t− s) f (t − s)
= P(t)R(t− s,s) f (t − s) = [PEs f ](t).

This gives condition (a) of Definition 4, P(t +s)R(t,s)= R(t,s)P(t) . Moreover, the fact
that the spectral radius r(Es

P) = supλ∈σ(Es
P
|λ | < 1, Corollary 2.11 of [11] guarantees

the existences of constants N > 1 and α > 0 such that

‖RP(t,s)‖ � Ne−αs. (7)

Thus, the condition (c) of Definition 4 is satisfied.
Hypothesis σ(Es)∩T = /0 for all s > 0 implies that the operator Es is invertible

on ranQ . Therefore, operator RQ(t,s) : ranQ(t) → ranQ(t + s) is also invertible on
ranQ(t) . On other hand, since σ([Es

Q]−1)) ⊂ D , again by Corollary 2.11 of [11] there

exist constants N > 1 and α > 0 such that ‖R−1
Q (t,s)‖ � Ne−αs . In this case, the
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choice N and α can be adjusted according to (7). Therefore, condition (b) and (d) of
Definition 4 is satisfied by P . �

The following example illustrates Dichotomy Theorem 4 in an application.

EXAMPLE 3. Let X = R3 and ϕ : R → R be a continuous increasing function
such that limt→±∞ ϕ(t) < ∞ . Defined a C0 -quasi group on X by

R(t,s)x =
(
e−(v(t+s)−v(t))x1,e

v(t+s)−v(t)x2,e
−sϕ(0)+v(t+s)−v(t)x3

)
, t,s ∈ R.

where v(t) =
∫ t
0 ϕ(s)ds and x = (x1,x2,x3) . The quasi group R(t,s) has an uniformly

exponential dichotomy on X .

By assumption, the function ϕ is invertible on R and local integrability of ϕ
guarantees the existence of v . The infinitesimal generator A(t) of R(t,s) is given by

A(t)x = (−ϕ(t)x1,ϕ(t)x2,(−ϕ(0)+ ϕ(t))x3).

The evolution semigroup Es in (5) on the space Lp(R,R3) is given by

(Es f )(t) =
(
e−(v(t)−v(t−s)) f1(t− s),ev(t)−v(t−s) f2(t− s),e−sϕ(0)+v(t)−v(t−s) f3(t − s)

)
,

where f (t) = ( f1(t), f2(t), f3(t)) , s � 0, and t ∈ R with the infinitesimal generator

(Γ f )(t) = −
(

d f1
dt

,
d f2
dt

,
d f3
dt

)
+(−ϕ(t) f1(t),ϕ(t) f2(t),(−ϕ(0)+ ϕ(t)) f3(t)) .

In fact, Γ is invertible and

(Γ−1 f )(t) = −(g1(t),g2(t),g3(t))+ (−φ(t) f1(t),φ(t) f2(t),(−φ(0)+ φ(t)) f3(t)) ,

where gi(t) =
∫ t
0 fi(s)ds , i = 1,2,3, and φ(t) = ϕ−1(t) for all t ∈ R . This proves

that 0 ∈ ρ(Γ) . Dichotomy Theorem 4 gives that R(t,s) has an uniformly exponential
dichotomy on X .

4. Evolution semigroups on the half line

In this section we focus on the C0 -quasi semigroups on a Banach space X ; that
is, the quasi group with parameter t,s � 0. We will specialize the definition of the
evolution semigroups in Definition 3 associated with the C0 -quasi semigroups on the
space Lp(R+,X) .

DEFINITION 5. Let R(t,s) be the C0 -quasi semigroup on a Banach space X .
Evolution semigroup corresponding to R(t,s) on Lp(R+,X) is a family of operators
{Es

+}s�0 ,

(Es
+ f )(t) =

{
R(t− s,s) f (t − s), t � s
0, 0 � t < s,

(8)

for all f ∈ Lp(R+,X) .
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If A(t) is the infinitesimal generator of C0 -quasi semigroup R(t,s) with domain
D , then an operator Γ+ defined by

(Γ+ f )(t) = −d f
dt

+A(t) f (t), t � 0 (9)

is the infinitesimal generator of Es
+ with domain

D(Γ+) = { f ∈ Lp(R+,X) : f is absolutely continuous, f (t) ∈ D}.

THEOREM 5. Let Es
+ be an evolution semigroup on Lp(R+,X) corresponding to

the C0 -quasi semigroup R(t,s) defined by (8) with the infinitesimal generator Γ+ given
by (9). The quasi semigroup R(t,s) is uniformly exponentially stable on X if and only
if the spectral bound s(Γ+) is negative.

Proof. (⇒) . Assume that R(t,s) is uniformly exponentially stable on X . There
exist constants N > 1 and α > 0 such that

‖R(t,s)x‖ � Ne−αs‖x‖, x ∈ X , t,s � 0.

For any f ∈ Lp(R+,X) we have

‖Es
+ f‖p

Lp(R+,X) =
∫ ∞

0
‖(Es

+ f )(t)‖p
Xdt =

∫ ∞

s
‖R(t− s,s) f (t − s)‖p

Xdt

�
∫ ∞

s
Ne−α ps‖ f (t− s)‖p

Xdt � Ne−α ps‖ f‖p
Lp(R+,X).

This gives that ω(Γ+) is negative. The assertion follows of the Corollary 1.13 of [7].
(⇐) . Assume that there exist constants N > 1 and α > 0 such that

‖Es
+‖Lp(R+,X) � Ne−αs, (10)

for all s � 0. We choose z ∈ X such that ‖z‖ = 1. For any t � 0, we choose f ∈
Lp(R+,X) such that f (s0) = z for some s0 ∈ [0,t] . Let s1 = t− s0 , then

‖R(t− s1,s1)z‖ = ‖R(t− s1,s1) f (t − s1)‖ � ‖(Es1
+ f )(t)‖ � Ne−αs1 .

Thus, we can choose s2 � 0 such that ‖R(t,s2)‖ < 1, for all t � 0. Theorem 6 of [38]
gives that R(t,s) is uniformly exponentially stable on X . �

There exist the sufficiency and necessity for the uniformly exponential stability
of the C0 -quasi semigroups. Let R(t,s) denote the C0 -quasi semigroup on a Banach
space X . We define a linear operator G on Lp(R+,X) by

(G f )(t) =
∫ t

0
R(t− s,s) f (t − s)ds =

∫ t

0
R(s, t + s) f (s)ds, t � 0. (11)

According to the definition of Es
+ in (8), the operator G can be written by

(G f )(t) =
∫ ∞

0
(Es

+ f )(t)ds, t � 0. (12)

THEOREM 6. A C0 -quasi semigroup R(t,s) is uniformly exponentially stable on
a Banach space X if and only if G is bounded on Lp(R+,X) .
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Proof. (⇒). By assumption, Theorem 5 guarantees that Es
+ is exponentially sta-

ble on Lp(R+,X) . There exist constants N > 1 and α > 0 such that

‖Es
+ f‖Lp(R+,X) � Ne−αs‖ f‖Lp(R+ ,X).

By (12), for f ∈ Lp(R+,X) we have

‖G f‖p
Lp(R+,X) =

∫ ∞

0

∥∥∥∥
∫ ∞

0
(Es

+ f )(t)ds

∥∥∥∥
p

X
dt

�
∫ ∞

0

∫ ∞

0
‖(Es

+ f )(t)‖p
Xdsdt � N

α p
‖ f‖p

Lp(R+,X).

Thus G is bounded on Lp(R+,X) .
(⇐). Since G is bounded on Lp(R+,X) , by assumption, and (G f )(0) = 0, then

Theorem 10 of [38] implies that operator Γ+ is injective on Lp(R+,X) and Γ+u =
− f is equivalent to u = G f . Therefore, Γ+ is invertible with Γ−1

+ = −G . Theorem
mapping spectral for the C0 -semigroup, Theorem 3.1 Chap. IV of [7], implies that
s(Γ+) < 0. Theorem 5 gives that R(t,s) is uniformly exponentially stable on X . �

As a consequence of Theorem 5 and Theorem 6, we have the following corollary.

COROLLARY 1. Let R(t,s) be a C0 -quasi semigroup on a Banach space X and
let Γ+ be the infinitesimal generator of the evolution semigroup Es

+ corresponding to
R(t,s) on Lp(R+,X) . The following statements are equivalent.

(1) R(t,s) is uniformly exponentially stable on X .

(2) Γ+ is invertible, with Γ−1
+ = −G .

(3) s(Γ+) < 0 .

The following theorem is a version of the Dichotomy Theorem for the C0 -quasi
semigroup which is the special case of Theorem 4.

THEOREM 7. Let R(t,s) be a C0 -quasi semigroup on a Banach space X . Let
Es

+ be the corresponding evolution semigroup given by (8) on Lp(R+,X) and let Γ+
denote its infinitesimal generator given by (9). The following statements are equivalent:

(a) The quasi semigroup R(t,s) has a uniformly exponential dichotomy on X .

(b) For each s > 0 , σ(Es
+)∩T = /0 .

(c) 0 ∈ ρ(Γ+) .

Proof. The proof is similar to Theorem 4 replacing Es and Γ by Es
+ and Γ+ on

the space Lp(R+,X) , respectively. �

REMARK 2. (a) The uniformly exponential stability of the C0 -quasi semigroup
has an important role in identifying the stability, stabilizability, and detectability of the
non-autonomous linear control systems [38].

(b) Theorem 7 gives an alternative version of the Dichotomy Theorem for the C0 -
quasi semigroup of Theorem 3.2 of [5].
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5. Green’s function and evolution semigroups

In this section, we will investigate a relation between the existence of a uniformly
exponential dichotomy for a C0 -quasi group and the existence of a Green’s operator
G . The Green’s operator also represents a formula of the inverse of the infinitesimal
generator Γ of the evolution semigroup Es on Lp(R,X) .

First, we recall the definition of the Green’s operator for a C0 -semigroup. Let
Tt be a C0 -semigroup on a Banach space X . A projection P ∈ L (X) is a splitting
operator for Tt if PTt = TtP and for the corresponding restrictions Tt

P : ranP → ranP
and Tt

Q : ranQ → ranQ where Q = I −P , the operator Tt
Q is invertible as an operator

on ranP . For the splitting operator P , define a function GP : R\ {0}→ L (X) by

GP(t) = Tt
P for t > 0 and GQ(t) = −Tt

Q for t < 0.

DEFINITION 6. The function GP is called the Green’s function for a C0 -semigroup
Tt if the operator G , called the Green’s operator, defined by

(G f )(t) =
∫ ∞

−∞
GP(t− s) f (s)ds, f ∈ Lp(R,X) (13)

is bounded on Lp(R,X) .

In particular, we will discuss the Green’s function for the evolution semigroup
Es defined by (5) on Lp(R,X) . Let P ∈ L (Lp(R,X)) denote the splitting operator
for Es with the complementary projection Q = I −P . Define the operator G on
Lp(R,Lp(R,X)) by

Gf =
∫ ∞

0
[Es

Q]−1 f ds−
∫ ∞

0
Es

P f ds, (14)

where Es
P = PEsP and Es

Q = QEsQ are the corresponding restrictions.

LEMMA 5. Let Es be an evolution semigroup on Lp(R,X) defined by (5) with the
infinitesimal generator Γ given by (6) and P is the splitting projection. If the operator
G defined by (14) is bounded on Lp(R,Lp(R,X)) , then 0 ∈ ρ(Γ) and Γ−1 = G.

Proof. We have to prove that G is a right inverse for Γ and kerΓ = {0} . For
f ∈ Lp(R,Lp(R,X)) , we have

EsG f −Gf =
∫ ∞

0
Es−t

Q f dt −
∫ ∞

0
Es+t

P dt−
∫ ∞

0
E−t

Q f dt +
∫ ∞

0
Et

Pdt

=
∫ s

−∞
Et

Q f dt −
∫ ∞

s
Et

Pdt−
∫ 0

−∞
Et

Q f dt +
∫ ∞

0
Et

Pdt

=
∫ s

0
Et

Q f dt +
∫ s

0
Et

P f dt.

This implies that 1
s (E

sG f −Gf ) converges to Q f + P f = f as s → 0. Therefore,
Gf ∈ D(Γ) and ΓGf = f .



268 S. SUTRIMA, M. MARDIYANA AND R. SETIYOWATI

Next, for f ∈ D(Γ) and Γ f = 0, we have

d
ds

Es
P f =

d
ds

PEs f = PEsΓ f = 0

d
ds

[Es
Q]−1 f =

d
ds

([QEsQ]−1 f ) = [QEsQ]−1QΓ f = 0.

This implies that the functions s �→ Es
P f and s �→ [Es

Q]−1 f , defined on R+ , are both

constant. Thus, for s > 0 we have Es
P f ≡ E0

P f = P f and [Es
Q]−1 f = Q f , and so

Gf =
∫ ∞

0
[Es

Q]−1 f ds−
∫ ∞

0
Es

P f ds =
∫ ∞

0
(Q f −P f )ds.

The assumption that G is bounded on Lp(R,Lp(R,X)) gives Gf ∈ Lp(R,Lp(R,X)) .
On other hand, we have shown that Gf ∈ D(Γ) . Consequently, P f = Q f or f = 0.
Therefore, kerΓ = {0} and Γ is invertible with Γ−1 = G . �

THEOREM 8. Let Es be an evolution semigroup on Lp(R,X) defined by (5) with
the infinitesimal generator Γ given by (6) and P is the splitting projection. The C0 -
semigroup Es is hyperbolic on Lp(R,X) if and only if there exists a unique Green’s
function GP for Es . In this case, if the related Green’s operator given by

(G f )(t) =
∫ ∞

−∞
GP(t − s) f (s)ds, f ∈ Lp(R,Lp(R,X)), (15)

then G = −Γ−1 .

Proof. (⇐) . Let GP be a unique Green’s function for Es with the Green’s op-
erator G given by (15). Let Vs be the translation operator (Vs f )(t) = f (t − s) on
Lp(R,X) . Using the notations as in the proof of the Theorem 4, for each s > 0, we
have

[Es
Q]−1 = [RQ(·− s,s)Vs]−1 = V−sR−1

Q (·− s,s) = R−1
Q (·− s,s)V−s

and Es
P = RP(·− s,s)Vs . The assumption (b) of Definition 4 guarantees the existence

of [Es
Q]−1 for each s > 0. Furthermore, from (14), we have

(Gf )(t) =
∫ ∞

0
R−1

Q (t− s,s) f (t + s)ds−
∫ ∞

0
RP(t− s,s) f (t − s)ds

=
∫ ∞

t
Et−s

Q f (s)ds−
∫ t

−∞
Et−s

P f (s)ds

= −
∫ ∞

−∞
GP(t− s) f (s)ds = −(G f )(t), t ∈ R.

By assumption, G is bounded on Lp(R,Lp(R,X)) , it implies that G is also bounded
on Lp(R,Lp(R,X)) . Lemma 5 concludes that Γ is invertible with Γ−1 = G = −G .
Finally, by Theorem 2.39 of [4] the evolution semigroup Es is hyperbolic on Lp(R,X)
with the hyperbolic projection P equal to the Riesz projection corresponding to E1

and the spectral set σ(E1)∩D .
(⇒) . Assume that Es is hyperbolic on Lp(R,X) i.e. σ(Es)∩T = /0 . Let P be

the Riesz projection corresponding to E1 and the spectral set σ(E1)∩D . Recall that
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EsP = PEs , σ(Es
P) ⊂ D , and σ([Es

Q]−1) ⊂ D . These implies that there exist N > 1

and α > 0 such that ‖Es
P‖ � Ne−αs and ‖[Es

Q]−1‖ � Ne−αs for all s > 0. Thus,

‖GP(t)‖Lp(R,Lp(R,X)) � Ne−α |t|, t ∈ R

and

‖G f‖L (Lp(R,X)) �
∫ ∞

−∞
‖GP(t)‖Lp(R,Lp(R,X))‖ f‖Lp(R,X)dt � 2N

α
‖ f‖Lp(R,X).

This shows the existence of the Green’s function.
Let GP ′ be also the Green’s function for Es . In this case, P ′ is the hyperbolic

projection for Es . Therefore, P ′ is the Riesz projection corresponding to E1 and
the spectral set σ(E1)∩D . Consequently, P ′ = P . This prove the uniqueness of
GP . �

Following Definition 6, we will construct the Green’s function for a C0 -quasi
group. A projection P(·) ∈Cb(R,Ls(X)) is called a splitting projection for a C0 -quasi
group R(t,s) if the (a) and (b) of Definition 4 hold; that is, P(t + s)R(t,s) = R(t,s)P(t)
for t,s ∈ R and the restriction RQ(t,s) = R(t,s)|ranQ(t) is an invertible operator from
ranQ(t) to ranQ(t + s) . Next, we define an operator GP : R2 \ {(0,0)}→ Ls(X) by

GP(t,s) = RP(t,s)P(t) for t > s,

GP(t,s) = −[RQ(s,t)]−1Q(t) for t < s.

DEFINITION 7. For a C0 -quasi group R(t,s) on a Banach space X , the function
GP is called Green’s function for R(t,s) if the operator G defined on Lp(R,X) by

(G f )(t) =
∫ ∞

−∞
GP(t,s) f (s)ds, f ∈ Lp(R,X) (16)

is bounded. The operator G is called Green’s operator.

THEOREM 9. Let Γ be the infinitesimal generator of the evolution semigroup Es

corresponding to a C0 -quasi group R(t,s) defined by (5) on Lp(R,X) . The quasi group
R(t,s) has a uniformly exponential dichotomy on X if and only if there exists a unique
Green’s function GP for R(t,s) . Moreover, if the associated Green’s operator given by
(16), then G = −Γ−1 on Lp(R,X) .

Proof. Dichotomy Theorem 4 gives that the C0 -quasi group R(t,s) has a uni-
formly exponential dichotomy if and only if the evolution semigroup Es is hyperbolic
on Lp(R,X) . By Theorem 8, Es is hyperbolic on Lp(R,X) if and only if there exists a
unique Green’s function GP for Es such that the Green’s operator given by (15)

(G f )(t) =
∫ ∞

−∞
GP(t − s) f (s)ds, f ∈ Lp(R,Lp(R,X)),

is bounded on Lp(R,Lp(R,X)) . We claim that the existence of the Green’s function
GP for Es is equivalent to the existence of the Green’s function GP for R(t,s) .

To prove the equivalence, we consider the isometry

L (Lp(R,X)) → L (Lp(R,Lp(R,X)) : H �→ I⊗H,
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where [(I⊗H)h](t,s) = Hh(t,s) for f (t) = h(t, ·) ∈ Lp(R,X) for almost all t ∈ R . In
this manner, we have

(G h)(t, ·) =
∫ ∞

−∞
GP(t − s)h(s, ·)ds.

In fact, we have

(G h)(t,s) =
∫ t

−∞
RP(s− (t− r),t− r)P(s− (t− r))h(r,s− (t− r))dr

−
∫ ∞

t
RQ(s− (t− r,t− r)h(r,s− (t− r))dr.

Define a map J : Lp(R,Lp(R,X)) → (Lp(R,Lp(R,X))) by

(Jh)(t,s) = h(t + s,s).

Refers to the proof of Theorem 2.39 of [4], J is an isometric isomorphism such that
JG J−1 = I⊗G . Thus, G ∈L (Lp(R,Lp(R,X))) if and only if G∈L (Lp(R,X)) . �

COROLLARY 2. A C0 -quasi semigroup on a Banach space X has a uniformly
exponential dichotomy on X if and only if there exists a unique Green’s function GP

for the quasi semigroup.

Proof. For a C0 -quasi semigroup on X , we can construct the evolution semigroup
Es defined by (8) on Lp(R+,X) with an infinitesimal generator Γ+ . The result fol-
lows the proof of Theorem 9 replacing the quasi group by the quasi semigroup on
Lp(R+,X) . �

REMARK 3. Corollary 2 is also an alternative result of Theorem 3.2 of [5] for
the sufficiency and necessity for the uniformly exponential dichotomy of the C0 -quasi
semigroups. We see that the sufficient condition of Corollary 2 is more ideal since the
way of the construction of the Green’s function is more accurate.

In the end of this section, we give an example to confirm the identification of the
uniformly exponential dichotomy for a C0 -quasi group via the Green’s function.

EXAMPLE 4. Consider the C0 -quasi group R(t,s) in Example 3. It has been
shown that the quasi group has an uniformly exponential dichotomy on X . Theorem 9
obliges that the quasi group has a unique Green’s function.

Let P : R → X be a projection such that P(t)x = (x1,x2,0) for all x = (x1,x2,x3) .
We can verify that P is the splitting projection for R(t,s) satisfying Definition 4. Let
Q(t) = I−P(t) be the complementary projection of P , we obtain

ranP(t) = {(x1,x2,0) : x1,x2 ∈ R}
ranQ(t) = {(0,0,x3) : x3 ∈ R}
RP(t,s) = R(t,s)|ranP(t) =

(
e−(v(t+s)−v(t)),ev(t+s)−v(t),0

)
RQ(t,s) = R(t,s)|ranQ(t) =

(
0,0,e−sϕ(0)+v(t+s)−v(t)

)
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R−1
Q (t,s) =

(
0,0,esϕ(0)−v(t+s)+v(t)

)
.

For the splitting projection P , we construct the Green’s function GP by

GP(t,s) = RP(t,s) =
(
e−(v(t+s)−v(t)),ev(t+s)−v(t),0

)
for t > s,

GP(t,s) = −R−1
Q (s,t) =

(
0,0,−etϕ(0)−v(t+s)+v(s)

)
for t < s,

and the corresponding Green’s operator G on the space Lp(R,R3) is

(G f )(t) =
∫ t

−∞
RP(t,s) f (s)ds−

∫ ∞

t
R−1

Q (s,t) f (s)ds.

Moreover, if Es is the evolution semigroup corresponding to the quasi group R(t,s) on
the space Lp(R,R3) given in the explanation of Example 3, we have

G f = (g1,g2,g3)− (−φ f1,φ f2, [−φ(0)+ φ ] f3) = −Γ−1 f .

6. Conclusions

In this paper, we note that the C0 -quasi semigroups can be extended to be the
C0 -quasi groups. The fundamental properties of the C0 -quasi groups are similar with
the properties of C0 -quasi semigroups. The sufficiency for the infinitesimal generator
of a C0 -quasi group can be identified. The non-autonomous abstract Cauchy problems
inducted by the infinitesimal generator of a C0 -quasi group is well-posed. The C0 -
quasi groups and the C0 -quasi semigroups can be reduced to the evolution semigroups
on the spaces Lp(R,X) and Lp(R+,X) , 1 � p < ∞ , respectively. By the associated
evolution semigroups, the uniformly exponential stability of both can be characterized.
Dichotomy Theorem declares that the sufficient and necessary conditions for a C0 -
quasi group has a uniformly exponential dichotomy are that the associated evolution
semigroup is hyperbolic. Moreover, Dichotomy Theorem can also be investigated via
the Green’s function of the associated evolution semigroup. Dichotomy Theorem for
the C0 -quasi semigroups is derived by the similar manner for C0 -quasi groups. In
particular, for the C0 -quasi semigroups, the uniformly exponential stability depends on
the infinitesimal generator of the associated evolution semigroup.
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