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NONLINEAR LIE DERIVATIONS OF INCIDENCE ALGEBRAS

YUPING YANG

(Communicated by L. Molnár)

Abstract. Let (X ,�) be a locally finite preordered set and R a 2-torsion free commutative
ring with unity, I(X ,R) the incidence algebra of X over R . In this paper, we give an explicit
description of the structure of nonlinear Lie derivations of I(X ,R) . We prove that every nonlinear
Lie derivation of I(X ,R) is a sum of an inner derivation, a transitive induced derivation and an
additive induced Lie derivation.

1. Introduction

Let R be a 2-torsion free commutative ring with unity, A an associative alge-
bra over R . A map D : A → A is called a nonlinear (or multiplicative) derivation if
D(xy) = D(x)y+ xD(y) for all x,y ∈ A , and a map Ψ : A → A is called a nonlinear (or
multiplicative) Lie derivation if

Ψ([x,y]) = [Ψ(x),y]+ [x,Ψ(y)]

for all x,y ∈ A . If the maps D and L are also R-linear, then they are called a derivation
and a Lie derivation respectively. A (nonlinear) Lie derivation is called proper if it
can be written as a sum of a (nonlinear) derivation and a central-valued map. In 1961,
Herstein [13] proposed many problems concerning the structures of Jordan and Lie
mappings on associative simple and prime rings. Roughly speaking, he conjectured
that all the involved Lie mappings, including Lie isomorphisms, Lie derivations etc., are
proper or of the standard form. The renowned Herstein’s Lie-type mappings research
program was formulated since then. Based on the techniques introduced by Brešar [4],
the study of the Herstein’s Lie-type mappings research program finally became one of
the foundations of the theory of functional identities (see [5]).

The main motivation of this paper is to study the nonlinear version of the Her-
stein’s Lie-type mappings research program on incidence algebras. Now let us recall
the definition of incidence algebras. Let (X ,�) be a locally finite preordered set. This
means that � is a reflexive and transitive binary relation on the set X , and for any x � y
there are only finitely many z ∈ X such that x � z � y . The incidence algebra I(X ,R)
of X over R is defined as the set of functions

I(X ,R) := { f : X ×X −→ R | f (x,y) = 0 if x � y}
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with multiplication given by the convolution

( f g)(x,y) := ∑
x�z�y

f (x,z)g(z,y) (1.1)

for all f ,g ∈ I(X ,R) and x,y ∈ X . If X is finite, then I(X ,R) is also known as the
special subring of matrix ring [23]. The full matrix algebra Mn(R) , the upper (or lower)
triangular matrix algebra Tn(R) and the infinite triangular matrix algebras T∞(R) are
also particular examples of incidence algebras. In addition, in the theory of operator
algebras, the incidence algebra I(X ,R) of a finite partially ordered set is referred as a
digraph algebra or a finite dimensional commutative subspace lattice (CSL) algebra.

In the past fifty years, isomorphisms and other related algebra maps on incidence
algebras have been studied extensively, see [1, 6, 7, 16, 18, 23, 25, 27] and the refer-
ences therein. In 2015, the Herstein’s Lie-type mappings research programon incidence
algebras was studied in [30]. Subsequently many other authors have made essential
contributions in this topic, for example [15, 17, 29, 34]. On the other hand, the non-
linear version of the Herstein’s program on incidence algebra I(X ,R) was studied by
the author in [32] only when X is finite. The main obstacle for generalizing the results
in [32] to the case of X being infinite is that we cannot find an analogue of the linear
extension technique introduced in [34].

In this paper we shall study the nonlinear Lie derivations on incidence algebra
I(X ,R) when the preordered set X is infinite. Notice that there is a long history on the
study of nonlinear algebra maps. About fifty years ago, Martindale III [19] proved that
every multiplicative bijective map (i.e. nonlinear isomorphism) from A to an arbitrary
algebra is additive if A contains a nontrivial idempotent. Since then more and more
mathematicians have made essential contributions to the related topics. For examples,
nonlinear Lie-type derivations were studied on triangular algebras in [3, 8, 14, 33] and
on generalized matrix algebras in [28, 31]. Fošner [10] and Šemrl [24] studied nonlin-
ear commutativity preserving maps. The nonlinear generalized Jordan derivations on
prime and semiprime rings were studied in [9, 20]. In the field of operator algebras,
the nonlinear Lie-type derivations were studied on von Neumann algebras in [2, 11].
Several kinds of nonlinear operators were considered in standard operator algebras in
[12, 21, 22] etc.

This paper is organized as follows. In Section 2, we introduce some basic notions,
notations and facts on incidence algebras and several types of nonlinear Lie derivations.
In Section 3, an explicit description of the structure of additive induced Lie derivations
is obtained on incidence algebras. In Section 4, we prove the main theorem of the
paper, which asserts that every nonlinear Lie derivation on I(X ,R) is a sum of an inner
derivation, a transitive induced derivation and an additive induced Lie derivation.

2. Some canonical nonlinear Lie-derivations

In this section, we will introduce four kinds of nonlinear Lie derivations of in-
cidence algebras. Throughout, (X ,�) is a locally finite preordered set and R is a
2-torsion free commutative ring with unity. Let X =

⊔
i∈J Xi be the decomposition of
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X into the union of its distinct connected components, where J is the index set. It is
clear that I(X ,R) = ∏i∈J I(Xi,R) .

For a fixed pair x � y in X , let exy : X ×X −→ R be the function given by

exy(u,v) =

{
1, if (u,v) = (x,y)
0, otherwise.

(2.1)

Then the product of I(X ,R) satisfies exyeuv = δyuexv , and each element f ∈ I(X ,R) can
be written as a formal sum f = ∑x�y f (x,y)exy . Let D(X ,R) be the diagonal subalgebra
of I(X ,R) , i.e.

D(X ,R) := {∑
x

rxexx|rx ∈ R}. (2.2)

Let C (Xi,R) (resp. C (X ,R)) be the center of I(Xi,R) (resp. I(X ,R)), and Ii :=
∑x∈Xi

exx for each i ∈ J . Then C (Xi,R) is R-linearly spanned by Ii and C (X ,R) =
∏i∈J C (Xi,R) , see [26, Theorem 1.3.13] for details. It is also useful to point out that
∑x rxexx ∈ C (X ,R) if and only if rx = ry for all x < y .

Throughout this paper, for all x,y ∈ X , we define:

• x ∼ y if x � y or y � x ,

• x < y if x � y and x �= y ,

• x � y if x � y and y � x .

It is clear that � is an equivalence relation. So if x � y , we say x is equivalent to y .
Since (X ,�) is locally finite, each equivalence class under � is a finite set.

Now we can introduce the four kinds of canonical nonlinear Lie derivations on
I(X ,R) .

(I) Inner derivation. Let f ∈ I(X ,R) . Then the map

ad f : I(X ,R) −→ I(X ,R)
g −→ [ f ,g]

is called an inner derivation.
(II) Transtive induced derivation. In what follows, we use the notation � to

present the set {(x,y)|x � y ∈ X} . A map f :�−→ R is called transitive if

f (x,y)+ f (y,z) = f (x,z)

for all x,y,z ∈ X such that x � y � z . Let σ : X −→ R be a map. Then associated to
σ there is a transitive map fσ defined by fσ (x,y) = σ(x)−σ(y) , x,y ∈ X . Transitive
maps of this form are called trivial. For a fixed transitive map f :�−→R , we can define
an R-linear map Ψ f : I(X ,R) −→ I(X ,R) determined by

Ψ f (exy) = f (x,y)exy, x � y.

According to [23], see also [30, Lemma 2.3], Ψ f is a derivation of I(X ,R) , which is
called a transitive induced derivation. Note that Ψ f is an inner derivation if and only
if f is a trivial transitive map.
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(III) Central-valued map. Let I(X ,R) = 〈[ f ,g] | f ,g ∈ I(X ,R)〉 , the commutator
subalgebra of I(X ,R) . A central-valued map of I(X ,R) is a map

χ : I(X ,R) −→ I(X ,R)

such that

χ(I(X ,R)) ⊂ C (X ,R), (2.3)

χ(I(X ,R)) = 0. (2.4)

It is clear that a central-valued map χ is a nonlinear Lie derivation of I(X ,R) . Con-
versely, if a nonlinear Lie derivation Φ of I(X ,R) satisfies (2.3), then Φ is a central-
valued map since Φ([e, f ]) = [Φ(e), f ]+ [e,Φ( f )] = 0 for all e, f ∈ I(X ,R) .

(IV) Additive induced derivation: A map f : R −→ R is called an additive deriva-
tion if

f (r+ s) = f (r)+ f (s), (2.5)

f (rs) = f (r)s+ r f (s) (2.6)

for all r,s ∈ R .

PROPOSITION 2.1. Let F := { fi|i ∈ J } be a family of additive derivations on
R, and ΨF : I(X ,R) −→ I(X ,R) be the map defined as follows:

ΨF(∑x�y rxyexy) = ∑x�y ΨF(rxyexy), rxy ∈ R, (2.7)

ΨF(rxyexy) = fi(rxy)exy, exy ∈ I(Xi,R), i ∈ J . (2.8)

Then ΨF is a derivation of I(X ,R) .

Proof. According to (2.7), we only need to show that

ΨF(rexyseuv) = ΨF(rexy)seuv + rexyΨF(seuv) (2.9)

for all x � y,u � v , r,s ∈ R . If y �= u , it is obvious that both sides of (2.9) are zero.
Now suppose y = u , and exy,euv ∈ I(Xi,R) for some i ∈ J . Then (2.9) follows from

ΨF(rexy)seuv + rexyΨF(seuv) = fi(r)exyseuv + rexy fi(s)euv

= ( fi(r)s+ r fi(s))exv

= fi(rs)exv

= ΨF(rexyseuv). �

DEFINITION 2.2. Let F := { fi|i ∈ J } be a family of additive derivations on
R , the derivation ΨF : I(X ,R) → I(X ,R) defined by (2.7)–(2.8) is called an additive
induced derivation associated to F .
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3. Additive induced Lie derivation

In this section, we introduce and study additive induced Lie derivations. In order
to introduce the notion of additive induced Lie derivation, we need the following two
definitions.

DEFINITION 3.1. Let n � 2 and x1,x2, · · ·xn be n different elements in X . Then
we say that {x1,x2, · · · ,xn} forms a cycle if either

(1) n = 2 and x1 � x2 , or

(2) n � 3 and x1 ∼ x2 ∼ x3 ∼ ·· · ∼ xn ∼ x1 .

DEFINITION 3.2. Suppose x < y, u < v in X , then we say that exy is equivalent
to euv , denoted by exy ≈ euv , if either exy = euv or there is a cycle containing both x∼ y
and u ∼ v .

LEMMA 3.3. [32, Lemma 2.2] The binary relation ≈ is an equivalence relation
on the set {exy|x < y} .

Let {Ei| i ∈ I } be the equivalence classes of {exy|x < y} with respect to the
equivalence relation ≈ , where I is the index set. If exy ≈ euv , then it is obvious that
x,y,u,v must be contained in the same connected component of X . Let {Ei| i∈I j} be
the set of equivalence classes of {exy|x < y ∈ Xj} . Then it is clear that I = ∪ j∈J I j .

DEFINITION 3.4. Let F := { fi | i ∈ I } be a family of additive derivations on R .
A nonlinear Lie derivation ψ of I(X ,R) is called an additive induced Lie derivation
associated to F if ψ leaves D(X ,R) invariant, and for all x < y we have

ψ(rexy) = fi(r)exy, exy ∈ Ei, r ∈ R. (3.1)

REMARK 3.5. A central-valued map is an additive induced Lie derivation with
{ fi = 0|i∈I } . It is also clear that an additive induced derivation is an additive induced
Lie derivation.

The following example gives an additive induced Lie derivation which is neither a
central-valued map nor an additive induced derivation.

EXAMPLE 3.6. Let X = {x0 = y0,x1,y1, · · · ,xi,yi, · · ·} be a partially ordered set
with the order given by

x0 < x1 < x2 < · · · < xi < · · · ;
y0 < y1 < y2 < · · · < yi < · · · .

It is clear that X is connected, {exix j |0 � i < j} and {eykyl |0 � k < l} are two equiv-
alence classes of the set {euv|u < v} . Let f1 �= f2 be two additive derivations on R .
Define a map Ψ : I(X ,R) → I(X ,R) by

Ψ(∑
u�v

cuveuv) = ∑
u�v

Ψ(cuveuv), cuv ∈ R, (3.2)
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Ψ(rexix j ) = f1(r)exix j ,Ψ(reyiy j ) = f2(r)eyiy j , r ∈ R, 0 � i � j �= 0, (3.3)

Ψ(cex0x0) = −∑
i�1

( f1(c)exixi + f2(c)eyiyi), c ∈ R. (3.4)

Then Ψ is an additive induced Lie derivation of I(X ,R) .

Proof. It is obvious that Ψ satisfies (3.1) and leaves D(X ,R) invariant. So we
only need to show that Ψ is a nonlinear Lie derivation. By (3.2), we need to prove

Ψ([rexy,seuv]) = [Ψ(rexy),seuv])+ [rexy,Ψ(seuv)] (3.5)

for all x � y,u � v and r,s ∈ R . The proof will be divided into four cases.

(1) exy = ex0x0 ,euv = exix j for i < j . If i = 0, then (3.5) follows from

[Ψ(rexy),seuv])+ [rexy,Ψ(seuv)]
= [−∑

i�1

( f1(r)exixi + f2(r)eyiyi),sex0x j ]+ [rex0x0 , f1(s)ex0x j ]

= f1(r)sex0x j + r f1(s)ex0x j

= f1(rs)ex0x j

= Ψ([rexy,seuv]).

If i �= 0, then it is obvious that Ψ([rexy,seuv]) = 0, and

[Ψ(rexy),seuv])+ [rexy,Ψ(seuv)]
= [−∑

i�1

( f1(r)exixi + f2(r)eyiyi),sexix j ]+ [rex0x0 , f1(s)exix j ]

= 0.

Hence we also have identity (3.5).

(2) exy = ex0x0 ,euv = eyiy j for i < j . Note that ex0x0 = ey0y0 since x0 = y0 , hence the
proof is similar to (1).

(3) exy = exix j ,euv = exkxl for 0 � i � j � k � l , j �= 0. If i = l , then we have
i = j = k = l and the both sides of (3.5) are zero. If j �= k , it is also obvious
that the both sides of (3.5) equal to zero. Now suppose that i �= l and j = k , then
(3.5) follows from

[Ψ(rexy),seuv])+ [rexy,Ψ(seuv)]
= [ f1(r)exix j ,sexkxl ]+ [rexix j , f1(s)exkxl ]
= f1(rs)exixl

= Ψ([rexy,seuv]).

(4) exy = eyiy j ,euv = eykyl for 0 � i � j � k � l , j �= 0. The proof is similar to
(3). �
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PROPOSITION 3.7. An additive induced Lie derivation associated to F = { fi|i ∈
I} is uniquely determined by F up to central-valued maps on I(X ,R) .

Proof. Suppose ψF and φF are two additive induced Lie derivations associated to
F , then we need to prove that Ψ := ψF −φF is a central-valued map.

Firstly, we will show that

Ψ(D(X ,R)) ∈ C (X ,R). (3.6)

Since ψF and φF leave D(X ,R) invariant, then Ψ also leaves D(X ,R) invariant. Let
∑x∈X rxexx ∈D(X ,R) , where rx ∈R for all x∈X . Then we can assume Ψ(∑x∈X rxexx)=
∑x∈X cxexx ∈D(X ,R) , cx ∈R for all x∈X . In order to prove Ψ(∑x∈X rxexx)∈C (X ,R) ,
we only need to show that cx = cy if x < y . By (3.1), we have

Ψ(cexy) = ψF(cexy)−φF(cexy) = 0, x < y, c ∈ R. (3.7)

Applying ψ to [∑x∈X rxexx,exy] = (rx − ry)exy , by (3.7) we obtain

0 = Ψ((rx − ry)exy)
= Ψ([∑

x∈X
rxexx,exy])

= [Ψ(∑
x∈X

rxexx),exy]+ [∑
x∈X

rxexx,Ψ(exy)]

= [∑
x∈X

cxexx,exy]

= (cx − cy)exy.

So cx = cy for all x < y , and we have proved (3.6).
Next, we will prove that

Ψ(I(X ,R)) ⊂ D(X ,R). (3.8)

Let H = ∑x�y hxyexy , where hxy ∈ R for all x � y . Suppose Ψ(H) = ∑x�y cxyexy . In
order to prove Ψ(H) ∈ D(X ,R) , we need to show that cxy = 0 for all x < y . If x < y
and x is not equivalent to y , then [[exx,H],eyy] = hxyexy . By (3.6) we have

Ψ(hxyexy) = Ψ([[exx,H],eyy])
= [[exx,Ψ(H)],eyy]
= cxyexy.

Since Ψ(hxyexy) = 0 by (3.7), we get cxy = 0. If x � y , then [[exx,H],eyy] = hxyexy +
hyxeyx . Applying Ψ to this equality we obtain

Ψ(hxyexy +hyxeyx) = Ψ([[exx,H],eyy])
= [[exx,Ψ(H)],eyy]
= cxyexy + cyxeyx.

(3.9)
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By the above equality, we get

Ψ([hxyexy +hyxeyx,eyx]) = [Ψ(hxyexy +hyxeyx),eyx]
= [cxyexy + cyxeyx,eyx]
= cxy(exx − eyy).

(3.10)

On the other hand, Ψ([hxyexy + hyxeyx,eyx]) = Ψ(hxy(exx − eyy)) ∈ C (X ,R) by (3.6).
This implies cxy = 0, and we have proved (3.8).

Finally, we will prove that Ψ(I(X ,R)) ⊂C (X ,R) . Let H ∈ I(X ,R) . According to
(3.8), Ψ(H) = ∑x∈X rxexx ∈ D(X ,R) , where rx ∈ R for all x ∈ X . By (3.7)–(3.8), we
have Ψ([H,exy]) = [Ψ(H),exy] = (rx−ry)exy ∈D(X ,R) for all x < y . Hence rx−ry = 0
for all x < y . This implies Ψ(H) ∈ C (X ,R) . �

In general, an additive induced Lie derivation may not be proper. So we want to
know when an additive induced Lie derivation is proper. We have the following two
propositions.

PROPOSITION 3.8. Let ψF be an additive induced Lie derivation associated to
F = { fi|i ∈ I } . If ψF is proper, then fi = fl for all j ∈ J and i, l ∈ I j .

Proof. Suppose ψF is proper, then there are a derivation D and a central-valued
map C such that ψF = D+C . Since ψF leaves D(X ,R) invariant, we have

D(rexx) = ψF(rexx)−C(rexx) ∈ D(X ,R), x ∈ X ,r ∈ R. (3.11)

Note that exy = [exx,exy] ∈ I(X ,R) for x < y , so by (2.4) we obtain C(rexy) = 0 and

D(rexy) = ψF(rexy)−C(rexy) = ψF(rexy), r ∈ R. (3.12)

According to (3.11), we can assume D(rexx) = ∑u∈X f x
u (r)euu , where { f x

u |x,u ∈
X} are functions on R . Then for each pair x �= y in X , we have

0 = D(rexxeyy) = D(rexx)eyy + rexxD(eyy) = f x
y (r)eyy + r f y

x (1)exx.

This implies f x
y = 0 if x �= y . Hence D(rexx) = f x

x (r)exx for all x ∈ X , r ∈ R . Note that
fi(1) = 0 by (2.6), so for x < y we have

D(rexy) = D(rexxexy) = D(rexx)exy + rexxD(exy) = f x
x (r)exy, (3.13)

D(rexy) = D(exyreyy) = D(exy)reyy + exyD(reyy) = f y
y (r)exy. (3.14)

By the two equalities above, we obtain f x
x = f y

y for all x < y . This implies

f u
u = f v

v , u,v ∈ Xj (3.15)

since Xj is a connected component of X .
Now suppose exy ∈ Ei , i ∈ I j , then by (3.12)–(3.13) we have

f x
x (r)exy = D(rexy) = ψF(rexy) = fi(r)exy. (3.16)
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Combining (3.15)–(3.16), we obtain fi = fl if i, l ∈ I j . �
According to Proposition 3.8, the additive induced Lie derivation given in Example

3.6 is not proper.

PROPOSITION 3.9. An additive induced Lie derivation is proper if and only if it
is a sum of an additive induced derivation and a central-valued map.

Proof. Let Ψ be an additive induced Lie derivation associated to F = { fi, i∈I } .
If Ψ is a sum of an additive induced derivation and a central-valued map, then Ψ
is proper by definition. Conversely, if Ψ is proper, then for each j ∈ J , we have
fi = fl for all i, l ∈ I j by Proposition 3.8. So there is an additive induced derivation
Φ associated to F . By Proposition 3.7, C := Ψ −Φ is a central-valued map. So
Ψ = Φ+C is a sum of an additive induced derivation and a central-valued map. �

4. The main result

The main result of the paper is the following theorem.

THEOREM 4.1. Every nonlinear Lie derivation of I(X ,R) is a sum of an inner
derivation, a transitive induced derivation and an additive induced Lie derivation.

The proof of Theorem 4.1 will be carried out by a series of lemmas and proposi-
tions. Combining Theorem 4.1 with Proposition 3.9, we have the following corollary.

COROLLARY 4.2. A nonlinear Lie derivation of I(X ,R) is proper if and only if
it is a sum of an inner derivation, a transitive induced derivation, an additive induced
derivation and a central-valued map.

4.1. The connected case

In this subsection, we assume that (X ,�) is connected and Ψ is a fixed nonlin-
ear Lie derivation of I(X ,R) . When (X ,�) is finite, the nonlinear Lie derivations of
I(X ,R) were studied in [32]. So in this subsection, we also assume that (X ,�) is
infinite.

DEFINITION 4.3. Let F : I(X ,R) → I(X ,R) be a fixed map. For each x � y , let
Fxy : I(X ,R) → R be the function given by

Fxy(e) = F(e)(x,y), e ∈ I(X ,R). (4.1)

By definition the functions Fxy,x � y satisfy

F(e) = ∑
x�y

Fxy(e)exy, e ∈ I(X ,R). (4.2)

For each pair x < y in X , let Ixy := exx +2eyy ∈ D(X ,R) and

eΨ := ∑
x<y

Ψxy(Ixy)exy. (4.3)
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LEMMA 4.4. The nonlinear Lie derivation Ψ− adeΨ leaves D(X ,R) invariant.

Proof. Let H = ∑x∈X hxexx be an element in D(X ,R) . Since Ixy ∈ D(X ,R) for
each pair x < y in X , we have

[H, Ixy] = 0. (4.4)

Applying Ψ to the both sides of (4.4), we obtain

[Ψ(H), Ixy]+ [H,Ψ(Ixy)] = ∑
u�x

Ψux(H)eux +2 ∑
u�y

Ψuy(H)euy − ∑
x�v

Ψxv(H)exv

−2 ∑
y�v

Ψyv(H)eyv + ∑
u�v

(hu −hv)Ψuv(Ixy)euv

= 0.

Considering the coefficient of exy in the last equality, we get

Ψxy(H) = (hy−hx)Ψxy(Ixy). (4.5)

By (4.5), we have

(Ψ− adeΨ)(H) = Ψ(H)− [eΨ,H]
= ∑

x�y
Ψxy(H)exy − ∑

x<y
(hy −hx)Ψxy(Ixy)exy

= ∑
x∈X

Ψxx(H)exx.

Hence (Ψ− adeΨ)(H) ∈ D(X ,R) for all H ∈ D(X ,R) . �
From now on, let 1Ψ := Ψ− adeΨ .

LEMMA 4.5. 1Ψ(exx) ∈ C (X ,R) for any x ∈ X .

Proof. By Lemma 4.4, we can assume 1Ψ(exx) = ∑x∈X cxexx . In order to prove
∑x∈X cxexx ∈ C (X ,R) , we only need to show that cr = cs for all r < s in X .

If r �= x and s �= x , then applying 1Ψ to [exx,ers] = 0 we obtain

(cr − cs)ers + ∑
x�v

1Ψxv(ers)exv − ∑
u�x

1Ψux(ers)eux = 0. (4.6)

So we get cr = cs by considering the coefficient of ers in (4.6).
If r = x , then applying 1Ψ to [exx,ers] = ers we have

(cr − cs)ers + ∑
x�v

1Ψxv(ers)exv − ∑
u�x

1Ψux(ers)eux = ∑
u�v

1Ψuv(ers)euv. (4.7)

Comparing the coefficients of ers on the both sides of (4.7), we obtain cr = cs .
If s = x , then applying 1Ψ to [ers,exx] = ers we obtain

∑
u�x

1Ψux(ers)eux − ∑
x�v

1Ψxv(ers)exv +(cs− cr)ers = ∑
u�v

1Ψuv(ers)euv. (4.8)
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We also get cr = cs by comparing the coefficients of ers on the both sides of (4.8). �
Let x < y be a pair of elements in X and define

Sxy = {cexy|c ∈ R}. (4.9)

Then we have

LEMMA 4.6. 1Ψ(Sxy) ⊂ Sxy .

Proof. By Lemma 4.5, applying 1Ψ to rexy = [[exx,rexy],eyy] we have

1Ψ(rexy) = [[exx,
1Ψ(rexy)],eyy].

If x is not equivalent to y , then we have

1Ψ(rexy) = [[exx, ∑
u�v

1Ψuv(rexy)euv],eyy]

= [∑
x�v

1Ψxv(rexy)exv − ∑
u�x

1Ψux(rexy)eux,eyy]

= 1Ψxy(rexy)exy.

(4.10)

So we have 1Ψ(Sxy) ⊂ Sxy .
Now suppose x � y , then we have

1Ψ(rexy) = 1Ψxy(rexy)exy + 1Ψyx(rexy)eyx. (4.11)

Since (X ,�) is locally finite, there are only finitely many elements in X which are
equivalent to x . Because X is connected and infinite, there exists an element z∈X such
that z ∼ x and z is not equivalent to x . If x < z , then we have 1Ψ(exz) = 1Ψxz(exz)exz

by (4.10). Applying Ψ1 to [rexy,exz] = 0 yields

0 = [1Ψxy(rexy)exy + 1Ψyx(rexy)eyx,exz]+ [rexy,
1Ψxz(exz)exz] = 1Ψyx(rexy)eyz.

By (4.11), we obtain 1Ψ(rexy) = 1Ψxy(rexy)exy ∈ Sxy . If z < x , then z < y since x � y .
So 1Ψ(ezy) = 1Ψzy(ezy)ezy by (4.10). Applying 1Ψ to [rexy,ezy] = 0 we obtain

0 = [1Ψxy(rexy)exy + 1Ψyx(rexy)eyx,ezy]+ [rexy,
1Ψzy(ezy)ezy] = −1Ψyx(rexy)ezx.

By (4.11) we also have 1Ψ(rexy) = 1Ψxy(rexy)exy ∈ Sxy . Hence 1Ψ(Sxy) ⊂ Sxy . �
Let rxy = 1Ψxy(exy) for each pair x < y . According to Lemma 4.6, we have

1Ψ(exy) = 1Ψxy(exy)exy = rxyexy, x < y. (4.12)

LEMMA 4.7. Let f :�→ R be the map defined by

f(x,y) =

{
rxy, if x < y;

0, if x = y.
(4.13)

Then f is transitive.
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Proof. By definition, we need to prove

f(x,y)+ f(y,z) = f(x,z)

for all x,y,z ∈ X such that x � y � z .
If x �= z , then applying 1Ψ to [exy,eyz] = exz we have

rxzexz = 1Ψ(exz) = 1Ψ([exy,eyz]) = (rxy + ryz)exz.

Thus we get f(x,y)+ f(y,z) = f(x,z).
If x = z , then we have

1Ψ([exy,eyx]) =[1Ψ(exy),eyx]+ [exy,
1Ψ(eyx)]

=[rxyexy,eyx]+ [exy,ryxeyx]
=(rxy + ryx)(exx − eyy).

(4.14)

Since (X ,�) is infinite and connected, there exists w ∈ X such that w ∼ x but
w is not equivalent to x . Assume that x � y < w (the proof of the case w < x � y is
similar). By (4.14), applying 1Ψ to [[exy,eyx],exw] = [exx − eyy,exw] = exw we obtain

rxwexw = 1Ψ(exw)
= 1Ψ([[exy,eyx],exw])

= [1Ψ([exy,eyx]),exw]+ [[exy,eyx],1Ψ(exw)]
= [(rxy + ryx)(exx − eyy),exw]+ [exx− eyy,rxwexw]
= (rxy + ryx)exw + rxwexw.

So we get rxy + ryx = 0, hence f(x,y)+ f(y,x) = 0 = f(x,x) . �
In what follows, let Ψf be the transitive induced derivation associated to f defined

by (4.13), and 2Ψ := 1Ψ−Ψf . According to (4.12), we have

2Ψ(exy) = 0, x < y. (4.15)

LEMMA 4.8. 2Ψ is an additive induced Lie derivation of I(X ,R) .

Proof. By Lemma 4.4 and the definition of transitive induced Lie derivation, it is
clear that 2Ψ leaves D(X ,R) invariant. Let {Ei|i ∈ I } be the equivalence classes of
{exy|x < y} under the relation ≈ . In order to prove that 2Ψ is an additive induced Lie
derivation, we only need to show that there exists a family of derivations F = { fi|i∈I }
on R such that

2Ψ(cexy) = fi(c)exy, c ∈ R,exy ∈ Ei, i ∈ I . (4.16)

By Lemma 4.6, we have

2Ψ(cexy) =1Ψ(cexy)−Ψf(cexy)

=1Ψxy(cexy)exy − crxyexy

⊂Sxy
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for all x < y and c∈R . So for each pair x < y in X , we can define a function fxy : R→R
such that

2Ψ(cexy) = fxy(c)exy, c ∈ R. (4.17)

In order to prove (4.16), we need to show the following:

(a) fxy = fuv if exy,euv ∈ Ei for some i ∈ I .

(b) Let fi := fxy , where exy ∈ Ei . Then fi is an additive derivation on R .

(a). If exy = euv , then it is clear that fxy = fuv . In what follows, we always assume
that exy �= euv . Since exy,euv ∈ Ei , there exists a cycle {x1 ∼ x2 ∼ x3 ∼ ·· · ∼ xn ∼ x1}
which contains both x ∼ y and u ∼ v .

If n = 2, then we have x � y and u = y,v = x . Applying 2Ψ to [cexy,eyx] =
[exy,ceyx] we obtain

fxy(c)(exx − eyy) = fyx(c)(exx − eyy), c ∈ R.

So we have
fxy = fyx, x � y. (4.18)

Next suppose that n � 3. For a pair s ∼ t and s �= t , define

fst =

{
fst , if s < t;

fts, if t < s.

Note that the function fst is well defined since fst = fts if s � t by (4.18). So in order
to prove fxy = fuv , we only need to show

fxi−1xi = fxixi+1 , 2 � i � n. (4.19)

Here xn+1 is regarded as x1 . Since Ψf(cexx) = cf(x,x)exx = 0 for all c ∈ R and x ∈ X ,
we have

2Ψ(cexx) = 1Ψ(cexx) ∈ D(X ,R). (4.20)

For a fixed i ∈ {1,2, · · · ,n} , let {gz,z ∈ X} be the set of the functions satisfying

2Ψ(cexixi) = ∑
z∈X

gz(c)ezz.

Then for all s < t ∈ X such that s,t �= xi , applying 2Ψ to [cexixi ,est ] = 0 we obtain
gs(c) = gt(c), c ∈ R . Since {x1 ∼ x2 ∼ x3 ∼ ·· · ∼ xn ∼ x1} is a cycle, we have

gxj = gxk , 1 � j,k � n, j,k �= i. (4.21)

To prove (4.19), we need to consider the following cases: (1) xi−1 < xi < xi+1 ; (2)
xi−1 > xi > xi+1 ; (3) xi−1 < xi,xi > xi+1 ; (4) xi−1 > xi,xi < xi+1 .

Case (1). By (4.15), applying 2Ψ to

[cexi−1xi ,exixi+1 ] = [exi−1xi ,cexixi+1 ], ∀c ∈ R
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we obtain fxi−1xi = fxixi+1 .
Case (2). The proof is similar to that of case (1).
Case (3). By (4.15), applying 2Ψ to [exi−1xi ,rexixi ] = rexi−1xi and [rexi+1xi ,rexixi ] =

rexi+1xi , we get

gxi(r)−gxi−1(r) = fxi−1xi(r), (4.22)

gxi(r)−gxi+1(r) = fxi+1xi(r). (4.23)

Combining (4.21)–(4.23), we have fxi−1xi = fxi+1xi .
Case (4). The proof is similar to that of case (3).
(b). If exy ∈ Ei, i ∈ I , then we have

[exx − rexy,exx + sexy] = (r+ s)exy, r,s ∈ R. (4.24)

Applying 2Ψ to both sides of (4.24) we obtain

[2Ψ(exx − rexy),exx + sexy]+ [exx− rexy,
2Ψ(exx + sexy)] = fi(r+ s)exy. (4.25)

By (4.20) and Lemma 4.5, we have

2Ψ(exx) = 1Ψ(exx) ∈ C (X ,R). (4.26)

So

[2Ψ(exx − rexy),exx + sexy]

= [2Ψ(exx − rexy),exx]+ s[2Ψ(exx − rexy),exy]

= 2Ψ([exx − rexy,exx])+ s 2Ψ([exx − rexy,exy])

= 2Ψ(rexy)+ s 2Ψ(exy)
= fi(r)exy.

(4.27)

Here the second equality follows from (4.15) and (4.26), the fourth equality follows
from (4.15). Similarly to (4.27) we have

[exx − rexy,
2Ψ(exx + sexy)]

= [exx,
2Ψ(exx + sexy)]− r[exy,

2Ψ(exx + sexy)]

= 2Ψ([exx,exx + sexy])− r 2Ψ([exy,exx + sexy])

= 2Ψ(sexy)− r 2Ψ(−exy)
= fi(s)exy.

(4.28)

Here the fourth equality follows from 2Ψ(−exy) = 2Ψ([exy,exx]) = 0. Combining
(4.25), (4.27) and (4.28), we obtain

fi(r+ s) = fi(r)+ fi(s), r,s ∈ R. (4.29)
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On the other hand, aplying 2Ψ to [rexx,sexy] = rsexy we obtain

fi(rs)exy = 2Ψ(rsexy)

= 2Ψ([rexx,sexy])

= [2Ψ(rexx),sexy]+ [rexx,
2Ψ(sexy)]

= s[2Ψ(rexx),exy]+ rfi(s)exy

= s 2Ψ([rexx,exy])+ rfi(s)exy

= sfi(r)exy + rfi(s)exy.

Hence we have
fi(rs) = fi(r)s+ rfi(s), r,s ∈ R. (4.30)

By (4.29)–(4.30), fi is an additive derivation on R . �

For a fixed nonlinear Lie derivation Ψ on I(X ,R) , by Lemmas 4.7–4.8, we have

Ψ = adeΨ +Ψf + 2Ψ, (4.31)

where adeΨ is an inner derivation, Ψf is a transitive induced derivation and 2Ψ is an
additive induced Lie derivation. Hence we have the following proposition.

PROPOSITION 4.9. Let X be a locally finite preordered set. If X is connected and
infinite, then every nonlinear Lie derivation of I(X ,R) is a sum of an inner derivation,
a transitive induced derivation and an additive induced Lie derivation.

4.2. General case

In this subsection, we consider the general case where (X ,�) is not connected, and
prove Theorem 4.1. Let X =

⊔
i∈J Xi be the decomposition of X into the union of its

distinct connected components. For a family of maps {φi : I(X ,R) → I(X ,R) | i ∈ J }
such that Im(φi) ⊂ I(Xi,R) for each i ∈ J , we can define a direct product

∏
i∈J

φi : I(X ,R) → I(X ,R) (4.32)

by (∏i∈J φi)( f ) = ∏i∈J φi( f ) for all f ∈ I(X ,R) .
Now for each i ∈ J , let li : I(Xi,R) → I(X ,R) and πi : I(X ,R) → I(Xi,R) be the

natural injective map and projective map respectively. The following two lemmas are
obvious.

LEMMA 4.10. Let Ψ be a nonlinear Lie derivation of I(X ,R) . Then Ψi := πi ◦
Ψ◦ li is a nonlinear Lie derivation of I(Xi,R) for each i ∈ J .

LEMMA 4.11. Suppose Φi is a nonlinear Lie derivation of I(Xi,R) for each i ∈
J , then ∏i∈J li ◦Φi ◦πi is a nonlinear Lie derivation of I(X ,R) .
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With the help of the previous two lemmas, we can prove the following useful
lemma.

LEMMA 4.12. Let Ψ be a nonlinear Lie derivation of I(X ,R) and Ψi := πi◦Ψ◦ li
for each i ∈ J . Then CΨ := Ψ−∏i∈J li ◦Ψi ◦πi is a central-valued map.

Proof. By Lemma 4.11, ∏i∈J li ◦Ψi ◦πi and hence CΨ are nonlinear Lie deriva-
tions of I(X ,R) . So in order to prove that CΨ is a central-valued map, we only need to
show that CΨ(H) ∈ C (X ,R) for all H ∈ I(X ,R) .

For any Y ∈ I(Xi,R) , we have

CΨ(Y ) = Ψ(Y )− ∏
j∈J

l j ◦Ψ j ◦π j(Y )

= ∏
j∈J

l j ◦π j(Ψ(Y ))− li ◦Ψi ◦πi(Y )

= ∏
j∈J

l j ◦π j(Ψ(Y ))− li ◦πi ◦Ψ◦ li ◦πi(Y )

= ∏
j∈J

l j ◦π j(Ψ(Y ))− li ◦πi ◦Ψ(Y )

= ∏
j∈J \{i}

l j ◦π j(Ψ(Y )).

This implies
CΨ(Y ) ∈ ∏

j∈J \{i}
I(Xj,R), ∀ Y ∈ I(Xi,R). (4.33)

Let E ∈ I(X ,R) and H ∈ I(Xi,R) , i ∈ J . Then

[CΨ(E),H] = CΨ([E,H])− [E,CΨ(H)]. (4.34)

Since H ∈ I(Xi,R) and [E,H] ∈ I(Xi,R) , by (4.33) we have

CΨ([E,H]) ∈ ∏ j∈J \{i} I(Xj,R),
[E,CΨ(H)] ∈ ∏ j∈J \{i} I(Xj,R).

So the right hand side of (4.34) is contained in ∏ j∈J \{i} I(Xj,R) , while the left hand
side of (4.34) is contained in I(Xi,R) since H ∈ I(Xi,R) . This forces

[CΨ(E),H] = 0 (4.35)

for all E ∈ I(X ,R) , H ∈ I(Xi,R), i ∈ J . Hence CΨ(E) ∈ C (X ,R) for all E ∈ I(X ,R)
and CΨ is a central-valued map. �

Now we can prove the main theorem of the paper.

Proof of Theorem 4.1. Let Ψ be a nonlinear Lie derivation of I(X ,R) . By Lemma
4.10, Ψi = πi ◦Ψ◦ li is a nonlinear Lie derivation of I(Xi,R) for each i ∈ J . If Xi is
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infinte, by Proposition 4.9 we have Ψi = adeΨi +Ψfi +
2Ψi , where eΨi is an element in

I(Xi,R) defined by (4.3), fi is a transitive map on (Xi,�) and 2Ψi is an additive induced
Lie derivation of I(Xi,R) . If Xi is finite, then since the sum of an additive induced Lie
derivation and a central-valued map is also an additive induced Lie derivation, we also
have Ψi = adeΨi + Ψfi +

2Ψi by [32, Theorem 3.1]. It is obvious that

∏i∈J li ◦ adeΨi ◦πi = ad∏i∈J eΨi ,

∏i∈J li ◦Ψfi ◦πi = Ψf,

where f is the transitive map of (X ,�) defined by f(x,y) = fi(x,y) if x � y ∈ Xi . It
is also clear that ∏i∈J li ◦ 2Ψi ◦ πi is an additive induced Lie derivation on I(X ,R) .
So we have ∏i∈J li ◦Ψi ◦πi = ad∏i∈J eΨi + Ψf + ∏i∈J li ◦ 2Ψi ◦πi , i.e. a sum of an
inner derivation, a transitve induced derivation and an additive induced Lie derivation.
Let CΨ = Ψ−∏i∈J li ◦Ψi ◦πi . By Lemma 4.12, CΨ is a central-valued map, which
is a special additive induced Lie derivation. We have proved the theorem. �
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