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ON THE COMMUTATOR AND FREDHOLMNESS OF ISOMETRIC PAIR

YIXIN YANG

(Communicated by G. Misra)

Abstract. In this paper, we characterize the Fredholmness and compactness of commutators of
the commuting isometric pair W = (W0,W1) by using of their canonical model [3].

1. Introduction

The von Neumann-Wold decomposition on the structure of isometric operator is
the milestone of operator theory on Hilbert space. In 1960s, Sz.-Nagy and C. Foias
developed the canonical model theory for the contraction [10]. The study of commuting
pair (or tuple) of isometries is not so simple, and the characterization of the structure of
a pair of isometries would have profound impact in the multivariable operator theory.
Many researchers have devoted to this subject with varying success, see [1, 2, 3, 5, 6,
8, 9, 11, 12] and references therein. C. Berger, L. Coburn and A. Lebow classified
the commuting tuples of isometries on a Hilbert spaces by the parameters of the pairs
(U,P) , where U is a unitary operator and P is an orthogonal projection on some Hilbert
space [1, 2]. In [8], the authors calculated some numerical invariants of completely
non-unitary commuting isometric pairs by using these parameters. In [3], H. Bercovici,
R. G. Douglas and C. Foias gave a very concrete canonical model for bi-isometries
W = (W0,W1) , and this new model is related to the canonical functional model and
characteristic function Θ of a contraction. In some cases, the characteristic function is
more tractable and transparent. Therefore, the canonical model introduced in [3] allows,
in principle, many explicit calculations. This paper aims to study the Fredholmness and
compactness of commutators of bi-isometries in terms of the characteristic function.

Let H2(D2) be the Hardy space over the bidsik, and Rz,Rw be the restriction of
the coordinate shifts Tz,Tw to a submodule. (Rz,Rw) is a pair of commuting isometries,
and their properties were deeply explored in the previous work [7, 13, 14, 15]. The goal
of this paper is to study to what extend these properties can be generalized to abstract
bi-isometries by using their canonical model. Interestingly, it will be shown that most
of the conjectures for (Rz,Rw) will be no longer true for general bi-isometries.

The paper is organized as follows. In section 2, we introduce the canonical model
for bi-isometries W = (W0,W1) developed by H. Bercovici, R. G. Douglas and C. Foias
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[3]. In [3], the proof that W = (W0,W1) is {0} -cnu has a small gap and we will com-
plete the proof. Then we characterize the compactness of commutators in terms of the
characteristic function. In section 3, we will study the Fredholmness of W = (W0,W1)
and give an explicit example which is quit different from the case of Hardy space over
the bidisk.

2. Compactness of commutators

Let D be the unit disk and T be the unit circle in the complex plane. For a
separable complex Hilbert space E , we denote by L2(E ) the Hilbert space of all square
integrable E -valued functions f : T → E . Let H2(E ) denote the E -valued Hardy
space on D , and it can be regarded as a subspace of L2(E ) by taking the radial limits.
Let L (E ) denote the set of bounded linear operators on E , and given a contractive
analytic function Θ : D → L (E ) , it has a power series expansion

Θ(z) =
∞

∑
k=0

zkΘk,

where Θk ∈ L (E ) , and the series is convergent in D strongly. The strong operator
topology limit

Θ(ζ ) = lim
r↑1

Θ(rζ )

exists for almost every ζ ∈ T. The analytic Toeplitz operator TΘ on L (H2(E )) is
defined by

TΘ f (z) = Θ(z) f (z), f ∈ H2(E ).

In particular, if Θ(z) = zI, TΘ is the unilateral shift with multiplicity dimE , which is
denoted by Tz. Define the Hilbert space

H = H2(E )⊕H2(ΔL2(E )),

where Δ(ζ ) = (I−Θ(ζ )∗Θ(ζ ))1/2 . The operator W0, W1 ∈ L (H ) is defined by

W0( f ⊕g) = z f (z)⊕ ζg(w,ζ ),
W1( f ⊕g) = Θ(z) f (z)⊕ (Δ(ζ ) f (ζ )+wg(w,ζ )),

(2.1)

where z,w ∈ D and ζ ∈ T . To avoid confusion, we always put the coordinates in the
vector-valued functions.

PROPOSITION 2.1. For f ⊕g ∈ H , we have

1. W ∗
0 ( f ⊕g) = T ∗

z f ⊕ ζg(w,ζ ) ;

2. W ∗
1 ( f ⊕g) = PH2(E )(Θ∗ f + Δ(ζ )g0(ζ ))⊕T ∗

wg(w,ζ ) ,

where PH2(E ) is the orthogonal projection on L2(E ) with range H2(E ) , g(w,ζ ) =
∞
∑

k=0
wkgk(ζ ) , and gk ∈ ΔL2(E ).
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Proof. By the definition of W0 , (1) is clear. To get item (2), for u ∈ H2(E ) ,
v ∈ H2(ΔL2(E )) , we have

〈W ∗
1 ( f ⊕g),u⊕ v〉= 〈 f ⊕g,Θ(z)u(z)⊕ (Δ(ζ )u(ζ )+wv(w,ζ )〉

= 〈 f ,Θu〉+ 〈g,Δ(ζ )u(ζ )〉+ 〈g,Twv〉
= 〈T ∗

Θ f ,u〉+
∫

T

〈Δ(ζ )g(w,ζ ),u(ζ )〉|dw|+ 〈T ∗
w g,v〉

= 〈T ∗
Θ f ,u〉+

∫
T

〈Δ(ζ )g0(ζ ),u(ζ )〉|dw|+ 〈T ∗
wg,v〉,

and this gives (2). �
It is not hard to see that

∞⋂
n=0

Wn
0 H = H2(ΔL2(E )),

that is, W0|H2(ΔL2(E )) is the unitary part of W0 . Hence

kerW ∗
0 = H2(E )	 zH2(E ) = E .

The bi-isometries W = (W0,W1) is said to be {0} -cnu if H contains no direct sum-
mand on which W0 acts as a unitary operator. In [3], it is shown that (2.1) gives a canon-
ical model for {0} -cnu bi-isometry. The proof of Theorem 3.1 in [3] that W = (W0,W1)
is {0} -cnu missed the projection in the formula of W ∗

1 and we will make up the small
gap for the reader’s convenience.

THEOREM 2.2. ([3], Proposition 5.2) The bi-isometry W = (W0,W1) defined by
(2.1) is {0} -cnu.

Proof. Suppose that H = H0 ⊕H1 , where H1 is the reducing subspace for
(W0,W1) and W0|H1 is a unitary. Since W0|H2(ΔL2(E )) is the unitary part of W0 , we
have that

H1 ⊂ H2(ΔL2(E )).

For g ∈ H1, where g(w,ζ ) = g0(ζ )+wg1(ζ )+ · · · , by Proposition 2.1, we have

W ∗
1 (g) = PH2(E )(Δ(ζ )g0(ζ ))⊕g1(ζ )+wg2(ζ )+ · · ·) ∈ H1,

which means that
Δ(ζ )g0(ζ ) ∈ L2(E )	H2(E ),

hence
g0 ∈ ΔL2(E )	ΔH2(E ).

By induction, we have
gk ∈ ΔL2(E )	ΔH2(E )
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for k = 0,1,2, · · · . It follows that

H2(E )⊕H2(ΔH2(E )) ⊆ H0.

Let f ∈ H2(E ) , g ∈ H2(ΔL2(E )) and f ⊕g ⊥ H0, it is clear that f = 0, and then

0 = 〈g,W ∗n
0 (H2(ΔH2(E )))〉

= 〈g,(H2(Δζ
n
H2(E )))〉

for any n = 0,1,2, · · · . Since the closed linear span
∨{ζ

n
H2(E )|n = 0,1,2, · · ·} =

L2(E ) , we obtain that g = 0. This proves that W is {0} -cnu. �
In the following, we will study compactness of the commutator and cross-commuta-

tor of bi-isometries. Firstly, let’s look at an example.

EXAMPLE 2.3. Let E be an infinite dimensional separable Hilbert space and
H2(D2)⊗E be E -valued Hardy space over D

2 with coordinates z0 and z1 . Define
shift operators

W0 f = z0 f , W1 f = z1 f

for f ∈ H2(D2)⊗ E . It is easy to check that [W ∗
1 ,W1][W ∗

0 ,W0] is not compact and
[W ∗

1 ,W0] = 0, which is compact. One can check that (see [3])

Θ = Θ(0) = Tz1 |H2
z1
⊗E .

In [15], if M is a submodule of Hardy space on the bidisk H2(D2) , we conjectured
that [R∗

z ,Rw] is compact if and only if [R∗
w,Rw][R∗

z ,Rz] is compact. The example 2.3
shows that this is no longer true for general bi-isometry. In the following, W = (W0,W1)
always denotes the bi-isometries defined by (2.1). We ask the following question.

QUESTION 1. When is the compactness of [W ∗
1 ,W1][W ∗

0 ,W0] is equivalent to the
compactness of [W ∗

0 ,W1]?

We will study the commutators [W ∗
1 ,W1][W ∗

0 ,W0] and [W ∗
0 ,W1] in terms of Θ , and then

give a sufficient and necessary condition to Question 1.

PROPOSITION 2.4. [W ∗
1 ,W1][W ∗

0 ,W0] = 0 if and only if Θ is a constant co-isometry.

Proof. For f ∈ H2(E ) , g ∈ H2(ΔL2(E )) , where f (z) = f0 + z f1 + · · · , we have

[W ∗
1 ,W1][W ∗

0 ,W0]( f ⊕g) = (1−W1W
∗
1 )( f0 ⊕0)

= f0 −W1PH2(E )Θ
∗ f0

= f0 −W1Θ∗
0 f0

= (I−Θ(ζ )Θ∗
0) f0 ⊕ (−Δ(ζ )Θ∗

0 f0)
= (I−Θ0Θ∗

0) f0 + ζΘ1Θ∗
0 f0 + · · ·⊕ (−Δ(ζ )Θ∗

0 f0)

(2.2)
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When f ⊕g varies over H , the corresponding elements f0 vary over E , therefore
if [W ∗

1 ,W1][W ∗
0 ,W0] = 0, then I−Θ0Θ∗

0 = 0, which implies that ‖Θ0‖ = ‖Θ∗
0‖= 1. So

Θ is a constant co-isometry.
Conversely, if Θ is a constant co-isometry, then (I − Θ∗

0Θ0)Θ∗
0 = 0 and thus

Δ(ζ )Θ∗
0 = 0. �

THEOREM 2.5. [W ∗
1 ,W1][W ∗

0 ,W0] is compact on H if and only if I −Θ0Θ∗
0 is

compact on E .

Proof. For f ∈ H2(E ) , g ∈ H2(ΔL2(E )) , since

‖Δ(ζ )Θ∗
0 f0‖2 = 〈(1−Θ(ζ )∗Θ(ζ ))Θ∗

0 f0,Θ∗
0 f0〉

= ‖Θ∗
0 f0‖2−‖Θ0Θ∗

0 f0‖2−‖Θ1Θ∗
0 f0‖2−·· · ,

and by (2.2), we obtain that

‖[W ∗
1 ,W1][W ∗

0 ,W0]( f ⊕g)‖2 = ‖(1−Θ0Θ∗
0) f0‖2 +‖Θ1Θ∗

0 f0‖2 + · · ·+‖Δ(ζ )Θ∗
0 f0‖2

= ‖ f0‖2−‖Θ∗
0 f0‖2

= ‖(1−Θ0Θ∗
0)

1
2 f0‖2.

Therefore, [W ∗
1 ,W1][W ∗

0 ,W0] is compact on H if and only if 1−Θ0Θ∗
0 is compact on

E . �

PROPOSITION 2.6. [W ∗
0 ,W1] = 0 if and only if Θ is a constant isometry.

Proof. Let f ∈ H2(E ),g ∈ H2(ΔL2(E )) , we have

[W ∗
0 ,W1]( f ⊕g) = W ∗

0 (TΘ f ⊕ (Δ(ζ ) f (ζ )+wg(w,ζ )))−W1(T ∗
z f ⊕ ζg(w,ζ ))

= T ∗
z TΘ f ⊕ (ζΔ(ζ ) f (ζ )+ ζ wg(w,ζ ))

− (TΘT ∗
z f ⊕ (Δ(ζ )T ∗

z f +wζg(w,ζ )))

=
Θ(z)−Θ0

z
f0 ⊕Δ(ζ )ζ f0.

(2.3)

It follows that [W ∗
0 ,W1] = 0 if and only if Θ = Θ0 and Δ = 0, which is equivalent to

that Θ is a constant isometry. �

THEOREM 2.7. [W ∗
0 ,W1] is compact on H if and only if I −Θ∗

0Θ0 is compact
on E .

Proof. Let f ∈ H2(E ),g ∈ H2(ΔL2(E )) , by calculation, we have that

‖Θ(z)−Θ0

z
f0‖2 =

∫
T

‖Θ(z) f0‖2|dz|−‖Θ0 f0‖2

=
∞

∑
k=1

‖Θk f0‖2,
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and

‖Δ(ζ )ζ f0‖2 = 〈(I−Θ∗Θ) f0, f0〉
= ‖ f0‖2−‖Θ f0‖2.

By (2.3), we get

‖[W ∗
0 ,W1]( f ⊕g)‖2 = ‖ f0‖2−‖Θ0 f0‖2

= ‖(1−Θ∗
0Θ0)

1
2 f0‖2.

The proof is completed. �
Theorem 2.5 and Theorem 2.7 allow us construct explicitly bi-isometry with com-

pact cross commutator and product of self-commutators.

COROLLARY 2.8. The followings hold.

1. Suppose that dimkerΘ∗
0 < ∞ , then [W ∗

0 ,W1] is compact implies that [W ∗
1 ,W1][W ∗

0 ,W0]
is compact.

2. Suppose that dimkerΘ0 < ∞ , then [W ∗
1 ,W1][W ∗

0 ,W0] is compact implies that [W ∗
0 ,W1]

is compact.

Proof. To prove (1), by Theorem 2.7, if [W ∗
0 ,W1] is compact, then I −Θ∗

0Θ0 is
compact on E , that is Θ0 is left semi-Fredholm, then dimkerQ0 < ∞ and ranQ0 is
closed (see [4], Chapter XI, Theorem 2.3). Therefore, Θ0 is Fredholm, and we obtain
that I −Θ0Θ∗

0 is compact. By Theorem 2.2, [W ∗
1 ,W1][W ∗

0 ,W0] is compact. The proof
of (2) is similar and this completes the proof. �

If the condition in either (1) or (2) of Corollary 2.8 doesn’t hold, it is easy to
come up with example such that the conclusion would not be true. For instance, given
any contractive analytic L (E )-valued function on D such that dimkerQ∗

0 = ∞ , and
I −Θ∗

0Θ0 is compact, then Θ0 is left semi-Fredholm, but it isn’t Fredholm, hence
I −Θ0Θ∗

0 is not compact, that is [W ∗
0 ,W1] is compact and [W ∗

1 ,W1][W ∗
0 ,W0] is not

compact.
Another single operator of interest is the defect operator for the commuting iso-

metric pair.

DEFINITION 2.9. The defect operator of W = (W0,W1) is defined by

C = I−W0W
∗
0 −W1W

∗
1 +W0W1W

∗
0 W ∗

1 .

The defect operator C was first defined in [7] for the commuting isometric pair
(Rz,Rw) , and it also was studied in [8] in terms of model introduced in [2]. In some
cases, it is more tractable to study the defect operator in terms of canonical model (2.1).

PROPOSITION 2.10. C = 0 if and only if Θ is a unitary constant, that is (W0,W1)=
(Tz,TΘ) on H2(E ) . C is compact if and only if both I−Θ∗

0Θ0 and I−Θ0Θ∗
0 are com-

pact on E .
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Proof. It is easy to see that C is 0 on W0W1H , and with respect to the decompo-
sition H 	W0W1H = (H 	W0H )⊕W0(H 	W0H ) , C2 has the form

C2 =
(

[W ∗
0 ,W0][W ∗

1 ,W1][W ∗
0 ,W0] 0

0 W0[W ∗
1 ,W0]∗[W ∗

1 ,W0]W ∗
0

)
.

Further, since W0 is a unitary from H 	W1H to W0(H 	W1H ) , C2 is unitarily
equivalent to

C2 =
(

[W ∗
0 ,W0][W ∗

1 ,W1][W ∗
0 ,W0] 0

0 [W ∗
1 ,W0]∗[W ∗

1 ,W0]

)
.

It follows that C = 0 (or compact) if and only if [W ∗
1 ,W1][W ∗

0 ,W0] and [W ∗
1 ,W0] are

both zero (or compact) and the results follow. �

3. Fredholmness of W = (W0,W1)

In this section, we study the Fredholmness of bi-isometries defined by (2.1). For
the isometric pair W = (W0,W1) on H , there is a short sequence

0 −→ H
d1−→ H ⊕H

d2−→ H −→ 0,

where d1x = (−W1x,W0x) , d2(x,y) = W0x+W1y , x,y ∈ H . W = (W0,W1) is said to
be Fredholm if d1 and d2 both have closed range and

dim(Kerd1)+dim(Kerd2	d1(H ))+dim(H 	d2(H ⊕H )) < ∞,

and in this case,

indW = −dimkerd1 +dim(Kerd2	d1(H ))−dim(H 	d2(H ⊕H )).

LEMMA 3.1. ([6], Remark 1) dim(Kerd2	d1(H ))= dim(W0kerW∗
1 ∩W1kerW ∗

0 );
dim(H 	d2(H ⊕H )) = dim(kerW ∗

0 ∩ kerW∗
1 ) .

We will compute these dimensions. Let

K = H2(E )⊕ΔL2(E ),

G = {Θ f ⊕Δ f : f ∈ H2(E )},

which can be viewed as subspaces of H = H2(E )⊕H2(ΔL2(E )) . Set

H (Θ) = K 	G

= { f ⊕g ∈ K : Θ∗ f + Δg =
∞

∑
n=1

ζ
n
en,en ∈ E }.

LEMMA 3.2. ([3], Proposition 7.1 and Lemma 7.3) We have

kerW ∗
0 = E ,kerW ∗

1 = H (Θ).
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LEMMA 3.3. kerW ∗
0 ∩ kerW∗

1 = kerΘ∗
0 .

Proof. For almost every ζ ∈ T , let

Θ(ζ ) = Θ0 + ζΘ1 + · · · ,

where Θk ∈ L (E ) . If e ∈ kerW∗
0 ∩ kerW∗

1 , we have

Θ∗e = Θ∗
0e+ ζΘ∗

1e+ · · · ,

hence W ∗
1 e = Θ∗

0e and it yields that Θ∗
0e = 0. It is also easy to see the converse part,

and this completes the proof. �

LEMMA 3.4. We have

W0kerW
∗
1 ∩W1kerW

∗
0 = {W1e : e ∈ kerΘ0}.

Hence dim(W0kerW∗
1 ∩W1kerW ∗

0 ) = dimkerΘ0.

Proof. For e ∈ kerΘ0 , it is clear that W1e ∈W1kerW ∗
0 . Let

f (z) = T ∗
z Θe ∈ H2(E ),g(ζ ) = Δ(ζ )ζe ∈ ΔL2(E ),

then f (z) = Θ(z)e−Θ0e
z = Θ(z)e

z . Therefore

Θ∗ f + Δg = Θ∗(ζ )Θ(ζ )ζ e+ Δ2ζe = ζe,

which means that f ⊕g ∈ H (Θ). One can check that

W0( f ⊕g) = z f (z)⊕ ζg(ζ )
= Θ(z)e⊕Δ(ζ )e =W1e,

we get W1e ∈W0kerW ∗
1 .

Conversely, let x = W1e ∈W0kerW∗
1 , there exist f ⊕g ∈ H (Θ) such that

Θ(z)e⊕Δ(ζ )e = z f (z)⊕ ζg(ζ ),

hence Θ(z)e = z f (z), so Θ0e = 0.
Since W1 is an isometry, it is easy to get the equation about dimension and this

completes the proof. �

DEFINITION 3.5. The fringe operator F acting on H 	W0H is defined by

F : H 	W0H → H 	W0H

e �→ PH 	W0H W1e.



ON THE COMMUTATOR AND FREDHOLMNESS OF ISOMETRIC PAIR 301

REMARK 3.6. For e ∈ H 	W0H = E ,

Fe = PH 	W0H (Θ(z)e⊕Δ(ζ )e)
= Θ0e.

The following proposition comes essentially from [13].

PROPOSITION 3.7. ranF = (W0H +W1H )	W0H .

Proof. For every x ∈ H 	W0H ,

Fx = (I−W0W
∗
0 )W1x = W1x−W0W

∗
0 W1x ∈W0H +W1H .

Since Fx is orthogonal to W0H , Fx ∈ (W0H +W1H )	W0H .
In the other direction, if x = W0x0 +W1x1 ∈ (W0H +W1H )	W0H , the for

every y ∈ H ,

〈x0 +W∗
0 W1x1,y〉 = 〈x0,y〉+ 〈W ∗

0 W1x1,y〉
= 〈W0x0,W0y〉+ 〈W1x1,W0y〉
= 〈x,W0y〉 = 0.

This implies that
x0 = −W ∗

0 W1x1,

and hence

x = −W0W
∗
0 W1x1 +W1x1 = (I−W0W

∗
0 )W1x1 = Fx1 = F(PkerW ∗

0
x1). �

COROLLARY 3.8. F has closed range if and only if W0H +W1H is closed.

By Lemma 3.3, Lemma 3.4, Remark 3.6, and Corollary 3.8, we get the following
theorem.

THEOREM 3.9. W = (W0,W1) is Fredholm if and only if Θ0 is Fredholm. In this
case, indW = indΘ0.

Let M be a submodule of H2(D2) . The characteristic function of the pair (Rz,Rw)
is (see, e.g., section 5 in [3])

Θ(λ ) = PM	zM(I−λR∗
z )

−1Rw|M	zM .

Recall that the fringe operators Fz and Fw are defined by (see [13])

Fz : M	 zM → M	 zM,Fz f = PM	zM(wf ),
Fw : M	wM → M	wM,Fwg = PM	wM(zg).

Then Θ0 = Fz and Θ is the characteristic function of Fw . Moreover, Rw is unitarily
equivalent to the Toeplitz operator TΘ . It seems that the operator-theoretical based
information of the pair (Rz,Rw) is encoded in Fz and Fw simultaneously. The following
example shows the difference between the pair (Rz,Rw) on a submodule of H2(D2) and
the abstract bi-isometries W = (W0,W1) .
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EXAMPLE 3.10. Let E be an infinite dimensional Hilbert space, and for any in-
teger n , let Q0 be the unilateral shift with multiplicity n . Let Q(z) = Q0 be constant
L (E )-valued analytic function on D , and W = (W0,W1) is defined as (2.1). It is easy
to see that I −Q∗

0Q0 = 0, I −Q0Q∗
0 is a rank n operator, hence Q0 is Fredholm and

indQ0 = −n. Therefore, W = (W0,W1) is a bi-isometry with compact defect operator
C and indW = −n. As is known to experts, if the defect operator C of (Rz,Rw) is
compact, then ind(Rz,Rw) = −1 (see [13]).

Acknowledgements. The author would like to thank the referee for his/her careful
reading of the paper and helpful suggestions.
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