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Abstract. Let N be the algebra of all n×n strictly block upper triangular matrices over a field
F . In this paper, we describe all linear Lie centralizers of N . We also show that every linear
Lie centralizer of N is a centralizer.

1. Introduction

Let R be a ring. An additive mapping φ : R → R is called a left (resp. right)
centralizer of R if φ(ab) = φ(a)b (resp. φ(ab) = aφ(b)) for any a,b ∈ R . The map
φ is called a centralizer if it is both a left and a right centralizer.

Left and right centralizers were first introduced by G. Hochschild in [8], and later
by Johnson in [9] and [10]. In [17] Zalar proved that if R is a 2-torsion free semiprime
ring and T : R → R is an additive mapping such that T (x2) = T (x)x (or T (x2) =
xT (x)) for all x ∈ R , then T is a centralizer. Vukman also studied centralizers of
semiprime rings and proved that if R is a 2-torsion free semiprime ring and T : R →R
is an additive mapping such that 2T (x2) = T (x)x + xT (x) for all x ∈ R , then T is a
centralizer in [12]. Numerous work have been done on the study of centralizers of rings
and algebras see [3, 13, 14, 16].

Let R be a ring. An additive mapping δ : R → R is called a Lie centralizer of
R if

δ ([a,b]) = [δ (a),b] (or δ ([a,b]) = [a,δ (b)])

for all a,b ∈ R , where [a,b] = ab−ba is the usual Lie product of a and b .

REMARK. The conditions δ ([a,b]) = [δ (a),b] = [a,δ (b)] are equivalent regard-
less of the additivity of δ (see [4]).

Fošner and Jing studied the Lie centralizers on triangular rings and nest algebras
in [4] and presented characterizations of both centralizers and Lie centralizers on tri-
angular rings and nest algebras. Recently, Ghomanjani and Bahmani dealt with the
structure of Lie centralizers of trivial extension algebras in [7]. In [1] hadj and Ahmed
characterized the non-additive Lie centralizers of strictly upper triangular matrices over
a field of zero characteristic.

Mathematics subject classification (2010): Primary 16W25; Secondary 15B99, 15A78, 47L35, 47B47.
Keywords and phrases: Centralizer, Lie centralizer, strictly block upper triangular matrix.

c© � � , Zagreb
Paper OaM-15-21

303

http://dx.doi.org/10.7153/oam-2021-15-21


304 P. GHIMIRE

Let g be an algebra over a filed F . Then a linear map f : g → g is called linear
Lie centralizer of g if

f ([a,b]) = [ f (a),b] (1.1)

for all a,b ∈ g .
The main goal of this paper is to explicitly describe the linear Lie centralizers of

the algebra of strictly block upper triangular matrices over a field F . In recent years,
significant progress has been made in studying the algebra of strictly upper triangular
matrices over a field or a ring. Some results on the study of the algebra of strictly upper
triangular matrices are given in [2, 5, 6, 11, 15].

Fix a field F . Let Mm,n be the set of all m×n matrices over F , and put Mn = Mn,n .
Let N (resp. B ) denote the set of all strictly block upper triangular matrices (resp.
block upper triangular matrices) in Mn relative to a given partition. Then N and B
are subalgebras of gl(n,F) , i.e. Mn with the usual matrix multiplication. In this paper,
we explicitly describe the linear Lie centralizers of N over F and will show that in
Theorem 2.1: if f is a linear Lie centralizer of N , then

f (A) = λA+ μ(A)

for all A∈N , where λ ∈F and μ : N →Z(N ) is a linear map such that μ [N ,N ] =
0 where Z(N ) denotes the center of N .

The main motivation of this work comes from hadj and Ahmed’s results on the
non-additive Lie centralizers of the algebra of strictly upper triangular matrices over a
field [1]. Our work on the linear Lie centralizers of N not only generalizes the result
of hadj and Ahmed, but also use a new approach that is promising to find the linear
Lie centralizers of other matrix algebras with appropriate block forms.The essential
tools are Lemmas 3.1–3.3, where four types of product preserving linear maps between
matrix spaces are determined.

Section 2 gives the basic notations and presents the mail result, i.e., characteriza-
tions of the centralizers and linear Lie centralizers of N . Section 3 determines four
types of product preserving linear maps between matrix spaces that will play essential
roles in finding the linear Lie centralizers of N . Section 4 presents some other lemmas
and proves Theorems 2.1.

2. Main results

The linear Lie centralizers of the algebra N of strictly block upper triangular
matrices will be determined in this section. We also characterizes the centralizers of
N .

2.1. Notations

Let [n] = {1,2, · · · ,n} . Fix a field F . Let Mm,n (resp. Mn ) be the set of m× n
(resp. n×n ) matrices over F . Let In denote the identity matrix in Mn . A t × t block
matrix form in Mn is represented by a sequence (n1,n2, · · · ,nt) , where ni ∈ Z

+ for
i ∈ [t] and n1 + · · ·+nt = n . Fixing a t × t block matrix form in Mn represented by a
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sequence (n1,n2, · · · ,nt) , each A ∈ Mn can be expressed as

A =
[
Ai, j

]
t×t

where the (i, j) block Ai, j ∈ Mni,n j . The matrix A can also be expressed as

A = ∑
(i, j)∈[t]×[t]

Ai, j

such that each Ai, j ∈ Mn has Ai, j on the (i, j) block and 0’s elsewhere. A is called

• block upper triangular if Ai, j = 0 for all 1 � j < i � t ,

• strictly block upper triangular if Ai, j = 0 for all 1 � j � i � t ,

• block diagonal if Ai, j = 0 for all i �= j .

When A is not given in advance, Ai, j and similar expressions may be used to express
generic matrices in Mn with 0’s outside of the (i, j) block.

Let B (resp. N , D ) denote the set of all block upper triangular matrices (resp.
strictly block upper triangular matrices, block diagonal matrices) in Mn . They are
subalgebras of the algebra Mn with the usual matrix multiplication.

For i, j ∈ [t] , let Mi, j
n denote the set of matrices in Mn with 0’s outside of the (i, j)

block. Define the block index set of N as

ΓN = {(i, j) ∈ Z
2 | 1 � i < j � t}. (2.1)

For (i, j) ∈ ΓN , denote N i, j = Mi, j
n . For Δ ⊆ ΓN , denote

N Δ =
⊕

(i, j)∈Δ
N i, j, N Δc

=
⊕

(i, j)∈ΓN \Δ
N i, j. (2.2)

Let Ei, j
p,q denote the matrix in Mn that takes 1 on the (p,q) entry of the (i, j)

block and 0’s elsewhere for (i, j) ∈ [t]× [t] and (p,q) ∈ [ni]× [n j] .

2.2. Centralizers and linear Lie centralizers of N

We describe the linear Lie centralizers of N when t � 3. The main result for
t � 3 is given in Theorem 2.1 below. We will give a proof of this theorem in section 4.
It is well-known that the center Z(N ) of N is N 1,t .

THEOREM 2.1. Let t � 3 and let N be the algebra of strictly block upper trian-
gular matrices over a field F . Let f : N → N be a linear Lie centralizer. Then

f (A) = λA+ δ (A) (2.3)

for all A∈N , where λ ∈F and δ : N →Z(N ) is a linear map such that δ ([N ,N ])
= 0 .

As an application, we consider the centralizers of N . We begin with the following
lemma.
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LEMMA 2.2. Let μ : N → Z(N ) be a linear mapping satisfying μ([N ,N ]) =
0 . Then μ is a centralizer of N .

Proof. Let A,B∈N and Δ′ = {(i, i+1) | i∈ [t−1]} . On one hand, by direct com-
putation, AB ∈ ∑

(i, j)∈ΓN \Δ′
N i, j and for each (i, j) ∈ ΓN \Δ′ , there exist (i,k),(k, j) ∈

ΓN such that N i, j = N i,kN k, j = [N i,k,N k, j] ⊆ [N ,N ] , so that μ(AB) = 0. On
the other hand, Z(N ) = N 1,t and by direct computation N 1,tN = 0 = N N 1,t , so
that μ(A)B = 0 = Aμ(B) . Therefore, μ is a centralizer. �

COROLLARY 2.3. Every linear Lie centralizer of N over a field F is a central-
izer.

Proof. It is easy to check that a linear mapping φ : N → N defined by φ(A) =
λA for A ∈ N and λ ∈ F is a centralizer of N . Hence, by Theorem 2.1 and Lemma
2.2, every linear Lie centralizer of N over a field F is a centralizer. �

3. Linear maps preserving matrix products

The linear Lie centralizer property (1.1) over a matrix algebra is closely relative
to some matrix product preserving properties. Their relationships are much obvious
when the algebra consists of block matrices. Here we will determine linear maps that
preserve four different types of matrix products. These maps play essential roles in
exploring the linear Lie centralizers of N as well as other algebras of block matrices.
They will also be helpful in studying the centralizers of matrix algebras.

In Lemmas 3.1–3.3, let Ep,q
m×n denote the m× n matrix that has the only nonzero

entry 1 in the (p,q) position.

LEMMA 3.1. Suppose F is an arbitrary field. If X ∈ Mm and Y ∈ Mn satisfy that

XA = AY (3.1)

for all A ∈ Mmn , then X = λ Im and Y = λ In for some λ ∈ F .

Proof. Suppose X = (xip) ∈ Mm and Y = (yq j) ∈ Mn , where i, p ∈ [m] and q, j ∈
[n] . For any (i, j) ∈ [m]× [n] , by (3.1),

XEi, j
m×n = Ei, j

m×nY. (3.2)

Comparing the (i, j) entry of the matrices in (3.2), we get xii = y j j . Similarly, compar-
ing the (p, j) entry for p �= i , we get xpi = 0; and comparing the (i,q) entry for q �= j ,
we get 0 = y jq . Therefore, X = λ Im and Y = λ In for some λ ∈ F . �

LEMMA 3.2. If linear maps φ : Mm,p → Mm,q and ϕ : Mn,p → Mn,q satisfy that

φ(AB) = Aϕ(B) for all A ∈ Mm,n, B ∈ Mn,p,

then there is X ∈ Mp,q such that φ(C) = CX for C ∈ Mm,p and ϕ(D) = DX for D ∈
Mn,p .
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Proof. For any j ∈ [n] and B ∈ Mn,p ,

φ(E1, j
m×nB) = E1, j

m×nϕ(B).

Let R1
m,p denote the subspace of Mm,p consisting of matrices with 0’s outside of the

first row. Similarly for R1
m,q . Then for every j ∈ [n] , R1

m,p = E(1, j)
m×nMn,p , so that

φ(R1
m,p) = φ(E(1, j)

m×nMn,p) = E(1, j)
m×n ϕ(Mn,p) ⊆ R1

m,q.

There exists an X ∈ Mp,q such that the linear transformation φ |R1
m,p

: R1
m,p → R1

m,q can
be expressed as

φ |R1
m,p

(T ) = TX , for all T ∈ R1
m,p.

Then for every B ∈ Mn,p ,

E(1, j)
m×n ϕ(B) = φ(E(1, j)

m×nB) = E(1, j)
m×nBX .

Therefore, ϕ(B) = BX for B ∈ Mn,p . Hence φ(AB) = Aϕ(B) = ABX for every A ∈
Mm,n and B∈Mn,p . The linear combinations of all such AB form Mm,p . So φ(C) =CX
for all C ∈ Mm,p . �

LEMMA 3.3. If linear maps φ : Mm,p → Mn,p and ϕ : Mm,q → Mn,q satisfy that

φ(BA) = ϕ(B)A for all A ∈ Mq,p, B ∈ Mm,q,

then there is X ∈ Mn,m such that φ(C) = XC for C ∈ Mm,p and ϕ(D) = XD for D ∈
Mm,q .

Proof. The proof (omitted) is similar to that of Lemma 3.2. �

4. Proofs of main results

The main goal of this section is to prove Theorem 2.1. We always assume that
t � 3 in the following discussion.

4.1. Linear Lie centralizer image locations

First we will give several auxiliary results on the image locations of f (N i, j) for
a linear Lie centralizer f and N i, j ⊆ N . We will observe the following interesting
fact: most nonzero blocks of f (Ai, j) for Ai, j ∈ N i, j are located on the (i, j)-th and
(1,t)-th blocks.

The first lemma discusses the linear Lie centralizer image on N 1,2 and N t−1,t .

LEMMA 4.1. Let f be a linear Lie centralizer of N . Then

f (N 1,2) ⊆ N 1,2 +Z(N ), (4.1)

f (N t−1,t) ⊆ N t−1,t +Z(N ). (4.2)
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Proof. To prove (4.1), we show that f (A1,2)i, j = 0 for any A1,2 ∈ N 1,2 , (i, j) ∈
ΓN and (i, j) /∈ {(1,2),(1,t)} . Suppose i > 1. Then for any A1,i ∈N 1,i , [A1,2,A1,i] =
0, so that

0 = f ([A1,2,A1,i])1, j = [ f (A1,2),A1,i])1, j = −A1,i f (A1,2)i, j (4.3)

for A1,i ∈ N 1,i . Now we further discuss (4.3) in the following two cases:

• If i > 2, 0 = A1,i f (A1,2)i, j for any A1,i ∈ N 1,i . So f (A1,2)i, j = 0.

• If i = 2, it suffices to show that f (E1,2
k,� )2, j = 0 for any k ∈ [n1], � ∈ [n2] . Given

E1,2
k,� ∈ N 1,2 ,

0 = E1,2
k,� f (E1,2

k,� )2, j (4.4)

Comparing the k -th row in the equality (4.4), we see that the � -th row of f (E1,2
k,� )2, j

is zero. Since � ∈ [n2] is arbitrary, f (E1,2
k,� )2, j = 0.

Therefore, f (A1,2)i, j = 0.
Now we show that f (A1,2)1, j = 0 for 2 < j < t . Suppose 2 < j < t . Then for any

Aj,t ∈ N j,t ,

0 = f ([A1,2,Aj,t ])1,t = [ f (A1,2),Aj,t ]1,t = f (A1,2)1, jA j,t .

Therefore, f (A1,2)1, j = 0.
The proof of (4.2) is similar. �

Next we consider the linear Lie centralizer image on N 2,3,N 3,4, · · · ,N t−2,t−1 .

LEMMA 4.2. For a linear Lie centralizer f of N and 1 < i < t−1 ,

f (N i,i+1) ⊆ N i,i+1 +Z(N ). (4.5)

Proof. For any Ai,i+1 ∈N i,i+1 , it suffices to prove that the (p,q) block f (Ai,i+1)p,q

= 0 for (p,q) ∈ ΓN and (p,q) /∈ {(i, i+1),(1,t)} . We first show that f (Ai,i+1)p,q = 0
for (p,q) ∈ ΓN , p �= i , q �= i+ 1, and (p,q) �= (1,t) . Either p > 1 or q < t . With-
out loss of generality, suppose q < t (similarly for p > 1). Then for any Aq,t ∈ N q,t ,
[Ai,i+1,Aq,t ] = 0 so that

0 = f [(Ai,i+1,Aq,t ]p,t = [ f (Ai,i+1),Aq,t ]p,t = f (Ai,i+1)p,qAq,t .

Therefore f (Ai,i+1)p,q = 0. Which shows that the possibly nonzero blocks of f (Ai,i+1)
are in the i-th block row and the (i+1)-th block column .

Next we show that f (Ai,i+1)p,i+1 = 0 for 1 � p < i and f (Ai,i+1)i,q = 0 for i+1 <
q � t . Suppose 1 � p < i . Then for Ai+1,r ∈ N i+1,r , i+1 < r � t ,

f (Air)pr = f [Ai,i+1,Ai+1,r]p,r = [Ai,i+1, f (Ai+1,r)]p,r = 0. (4.6)

By (4.6), we get

0 = f (Air)p,r = f [Ai,i+1,Ai+1,r]p,r = [ f (Ai,i+1),Ai+1,r]p,r = f (Ai,i+1)p,i+1Ai+1,r.
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Therefore f (Ai,i+1)p,i+1 = 0.
Similarly, f (Ai,i+1)i,q = 0 for i+1 < q � t . �

Now we consider the linear Lie centralizer image on the other N i, j .

LEMMA 4.3. For a linear Lie centralizer f of N and i, j ∈ [t] and j > i + 1 ,
the image f (N i, j) satisfies that

f (N i, j) ⊆ N i j. (4.7)

Proof. Let j = i+ k,k � 2. We prove (4.7) by induction on k .

1. k = 2 : N i,i+2 = N i,i+1N i+1,i+2 = [N i,i+1,N i+1,i+2] . For Ai,i+1 ∈ N i,i+1

and Ai+1,i+2 ∈ N i+1,i+2 , according to Lemmas 4.1 and 4.2,

f [Ai,i+1,Ai+1,i+2] = [ f (Ai,i+1),Ai+1,i+2] = f (Ai,i+1)i,i+1Ai+1,i+2 ∈ N i,i+2.

Hence k = 2 is done.

2. k > 2 : Suppose (4.7) holds for all � < k . Now N i,i+k = N i,i+2N i+2,i+k =
[N i,i+2,N i+2,i+k] . For any Ai,i+2 ∈ N i,i+2 and Ai+2,i+k ∈ N i+2,i+k ,

f [Ai,i+2,Ai+2,i+k] = [ f (Ai,i+2),Ai+2,i+k] = f (Ai,i+2)i,i+2Ai+2,i+k ∈ N i,i+k

where the last relation is due to induction hypothesis, Lemma 4.1, and Lemma
4.2. So (4.7) holds for k .

Overall, we have proved (4.7) for all k . �

The above lemmas determine all possibly nonzero blocks of f (Ai, j) for a linear
Lie centralizer f and Ai, j ∈ N i, j ⊆ N . The next goal is to describe the f -images on
these blocks.

LEMMA 4.4. Let f be a linear Lie centralizer of N . Then there exist λ ∈ F

such that
f (Ap,r)p,r = λAp,r for all Ap,r ∈ N p,r ⊆ N , (4.8)

Proof. For any 1 � p < q < r � t , Ap,q ∈ N p,q and Aq,r ∈ N q,r ,

f (Ap,qAq,r)p,r = f ([Ap,q,Aq,r])p,r = [ f (Ap,q),Aq,r]p,r = f (Ap,q)p,qAq,r.

Applying Lemma 3.3, there exist X p,p ∈ Mp,p
n such that

f (Ap,q)p,q = X p,pAp,q for all Ap,q ∈ N p,q,

f (Ap,r)p,r = X p,pAp,r for all Ap,r ∈ N p,r. (4.9)

Since f is a linear Lie centralizer, for any 1 � p < q < r � t , Ap,q ∈ N p,q and
Aq,r ∈ N q,r ,

f (Ap,qAq,r)p,r = f ([Ap,q,Aq,r])p,r = [Ap,q, f (Aq,r)]p,r = Ap,q f (Aq,r)q,r.
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Applying Lemma 3.2 , there exist Xr,r ∈ Mr,r
n such that

f (Aq,r)q,r = Aq,rXr,r for all Aq,r ∈ N p,q,

f (Ap,r)p,r = Ap,rXr,r for all Ap,r ∈ N p,r. (4.10)

By (4.9) and (4.10), we have

X p,pAp,r = Ap,rXr,r for Ap,r ∈ N p,r .

Applying Lemma 3.1, there exists λ ∈ F such that X p,p = λ I p,p and Xr,r = λ Ir,r .
Therefore, f (Ap,r)p,r = λAp,r for Ap,r ∈ N p,r ⊆ N . �

4.2. Proof of Theorem 2.1

We are ready to prove our main result.

Proof of Theorems 2.1. By Lemma 4.4, there exists λ ∈ F such that

f (Ai, j)i, j = λAi, j for Ai, j ∈ N i, j ⊆ N .

Define f0 := f −λ In . Thus f0 is a linear Lie centralizer. Then (4.8) implies that
f0(Ai, j)i, j = 0 for all Ai, j ∈ N i, j ⊆ N . By Lemma 4.1, 4.2, and 4.3, f0(Ai, j) = 0 for
(i, j)∈ ΓN \{(i, i+1) : i∈ [t−1]} and the only non-zero block of f0(Ai,i+1) , i∈ [t−1]
is the (1, t)-th block.

Define a linear map δ : N → N such that for A ∈ N ,

δ (A) :=
t−1

∑
i=1

f0(Ai,i+1)1,t =
t−1

∑
i=1

f (Ai,i+1)1,t .

Then δ (A) ∈ Z(N ) and δ [N ,N ] = 0. Now we get a new linear Lie centralizer

f1 := f0 − δ = ( f −λ In)− δ ,

where f1(Ai, j) = 0 for Ai, j ∈ N i, j ⊆ N . Therefore

f (A) = λA+ δ (A)

for A ∈ N . Hence Theorem 2.1 is proved. �
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