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C-SELFADJOINTNESS OF THE PRODUCT OF A COMPOSITION
OPERATOR AND A MAXIMAL DIFFERENTIATION OPERATOR

MAHMOOD HAJI SHAABANI, MAHSA FATEHI" AND PHAM VIET HAI

(Communicated by S. McCullough)

Abstract. Let ¢ be an automorphism of ID. In this paper, we consider the operator CyDyy, y, on
the Hardy space H? which is the products of composition and the maximal differential operator.
We characterize these operators which are C-selfadjoint with respect to some conjugations C.
Moreover, we find all hermitian operators Cy Dy v, » When @ is a rotation.

1. Introduction

The set of real numbers and the set of complex numbers will be denoted by R and
C, respectively. The Hardy space H? is defined as the set of all analytic functions in
the unit disk D for which

™ i0,2d0
112 = sup ( [T1ree®)P 5] ) <o
0<r<1 \/0 T

The Hardy space H? is a Hilbert space with the inner product

2m .y ———
(f.8)= % /0 f(€®)g(ei®)d6.

The space H* denotes the set of all bounded analytic functions on D, with || f|l. =
sup{|f(z)] : z€ D}.
For every w € D and each non-negative integer n > 0, let Kv[v" ] denote the unique

function in H? that <f,Kv[v"]> = f"(w) for each f e H?; for convenience, we use
the notation K,, when n = 0. The reproducing kernel function K,, in H> for a point
1

w in the unit disk is given by K,(z) = =, with [|Ky|> = . We can write

Kv[f ] (z) = dgnk(Wz), where k(z) = X7 7.
Let ¢ be an analytic self-map of D; the composition operator with symbol @
is defined by Cof = fo¢. Itis well-known that every composition operator Cy is
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bounded on H? (see [3, Corollary 3.7]). For an analytic function y on I, the weighted
composition operator Cy o is defined by the rule Cy o (f) = y-fo@.

Let u € L”(dD). The Toeplitz operator T, on H? is defined as T, f = P(uf),
where P denotes the orthogonal projection from L? onto H?. Let ¢ be an analytic
self-map of D and y € H”. We have the useful formulas

(TyCo) K = W(W)Kp(y) (1)

and

(TyCo) Kt = W)@ WK, + W (W) Ko(r)- @)
Let ¢(z) = (az+b)/(cz+d) be alinear-fractional self-map of D, where ad —bc # 0.
Then o(z) = (az—7¢)/(—bz+d) maps D into itself, g(z) = (—bz+d)~! and h(z) =
cz+d are in H”. Cowen in [2] proved that C, = T,CsT}. The maps ©,g and h are
called the Cowen auxiliary functions.

A bounded operator 7' on a complex Hilbert space H 1is said to be a complex sym-
metric operator if there exists a conjugation C (an isometric, antilinear and involution)
such that CT*C = T'. In this paper, we use the symbol J for the special conjugation
that (Jf)(z) = f(z) for each analytic function f. The study of complex symmetric
operator class was initially addressed by Garcia and Putinar (see [7] and [8]) and has
been noticed by many researchers (see also [9]). Many authors have studied complex
symmetric composition operators and weighted composition operators (see [1], [4], [6],
[12], [13]).

Let H be a Hilbert space. The domain of an unbounded linear operator T is
denoted by dom(7). For two unbounded operators A, B, the notation A < B means
that A is a restriction of B on dom(A), namely dom(A) C dom(B) and Ax = Bx for
every x € dom(A). Let T :dom(T) C H — H be a closed, densely defined, linear
operator. For a conjugation C, we say that T is C-symmetric if T < CT*C and C-
selfadjoint if T = CT*C (see [15]). Let us emphasize that T = CT*C carries with it
the requirement that dom(7") = dom(CT*C).

Consider the formal differential expression of the form

E(W0,v1)f(2) = wo(2)f(2) + w1 (2)f (2)

for each f € H?, where yy,y; € H”. We define the maximal differential operator
Dy, y, as follows

dom(Dyy.y,) = {f € H* 1 E(yo,y1)f €H*} Dy f =E(Wo,y1)f.

The maps o, y; are called the symbols of the operator Dy, y, . In particular, if yp =0
and y; =1, then Dy, y, is the differentiation operator and it is denoted by D. It is not
hard to see that the differentiation operator D is unbounded on the Hardy space. Ohno
[14] determined that when CyD is bounded and compact on the Hardy space. Recently
the second author and Hammond [5] have obtained the adjoint, norm and spectrum of
some operators CyD on the Hardy space.

For some conjugation C, C-selfadjoint maximal differential operators have been
investigated by the third author and Putinar (see [10] and [11]). In this paper, we will
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only be considering CyDyy v, With Wy, y; € H™ and the map ¢ is an automorphism
of ; that is, (z) = A {= pzz,when p €D and |A| = 1. Note that for yy, y; € H™, we
get

CoDyyy; = Cop(Tyy + Ty D) = TyyopCo + Tyy0pCoD-

Since TyyopCyp is a bounded operator and y; o @ € H”, one can easily see that
dom(CyDy,y, ) 2 dom(CyD). Ohno [14] showed that if ¢ has a finite angular deriva-
tive at any point on JID, then Cy,D cannot be bounded. Also if ¢ is an automorphism
of D and y; is not the zero function, then CyDyy y, is an unbounded operator (note
that ||Ty,09CpD(2")|| = n||y1 o @|| for any positive integer n).

In this paper, we consider the unbounded operator CypDy,,y, » When @ is an au-
tomorphism and yp,y; € H”. The goal of Section 2 is to obtain information about
CyDy,,y, Which will be needed in the sequel.

In Section 3, we give a necessary and sufficient condition for CyDy y, to be
C-selfadjoint for some conjugation C.

In Section 4, we investigate the action of the adjoint of Cy Dy v, on the arbitrary
element f € dom(CyDy, y,)*. Then we identify what forms v, y; and A must take
in order that Cj .Dy, y, be hermitian.

2. Some properties

In this section, we state the following basic observations which are necessary for
our main results. First, we show that Cy Dy y, is densely defined.

REMARK 2.1. Let ¢ be an analytic self-map of D and v, y; € H”. We claim
that K,, € dom(CyDyy .y, ). Since dom(CyDy, y, ) 2 dom(CyD), it suffices to show
that K,, € dom(CyD). It is easy to see that K},(z) = Z>_;n(Ww)"z"~!. It is not hard to
see that ¥°°_, n?|w|*" < oo for each |w| < 1. Then K/, € H? and so C(pK’ € H?. Hence
K,, € dom(CyDy y, ). Since the span of the reproducmg kernel functions is dense in
H?, CyDy,.y, is densely defined.

In the following lemma, we investigate the action of the adjoint of CyDy , on

the reproducing kernel functions.

LEMMA 2.2. Let ¢ be an analytic self-map of D. For every w € D and non-
negative integer m, K e dom(CyDyy v, )*. Moreover,

(C(pDWm% )*Kw = WO((P(W))Kw(w) + Wl((P(W))K(E;(]w) 3)

and

(CoDyoyn ) Kit) = @' (w) (%«p(w))lw + [o(pw) + Wi (@)K, ),

+wl(<p(w>>l<52w)>- (4)

Proof. We know that (CyDy;, y, )" =Dy, , Cp - Forevery w € D and non-negative
]

. . ol . (1]
integer m, it is easy to see that Cq)KW is a linear combination of elements K, K o(w)?
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[m] . : : * ] 2
- K,y Invoking [10, Lemma 3.1], we obtain that (CyDy .y, ) K™ € H”. As we

saw in the first section, we have
CoDyyy1 = Tyyo9Co + Ty09CoD.

Then (CoDyyy, )" = CyTy0p + (CoD) Ty, - Again we infer from [10, Lemma 3.1],
(1) and (2) that

(CoDyoun)" Ko = Yo @) Kp(u) + Y1 (@)K, ),

and

) <w6(¢(w)>K¢(W> + [volo 0] + Wi loOm Ikl

The following observation, which is stated in the case where ¢ is an automor-
phism of D, can be generalized to any analytic self-map of D by an argument similar
to that used in [10, Proposition 3.2].

REMARK 2.3. Let ¢ be an automorphism of ID. Suppose that f,g € H> and that
Jn € dom(Dyy, ), with fy — f and CpDygy, fun — g as n — eo. We know C,1 is
bounded. Thus, Cy—1CpDy y, fn — Cp-18 as n— oo. It states that Dy, y, f — go @~

as n — oo. Because Dy, y, is closed (see [10, Proposition 3.2]), Dy.y, (f) =go¢@~'.
Then Cy Dy, vy, (f) = g and so the operator CpDy v, is closed.

3. C-selfadjointness

Suppose that U is unitary; that is, U*U = UU* = I. Assume that U is complex
symmetric with conjugation J. By [4, Lemma 2.2], UJ is a conjugation. An analogue
of Lemma 3.1 holds for a complex symmetric operator 7' (see [4, Proposition 2.3]).

LEMMA 3.1. Let U be unitary and complex symmetric with conjugation WJ,
where W is unitary. Then an operator T is WJ -selfadjoint if and only if UT is UWJ -
selfadjoint.

Proof. Tt is easy to see that T is a closed and densely defined operator if and only
if UT is as well. Let T be WJ -selfadjoint. We have

UWJUT) UWJ =UWJT*U*UWJ =UT.

Then UT is UWJ -selfadjoint.
Conversely, suppose that UT is UW J -selfadjoint.

WIT*WJ =U"UWJUT)'UWJ =U"UT =T.
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Therefore, T is WJ-selfadjoint. [

In the next theorem, we characterize all J-selfadjoint operators Cy Dy y, -

THEOREM 3.2. Suppose that ¢ is an automorphism of D and Dy, y, is the maxi-
mal differential operator, with symbols Wy, yy, where yy is a polynomial and y; € H” .
Let a,b,c € C. Then CyDy, y, is J-selfadjoint if and only if one of the following oc-
curs.

(a) 9(z) = Uz, Wo(z) = a+bz and yi(z) = b+ cz+bz?, where |u| = 1.

(b) 9(2) = 5, Wo(z) = (a+bz)(1 = pz) and yi(2) = (d +cz+b2%) (1 - pz),
where p e, p#0 andd———b pc.

Proof. Let CyDy, y, be J-selfadjoint. For each w € D, Lemma 2.2 implies that
1 . . .
(CoDyn) Ko = Wo (9 (W) Ko) + W1 (@(W))K,(,, - Since CpDiyy y, is J-selfadjoint,

J(CQDDWONH)*(I) = (CprW0=W1)(J(1))~
It is easy to see that yy(@(0))K: FORE v1(9(0)) [—0 = ypo ¢ and so foreach z € D,
)

((P(O))jL vi1(9(0))z
¢(0)z  (1-9(0)2)?

= o (9(2)). ()
We infer from (5) that

¥o(9(0))(1— 9(0)9™'(2) + vi(9(0))p ™' (2) = wo(2)(1 — 9(0)p ' (2))>.  (6)

In (6), set ¢~ !(z) = A lp £ "where |A| =1 and p € D. After some computation, we
obtain

wo(¢(0))(1=p2)(1 = @(0)Ap+ (=P +19(0))2)
+(1=Pp2)(v1(9(0))Ap — y1(9(0))Az)

= yo(2)(1 =A9(0)p+ (—P+29(0))2)*. @)

Since Y is a polynomial and the left side of (7) is a polynomial of degree at most 2,

we conclude that yf is constant or —p+ A p = 0. We break the proof into two cases.
(i) Suppose that —p+Ap = 0. It shows that p =0 or A = %. If p =0, then
¢(z) = —Az and we have C_j Dy, is J-selfadjoint. By Lemma 3.1, Dy, y, is
C_;.J-selfadjoint. Thus, [10, Theorem 4.4] implies that wy(z) = a + bz and
V1(z) = —bA + cz+ bz?, where a,b,c € C. Now assume that p #0 and A = p5/p.
We have ¢(z) = 222 . Since CpDy,y, is J-selfadjoint and Cy,.p1 is also J-

pl-pz*
symmetric, where y,(z) = % (see [4, Proposition 2.1]), Lemma 3.1 states that
Cy,.p-1CoDygy, 1s Cy 17~ selfadjomt Itis not hard to see that C,, -1CpDyqy; =
Dy, -y, vy, - From [10, Theorem 5.6], we get v, (z)wo(z) = a+bz and y,(2)y1(z) =
d+ cz+bz?, where a,b,c € C and d = —pr — pc. Hence

(a+bz)(1 —pz)

N (PR
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and
(d+cz+b?) (1 —p2)

(1=[p»)/2

vi(z) =

Therefore, the result follows.
(ii) Suppose that Yy = o, where oo € C. By (5), foreach z€ D, (1 — ¢(0)z) +
v1(9(0))z = o(1 —@(0)z)?. It states that

0¢(0)°2* + (—2a(0) — w1 (9(0)) + ap(0))z =0 (8)

and so by (8), oo =0 or ¢(0) =0 and therefore, in these two cases again by (8),
y1(9(0)) = 0. First suppose that @(0) =0. Then ¢(z) = uz, where |i| = 1. Since
CuzDa.y, 18 J-selfadjoint, by the similar proof which was seen in the proof of Part (i),
Dg.y, is CgJ-selfadjoint and so Wy = o and y(z) = cz. Now assume that oo = 0.
Since CyDy y, is J-selfadjoint, for each w € D, J(CyDo y, )" Ky = (CpDo y, )JK,, and
(3) dictates that
1 wyi(¢(2))
(I S1S ATV
vilpw)K T—woQ) 2
It shows that |
vilew)e " (z) _ wyi(2)

(1= 1@)?  (1-wa)? ©)

Since CyDyy, is J-selfadjoint, we have J(CyDo y, )"z = CpDo y,Jz. Therefore, by

the fact that ; (@(0)) = 0 and (4), we see that ¢(0)y/ ((p(O))K% = w1 0@, which

implies that
¢ (0)yi(9(0)o~"(2)
7) = .
=T g 00 102
Note that ¢'(0) # 0 and y{(¢(0)) # 0, because ¢ is an automorphism and y; is not
the zero function (if y{(¢(0)) =0, then by (10), y; =0 and in this case CyDy,y, is
the zero operator). By (10), we see that for each w € D,
_wo'(0)yi(9(0)

vi(p(w)) = 1= eO)w)? (11)

From (9), (10) and (11), for each z,w € D, we have

we' O)vi(e(0)e @) we'(0)wi(e(0)e ' (2)

(1=pO)w)>(1-ow)e~'(z))* (1-¢(0)9~"(2)*(1-wz)*
For w = 0 and z # p, we have
(1= 0(0)p~ " (2))* (1 =w2)* = (1= @(0)w)*(1 — 9(w)p~'(2))*. (12)

Set 9~ !(z) = A{== in (12), we obtain

(10)

(1= @(0)Ap+ (=P +(0)4)2)*(1=wz)* = (1= 9(0)w)*(1 = 2 (w)p+ (9(w)A —P)z)?
(13)
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for each w # 0 and z # p. The right side of (13) is a polynomial of degree at most
2. Then pA=p andso p=0 or A = 11;' If p=0, then ¢(z) = -1z andbythe

similar proof which was stated in (i), y;(z) = cz. Now assume that A = 1_?' We

have ¢(z) = £ F;fz and CyDoy, is J-selfadjoint. We know that C,, -1 is also

2\1/2
J-symmetric, where y,(z) = % Then by Lemma 3.1, C,, ,-1CyDo,y, is
Cy. o-1J—selfadjoint. By the same argument which was stated in (i), ¥,(2)y1(z) =

wpv(P
d+cz, where d = —pc. Then y(z) = W.

Conversely, first suppose that ¢(z) = uz, yo(z) =a+bz and vy (z) =bu +cz+
bz* that || = 1. One can see that Cp1CoDyyyy = Dyyy, is CpJ -selfadjoint (see
[10, Theorem 4.4]). We know that Cg; is J-symmetric (see [4, Proposition 2.1]). Thus,
by Lemma 3.1, CpDy.y, is J-selfadjoint. Now assume that ¢(z) = 11; — = Vo(2) =
(a+bz)(1 —pz) and yi(z) = (d +cz+bz*)(1 —pz), where p €D, p#0 and d =
—%b — pc. We know that prxp*' is J-symmetric (see [4, Proposition 2.1]). One

can see that Cl//,,,(p*lC(PDWm% = Dy, -yo.y,yy that Vp(2)yo(z) = (1 - \p|2)1/2(a—|—bz)

and v, (z2)w1(z) = (1 — |p|*)'/?(d + cz + bz?). By [10, Theorem 5.6], Dy, w1 is
Cw -1J -selfadjoint and so by Lemma 3.1 and [4, Proposition 2.1], CoDy y, is J-
selfadJ01nt (]

In Theorem 3.3, we find operators CyDy, , which are C,.J-selfadjoint.

THEOREM 3.3. Assume that ¢ is an automorphism of D and D, v, is the max-
imal differential operator, with symbols Yy and Y, where Yy is a polynomial and
yi € H”. Let a,b,c € C. Then for |A| =1, CypDyy y, is Cy,J -selfadjoint if and only
if one of the following occurs.

(a) ¢(z) = Auz, Wo(z) = a+bz and y(z) = by + cz+bz?, where |u| = 1.

(b) () = L2 25 yio(2) = (a-+b2) (1~ Fz) and yi (z) = (d+cz+b2%)(1-P2),

where peD, p#0 andd:%’b—pc.

Proof. Suppose that CpDy, y, is C;.J-selfadjoint. One can easily see that Cy_ is
CjzJ -symmetric. By Lemma 3.1, G CpDyy .y, is J-selfadjoint. Thus, C ) Dy, 18
J -selfadjoint. The result follows from Theorem 3.2.

Conversely, let ¢(z) = Auz, Wo(z) = a+bz and v (z) = by +cz+bz*. We know
that Gy is J-symmetric. We get Cy CpDyy yy = CuzDyy,y, - By the proceeding the-
orem Cy;Dy, v, is J-selfadjoint. Then by Lemma 3.1, CyDy v, is C;.J -selfadjoint.
Now let ¢, yp and y; satisfy the hypotheses of Statement (b). It is easy to see that
Co =0C.Cp pc . We have Cp 7= Dy, .y, is J-selfadjoint by the preceding theorem.

p1-

—re
Hence by Lemma 3.1, Cq,Dl,,Oﬂ,,l is Cy,J-selfadjoint. [J

In the following theorem, we investigate which symbols v, w; and ¢ give rise
the C-selfadjointness of operator Cq,D,,,O.l,,1 with conjugation Cy, ¢,J, where g € D is

(11|tI|) and(p()—qq

a nonzero number, Y, (z) = Rt
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THEOREM 3.4. Let ¢ be an automorphism of D and Dy, y, be the maximal dif-
ferential operator with symbols Wy and i, where Wy, € H”. Suppose that 1711(;,/#

q
is a polynomial, where q € D) is a nonzero number. Then CyDyy, y, is Cy, o,J -selfadjoint
if and only if one of the following occurs.

(@) @ = 1oy, Yo(z) = (a+bz)(1 - gfiz) and yi(z) = (bu + cz+b2%)(1 — qfiz),
where || =1 and a,b,c € C.

(b) @ = @po @y, Wo(z) = (a+bz)(1—pz)(1—q@p(z)) and yi1(z) = (1 —qpp(z))
(d+cz+b7? )(1 —pz), where a,b,c€C, peD, p#0 and d = %pb—pc.

Proof. Let CyDyy, y, be Cy, o, J-selfadjoint. By [4, Proposition 2.1], Cy,, ¢, is J-
symmetric. Then it is easy to see that Cy, , is Cy, ¢,J-symmetric. Lemma 3.1 implies
that Cy, Va0 qC(PDWO,Wl is J-selfadjoint. By the Cowen adjoint formula, we have

C*

1/2
78 ‘Pqu’D‘I/OJI/l (l - |C]‘ ) / C(pogoq’lD

Vo (80000~ 1),y1-(gogo0™1)

where g(z) = . Theorem 3.2 implies that one of the following occurs.

1 q
@ (e, '(2) = 1z, vo(2)g(eg(@~'(2))) = a+bz and yi(2)g(eg(9~'(2)) =
bu +cz+bz*, where |u|=1.
(i) (o, '(2) = ﬁf’pz, vo(2)8(9g(9 7' (2))) = (a+bz)(1 —Pz) and i (z)
g(0,(¢71(2))) = (d+cz+bz?)(1 —pz), where p€D, p#0 and d = —Fb—pe.

If (i) occurs, then @(z) = ”g% and so wy(2)g(@s(9~1(2))) = 1%—(5%)1 It shows

that yo(2) = (a+bz)(1 — gqfiz). Also y1(2)g(@g(¢~'(2))) = {25 and thus, 1 (z) =
(bu + cz+bz*)(1 — gliz) . Now assume that (ii) holds. We have ¢(¢,'(z)) = & —

Then (z) = 2245 and yo(2)g(9,(907!(2))) = 245 Hence wo(2) = (1 -
q9p(z))(a+bz)(1—pz). By the same argument, ¥ (z) = (1 —q@,(2))(d +cz+bz?) (1 —
D2).

Conversely, the result follows from Theorem 3.2 and the same idea stated in The-
orem 3.3. [

rz’

|| *:H

In the next, two examples of Theorem 3.4 are given.
10 .
Example 3.5. (a) Suppose that ¢(z) = ilz—lzz, Vo(z) = (az+b)(1+ 5z) and
, ~3
Vi (2) = (bi+cz+bz?)(1+ 4z), where a,b,c € C. We have ¢ = i) and

1 —1 1 L j
I—E(P%‘)(P —1—§(P%0(1(P%) =1+-z
Then T l(;”o pe is a polynomial. Theorem 3.4(a) dictates that Cy Dy y, is Cy, ¢, /-
BEA N : 22
selfadjoint.

3i i i(1—
(b) Suppose that ¢(z) = ;:(7(32,?;2, Wo(z) = (az+b)(1—12)(1— (;_—23;)) and

vi(z)=(1-% (1= 3Z))( b—tc+cz+b2?)(1— 1z), where a,b,c € C. Itis easy to see
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that ¢ = Prop;. We obtain

i B i L i i(1-32)
1——0; ' (piop;! Nl =1— )
7P500 5(@i00, 00 ) 5P P
Then 1—5@;1,# is a polynomial. Theorem 3.4(b) implies that CyDyy, y, is Cl,,%. 7(,,%.J -
3
selfadjoint.

4. Hermiticity

A densely defined operator T is hermitian if T* = T . In this section, we charac-
terize hermitian operator Cy Dy, » When @ is a rotation of the unit disk. In the next
proposition, for each f € dom(Cy, Dy .y, )*, we find (Cy,Dyg.y ) (f).-

PROPOSITION 4.1. Let Dy, y, be the maximal differential operator with symbols
Wo(z) =a+bz

and
vi(z) =d +cz+ ab??,

where a,b,c,d,o € C. Then for A € D and a nonzero point z € D,
(CruDyoun) (F)(2) = (@+d2)f(Az) + A(d2 +b+7c2) f'(A2)

Az
+b(@— 1)Af (Az) —b(@—1) (’LZ)Z_ﬂOU :

where f € dom(Cy, Dy v, )
Proof. Let f € dom(Cy Dy, y,)* and z,u be arbitrary points in ID that z # 0.

a+bu (d+cu+ abu?)z

Dy, K- (u) =

1—7u (1 —7u)?
_a+dz | —di(1—zu)+dz  bu(l—zu)+ obzu? czu
1-zu (1—zu)? (1—7u)? (1—zu)?
_ _ —bzu® +abz®
= (a+d2)K.(u) + d2KM (w) + b () + —iapE " 2k (u)
= (a+d2)K.(u) + (dZ+ b+ DKM (u) + bz(0 — 1ukM (w). (14)

We have

(f (Fu), 20— 1)k () = B — 1) f (Fe), kY ()
= bz(a— V(T £ (Ru), KM (1))

= f(u) — f(0)

= be(@— )(= K (w)
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Af'(A2)z— f(A2) + £(0)

=bz(a—1) 3
BeE-1) (If’gd 10 ;f@)>
—B@-1) (If’(%z) + M) .5

Then (14) and (15) imply that

(C)LMDW(MWI)*f(Z) = <CIMf7Du/o,w1 K;)
= (@+d2)f(A2) + A(d +b+c2)f (

2)
+b(a — 1)Af'(Az) —b(ax —1) (%)

P

and the result follows. [

Let z be a complex number. We have z = \z|ei9 , where 0 < 0 < 27w and we denote
0 by arg(z). In particular, we set arg(0) = 0. Now we use Proposition 4.1 to establish
the main result of this section.

THEOREM 4.2. Let A € 0D and Dy, y, be the maximal differential operator with
symbols Wy and Y that Wy, Y € H”. The operator C) Dy, v, is hermitian if and only
if one the following occurs.

(@) A =1, wo(z) = a+bz and y(z) = b+ cz+bz?, where b € C and a,c € R

(b) A =—1, wy(z) = a+bz and y(z) = —b+ cz+bz?, where a,c € R and
beC.

Proof. Let Cj Dy, y, be hermitian. Then Cj Dy v, Ky = (C) Dyy.y, )" Ky for
each z,w € D. Lemma 2.2 implies that

Wi | wOw ] |
1-wAz  (1-wAz)> 1—2Awz (1—2Awz)?

(16)

Letting w =0 in (16) gives

vo(2) = wo(0) + w1 (0)Az

and so y(0) is a real number. Substitute yp back into (16) to obtain that for each
w#£0,

v(0) wO | vl - w0

Wl —=WAz)  W(l—2Awz) (1-WA2)? 11— 2wz

(WO W
_W<(1—mz>2 1—mz>' a7
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First, we consider the right side of (17). We obtain

1 WO Wk Vi) (1= A2) — Y (0)(1 — Awz)?
w (1—2Awz)2(1 —WAz)

(1—2Awz)? 1-wAz
_ (7w = wi(o) 1
wA (1—2wz)2(1 —WAz)

H(—%(xw)mz—wl(o)(mx) +2y1(0 )xwz)

W(l — Awz)2(1 —WAz)

In the above equality, let w — 0. Hence we have

Hm1< ViGw)e v
(

w—0 W 1 _mz)z 1—-wAz

) =4y (0)z+ 2y1(0)A — 1 (0)2)2>.

After some computation on the left side of (17) and letting w — 0, we get

lim v(©O) () vi(kz) v (0)
w—0 W(l —WAz) W(I—Wz) (1—wA2)2  1- 2wz

= (Y0(0)2 — yo(0)A)z+ y1(Az) — yi (0).
Since Cj Dy, .y, is hermitian, we have
(Wo(0)2 — yo(0)A)z + y1(22) — v (0) = 2] (0)z + (291 (0)% — Y1 (0)A)2
Then
v1(2) = v1(0) + (w0 (0)7 — yo(0)A + AW (0)) Az + (291 (0)Z — v (0)4) (Az)?. (18)

Let wy(z) = a+ bz, where a = yp(0) € R and b= Ay (0). Therefore, by (18), we get

Wi (2) = DA+ (ah —a+Th )zt (2b—bADA 2,

=2 —2 .
where ¢ = y{(0). It states that ¢ = aA”~ —a+7cA . For convenience, let y;(z) =

— -2

bA +cz+ (2b—bA*)A"Z%. It is not hard to see that z> € dom(Cy, Dy, y,) and 2> €
dom((Cy Dyqy,y,)*) (see[10, Lemma3.1]). Since Cy Dy, y, is hermitian, C Dy y, 2>
= (C3.Dyy,y, )*2%. One can see that

C:Dyoy 22 = (DA +4bA — 20232 + (aA? +2cA%) 2 + 2z (19)
and by Proposition 4.1,
(CaDyyp )22 = BBA)E + (ak- + 2802+ (2BE +B2—24))5.  (20)

Then (19) and (20) state that bA> +4bA —2bA3 = 3bA. It shows that b=0 or 1> =1.
First suppose that A2 = 1. The trivial case A = 1 was described in [10, Theorem 6.3].
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Now assume that A = —1. Again by (19) and (20), a+2c =a+2¢ and so ¢ € R
and the result follows. Now let b = 0. We have Wy = a and y(z) = c¢z. From [10,
Theorem 3.3], we have

(CacDacz)" = DazCy, = (aCy, + ATz.Cy,D) = Cy,Dagz:.
Since Cj D, . is hermitian, we get for each f € dom(Cy,Dq 7).,
Da,cz (f) = CXZZDa,Ez (f) 21

We break the proof in to two cases. First, suppose that A is not a root of 1. By
. . =2
(21), for f(z) =", where n is a non-negative integer, we have (a+nc)" = A~ (a+

nc)Z". The limit of the above equality as z — 1 shows that
a+nc= Zzn(a +nc) (22)

=2
for every non-negative integer n. From (22), we have a+c¢= A" (a+7¢) and

at2c=7" (a+20). (23)

atc\2 _ at2c
Hence ({75)” = %355 and so

A(a+728) €R. 24)
2

A
4 ;
A S eER. Lete= |c|e’®, where 6 = arg(c). Then
7= %0 or TH = — o4O Let arg(c?) = 0. Because A is not a root of unity, ¢® and
¢’ are not roots of unity. Moreover, (22) shows that the set e n=0,1,...} is
dense in dD. For arbitrary € > 0, it is not hard to see that there is an integer N such
that for each n > N, |arg(a+ 2nc) — 6| < € (note that a + 2nc is the major axis of a
parallelogram). Then for n > N, a+ 2nc 4 n’c? lies in the parallelogram that one side
is the line segment with endpoints 0 and n’c? and the other side is the line segment

with endpoints 0 and a+2nc. Since 0 — ¢ < arg(a+2nc) < 0 + € (note that €9 is not

a root of unity and so 6 # 0) and arg(n’c?) = 0, the set {(‘Zizz‘f

which is a contraction. In the other case, assume that there is an integer no such that

Invoking (23) and (24), we see that

} is not dense in JDD

A" = 1. Applying (22), we have a + noc = R (a+noc) and so ¢ € R. By setting

n=11in (22), A2 =1 or ¢ = —a. We considered the case A2 = 1. If ¢ = —a, then
—2n

again by (22), A~ =1 for every integer n > 1. Then A? must be 1 and the result

follows.

Conversely, if A, yp, y; satisfy the hypotheses of Part (a), the result follows obvi-
ously by [10, Theorem 6.3]. Now suppose that A = —1, Wo(z) = a+ bz and yi(z) =
—b+cz+ bz, where a,c € R and b € C. We infer from [10, Theorem 3.3] that

C:Dyyy = Co(Tyy + Ty, D)
= (Typ(—9) + Ty (-0 P)C—
= Dyy(-2)—w(-C-=
o
=D Yo, V1 C-
- (C*ZDW07W1)*~ (25)
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Then by (25), C_;Dyy.y, is hermitian. [J

If C) Dy,.y, is hermitian, then by Theorem 4.2, either A =1 or A = —1. In the
case that A = 1, [10, Corollary 6.5] implies that C; Dy y, is Cﬁzj -selfadjoint, where

B was defined in [10, Corollary 6.5]. In the next result, for A = —1, we show that
hermitian operators Cj ,Dy, v, are C-selfadjoint.

COROLLARY 4.3. Let Dy, y, be the maximal differential operator with symbols
Yo and Y that Wy, W1 € H”. Suppose that C_;Dy, v, is hermitian. Then C_;Dy, y,
is Cie J -selfadjoint, where 6 = arg(—y(0)).

Proof. Suppose that C_;Dy, y, is hermitian. Applying Theorem 4.2, we have
Wo(z) = a+bz and i (z) = —b+cz+bz?, where a,c € R and b € C. Suppose that § =
arg(b). Invoking Theorem 3.3 and putting u = —e~ %%, we conclude that C_.Dy, y,
is C i/ -selfadjoint. [
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