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C–SELFADJOINTNESS OF THE PRODUCT OF A COMPOSITION

OPERATOR AND A MAXIMAL DIFFERENTIATION OPERATOR

MAHMOOD HAJI SHAABANI, MAHSA FATEHI ∗ AND PHAM VIET HAI

(Communicated by S. McCullough)

Abstract. Let ϕ be an automorphism of D . In this paper, we consider the operator CϕDψ0 ,ψ1 on
the Hardy space H2 which is the products of composition and the maximal differential operator.
We characterize these operators which are C -selfadjoint with respect to some conjugations C .
Moreover, we find all hermitian operators CϕDψ0 ,ψ1 , when ϕ is a rotation.

1. Introduction

The set of real numbers and the set of complex numbers will be denoted by R and
C , respectively. The Hardy space H2 is defined as the set of all analytic functions in
the unit disk D for which

‖ f‖2 = sup
0�r<1

(∫ π

0
| f (reiθ )|2 dθ

2π

)
< ∞.

The Hardy space H2 is a Hilbert space with the inner product

〈 f ,g〉 =
1
2π

∫ 2π

0
f (eiθ )g(eiθ )dθ .

The space H∞ denotes the set of all bounded analytic functions on D , with ‖ f‖∞ =
sup{| f (z)| : z ∈ D} .

For every w ∈ D and each non-negative integer n � 0, let K[n]
w denote the unique

function in H2 that 〈 f ,K[n]
w 〉 = f (n)(w) for each f ∈ H2 ; for convenience, we use

the notation Kw when n = 0. The reproducing kernel function Kw in H2 for a point
w in the unit disk is given by Kw(z) = 1

1−wz , with ‖Kw‖2 = 1
1−|w|2 . We can write

K[n]
w (z) = dn

dwn k(wz) , where k(z) = ∑∞
j=0 z j .

Let ϕ be an analytic self-map of D ; the composition operator with symbol ϕ
is defined by Cϕ f = f ◦ ϕ . It is well-known that every composition operator Cϕ is
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bounded on H2 (see [3, Corollary 3.7]). For an analytic function ψ on D , the weighted
composition operator Cψ,ϕ is defined by the rule Cψ,ϕ ( f ) = ψ · f ◦ϕ .

Let u ∈ L∞(∂D) . The Toeplitz operator Tu on H2 is defined as Tu f = P(u f ) ,
where P denotes the orthogonal projection from L2 onto H2 . Let ϕ be an analytic
self-map of D and ψ ∈ H∞ . We have the useful formulas

(TψCϕ)∗Kw = ψ(w)Kϕ(w) (1)

and
(TψCϕ)∗K[1]

w = ψ(w)ϕ ′(w)K[1]
ϕ(w) + ψ ′(w)Kϕ(w). (2)

Let ϕ(z) = (az+b)/(cz+d) be a linear-fractional self-map of D , where ad−bc 	= 0.
Then σ(z) = (az− c)/(−bz+ d) maps D into itself, g(z) = (−bz+ d)−1 and h(z) =
cz+d are in H∞ . Cowen in [2] proved that C∗

ϕ = TgCσ T ∗
h . The maps σ ,g and h are

called the Cowen auxiliary functions.
A bounded operator T on a complex Hilbert space H is said to be a complex sym-

metric operator if there exists a conjugation C (an isometric, antilinear and involution)
such that CT ∗C = T . In this paper, we use the symbol J for the special conjugation
that (J f )(z) = f (z) for each analytic function f . The study of complex symmetric
operator class was initially addressed by Garcia and Putinar (see [7] and [8]) and has
been noticed by many researchers (see also [9]). Many authors have studied complex
symmetric composition operators and weighted composition operators (see [1], [4], [6],
[12], [13]).

Let H be a Hilbert space. The domain of an unbounded linear operator T is
denoted by dom(T ) . For two unbounded operators A , B , the notation A 
 B means
that A is a restriction of B on dom(A) , namely dom(A) ⊆ dom(B) and Ax = Bx for
every x ∈ dom(A) . Let T : dom(T ) ⊆ H → H be a closed, densely defined, linear
operator. For a conjugation C , we say that T is C-symmetric if T 
 CT ∗C and C-
selfadjoint if T = CT ∗C (see [15]). Let us emphasize that T = CT ∗C carries with it
the requirement that dom(T ) = dom(CT ∗C) .

Consider the formal differential expression of the form

E(ψ0,ψ1) f (z) = ψ0(z) f (z)+ ψ1(z) f ′(z)

for each f ∈ H2 , where ψ0,ψ1 ∈ H∞ . We define the maximal differential operator
Dψ0,ψ1 as follows

dom(Dψ0,ψ1) = { f ∈ H2 : E(ψ0,ψ1) f ∈ H2} Dψ0,ψ1 f = E(ψ0,ψ1) f .

The maps ψ0,ψ1 are called the symbols of the operator Dψ0,ψ1 . In particular, if ψ0 ≡ 0
and ψ1 ≡ 1, then Dψ0,ψ1 is the differentiation operator and it is denoted by D . It is not
hard to see that the differentiation operator D is unbounded on the Hardy space. Ohno
[14] determined that when CϕD is bounded and compact on the Hardy space. Recently
the second author and Hammond [5] have obtained the adjoint, norm and spectrum of
some operators CϕD on the Hardy space.

For some conjugation C , C -selfadjoint maximal differential operators have been
investigated by the third author and Putinar (see [10] and [11]). In this paper, we will
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only be considering CϕDψ0,ψ1 with ψ0,ψ1 ∈ H∞ and the map ϕ is an automorphism
of D ; that is, ϕ(z) = λ p−z

1−pz , when p ∈ D and |λ | = 1. Note that for ψ0,ψ1 ∈ H∞ , we
get

CϕDψ0,ψ1 = Cϕ(Tψ0 +Tψ1D) = Tψ0◦ϕCϕ +Tψ1◦ϕCϕD.

Since Tψ0◦ϕCϕ is a bounded operator and ψ1 ◦ϕ ∈ H∞ , one can easily see that
dom(CϕDψ0,ψ1) ⊇ dom(CϕD) . Ohno [14] showed that if ϕ has a finite angular deriva-
tive at any point on ∂D , then CϕD cannot be bounded. Also if ϕ is an automorphism
of D and ψ1 is not the zero function, then CϕDψ0,ψ1 is an unbounded operator (note
that ‖Tψ1◦ϕCϕD(zn)‖ = n‖ψ1 ◦ϕ‖ for any positive integer n ).

In this paper, we consider the unbounded operator CϕDψ0,ψ1 , when ϕ is an au-
tomorphism and ψ0,ψ1 ∈ H∞ . The goal of Section 2 is to obtain information about
CϕDψ0,ψ1 which will be needed in the sequel.

In Section 3, we give a necessary and sufficient condition for CϕDψ0,ψ1 to be
C -selfadjoint for some conjugation C .

In Section 4, we investigate the action of the adjoint of CϕDψ0,ψ1 on the arbitrary
element f ∈ dom(CϕDψ0,ψ1)

∗ . Then we identify what forms ψ0,ψ1 and λ must take
in order that Cλ zDψ0,ψ1 be hermitian.

2. Some properties

In this section, we state the following basic observations which are necessary for
our main results. First, we show that CϕDψ0,ψ1 is densely defined.

REMARK 2.1. Let ϕ be an analytic self-map of D and ψ0,ψ1 ∈ H∞ . We claim
that Kw ∈ dom(CϕDψ0,ψ1) . Since dom(CϕDψ0,ψ1) ⊇ dom(CϕD) , it suffices to show
that Kw ∈ dom(CϕD) . It is easy to see that K′

w(z) = Σ∞
n=1n(w)nzn−1 . It is not hard to

see that ∑∞
n=1 n2|w|2n < ∞ for each |w|< 1. Then K′

w ∈H2 and so CϕK′
w ∈H2 . Hence

Kw ∈ dom(CϕDψ0,ψ1) . Since the span of the reproducing kernel functions is dense in
H2 , CϕDψ0,ψ1 is densely defined.

In the following lemma, we investigate the action of the adjoint of CϕDψ0,ψ1 on
the reproducing kernel functions.

LEMMA 2.2. Let ϕ be an analytic self-map of D . For every w ∈ D and non-

negative integer m, K[m]
w ∈ dom(CϕDψ0,ψ1)

∗ . Moreover,

(CϕDψ0,ψ1)
∗Kw = ψ0(ϕ(w))Kϕ(w) + ψ1(ϕ(w))K[1]

ϕ(w) (3)

and

(CϕDψ0,ψ1)
∗K[1]

w = ϕ ′(w)
(

ψ ′
0(ϕ(w))Kϕ(w) + [ψ0(ϕ(w))+ ψ ′

1(ϕ(w))]K[1]
ϕ(w)

+ψ1(ϕ(w))K[2]
ϕ(w)

)
. (4)

Proof. We know that (CϕDψ0,ψ1)
∗ = D∗

ψ0,ψ1
C∗

ϕ . For every w∈D and non-negative

integer m , it is easy to see that C∗
ϕK[m]

w is a linear combination of elements Kϕ(w),K
[1]
ϕ(w),
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. . . ,K[m]
ϕ(w) . Invoking [10, Lemma 3.1], we obtain that (CϕDψ0,ψ1)

∗K[m]
w ∈ H2 . As we

saw in the first section, we have

CϕDψ0,ψ1 = Tψ0◦ϕCϕ +Tψ1◦ϕCϕD.

Then (CϕDψ0,ψ1)
∗ = C∗

ϕT ∗
ψ0◦ϕ +(CϕD)∗T ∗

ψ1◦ϕ . Again we infer from [10, Lemma 3.1],
(1) and (2) that

(CϕDψ0,ψ1)
∗Kw = ψ0(ϕ(w))Kϕ(w) + ψ1(ϕ(w))K[1]

ϕ(w)

and

(CϕDψ0,ψ1)
∗K[1]

w = D∗
ψ0,ψ1

(ϕ ′(w)K[1]
ϕ(w))

= ϕ ′(w)
(

ψ ′
0(ϕ(w))Kϕ(w) + [ψ0(ϕ(w))+ ψ ′

1(ϕ(w))]K[1]
ϕ(w)

+ψ1(ϕ(w))K[2]
ϕ(w)

)
. �

The following observation, which is stated in the case where ϕ is an automor-
phism of D , can be generalized to any analytic self-map of D by an argument similar
to that used in [10, Proposition 3.2].

REMARK 2.3. Let ϕ be an automorphism of D . Suppose that f ,g ∈ H2 and that
fn ∈ dom(Dψ0,ψ1) , with fn → f and CϕDψ0,ψ1 fn → g as n → ∞ . We know Cϕ−1 is

bounded. Thus, Cϕ−1CϕDψ0,ψ1 fn →Cϕ−1g as n→∞ . It states that Dψ0,ψ1 fn → g◦ϕ−1

as n → ∞ . Because Dψ0,ψ1 is closed (see [10, Proposition 3.2]), Dψ0,ψ1( f ) = g ◦ϕ−1 .
Then CϕDψ0,ψ1( f ) = g and so the operator CϕDψ0,ψ1 is closed.

3. C -selfadjointness

Suppose that U is unitary; that is, U∗U = UU∗ = I . Assume that U is complex
symmetric with conjugation J . By [4, Lemma 2.2], UJ is a conjugation. An analogue
of Lemma 3.1 holds for a complex symmetric operator T (see [4, Proposition 2.3]).

LEMMA 3.1. Let U be unitary and complex symmetric with conjugation WJ ,
where W is unitary. Then an operator T is WJ -selfadjoint if and only if UT is UWJ -
selfadjoint.

Proof. It is easy to see that T is a closed and densely defined operator if and only
if UT is as well. Let T be WJ -selfadjoint. We have

UWJ(UT )∗UWJ = UWJT ∗U∗UWJ =UT.

Then UT is UWJ -selfadjoint.
Conversely, suppose that UT is UWJ -selfadjoint.

WJT ∗WJ = U∗UWJ(UT )∗UWJ = U∗UT = T.
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Therefore, T is WJ -selfadjoint. �

In the next theorem, we characterize all J -selfadjoint operators CϕDψ0,ψ1 .

THEOREM 3.2. Suppose that ϕ is an automorphism of D and Dψ0,ψ1 is the maxi-
mal differential operator, with symbols ψ0,ψ1 , where ψ0 is a polynomial and ψ1 ∈H∞ .
Let a,b,c ∈ C . Then CϕDψ0,ψ1 is J -selfadjoint if and only if one of the following oc-
curs.

(a) ϕ(z) = μz, ψ0(z) = a+bz and ψ1(z) = bμ + cz+bz2 , where |μ | = 1 .
(b) ϕ(z) = p

p
p−z
1−pz , ψ0(z) = (a+bz)(1− pz) and ψ1(z) = (d + cz+bz2)(1− pz) ,

where p ∈ D , p 	= 0 and d = − p
pb− pc.

Proof. Let CϕDψ0,ψ1 be J -selfadjoint. For each w ∈ D , Lemma 2.2 implies that

(CϕDψ0,ψ1)
∗Kw = ψ0(ϕ(w))Kϕ(w) +ψ1(ϕ(w))K[1]

ϕ(w) . Since CϕDψ0,ψ1 is J -selfadjoint,

J(CϕDψ0,ψ1)
∗(1) = (CϕDψ0,ψ1)(J(1)).

It is easy to see that ψ0(ϕ(0))Kϕ(0) + ψ1(ϕ(0))K[1]
ϕ(0)

= ψ0 ◦ϕ and so for each z ∈ D ,

ψ0(ϕ(0))
1−ϕ(0)z

+
ψ1(ϕ(0))z

(1−ϕ(0)z)2 = ψ0(ϕ(z)). (5)

We infer from (5) that

ψ0(ϕ(0))(1−ϕ(0)ϕ−1(z))+ ψ1(ϕ(0))ϕ−1(z) = ψ0(z)(1−ϕ(0)ϕ−1(z))2. (6)

In (6), set ϕ−1(z) = λ p−z
1−pz , where |λ | = 1 and p ∈ D . After some computation, we

obtain

ψ0(ϕ(0))(1− pz)(1−ϕ(0)λ p+(−p+ λ ϕ(0))z)
+(1− pz)(ψ1(ϕ(0))λ p−ψ1(ϕ(0))λ z)

= ψ0(z)(1−λ ϕ(0)p+(−p+ λ ϕ(0))z)2. (7)

Since ψ0 is a polynomial and the left side of (7) is a polynomial of degree at most 2,
we conclude that ψ0 is constant or −p+ λ p = 0. We break the proof into two cases.

(i) Suppose that −p+ λ p = 0. It shows that p = 0 or λ = p
p . If p = 0, then

ϕ(z) = −λz and we have C−λ zDψ0,ψ1 is J -selfadjoint. By Lemma 3.1, Dψ0,ψ1 is
C−λ zJ -selfadjoint. Thus, [10, Theorem 4.4] implies that ψ0(z) = a + bz and
ψ1(z) = −bλ + cz + bz2 , where a,b,c ∈ C . Now assume that p 	= 0 and λ = p/p .
We have ϕ(z) = p

p
p−z
1−pz . Since CϕDψ0,ψ1 is J -selfadjoint and Cψp,ϕ−1 is also J -

symmetric, where ψp(z) = (1−|p|2)1/2

1−pz (see [4, Proposition 2.1]), Lemma 3.1 states that
Cψp,ϕ−1CϕDψ0,ψ1 is Cψp,ϕ−1J -selfadjoint. It is not hard to see that Cψp,ϕ−1CϕDψ0,ψ1 =
Dψp·ψ0,ψp·ψ1 . From [10, Theorem 5.6], we get ψp(z)ψ0(z) = a+bz and ψp(z)ψ1(z) =
d + cz+bz2 , where a,b,c ∈ C and d = −pb

p − pc . Hence

ψ0(z) =
(a+bz)(1− pz)

(1−|p|2)1/2
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and

ψ1(z) =
(d + cz+bz2)(1− pz)

(1−|p|2)1/2
.

Therefore, the result follows.
(ii) Suppose that ψ0 ≡ α , where α ∈ C . By (5), for each z ∈ D , α(1−ϕ(0)z)+

ψ1(ϕ(0))z = α(1−ϕ(0)z)2 . It states that

αϕ(0)2z2 +(−2αϕ(0)−ψ1(ϕ(0))+ αϕ(0))z = 0 (8)

and so by (8), α = 0 or ϕ(0) = 0 and therefore, in these two cases again by (8),
ψ1(ϕ(0)) = 0. First suppose that ϕ(0) = 0. Then ϕ(z) = μz , where |μ | = 1. Since
CμzDα ,ψ1 is J -selfadjoint, by the similar proof which was seen in the proof of Part (i),
Dα ,ψ1 is CμzJ -selfadjoint and so ψ0 ≡ α and ψ1(z) = cz . Now assume that α = 0.
Since CϕD0,ψ1 is J -selfadjoint, for each w ∈ D , J(CϕD0,ψ1)

∗Kw = (CϕD0,ψ1)JKw and
(3) dictates that

ψ1(ϕ(w))K[1]
ϕ(w)

=
wψ1(ϕ(z))

(1−wϕ(z))2 .

It shows that
ψ1(ϕ(w))ϕ−1(z)

(1−ϕ(w)ϕ−1(z))2 =
wψ1(z)

(1−wz)2 . (9)

Since CϕD0,ψ1 is J -selfadjoint, we have J(CϕD0,ψ1)
∗z = CϕD0,ψ1Jz . Therefore, by

the fact that ψ1(ϕ(0)) = 0 and (4), we see that ϕ ′(0)ψ ′
1(ϕ(0))K[1]

ϕ(0)
= ψ1 ◦ϕ , which

implies that

ψ1(z) =
ϕ ′(0)ψ ′

1(ϕ(0))ϕ−1(z)
(1−ϕ(0)ϕ−1(z))2 . (10)

Note that ϕ ′(0) 	= 0 and ψ ′
1(ϕ(0)) 	= 0, because ϕ is an automorphism and ψ1 is not

the zero function (if ψ ′
1(ϕ(0)) = 0, then by (10), ψ1 ≡ 0 and in this case CϕDψ0,ψ1 is

the zero operator). By (10), we see that for each w ∈ D ,

ψ1(ϕ(w)) =
wϕ ′(0)ψ ′

1(ϕ(0))
(1−ϕ(0)w)2 . (11)

From (9), (10) and (11), for each z,w ∈ D , we have

wϕ ′(0)ψ ′
1(ϕ(0))ϕ−1(z)

(1−ϕ(0)w)2(1−ϕ(w)ϕ−1(z))2 =
wϕ ′(0)ψ ′

1(ϕ(0))ϕ−1(z)
(1−ϕ(0)ϕ−1(z))2(1−wz)2 .

For w 	= 0 and z 	= p , we have

(1−ϕ(0)ϕ−1(z))2(1−wz)2 = (1−ϕ(0)w)2(1−ϕ(w)ϕ−1(z))2. (12)

Set ϕ−1(z) = λ p−z
1−pz in (12), we obtain

(1−ϕ(0)λ p+(−p+ϕ(0)λ )z)2(1−wz)2 = (1−ϕ(0)w)2(1−λ ϕ(w)p+(ϕ(w)λ − p)z)2

(13)
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for each w 	= 0 and z 	= p . The right side of (13) is a polynomial of degree at most
2. Then pλ = p and so p = 0 or λ = p

p . If p = 0, then ϕ(z) = −λ z and by the

similar proof which was stated in (i), ψ1(z) = cz . Now assume that λ = p
p . We

have ϕ(z) = p
p

p−z
1−pz and CϕD0,ψ1 is J -selfadjoint. We know that Cψp,ϕ−1 is also

J -symmetric, where ψp(z) = (1−|p|2)1/2

1−pz . Then by Lemma 3.1, Cψp,ϕ−1CϕD0,ψ1 is
Cψp,ϕ−1J−selfadjoint. By the same argument which was stated in (i), ψp(z)ψ1(z) =

d + cz , where d = −pc . Then ψ1(z) = (d+cz)(1−pz)
(1−|p|2)1/2 .

Conversely, first suppose that ϕ(z) = μz , ψ0(z) = a+bz and ψ1(z) = bμ + cz+
bz2 that |μ | = 1. One can see that Cϕ−1CϕDψ0,ψ1 = Dψ0,ψ1 is CμzJ -selfadjoint (see
[10, Theorem 4.4]). We know that Cμz is J -symmetric (see [4, Proposition 2.1]). Thus,
by Lemma 3.1, CϕDψ0,ψ1 is J -selfadjoint. Now assume that ϕ(z) = p

p
p−z
1−pz , ψ0(z) =

(a+ bz)(1− pz) and ψ1(z) = (d + cz + bz2)(1− pz) , where p ∈ D , p 	= 0 and d =
− p

pb− pc . We know that Cψp,ϕ−1 is J -symmetric (see [4, Proposition 2.1]). One

can see that Cψp,ϕ−1CϕDψ0,ψ1 = Dψp·ψ0,ψp·ψ1 that ψp(z)ψ0(z) = (1− |p|2)1/2(a+ bz)
and ψp(z)ψ1(z) = (1− |p|2)1/2(d + cz + bz2) . By [10, Theorem 5.6], Dψpψ0,ψpψ1 is
Cψp,ϕ−1J -selfadjoint and so by Lemma 3.1 and [4, Proposition 2.1], CϕDψ0,ψ1 is J -
selfadjoint. �

In Theorem 3.3, we find operators CϕDψ0,ψ1 which are Cλ zJ -selfadjoint.

THEOREM 3.3. Assume that ϕ is an automorphism of D and Dψ0,ψ1 is the max-
imal differential operator, with symbols ψ0 and ψ1 , where ψ0 is a polynomial and
ψ1 ∈ H∞ . Let a,b,c ∈ C . Then for |λ | = 1 , CϕDψ0,ψ1 is Cλ zJ -selfadjoint if and only
if one of the following occurs.

(a) ϕ(z) = λ μz, ψ0(z) = a+bz and ψ1(z) = bμ + cz+bz2 , where |μ | = 1 .

(b) ϕ(z)= pλ
p

pλ−z
1−pλ z , ψ0(z) = (a+bz)(1− pz) and ψ1(z) = (d+cz+bz2)(1− pz) ,

where p ∈ D , p 	= 0 and d = −p
p b− pc.

Proof. Suppose that CϕDψ0,ψ1 is Cλ zJ -selfadjoint. One can easily see that Cλ z is
Cλ zJ -symmetric. By Lemma 3.1, Cλ zCϕDψ0,ψ1 is J -selfadjoint. Thus, Cϕ(λ z)Dψ0,ψ1 is
J -selfadjoint. The result follows from Theorem 3.2.

Conversely, let ϕ(z) = λ μz , ψ0(z) = a+bz and ψ1(z) = bμ +cz+bz2 . We know
that Cλ z is J -symmetric. We get Cλ zCϕDψ0,ψ1 = CμzDψ0,ψ1 . By the proceeding the-
orem CμzDψ0,ψ1 is J -selfadjoint. Then by Lemma 3.1, CϕDψ0,ψ1 is Cλ zJ -selfadjoint.
Now let ϕ ,ψ0 and ψ1 satisfy the hypotheses of Statement (b). It is easy to see that
Cϕ = Cλ zC p

p
p−z
1−pz

. We have C p
p

p−z
1−pz

Dψ0,ψ1 is J -selfadjoint by the preceding theorem.

Hence by Lemma 3.1, CϕDψ0,ψ1 is Cλ zJ -selfadjoint. �

In the following theorem, we investigate which symbols ψ0 , ψ1 and ϕ give rise
the C -selfadjointness of operator CϕDψ0,ψ1 with conjugation Cψq,ϕqJ , where q ∈ D is

a nonzero number, ψq(z) = (1−|q|2)1/2

1−qz and ϕq(z) = q
q

q−z
1−qz .
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THEOREM 3.4. Let ϕ be an automorphism of D and Dψ0,ψ1 be the maximal dif-
ferential operator with symbols ψ0 and ψ1 , where ψ1 ∈ H∞ . Suppose that ψ0

1−qϕq◦ϕ−1

is a polynomial, where q∈D is a nonzero number. Then CϕDψ0,ψ1 is Cψq,ϕqJ -selfadjoint
if and only if one of the following occurs.

(a) ϕ = μϕq , ψ0(z) = (a+bz)(1−qμz) and ψ1(z) = (bμ + cz+bz2)(1−qμz) ,
where |μ | = 1 and a,b,c ∈ C .

(b) ϕ = ϕp ◦ϕq , ψ0(z) = (a+bz)(1− pz)(1−qϕp(z)) and ψ1(z) = (1−qϕp(z))
(d + cz+bz2)(1− pz) , where a,b,c ∈ C , p ∈ D , p 	= 0 and d = −p

p b− pc.

Proof. Let CϕDψ0,ψ1 be Cψq,ϕqJ -selfadjoint. By [4, Proposition 2.1], Cψq,ϕq is J -
symmetric. Then it is easy to see that C∗

ψq,ϕq
is Cψq,ϕqJ -symmetric. Lemma 3.1 implies

that C∗
ψq,ϕq

CϕDψ0,ψ1 is J -selfadjoint. By the Cowen adjoint formula, we have

C∗
ψq,ϕq

CϕDψ0,ψ1 = (1−|q|2)1/2Cϕ◦ϕ−1
q

Dψ0·(g◦ϕq◦ϕ−1),ψ1·(g◦ϕq◦ϕ−1),

where g(z) = 1
1−qz . Theorem 3.2 implies that one of the following occurs.

(i) ϕ(ϕ−1
q (z)) = μz , ψ0(z)g(ϕq(ϕ−1(z))) = a + bz and ψ1(z)g(ϕq(ϕ−1(z))) =

bμ + cz+bz2 , where |μ | = 1.
(ii) ϕ(ϕ−1

q (z)) = p
p

p−z
1−pz , ψ0(z)g(ϕq(ϕ−1(z))) = (a + bz)(1 − pz) and ψ1(z)

g(ϕq(ϕ−1(z))) = (d + cz+bz2)(1− pz) , where p ∈ D , p 	= 0 and d = −p
p b− pc .

If (i) occurs, then ϕ(z) = μ q
q

q−z
1−qz and so ψ0(z)g(ϕq(ϕ−1(z))) = ψ0(z)

1−qμz . It shows

that ψ0(z) = (a+bz)(1−qμz) . Also ψ1(z)g(ϕq(ϕ−1(z))) = ψ1(z)
1−qμz and thus, ψ1(z) =

(bμ + cz+bz2)(1−qμz) . Now assume that (ii) holds. We have ϕ(ϕ−1
q (z)) = p

p
p−z

1−pz .

Then ϕ(z) = p
p

p−ϕq(z)
1−pϕq(z)

and ψ0(z)g(ϕq(ϕ−1(z))) = ψ0(z)
1−qϕp(z)

. Hence ψ0(z) = (1−
qϕp(z))(a+bz)(1− pz) . By the same argument, ψ1(z)= (1−qϕp(z))(d+cz+bz2)(1−
pz) .

Conversely, the result follows from Theorem 3.2 and the same idea stated in The-
orem 3.3. �

In the next, two examples of Theorem 3.4 are given.

Example 3.5. (a) Suppose that ϕ(z) = i
1
2−z

1− 1
2 z

, ψ0(z) = (az + b)(1 + i
2 z) and

ψ1(z) = (bi+ cz+bz2)(1+ i
2 z) , where a,b,c ∈ C . We have ϕ = iϕ 1

2
and

1− 1
2

ϕ 1
2
◦ϕ−1 = 1− 1

2
ϕ 1

2
◦ (iϕ 1

2
)−1 = 1+

i
2
z.

Then ψ0
1− 1

2 ϕ 1
2
◦ϕ−1 is a polynomial. Theorem 3.4(a) dictates that CϕDψ0,ψ1 is Cψ 1

2
,ϕ 1

2
J -

selfadjoint.

(b) Suppose that ϕ(z) = 1+ 3i
2 +( i

2−3)z
3+ i

2 +( 3i
2 −1)z

, ψ0(z) = (az+ b)(1− 1
3 z)(1− i(1−3z)

6−2z ) and

ψ1(z) = (1− i(1−3z)
6−2z )(−b− 1

3c+ cz+bz2)(1− 1
3z) , where a,b,c ∈ C . It is easy to see
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that ϕ = ϕ 1
3
◦ϕ i

2
. We obtain

1− i
2

ϕ i
2
◦ϕ−1 = 1− i

2
(ϕ i

2
◦ϕ−1

i
2

◦ϕ−1
1
3

) = 1− i
2

ϕ 1
3

= 1− i(1−3z)
6−2z

.

Then ψ0
1− i

2 ϕ i
2
◦ϕ−1 is a polynomial. Theorem 3.4(b) implies that CϕDψ0,ψ1 is Cψ i

2
,ϕ i

2
J -

selfadjoint.

4. Hermiticity

A densely defined operator T is hermitian if T ∗ = T . In this section, we charac-
terize hermitian operator CϕDψ0,ψ1 , when ϕ is a rotation of the unit disk. In the next
proposition, for each f ∈ dom(CλuDψ0,ψ1)

∗ , we find (CλuDψ0,ψ1)
∗( f ) .

PROPOSITION 4.1. Let Dψ0,ψ1 be the maximal differential operator with symbols

ψ0(z) = a+bz

and
ψ1(z) = d + cz+ αbz2,

where a,b,c,d,α ∈ C . Then for λ ∈ ∂D and a nonzero point z ∈ D ,

(CλuDψ0,ψ1)
∗( f )(z) = (a+dz) f (λ z)+ λ(dz2 +b+ cz) f ′(λ z)

+b(α −1)λ f ′(λ z)−b(α −1)

(
f (λ z)− f (0)

z

)
,

where f ∈ dom(CλuDψ0,ψ1)
∗ .

Proof. Let f ∈ dom(CλuDψ0,ψ1)
∗ and z,u be arbitrary points in D that z 	= 0.

Dψ0,ψ1Kz(u) =
a+bu
1− zu

+
(d + cu+ αbu2)z

(1− zu)2

=
a+dz
1− zu

+
−dz(1− zu)+dz

(1− zu)2 +
bu(1− zu)+ αbzu2

(1− zu)2 +
czu

(1− zu)2

= (a+dz)Kz(u)+dz2K[1]
z (u)+bK[1]

z (u)+
−bzu2 + αbzu2

(1− zu)2 + czK[1]
z (u)

= (a+dz)Kz(u)+ (dz2 +b+ cz)K[1]
z (u)+bz(α −1)uK[1]

z (u). (14)

We have

〈 f (λu),bz(α −1)uK[1]
z (u)〉 = bz(α −1)〈 f (λu),uK[1]

z (u)〉
= bz(α −1)〈T ∗

u f (λu),K[1]
z (u)〉

= bz(α −1)〈 f (λu)− f (0)
u

,K[1]
z (u)〉
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= bz(α −1)
λ f ′(λ z)z− f (λ z)+ f (0)

z2

= bz(α −1)

(
λ f ′(λ z)

z
+

f (0)− f (λ z)
z2

)

= b(α −1)

(
λ f ′(λ z)+

f (0)− f (λ z)
z

)
. (15)

Then (14) and (15) imply that

(CλuDψ0,ψ1)
∗ f (z) = 〈Cλu f ,Dψ0,ψ1Kz〉

= (a+dz) f (λ z)+ λ(dz2 +b+ cz) f ′(λ z)

+b(α −1)λ f ′(λ z)−b(α −1)

(
f (λ z)− f (0)

z

)

and the result follows. �

Let z be a complex number. We have z = |z|eiθ , where 0 � θ < 2π and we denote
θ by arg(z) . In particular, we set arg(0) = 0. Now we use Proposition 4.1 to establish
the main result of this section.

THEOREM 4.2. Let λ ∈ ∂D and Dψ0,ψ1 be the maximal differential operator with
symbols ψ0 and ψ1 that ψ0,ψ1 ∈H∞ . The operator Cλ zDψ0,ψ1 is hermitian if and only
if one the following occurs.

(a) λ = 1 , ψ0(z) = a+bz and ψ1(z) = b+ cz+bz2 , where b ∈ C and a,c ∈ R

(b) λ = −1 , ψ0(z) = a + bz and ψ1(z) = −b + cz + bz2 , where a,c ∈ R and
b ∈ C .

Proof. Let Cλ zDψ0,ψ1 be hermitian. Then Cλ zDψ0,ψ1Kw = (Cλ zDψ0,ψ1)
∗Kw for

each z,w ∈ D . Lemma 2.2 implies that

ψ0(λ z)
1−wλ z

+
ψ1(λ z)w

(1−wλ z)2 =
ψ0(λw)
1−λwz

+
ψ1(λw)z

(1−λwz)2
. (16)

Letting w = 0 in (16) gives

ψ0(z) = ψ0(0)+ ψ1(0)λ z

and so ψ0(0) is a real number. Substitute ψ0 back into (16) to obtain that for each
w 	= 0,

ψ0(0)
w(1−wλ z)

− ψ0(0)
w(1−λwz)

+
ψ1(λ z)

(1−wλ z)2 −
ψ1(0)

1−λwz

=
1
w

(
ψ1(λw)z

(1−λwz)2
− ψ1(0)z

1−wλ z

)
. (17)



C-SELFADJOINTNESS OF THE PRODUCT OF A COMPOSITION OPERATOR 323

First, we consider the right side of (17). We obtain

1
w

(
ψ1(λw)z

(1−λwz)2
− ψ1(0)z

1−wλ z

)
=

z
w

(
ψ1(λw)(1−wλ z)−ψ1(0)(1−λwz)2

(1−λwz)2(1−wλ z)

)

= z

(
λ

ψ1(λw)−ψ1(0)
wλ

1

(1−λwz)2(1−wλ z)

)

+z

(
−ψ1(λw)wλ z−ψ1(0)(λwz)2 +2ψ1(0)λwz

w(1−λwz)2(1−wλ z)

)
.

In the above equality, let w → 0. Hence we have

lim
w→0

1
w

(
ψ1(λw)z

(1−λwz)2
− ψ1(0)z

1−wλ z

)
= λ ψ ′

1(0)z+(2ψ1(0)λ −ψ1(0)λ )z2.

After some computation on the left side of (17) and letting w → 0, we get

lim
w→0

ψ0(0)
w(1−wλ z)

− ψ0(0)
w(1−λwz)

+
ψ1(λ z)

(1−wλ z)2 −
ψ1(0)

1−λwz

= (ψ0(0)λ −ψ0(0)λ )z+ ψ1(λ z)−ψ1(0).

Since Cλ zDψ0,ψ1 is hermitian, we have

(ψ0(0)λ −ψ0(0)λ )z+ ψ1(λ z)−ψ1(0) = λ ψ ′
1(0)z+(2ψ1(0)λ −ψ1(0)λ )z2.

Then

ψ1(z) = ψ1(0)+(ψ0(0)λ −ψ0(0)λ +λ ψ ′
1(0))λ z+(2ψ1(0)λ −ψ1(0)λ )(λ z)2. (18)

Let ψ0(z) = a+bz , where a = ψ0(0) ∈ R and b = λ ψ1(0) . Therefore, by (18), we get

ψ1(z) = bλ +(aλ
2−a+ cλ

2
)z+(2b−bλ 2)λ

2
z2,

where c = ψ ′
1(0) . It states that c = aλ

2 − a + cλ
2
. For convenience, let ψ1(z) =

bλ + cz + (2b− bλ 2)λ
2
z2 . It is not hard to see that z2 ∈ dom(Cλ zDψ0,ψ1) and z2 ∈

dom((Cλ zDψ0,ψ1)
∗) (see [10, Lemma 3.1]). Since Cλ zDψ0,ψ1 is hermitian, Cλ zDψ0,ψ1z

2

= (Cλ zDψ0,ψ1)
∗z2 . One can see that

Cλ zDψ0,ψ1z
2 = (bλ 3 +4bλ −2bλ 3)z3 +(aλ 2 +2cλ 2)z2 +2bz (19)

and by Proposition 4.1,

(Cλ zDψ0,ψ1)
∗z2 = (3bλ)z3 +(aλ

2
+2λ

2
c)z2 +(2bλ

2
+b(2−2λ

2
))z3. (20)

Then (19) and (20) state that bλ 3 +4bλ −2bλ 3 = 3bλ . It shows that b = 0 or λ 2 = 1.
First suppose that λ 2 = 1. The trivial case λ = 1 was described in [10, Theorem 6.3].
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Now assume that λ = −1. Again by (19) and (20), a + 2c = a + 2c and so c ∈ R

and the result follows. Now let b = 0. We have ψ0 ≡ a and ψ1(z) = cz . From [10,
Theorem 3.3], we have

(Cλ zDa,cz)∗ = Da,czCλ z = (aCλ z + λTczCλ zD) = Cλ zDa,cz.

Since Cλ zDa,cz is hermitian, we get for each f ∈ dom(Cλ zDa,cz) ,

Da,cz( f ) = C
λ 2

z
Da,cz( f ). (21)

We break the proof in to two cases. First, suppose that λ is not a root of 1. By

(21), for f (z) = zn , where n is a non-negative integer, we have (a+ nc)zn = λ
2n

(a+
nc)zn . The limit of the above equality as z → 1 shows that

a+nc = λ
2n

(a+nc) (22)

for every non-negative integer n . From (22), we have a+ c = λ
2
(a+ c) and

a+2c = λ 4
(a+2c). (23)

Hence ( a+c
a+c )

2 = a+2c
a+2c and so

c2(a+2c) ∈ R. (24)

Invoking (23) and (24), we see that λ 4 c2

c2 ∈ R . Let c = |c|eiθ , where θ = arg(c) . Then

λ 4
= e4iθ or λ 4

= −e4iθ . Let arg(c2) = θ̃ . Because λ is not a root of unity, eiθ and
eiθ̃ are not roots of unity. Moreover, (22) shows that the set { a+nc

a+nc : n = 0,1, . . .} is
dense in ∂D . For arbitrary ε > 0, it is not hard to see that there is an integer N such
that for each n � N , |arg(a+ 2nc)− θ | < ε (note that a+ 2nc is the major axis of a
parallelogram). Then for n � N , a+2nc+n2c2 lies in the parallelogram that one side
is the line segment with endpoints 0 and n2c2 and the other side is the line segment
with endpoints 0 and a+2nc . Since θ −ε � arg(a+2nc) � θ +ε (note that eiθ is not

a root of unity and so θ 	= 0) and arg(n2c2) = θ̃ , the set { (a+nc)2

|a+nc|2 } is not dense in ∂D

which is a contraction. In the other case, assume that there is an integer n0 such that

λ n0 = 1. Applying (22), we have a+ n0c = λ
2n0(a+ n0c) and so c ∈ R . By setting

n = 1 in (22), λ 2 = 1 or c = −a . We considered the case λ 2 = 1. If c = −a , then

again by (22), λ
2n

= 1 for every integer n > 1. Then λ 2 must be 1 and the result
follows.

Conversely, if λ ,ψ0,ψ1 satisfy the hypotheses of Part (a), the result follows obvi-
ously by [10, Theorem 6.3]. Now suppose that λ = −1, ψ0(z) = a+bz and ψ1(z) =
−b+ cz+bz2 , where a,c ∈ R and b ∈ C . We infer from [10, Theorem 3.3] that

C−zDψ0,ψ1 = C−z(Tψ0 +Tψ1D)
= (Tψ0(−z) +T−ψ1(−z)D)C−z

= Dψ0(−z),−ψ1(−z)C−z

= D∗
ψ0,ψ1

C−z

= (C−zDψ0,ψ1)
∗. (25)
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Then by (25), C−zDψ0,ψ1 is hermitian. �

If Cλ zDψ0,ψ1 is hermitian, then by Theorem 4.2, either λ = 1 or λ = −1. In the
case that λ = 1, [10, Corollary 6.5] implies that Cλ zDψ0,ψ1 is Cβ zJ -selfadjoint, where
β was defined in [10, Corollary 6.5]. In the next result, for λ = −1, we show that
hermitian operators Cλ zDψ0,ψ1 are C -selfadjoint.

COROLLARY 4.3. Let Dψ0,ψ1 be the maximal differential operator with symbols
ψ0 and ψ1 that ψ0,ψ1 ∈ H∞ . Suppose that C−zDψ0,ψ1 is hermitian. Then C−zDψ0,ψ1

is Ce2iθ zJ -selfadjoint, where θ = arg(−ψ1(0)) .

Proof. Suppose that C−zDψ0,ψ1 is hermitian. Applying Theorem 4.2, we have
ψ0(z)= a+bz and ψ1(z)=−b+cz+bz2 , where a,c∈R and b∈C . Suppose that θ =
arg(b) . Invoking Theorem 3.3 and putting μ = −e−2iθ , we conclude that C−zDψ0,ψ1

is Ce2iθ J -selfadjoint. �
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