
Operators
and

Matrices

Volume 15, Number 1 (2021), 341–355 doi:10.7153/oam-2021-15-24

THE PRODUCT OF OPERATORS AND THEIR THE

MOORE–PENROSE INVERSES ON HILBERT C∗ –MODULES

MARYAM JALAEIAN, MEHDI MOHAMMADZADEH KARIZAKI ∗
AND MAHMOUD HASSANI

(Communicated by R. Rajić)

Abstract. We assure the existence of the Moore–Penrose inverse of a product UTS , under the as-
sumptions that T has a closed range and that there exist U ′ and S′ such that U ′UT = T = TSS′ ,
and then we characterize the Moore–Penrose inverse of UTS in terms of the corresponding in-
verses of T . Also, we obtain the block matrix decomposition of operators, which implies that
the reverse order law for operators establishes. Finally we achieve some relations between the
product of operators and their the Moore-Penrose inverses.

1. Introduction

Hilbert C∗ -modules are generalizations of Hilbert spaces by allowing inner prod-
ucts to take values in a C∗ -algebra rather than in the field of real or complex numbers.
Some fundamental properties of inner product spaces are no longer valid in inner prod-
uct C∗ -modules in their complete generality. Consequently, when we are studying inner
product C∗ -modules, it is always of interest under which conditions as well as which
more general, situations might appear. The book [4] is used as a standard reference
source.

The Moore-Penrose inverse is a topic of considerable research in matrix theory,
ring theory, operator algebra with a variety of applications including control theory,
signal processing and estimation theory. The existence of the Moore-Penrose inverse is
of interest in the study of the structure of a non commutative algebra.

Xu and Sheng [8] showed that a bounded adjointable operator between two Hilbert
C∗ -modules admits a bounded the Moore–Penrose inverse if and only if that operator
has closed range. Ensuring of the existence of the Moore-Penrose inverse of product
operators and its computing is not an easy task in general.

Gouveia and Puystjens introduced an equation on finite matrices and applied it for
several familiar factorizations of matrices such as the polar, the Schur, and the singular-
value decompositions [2]. Patrı̀cio in [7] gave necessary and sufficient conditions in
order to product of known operators be the Moore–Penrose invertible.
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In this paper, the existence of (TS)† , (UT )† and (UTS)† , under the assumption
that T has a closed range and the existence of U ′ and S′ such that U ′UT = T = TSS′ ,
is guaranteed, and then we characterize the Moore-Penrose inverse UTS in terms of
the corresponding inverses of T , and also by focuses on block matrix decomposition
of operators reobtain it, in terms of the corresponding the Moore-Penrose inverse T .
The same technique enabling us to find that conditions under which the reverse order
law for operators hold and it leads to obtain new results of the product of operators
and their the Moore-Penrose inverses in the infinite dimensional settings on the Hilbert
C∗ -module.

Let us fix our notation and terminology. A Hilbert A -module X is a right A -
module equipped with an A -valued inner product 〈·, ·〉 : X ×X → A such that X

is complete with respect to the induced norm ‖x‖ = ‖〈x,x〉‖ 1
2 (x ∈ X ) . Throughout

the rest of this paper, A denotes a C∗ -algebra and X , Y , Z and K denote Hilbert
A -modules. Let L (X ,Y ) be the set of operators T : X → Y for which there is
an operator T ∗ : Y → X such that 〈Tx,y〉 = 〈x,T ∗y〉 for any x ∈ X and y ∈ Y . It
is known that any element T ∈ L (X ,Y ) must be bounded and A -linear. We call
L (X ,Y ) the set of adjointable operators from X to Y . For any T ∈ L (X ,Y ) ,
the range and the null space of T are represented by R(T ) and N (T ) , respectively. In
case X = Y , the space L (X ,X ) , which is abbreviated to L (X ) , is a C∗ -algebra.

A closed submodule M of X is said to be orthogonally complemented if X =
M⊕M⊥ , where M⊥ =

{
x ∈ X : 〈x,y〉 = 0 for any y ∈ M

}
. If T ∈ L (X ,Y ) does

not have closed range, then neither N (T ) nor R(T ) needs to be orthogonally comple-
mented. In addition, if T ∈ L (X ,Y ) and R(T ∗) is not orthogonally complemented,
then it may happen that N (T )⊥ �= R(T ∗) ; see [4, 5]. The above facts show that the
theory of Hilbert C∗ -modules are much different and more complicated than that of
Hilbert spaces.

An operator S ∈ L (Y ,X ) is an inner inverse of T, if TST = T holds. In this
case T is inner invertible, or relatively regular. It is well known that T is inner invertible
if and only if R(T ) is closed in Y . The Moore-Penrose inverse of T ∈ L (X ,Y ) is
the operator X ∈ L (Y ,X ) which satisfies the Penrose equations

(1) TXT = T, (2) XTX = X , (3) (TX)∗ = TX , (4) (XT )∗ = XT.

The Moore–Penrose inverse of T exists if and only if R(T ) is closed in Y . If the
Moore–Penrose inverse of T exists, then it is unique, and it is denoted by T † . If θ ⊆
{1,2,3,4} and X satisfies the equations (i) for all i ∈ θ , then X is a θ -inverse of T .
The set of all θ -inverses of T is denoted by T{θ} . In particular, T{1,2,3,4}= {T †} .

The term orthogonal projection will be reserved for T which is self-adjoint and
idempotent. From the definition of the Moore–Penrose inverse, it can be proved that
the Moore–Penrose inverse of an operator (if it exists) is unique and T †T and TT † are
orthogonal projections into R(T ∗) and R(T ) , respectively. Clearly, T is the Moore–
Penrose invertible if and only if T ∗ is the Moore–Penrose invertible [4, Theorem 3.2],
and in this case (T ∗)† = (T †)∗ , (T ∗T )† = T †(T ∗)† , T ∗ = T ∗TT † and T † = T ∗(TT ∗)† .
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2. The Moore-Penrose inverse of a product

In the following theorems, the existence of (TS)† , (UT )† and (UTS)† satisfying
the stated conditions that T has a closed range and the existence of U ′ and S′ such
that U ′UT = T = TSS′ , is guaranteed by Theorems 1 and 2. In order to compute their
the Moore–Penrose inverses, we determine inverse of two operators in terms of the
corresponding the Moore–Penrose inverse of T , that they play fundamental roles in the
related results in this section.

THEOREM 1. Let T ∈L (X ,Y ) , S∈L (Z ,X ) , U ∈L (Y ,K ) and T have
closed range. If there exist operators U ′ ∈ L (K ,Y ) and S′ ∈ L (X ,Z ) such that

U ′UT = T = TSS′,

then

(i) UT and TS have closed ranges and T †U ′ ∈ (UT ){1,2,4} and S′T † ∈ (TS){1,2,3} .

(ii) (UT )∗UT +1−T†T and (TS)(TS)∗ +1−TT † are invertible operators. In this
case, (

(UT )∗UT +1−T†T
)−1

= (UT )†((UT )∗)† +1−T†T

and (
TS(TS)∗ +1−TT †)−1

= ((TS)∗)†(TS)† +1−TT †.

Proof. (i) Putting X = T †U ′ implies that

UTXUT = UTT †U ′UT = UTT †T = UT,

XUTX = T †U ′UTT †U ′ = T †U ′ = X ,

(XUT )∗ = (T †U ′UT )∗ =
(
T †T

)∗
= T †T.

Then T †U ′ ∈ (UT ){1,2,4} . It immediately concludes that UT has closed range.
Also, letting Y = S′T † concludes that

TSYTS = TSS′T †TS = TT †TS = TS,

YTSY = S′T †TSS′T † = S′T †TT † = S′T † = Y,

(TSY )∗ = (TSS′T †)∗ = (TT †)∗ = TT †.

Then TS has closed range and S′T † ∈ (TS){1,2,3} .
(ii) The statement (i) concludes that UT and TS have closed ranges. By [6, Corol-

lary 2.4] ((UT )∗UT )† exists and ((UT )∗UT )† = (UT )†((UT )∗)† . Taking adjoint of
U ′UT = T we get T ∗U∗(U ′)∗ = T ∗ . This implies that R(T ∗) = R((UT )∗) , therefore
(UT )†UT = T †T . Now, putting C = (UT )∗UT +1−T †T and D = (UT )†((UT )∗)† +
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1−T†T implies that

CD =
(
(UT )∗UT +1−T†T

)(
(UT )†((UT )∗)† +1−T†T

)

= (UT )∗UT (UT )†((UT )∗)† +(UT)∗UT − (UT)∗UTT †T

+(UT )†((UT )∗)† +1−T†T

− T †T (UT )†((UT )∗)†−T †T +T †TT †T

= (UT )∗((UT )∗)† +(UT)∗UT − (UT )∗UT

+(UT )†((UT )∗)† +1−T†T

− (UT )†UT (UT )†((UT )∗)† −T†T +T †T

= (UT )∗((UT )∗)† +(UT)†((UT )∗)† +1−T†T − (UT)†((UT )∗)†

= (UT )∗((UT )†)∗ +1−T†T

=
(
(UT )†UT

)∗
+1−T†T

= (UT )†UT +1−T†T

= T †T +1−T†T

= 1.

Since (UT )†UT = T †T , therefore

(UT )†((UT )∗)†T †T = (UT )†((UT )∗)†(UT )†(UT )
= (UT )†((UT )∗)†. (1)

Also we obtain

DC =
(
(UT )†((UT )∗)† +1−T†T

)(
(UT )∗UT +1−T†T

)

= (UT )†((UT )∗)†(UT )∗UT +(UT )†((UT )∗)†− (UT )†((UT )∗)†T †T

+(UT )∗UT +1−T†T

− T †T (UT )∗UT −T †T +T †TT †T

(by 1) = (UT )†UT +(UT)†((UT )∗)† − (UT)†((UT )∗)†

+(UT )∗UT +1−T†T − (UT )†UT (UT )∗UT

= (UT )†UT +(UT)∗UT +1−T†T − (UT )∗UT

= (UT )†UT +1−T†T

= 1.

With similar argument, we prove that ((TS)∗)†(TS)† + 1− TT † is invertible. Since
TS has closed range then [6, Corollary 2.4] (TS(TS)∗)† exists and (TS(TS)∗)† =
((TS)∗)†(TS)† . On the other hand, from T = TSS′ it follows that TS(TS)† = TT † and
R(T ) = R(TS) .
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Now, we put G = TS(TS)∗ +1−TT † and H = ((TS)∗)†(TS)† +1−TT † . Then

GH =
(
TS(TS)∗ +1−TT †

)(
((TS)∗)†(TS)† +1−TT †

)

= TS(TS)∗((TS)∗)†(TS)† +TS(TS)∗−TS(TS)∗TT †

+((TS)∗)†(TS)† +1−TT †

− TT †((TS)∗)†(TS)†−TT † +TT †TT †

= TS(TS)† +TS(TS)∗ −TS(TS)∗TS(TS)†

+((TS)∗)†(TS)† +1−TT †

− TS(TS)†((TS)∗)†(TS)†−TT † +TT †

= TS(TS)† +TS(TS)∗ −TS(TS)∗

+((TS)∗)†(TS)† +1−TS(TS)†− ((TS)∗)†(TS)†

= 1.

Also,

HG =
(
((TS)∗)†(TS)† +1−TT †

)(
TS(TS)∗ +1−TT †

)

= ((TS)∗)†(TS)†TS(TS)∗+((TS)∗)†(TS)†− ((TS)∗)†(TS)†TT †

+TS(TS)∗+1−TT †

− TT †TS(TS)∗ −TT † +TT †TT †

= ((TS)∗)†(TS)∗+((TS)∗)†(TS)†− ((TS)∗)†(TS)†TS(TS)†

+TS(TS)∗+1−TT †

− TS(TS)†TS(TS)∗ −TT † +TT †

= ((TS)∗)†(TS)∗+((TS)∗)†(TS)†− ((TS)∗)†(TS)†

+TS(TS)∗+1−TT †−TS(TS)∗

= ((TS)(TS)†)∗ +1−TT †

= (TS)(TS)† +1−TT †

= 1.

This completes the proof. �

We notice that T,S ∈ L (X ) , then [T,S] = TS− ST denotes the commutator of
T and S .

THEOREM 2. Let X ,Y ,Z ,K be Hilbert A -modules and T ∈ L (X ,Y ) has
closed range and S∈L (Z ,X ),U ∈L (Y ,K ) . If there exist operators U ′ ∈L (K ,Y )
and S′ ∈ L (X ,Z ) such that

U ′UT = T = TSS′.

Then
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(i) (TS)† = (TS)∗G−1 and (UT )† = C−1(UT )∗ ,

(ii) [G−1,TS(TS)†] = 0 and [C−1,(UT )†UT ] = 0 ,

(iii) UTS has closed range and (UTS)† = (TS)∗G−1TC−1(UT )∗ ,

(iv) S∗C(UT )† = (TS)†GU∗ ,

where C = (UT )∗UT +1−T†T and G = (TS)(TS)∗ +1−TT †.

Proof. (i) From U ′UT = T = TSS′ we get the following: R(T ) = R(TS) and
R(T ∗) = R((UT )∗). The first equiality implies that TT † = TS(TS)†. From the second
equiality it follows that T †T = (UT )†UT . By details which are shown in the proof of
Theorem 2, we conclude that C and G are invertible and theirs inverses are D and H ,
respectively. Hence we have

(TS)∗G−1 = (TS)∗
(
((TS)∗)†(TS)† +1−TT †

)

= (TS)∗((TS)∗)†(TS)† +(TS)∗ − (TS)∗(TS)(TS)†

= (TS)∗((TS)∗)†(TS)† +(TS)∗ − (TS)∗

= (TS)∗((TS)∗)†(TS)†

= (TS)†.

and

C−1(UT )∗ =
(
(UT )†((UT )∗)† +1−T†T

)
(UT )∗

= (UT )†((UT )∗)†(UT )∗ +(UT )∗ − (UT )†UT (UT )∗

= (UT )†((UT )∗)†(UT )∗ +(UT )∗ − (UT )∗

= (UT )†((UT )∗)†(UT )∗

= (UT )†.

(ii) From statement (i) we have G is invertible and (TS)∗G−1 = (TS)† , also G
is self adjoint. Taking adjoint, we obtain G−1(TS) = ((TS)∗)† , then R(G−1(TS)) =
R((TS)∗)†) = R(TS) . Hence by [1, Lemma 2.1] the desired result follows.

Analogously, we can prove that C is invertible and C−1(UT )∗ = (UT )† , also C
is self adjoint. Then R(C−1(UT )∗) = R((UT )†) = R((UT )∗) . Reuse by [1, Lemma
2.1] concludes that [C−1,(UT )†UT ] = 0.

(iii) The proof of the statement (i) can be used to see that C and G are in-
vertible and (TS)∗G−1 = (TS)† and C−1(UT )∗ = (UT )† . Letting B = UTS and
X = (TS)∗G−1TC−1(UT )∗ conclude that

BXB = UTS(TS)∗G−1TC−1(UT )∗UTS

= UTS(TS)†T (UT )†UTS

= U
(
TS(TS)†

)
T

(
(UT )†UT

)
S

= UTT †TT †TS

= UTS.
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and in the same way we reach

XBX = (TS)∗G−1TC−1(UT )∗UTS(TS)∗G−1TC−1(UT )∗

= (TS)†T (UT )†UTS(TS)†T (UT )†

= (TS)†TT †TS(TS)†T (UT )†

= (TS)†TS(TS)†T (UT )†

= (TS)†TT †T (UT )†

= (TS)†T (UT )†

= X .

Also BX and XB are orthogonal projections, since

BX = UTS(TS)∗G−1TC−1(UT )∗

= UTS(TS)†T (UT )†

= UTT †T (UT )†

= UT (UT )†,

and

XB = (TS)∗G−1TC−1(UT )∗UTS

= (TS)†
(
T (UT )†UT

)
S

= (TS)†
(
TT †T

)
S

= (TS)†TS.

Then UTS has closed range and the uniqueness of the Moore-Penrose inverse implies
that (UTS)† = (TS)∗G−1TC−1(UT )∗.

(iv) Multiplying the equality (TS)† = (TS)∗G−1 by GU∗ on the right side and the
equality (UT )† = C−1(UT )∗ by S∗C on the left side, the desired result follows. �

3. Matrix representation for U ′UT = T = TSS′

In this section, we obtain the block matrix decomposition of operators, which
implies that the reverse order law for operators establishes. Moreover, we achieve some
relations between the product of operators and their the Moore-Penrose inverses.

The following theorem provides some conditions in order to U ′U and SS′ are
orthogonal projections.

THEOREM 3. Suppose that T ∈ L (X ,Y ) has closed range, S ∈ L (Z ,X )
and U ∈ L (Y ,K ) . If there exist operators U ′ ∈ L (K ,Y ) and S′ ∈ L (X ,Z )
such that

U ′UT = T = TSS′, R(S) = R(T ∗), R(U∗) = R(T ),

then
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(i) U ′U and SS′ are orthogonal projections,

(ii) S(TS)† = (UT )†U.

Proof. (i) Using [3, Lemma 2.3] and [3, Lemma 2.4], the orthogonal sums X =
R(T ∗)⊕N (T ), Y = R(T )⊕N (T ∗) , Z = R(S∗)⊕N (S) and K = R(U)⊕
N (U∗) imply that the matrix representation of T has the form T =

[
T1 0
0 0

]
:

[
R(T∗)
N (T )

]
→[

R(T)
N (T ∗)

]
where T1 is invertible and T † =

[
T−1
1 0
0 0

]
:

[
R(T )

N (T ∗)

]
→

[
R(T ∗)
N (T )

]
. Also S =[

S1 0
S3 0

]
:

[
R(S∗)
N (S)

]
→

[
R(T ∗)
N (T )

]
and S′ =

[
S′1 S′2
S′3 S′4

]
, S† =

[
D−1S∗1 D−1S∗3

0 0

]
:

[
R(T∗)
N (T )

]
→[

R(S∗)
N (S)

]
, where D = S∗1S1+S∗3S3 is invertible. Also, we have U =

[
U1 U2
0 0

]
:

[
R(T)

N (T ∗)

]

→
[

R(U)
N (U∗)

]
and U ′ =

[
U ′

1 U ′
2

U ′
3 U ′

4

]
, U† =

[
U∗

1 E−1 0
U∗

2 E−1 0

]
:

[
R(U)

N (U∗)

]
→

[
R(T)

N (T ∗)

]
, where

E = U1U∗
1 +U2U∗

2 is invertible. Since R(S) = R(T ∗) then

SS† = T †T ⇔
[

S1 0
S3 0

][
D−1S∗1 D−1S∗3

0 0

]
=

[
T1 0
0 0

][
T−1
1 0
0 0

]

⇔
[

S1D−1S∗1 S1D−1S∗3
S3D−1S∗1 S3D−1S∗3

]
=

[
1 0
0 0

]
. (1)

Equation (1) implies that

S1D
−1S∗3 = 0 (2)

S3D
−1S∗3 = 0. (3)

By multiplication S∗1 on the left of the equation (2) and multiplication S∗3 on the left of
equation (3) we conclude that

S∗1S1D
−1S∗3 +S∗3S3D

−1S∗3 = (S∗1S1 +S∗3S3)D−1S∗3 = 0,

therefore, S3 = 0. Similarly, since R(U∗) = R(T ) then U2 = 0.
Now consider the following chain of equivalences, which is related to the assump-

tion U ′UT = T :

U ′UT = T ⇔
[
U ′

1 U ′
2

U ′
3 U ′

4

][
U1 0
0 0

][
T1 0
0 0

]
=

[
T1 0
0 0

]

⇔
[
U ′

1U1T1 0
U ′

3U1T1 0

]
=

[
T1 0
0 0

]

⇔ U ′
1U1T1 = T1, U ′

3U1T1 = 0.

Invertibility of T1 implies that U ′
1U1 = 1 and U ′

3U1 = 0. So we obtain U ′U =[
1 0
0 0

]
. Similar arguments show that SS′ =

[
1 0
0 0

]
. It is clear, U ′U and SS′ are orthog-

onal projections.
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(ii) Using [3, Lemma 2.3], the orthogonal complemented submodules X = R(T ∗)
⊕N (T ) and Y = R(T )⊕N (T ∗) and Z = Z1⊕Z2 and K = K1⊕K2 , conclude

that matrix decompositions T =
[

T1 0
0 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T )

N (T ∗)

]
where T1 is invertible.

Also S =
[

S1 S2
0 0

]
:

[
Z1
Z2

]
→

[
R(S)

N (S∗)

]
and U =

[
U1 0
U2 0

]
:

[
R(U∗)
N (U)

]
→

[
K1
K2

]
. Reuse

[3, Lemma 2.3] derives

S(TS)† =
[

S1 S2
0 0

][
(T1S1)∗E−1 0
(T1S2)∗E−1 0

]
=

[
S1(T1S1)∗E−1 +S2(T1S2)∗E−1 0

0 0

]

and

(UT )†U =
[

F−1(U1T1)∗ F−1(U2T1)∗
0 0

][
U1 0
U2 0

]

=
[

F−1(U1T1)∗U1 +F−1(U2T1)∗U2 0
0 0

]
,

where E = T1S1(T1S1)∗ + T1S2(T1S2)∗ and F = (U1T1)∗U1T1 + (U2T1)∗U2T1 are in-
vertible. Since

(S1S
∗
1 +S2S

∗
2)T

∗
1 E−1 = (S1S

∗
1 +S2S

∗
2)T

∗
1 (T ∗

1 )−1(S1S
∗
1 +S2S

∗
2)

−1T−1
1 = T−1

1

and

F−1T ∗
1 (U∗

1U1 +U∗
2U2) = T−1

1 (U∗
1U1 +U∗

2U2)−1(T ∗
1 )−1T ∗

1 (U∗
1U1 +U∗

2U2) = T−1
1

hold, then
[

(S1S∗1 +S2S∗2)T
∗
1 E−1 0

0 0

]
=

[
F−1T ∗

1 (U∗
1U1 +U∗

2U2) 0
0 0

]
and consequently,

S(TS)† = (UT )†U. �
In the following theorem, by applying the block matrix decomposition trick, we

reobtain (UTS)† , in terms of the corresponding the Moore-Penrose inverse T , and we
show that the reverse order law holds for product of operators.

THEOREM 4. Let T ∈L (X ,Y ) have closed range and S∈L (X ) , U ∈L (Y ) .
If there exist operators U ′ ∈ L (K ,Y ) and S′ ∈ L (X ,Z ) such that U ′UT = T =
TSS′, then

(i) UTS has closed range and (UTS)† = (TS)†T (UT )† ;

(ii) If S and U have closed ranges then (UTS)† = S†T †U† , under the additiational
assumption that (TS)† = S†T † and (UT )† = T †U†

(iii) (UTS(TS)†)† = T (UT )† ;

(iv) (UTT †)† = T (UT )† ;

(v) ((UT )†UTS)† = (TS)†T ;

(vi) (T †TS)† = (TS)†T ;
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(vii) (UTS)†UT (UT )† = (UTS)† ;

(viii) (TS)†TS(UTS)† = (UTS)† ;

(ix) (UTS)† = S†(UT )† , under the additiational assumption that R(T ∗) = R(S) .

Proof. Since U ′UT = T = TSS′ , it follows that R(T ) = R(TS) and R(T ∗) =
R((UT )∗) . Using [3, Lemma 2.3] , the orthogonal complemented submodules R(T ∗)

and R(T ) conclude that matrix decompositions T =
[

T1 0
0 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]

and T † =
[

T−1
1 0
0 0

]
:

[
R(T)

N (T ∗)

]
→

[
R(T∗)
N (T )

]
. Also S =

[
S1 S2
S3 S4

]
:

[
R(T∗)
N (T )

]
→

[
R(T∗)
N (T )

]
.

Since R(T )= R(TS) by [3, Lemma 2.4] matrix form TS is TS =
[

H1 H2
0 0

]
:

[
R(T∗)
N (T )

]
→[

R(T)
N (T ∗)

]
and (TS)† =

[
H∗

1 D−1 0
H∗

2 D−1 0

]
, where D = H1H∗

1 + H2H∗
2 is invertible. On the

other hand, product of matrix forms T and S conclude that TS =
[

T1 0
0 0

][
S1 S2
S3 S4

]
=[

T1S1 T1S2
0 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
. In the same way, by [3, Lemma 2.4] , UT =[

K1 0
K2 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
and (UT )† =

[
F−1K∗

1 F−1K∗
2

0 0

]
, where F = K∗

1K1 +

K∗
2K2 is invertible. The product of matrix forms U and T lead to UT =

[
U1 U2
U3 U4

][
T1 0
0 0

]
=[

U1T1 0
U3T1 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
. With comparing these representations matrix of TS

ensure that T1S1 = H1, T1S2 = H2 and T1(S1S∗1 + S2S∗2)T
∗
1 = D. Invertibility D and T1

imply that E = S1S∗1 +S2S∗2 is invertible. Also, we compair the representations matrix
of UT and conclude that U1T1 = K1, U3T1 = K2 and T ∗

1 (U∗
1U1 +U∗

3U3)T1 = F. Invert-
ibility F and T1 imply that J = U∗

1U1 +U∗
3U3 is invertible.

(i) Let X = (TS)†T (UT )† . We conclude that the operator X has the following
matrix form:

X = (TS)†T (UT )† =
[

H∗
1 D−1 0

H∗
2 D−1 0

][
T1 0
0 0

][
F−1K∗

1 F−1K∗
2

0 0

]

=
[

S∗1E
−1T−1

1 J−1U∗
1 S∗1E

−1T−1
1 J−1U∗

3
S∗2E

−1T−1
1 J−1U∗

1 S∗2E
−1T−1

1 J−1U∗
3

]
.

Since

UTSXUTS

=
[
U1T1S1 U1T1S2
U3T1S1 U3T1S2

][
S∗1E

−1T−1
1 J−1U∗

1 S∗1E
−1T−1

1 J−1U∗
3

S∗2E
−1T−1

1 J−1U∗
1 S∗2E

−1T−1
1 J−1U∗

3

][
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]

=
[
U1T1(S1S∗1 +S2S∗2)E

−1T−1
1 J−1U∗

1 U1T1(S1S∗1 +S2S∗2)E
−1T−1

1 J−1U∗
3

U3T1(S1S∗1 +S2S∗2)E
−1T−1

1 J−1U∗
1 U3T1(S1S∗1 +S2S∗2)E

−1T−1
1 J−1U∗

3

]
[
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]
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=
[
U1J−1U∗

1 U1J−1U∗
3

U3J−1U∗
1 U3J−1U∗

3

][
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]

=
[
U1J−1(U∗

1U1 +U∗
3U3)T1S1 U1J−1(U∗

1U1 +U∗
3U3)T1S2

U3J−1(U∗
1U1 +U∗

3U3)T1S1 U3J−1(U∗
1U1 +U∗

3U3)T1S2

]

=
[
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]

= UTS,

and

XUTSX

=
[

S∗1E
−1T−1

1 J−1U∗
1 S∗1E

−1T−1
1 J−1U∗

3
S∗2E

−1T−1
1 J−1U∗

1 S∗2E
−1T−1

1 J−1U∗
3

][
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]

[
S∗1E

−1T−1
1 J−1U∗

1 S∗1E
−1T−1

1 J−1U∗
3

S∗2E−1T−1
1 J−1U∗

1 S∗2E−1T−1
1 J−1U∗

3

]

=
[

S∗1E−1T−1
1 J−1U∗

1 S∗1E−1T−1
1 J−1U∗

3
S∗2E

−1T−1
1 J−1U∗

1 S∗2E
−1T−1

1 J−1U∗
3

][
U1J−1U∗

1 U1J−1U∗
3

U3J−1U∗
1 U3J−1U∗

3

]

=
[

S∗1E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)J−1U∗
1 S∗1E

−1T−1
1 J−1(U∗

1U1 +U∗
3U3)J−1U∗

3
S∗2E

−1T−1
1 J−1(U∗

1U1 +U∗
3U3)J−1U∗

1 S∗2E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)J−1U∗
3

]

=
[

S∗1E
−1T−1

1 J−1U∗
1 S∗1E

−1T−1
1 J−1U∗

3
S∗2E

−1T−1
1 J−1U∗

1 S∗2E
−1T−1

1 J−1U∗
3

]

= X ,

also, the operators

XUTS =
[

S∗1E
−1T−1

1 J−1U∗
1 S∗1E

−1T−1
1 J−1U∗

3
S∗2E

−1T−1
1 J−1U∗

1 S∗2E
−1T−1

1 J−1U∗
3

][
U1T1S1 U1T1S2
U3T1S1 U3T1S2

]

=
[

S∗1E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)T1S1 S∗1E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)T1S2

S∗2E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)T1S1 S∗2E
−1T−1

1 J−1(U∗
1U1 +U∗

3U3)T1S2

]

=
[

S∗1E−1S1 S∗1E−1S2
S∗2E

−1S1 S∗2E
−1S2

]

and UTSX =
[
U1J−1U∗

1 U1J−1U∗
3

U3J−1U∗
1 U3J−1U∗

3

]
are self adjoint, then uniqueness of the Moore–

Penrose inverse implies that, (UTS)† = (TS)†T (UT )† .
(ii) By previous statement is obvious.
(iii) We compute

(UTS(TS)†)† =
([

U1T1S1 U1T1S2

U3T1S1 U3T1S2

][
H∗

1D−1 0
H∗

2D−1 0

])†

=
([

U1T1ET ∗
1 (T ∗

1 )−1E−1T−1
1 0

U3T1ET ∗
1 (T ∗

1 )−1E−1T−1
1 0

])†

=
([

U1 0
U3 0

])†

=
[

J−1U∗
1 J−1U∗

3
0 0

]
. (4)
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On the other hand, we obtain

T (UT )† =
[

T1 0
0 0

][
F−1K∗

1 F−1K∗
2

0 0

]

=
[

T1T
−1
1 J−1(T ∗

1 )−1T ∗
1 U∗

1 T1T
−1
1 J−1(T ∗

1 )−1T ∗
1 U∗

3
0 0

]

=
[

J−1U∗
1 J−1U∗

3
0 0

]
. (5)

Hence, equations (4) and (5) imply that (UTS(TS)†)† = T (UT )† .
(iv) By applying the equality R(T ) = R(TS) we obtain TT † = TS(TS)† . Ac-

cording to the previous statement, it is obvious.
(v) This implication can be proved in the same way as the statement (iii).
(vi) The equality R(T ∗)= R((UT )∗) implies that T †T = (UT )†UT. By previous

statement is trivial.
(vii) We obtain (UTS)†UT (UT )† =(TS)†T (UT )†UT (UT )† = (TS)†T (UT )† =(UTS)†

by according to the statement (i).
(viii) Similarly before, it is obvious.
(ix) Since R(T ∗) = R(S) , then S closed range. Also, we have R((UT )∗) =

R(T ∗) . Therefore, R((UT )∗) = R(S) . Now, by [3, Lemma 2.4] matrix forms S ,

S† , UT and (UT )† are S =
[

S1 S2
0 0

]
:

[
R(S)

N (S∗)

]
→

[
R(S)

N (S∗)

]
, S† =

[
S∗1E−1 0
S∗2E

−1 0

]
, UT =[

K1 0
K2 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
and (UT )† =

[
F−1K∗

1 F−1K∗
2

0 0

]
where E = S1S∗1 +S2S∗2

and F = K∗
1K1 +K∗

2K2 are invertible. Let

X = S†(UT )† =
[

S∗1E−1 0
S∗2E

−1 0

][
F−1K∗

1 F−1K∗
2

0 0

]
,

then straightforward computations show that X is Moore-Penrose inverse of UTS . �

THEOREM 5. Suppose that T ∈ L (X ,Y ) has closed range and S ∈ L (X ) . If
there exist operator S′ ∈ L (X ) such that T = TSS′, then

(i) T †TSS∗T †T and TSS∗T † have closed ranges and

(T †TSS∗T †T )† = T ∗((TS)∗)†(TS)†T

and
(TSS∗T †)† = TT ∗((TS)∗)†(TS)†;

(ii) There is an invertible operator F ∈ L (X ) such that

(T †TSS∗T †T )† = F(T †TSS∗T †T ) = (T †TSS∗T †T )F ;

(iii) ((T ∗T )mSS∗(T ∗T )n)† = (T †(T ∗)†)nT ∗((TS)∗)†(TS)†T (T †(T ∗)†)m (m,n ∈ N);

(iv) (1−TT † +(TSS∗T †)†)−1 = 1−TT † +TT ∗((TS)∗)†(TS)† ;
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(v) If S has a closed range and SS′ is self adjoint, then TSS∗S(S′ −S†)T ∗ = 0 ;

(vi) If SS∗T †T = T †TSS∗T †T , then S(TS)† = T † ;

(vii) (T †TSS∗T ∗)† = (TS(TS)∗)†T .

Proof. Since T = TSS′ , it follows that R(T ) = R(TS) . Using [3, Lemma 2.3],
the orthogonal complemented submodules R(T ∗) and R(T ) conclude that matrix de-

compositions T =
[

T1 0
0 0

]
:

[
R(T ∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
and T † =

[
T−1
1 0
0 0

]
:

[
R(T)

N (T ∗)

]
→[

R(T∗)
N (T )

]
. Also S =

[
S1 S2
S3 S4

]
,S′ =

[
S′1 S′2
S′3 S′4

]
:

[
R(T∗)
N (T )

]
→

[
R(T∗)
N (T )

]
. By [3, Lemma 2.4

] matrix form TS is TS =
[

H1 H2
0 0

]
:

[
R(T∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
and (TS)† =

[
H∗

1 D−1 0
H∗

2 D−1 0

]
,

where D = H1H∗
1 + H2H∗

2 is invertible. On the other hand, product of matrix forms

T and S conclude that TS =
[

T1 0
0 0

][
S1 S2
S3 S4

]
=

[
T1S1 T1S2

0 0

]
:

[
R(T ∗)
N (T )

]
→

[
R(T)

N (T ∗)

]
.

With comparing these representations matrix of TS ensure that

T1S1 = H1, T1S2 = H2 (6)

and

T1(S1S
∗
1 +S2S

∗
2)T

∗
1 = D. (7)

Invertibility of D and T1 imply that E = S1S∗1 +S2S∗2 is invertible.
Also,

T = TSS′[
T1 0
0 0

]
=

[
T1(S1S′1 +S2S′3) T1(S1S′2 +S2S′4)

0 0

]
.

Invertibility of T1 implies that

S1S
′
1 +S2S

′
3 = 1, S1S

′
2 +S2S

′
4 = 0. (8)

(i) By (7) we have E = T−1
1 D(T ∗

1 )−1 that is E−1 = T ∗
1 D−1T1 . Considering block

matrices of these operators conclude that

(T †TSS∗T †T )† =
[

E−1 0
0 0

]
= T ∗(TSS∗T ∗)†T = T ∗(TS(TS)∗)†T

= T ∗((TS)∗)†(TS)†T.

Since R(T ) = R(TS) , then TT † = TS(TS)† . Hence we have

(TSS∗T †)† =
[

(T1(S1S∗1 +S2S∗2)T
−1
1 )−1 0

0 0

]
=

[
T1(S1S∗1 +S2S∗2)

−1T−1
1 0

0 0

]

= T (T †TSS∗T †T )†T † = TT ∗((TS)∗)†(TS)†TT †

= TT ∗((TS)∗)†(TS)†.
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(ii) From the proof of the previous implication and [3, Theorem 3.6 ] is straight-
forward.

(iii) By (7) and matrix forms, we have

((T ∗T )mSS∗(T ∗T )n)† =
[

(T ∗
1 T1)m(S1S∗1 +S2S∗2)(T

∗
1 T1)n 0

0 0

]†

=
[

((T ∗
1 T1)m(S1S∗1 +S2S∗2)(T

∗
1 T1)n)−1 0

0 0

]

= (T †(T ∗)†)n(T †TSS∗T †T )†(T †(T ∗)†)m

(By statement (i)) = (T †(T ∗)†)nT ∗((TS)∗)†(TS)†T (T †(T ∗)†)m.

(iv) Matrix operator 1 − TT † =
[

0 0
0 1

]
and equality (7) ensure that 1− TT † +

(TSS∗T †)† =
[

T1ET−1
1 0

0 1

]
is an invertible operator. Statement (i) leads to compute of

inverse and its inverse is 1−TT † +TT ∗((TS)∗)†(TS)† .

(v) Being self adjoint of SS′ and equality (8) imply that SS′ =
[

1 0
0 S3S′2 +S4S′4

]
.

Hence matrix operators yield

TSS∗SS′T ∗ =
[

T1(S1S∗1 +S2S∗2) T1(S1S∗3 +S2S∗4)
0 0

][
1 0
0 S3S′2 +S4S′4

][
T1 0
0 0

]

= TSS∗T ∗.

Since S has a closed range, then TSS∗S(S′ −S†)T ∗ = 0.
(vi) Condition SS∗T †T = T †TSS∗T †T leads to

(1−T †T )SS∗T †T =
[

0 0
0 1

][
S1S∗1 +S2S∗2 S1S∗3 +S2S∗4
S3S∗1 +S4S∗2 S3S∗3 +S4S∗4

][
1 0
0 0

]

=
[

0 0
S3S∗1 +S4S∗2 0

]
= 0.

On the other hand, (6) implies that (TS)† =
[

S∗1T
∗
1 D−1 0

S∗2T
∗
1 D−1 0

]
. Therefore S(TS)†

=
[

(S1S∗1 +S2S∗2)T
∗
1 D−1 0

(S3S∗1 +S4S∗2)T
∗
1 D−1 0

]
. Then S(TS)† =

[
ET ∗

1 D−1 0
0 0

]
=

[
T−1
1 0
0 0

]
. That is S(TS)†

= T † .
(vii) A straightforward computation shows that

T †TSS∗T ∗ =
[

T−1
1 0
0 0

][
T1 0
0 0

][
S1 S2

S3 S4

][
S∗1 S∗3
S∗2 S∗4

][
T ∗
1 0
0 0

]

=
[

(S1S∗1 +S2S∗2)T
∗
1 0

0 0

]

=
[

ET ∗
1 0

0 0

]
,
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where (S1S∗1 +S2S∗2)T
∗
1 = ET ∗

1 is invertible. On the other

(T †TSS∗T ∗)† =
[

(T ∗
1 )−1E−1 0

0 0

]
=

[
(T ∗

1 )−1(T−1
1 D(T ∗

1 )−1)−1 0
0 0

]

=
[

D−1T1 0
0 0

]

= (TS(TS)∗)†T.

Thus (T †TSS∗T ∗)† = (TS(TS)∗)†T. �
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