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THE CONVEX INVERTIBLE CONE STRUCTURE OF

POSITIVE REAL ODD RATIONAL MATRIX FUNCTIONS

S. TER HORST ∗ AND A. NAUDÉ

(Communicated by B. Jacob)

Abstract. Positive real odd matrix functions, often referred to as positive real lossless matrix
functions, play an important role in many applications in multi-port electrical systems. In this
paper we present closer analogues to some of the known results for the scalar, one-port, case
in the multi-port setting. Specifically, we determine necessary and sufficient conditions for the
well studied partial fraction formula to represent functions in the class of positive real odd matrix
functions, and explicit minimal state space realization formulas for the inverse (admittance) of a
function in this class, which itself is also a positive real odd matrix function. Doing so, enables
us to provide a partial analogue of the pole-zero interlacing behavior from the scalar case.

1. Introduction

The research on positive real odd functions (PRO for short), often also called
positive real lossless functions, got spearheaded by the pioneering work in electrical
engineering of Foster [17], Cauer [9] and Brunce [5], once it was observed by Foster
that this class of functions appears as the impedances (and their admittances) of lumped
one-port electrical circuits generated by inductances and capacitors; see also [23, 3,
1]. One of the main results of Foster [17] is the seminal canonical form for one-port
reactance functions, namely f is in PRO if and only if it has the form

f (z) = a0z+
s

∑
k=1

akz

z2 + ω2
k

, a0 � 0, ak,ωk � 0, k = 1, . . . ,s. (1.1)

In words, all poles are on iR∪{∞} , simple, come in complex conjugate pairs (apart
from 0 and ∞) and have positive residues. This implies that the zeros of f interlace
the poles on iR , and, as a consequence, the involution (or admittances) 1/ f is also in
PRO . In particular, PRO is a convex invertible cone [12], i.e., a convex cone which
is closed under inversion. Convex cones play an important role in many parts of applied
mathematics; the concept of convex invertible cones in system and control theory was
propagated by Cohen and Lewkowicz [11, 12, 13, 14].
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Matrix-valued PRO functions appear when multi-port electrical systems built
from inductances, capacitors and gyrators are considered, and they have been studied
intensely for many decades, leading to a vast literature on this topic, cf., [23, 1] for
references and a discussion of the classical work and [4, 10, 25] for some more recent
results. In this setting, for an integer m � 0 we write PROm for the class of m×m
rational matrix functions F so that

Re(F(z)) � 0, for Re(z) > 0, F(t) ∈ R
m×m for t ∈ R,

−F(z) = F(−z)∗ for z not a pole of F.
(1.2)

Here for any square matrix K , with K � 0 (K � 0) we indicate that K is positive (neg-
ative) semidefinite, while for matrices K,L , K � L should be interpreted as K−L � 0.
The last condition in (1.2), stating the F is odd on R , is equivalent to Re(F(z)) = 0
for z ∈ iR , not a pole of F , which gives the connection with lossless systems. It is
easy to prove from the defining conditions (1.2) that PROm is also a convex invert-
ible cone, with invertibility in the form of involution, i.e., F−1(z) := F(z)−1 in case
detF(z) �≡ 0. The matrix form of the partial fraction expansion (1.1) has also been
studied extensively, cf., [23, 1], and takes the form

F(z) = zQ+R+
s

∑
j=1

1

z2 + ω2
j

(zQj +Rj) , (1.3)

where ω j � 0, Q,R,Qj,Rj ∈ Rm×m with Q,Qj � 0 and R,Rj skew-symmetric. How-
ever, not all functions F of this form are in PROm , and we have not been able to find
in the literature precise conditions on the parameters in (1.3) which guarantee that F is
in PROm . In Theorem 4.1 below we identify the remaining condition to be

−ω jQ j � iR j � ω jQ j, j = 1, . . . ,s. (1.4)

Note that since Qj and Rj are real, for (1.4) to hold it suffices to verify one of the
inequalities; indeed, because the conjugate of a positive semidefinite matrix is also
positive semidefinite, ω jQ j + iR j � 0 implies ω jQ j − iR j � 0, and conversely.

Although various successful approaches to the positive real lossless synthesis prob-
lems have been obtained, see Remark 4.2 below, these do not seem to rely on a condition
of the form (1.3), but rather seem to use the fact that F is in PROm directly. Using
minimal state space realization formulas for the class PROm collected in Section 3,
we show that adding (1.4) provides necessary and sufficient conditions for (1.3) to be a
characterization of PROm . In fact, we provide a concrete construction of a minimal
realization, satisfying the appropriate conditions, for a function F of the form (1.3)
satisfying (1.4).

Note that a m×m rational matrix function F is in PROm if and only if N(z) :=
iF(−iz) is a Nevanlinna function. Annemarie Luger [22] confirmed to us that the con-
ditions (1.4) can also be derived from the integral representations that exist for the class
of matrix-valued Nevanlinna functions. However, condition (1.4) does not seem to
have appeared in the literature before, and the explicit construction of the state space
realization based on this condition also seems to be new.
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The main part of the paper, however, involves the convex invertible cone structure
of PROm , more specifically, the fact that PROm is closed under inversion. This is
not difficult to prove from (1.2), however, in Section 5 we present explicit formulas for
minimal state space realizations of F−1 , of the types presented in Section 3, based on
given state space realizations for F ; see Theorems 5.5 and 5.6 below. One of the ad-
vantages of this direct approach is that it enables us to analyse the pole-zero structure of
functions in PROm by comparing eigenvalues of the state matrices of the realizations
of F and F−1 . This leads to a partial analogue of the pole-zero interlacing property in
the scalar case, which is presented in the final section, see Theorem 6.4. In particular,
we obtain that between two subsequent poles of F ∈ PROm on iR zeros can occur
with multiplicities that add up to at most m , and likewise between two zeros. Differ-
ent from the scalar case, however, independent of zeros (poles) occurring between two
subsequent poles (zeros) it can also happen that a zero (pole) occurs at one or both of
the two poles (zeros), as poles and zeros can occur at the same point.

Finally, we point out that some of the results that we derive here have been pre-
sented in the proceedings paper [20], without proof, except for an alternative, less con-
structive proof of the sufficiency part of Theorem 4.1.

2. Preliminaries about transfer function representations

For the readers convenience we recall here some basic result about transfer func-
tion representations for real rational matrix functions, that will be used throughout the
paper. Here a real rational matrix function is a matrix function whose entries are ratios
of two real polynomials, although we will consider them as functions acting on C . For
proofs, further results and background on this topic we refer to [32, 16, 15, 21].

Recall that an m× k (real) rational matrix function F is called proper in case
limz→∞ F(z) exists. In case F is proper, there exist matrices A ∈ R

n×n , B ∈ R
n×k ,

C ∈ Rm×n and D ∈ Rm×k , for some positive integer n , so that

F(z) = D+C(zI−A)−1B, for z ∈ C not a pole of F . (2.1)

Such a representation of F is called a transfer function representation, since the right
hand side of (2.1) coincides with the transfer function of the linear state space system

Σ :

{
ẋ(t) = Ax(t)+Bu(t), x(0) = 0,

y(t) = Cx(t)+Du(t), t � 0.
(2.2)

In this context n is called the state space dimension. Note that D = limz→∞ F(z) .
The function F has many different transfer function representations (2.1). How-

ever, if we demand that the state space dimension n is as small as possible, then the
representation (2.1) is unique up to transformations of the state space. In such a case
we say that the transfer function representation (2.1) is minimal. To test for minimality,
define the controllability gramian Gc and observability gramian Go as

Gc :=
n−1

∑
j=0

AjBB∗A∗ j and Go :=
n−1

∑
j=0

A∗ jC∗CAj.
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Then the system Σ in (2.2), or the pair (A,B) , is called controllable if Gc is positive
definite, while Σ , or the pair (C,A) , is called observable if Go is positive definite. Note
that (A,B) is controllable if and only if (B∗,A∗) is observable. It turns out that (2.1) is a
minimal transfer function realization precisely when Σ is controllable and observable.

Whenever F is not proper, it is possible to write F(z) = Fp(z) + P(z) with Fp

a proper rational matrix function and P a matrix polynomial. Then Fp does admit
a transfer function representation of the form (2.1). However, it is possible to write
even a non-proper F as the transfer function of a linear state space system, if one also
allows descriptor systems, also referred to as singular systems or differential-algebraic
systems, cf., [15, 21]. A descriptor system is a linear state space system of the form

Σdescr :

{
Eẋ(t) = Ax(t)+Bu(t), x(0) = 0,

y(t) = Cx(t)+Du(t), t � 0,
(2.3)

with A , B , C and D as before and E ∈ R
n×n . In fact, the matrices A and E need

not be square, but in this paper we will only encounter the square case. The descriptor
system Σdescr , or the pair (E,A) , is called regular in case det(zE−A) �≡ 0. The transfer
function of a regular descriptor system Σdescr is given by

F(z) = D+C(zE−A)−1B, for z with det(zE −A) �= 0, (2.4)

and any real rational matrix function F appears as the transfer function of a regular
descriptor system. Also here, a transfer function representation (2.4) is called minimal
if the state space dimension n is as small as possible. It is less straightforward to test
minimality of a descriptor transfer function representation. In [18, Theorem 6.2] a nec-
essary and sufficient condition based on Hautus tests criteria is presented. Concretely,
the representation (2.4) is minimal if and only if the following five conditions are met

(i) rank
[
zE −A B

]
= n for all z ∈ C,

(ii) rank
[
E B

]
= n,

(iii) rank
[
zET −AT CT

]
= n for all z ∈ C,

(iv) rank
[
ET CT

]
= n,

(v) A(KerE) ⊂ ImE.

Finally, after a transformation of the state space, it is always possible to write a regular
descriptor system in its so called Weierstrass form. In this form the state space decom-
poses as an orthogonal direct sum Rn = Rn1 ⊕Rn2 in such a way that with respect to
this decomposition the matrices E , A , B and C take the form

E =
[
In1 0
0 N

]
, A =

[
A1 0
0 In2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
,

where N is a nilpotent matrix.
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3. Transfer function representations of PROm functions

The main result in this section (Theorem 3.1) appears to be well known, and is
included mainly because it is required for our further analysis of PROm functions in
the remainder of this paper. We could not find the precise statement in the literature,
hence, for completeness, we indicated below how it can be obtained from some known
results in e.g. [25].

THEOREM 3.1. An m×m rational matrix function F is in PROm if and only if
it admits a realization of the form

F(z) = zM +D+BT(zIn −A)−1B, (3.1)

for some integer n � 0 , M,D ∈ Rm×m , B ∈ Rn×m and A ∈ Rn×n with

M � 0, AT = −A, DT = −D, (A,B) a controllable pair. (3.2)

Proof. The transfer function characterization of PROm via (3.1) with conditions
(3.2) follows from [1], see also [25]. Indeed, by Proposition 7 in [25] F is positive real
(first two conditions in (1.2)) if and only if its strictly polynomial part is of the form zM
with M � 0 and its proper part is also positive real. It is then clear that F in PROm

is equivalent to F(z) = zM +F0(z) with F0 in PROm and proper. For the proper part
F0 one can apply the Positive Real Lemma for proper, positive real, lossless functions
[25, Theorem 8], applying a state space similarity in case the solution X to the Lur’e
equations ((5) in [25] with K = 0 and J = 0) is not equal to the identity matrix. Recall
here that lossless is a different terminology for the odd-property in PROm . �

From the previous theorem, we easily get a descriptor characterization in Weier-
strass form.

THEOREM 3.2. A m×m rational matrix function F is in PROm if and only if
it admits a minimal descriptor realization of the form

F(z) = D◦ +C◦T (zE◦ −A◦)−1B◦, (3.3)

where we set q = rankM and factor M = KT K with K ∈ Rq×m , and

A◦ =

⎡⎣A 0 0
0 Iq 0
0 0 Iq

⎤⎦ , E◦ =

⎡⎣In 0 0
0 0 Iq
0 0 0

⎤⎦ ,B◦ =

⎡⎣ B
0

−K

⎤⎦ , C◦ =

⎡⎣B
K
0

⎤⎦ , D◦ = D, (3.4)

with M,D ∈ Rm×m , B ∈ Rn×m and A ∈ Rn×n matrices satisfying (3.2).

The proof follows by direct computation and is left to the interested reader. Again,
we include this result as it plays an important role in the sequel.

Since the state matrix A in (3.1) is skew-symmetric, it is clear that no Jordan
blocks of size larger than one can appear, which is also expressed in the form of the
Foster representation. Hence, it makes more sense to define the multiplicity of a pole
ω �= ∞ of a function F ∈ PROm to be the dimension of the eigenspace of ω as an
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eigenvalue of the state matrix A in the minimal realization of Theorem 3.1, while the
multiplicity of ∞ as a pole of F is defined as rankM . In this way, the multiplicities
of the finite poles add up to the McMillan degree of the proper part of F , i.e., to the
minimal state space dimension. Note that this definition of pole multiplicity is indepen-
dent of the choice of the minimal realization. The zeros of F are then defined to be the
poles of F−1 in case detF(z) �≡ 0, and their multiplicities are the multiplicities of the
corresponding poles of F−1 .

Next we show that the multiplicities of the poles cannot exceed m .

COROLLARY 3.3. For F ∈ PROm every pole on iR , ∞ included, has a multi-
plicity of at most m.

Proof. Following Theorem 3.1, let ω1, . . . ,ωs be the non-zero eigenvalues of A
on iR+ with multiplicities k1, . . . ,ks. There exists an orthogonal matrix U so that

UT AU = diag (A1, . . . ,As,0) , with Aj = ω j

[
0 Ik j

−Ik j 0

]
and

s

∑
j=1

k j = k,

with the 0 in the last block diagonal entry indicating a block zero matrix of size (n−
2k)× (n−2k) . Now decompose UT B accordingly as

UTB =

⎡⎢⎢⎢⎣
B1
...

Bs

B̃

⎤⎥⎥⎥⎦ , with Bj ∈ R
2k j×m for 1 � j � s and B̃ ∈ R

n−2k×m.

Since (A,B) is a controllable pair, it follows that

n = rankUT [
B AB . . . An−1B

]
= rank

[
UTB UT AUUTB . . .

(
UT AU

)n−1
UTB

]

= rank

⎡⎢⎢⎢⎣
B1 A1B1 . . . An−1

1 B1
...

...
. . .

...
Bs AsBs . . . An−1

s Bs

B̃ 0 . . . 0

⎤⎥⎥⎥⎦ ,

which is true only if rank B̃ = n−2k . Thus n−2k� m. This proves that the multiplicity
of 0 as a pole of F is at most m. Again from the controllability of the pair (A,B) , it
also follows for any 1 � j � s that

2k j = rank
[
Bj A jB j . . . An−1

j B j

]
.

Since A2
j = −ω2

j I2k j , it follows for n = 2(r+1) that

2k j = rank
[
Bj A jB j −ω2

j B j . . .
(
−ω2

j

)r
A jB j

]
= rank

[
Bj A jB j

]
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and for n = 2r+1 that

2k j = rank
[
Bj A jB j −ω2

j B j . . .
(
−ω2

j

)r
B j

]
= rank

[
Bj A jB j

]
.

Thus 2k j = rank
[
Bj A jB j

]
and from

[
Bj A jB j

] ∈ R
2k j×2m it follows that k j � m for

every 1 � j � s. Lastly, the multiplicity of ∞ as a pole of F is rankM � m . �
Since zeros are poles of F−1 , the next corollary follows immediately.

COROLLARY 3.4. For F ∈ PROm every zero on iR , ∞ included, has a multi-
plicity of at most m.

4. The Foster representation

In this section we prove the Foster representation formula in (1.3)–(1.4) for func-
tions in PROm , that is, we prove the following theorem.

THEOREM 4.1. An m×m rational matrix function F is in PROm if and only if
F is of the form

F(z) = zQ+R+
s

∑
j=1

1

z2 + ω2
j

(zQj +Rj) , (4.1)

where ω j � 0 , Q,R,Qj,Rj ∈ Rm×m with Q,Qj � 0 and R,Rj skew-symmetric so that

−ω jQ j � iR j � ω jQ j, j = 1, . . . ,s. (4.2)

REMARK 4.2. The observation that functions in PROm admit a Foster repre-
sentation (4.1), as the natural analogue of the scalar representation (1.1), already ap-
pears in many classical texts, e.g., Chapter 7 in [23] and Chapter 9 in [1], but without
the precise condition 4.2 required for the reverse direction claim. We have also not
encountered condition 4.2 in more recent papers on positive real (odd or lossless) func-
tions, e.g., [4, 6, 29, 31, 2, 26]. In both [23, 1] significant attention is given to the
reverse direction, in the context of the impedance synthesis problem, but via different
approaches. In [23, pp. 206–212] an intricate recursive procedure is applied, while in
[1, Section 9.3] it is used that any minimal realization of a function in PROm must
satisfy a KYP equality from the corresponding bounded real lemma. To the best of
our knowledge, condition (4.2) has not appeared in the literature before (apart from the
proceeding paper [20] where we announced it).

Proof of necessity part of Theorem 4.1. We first proof the necessity of (4.1) and
(4.2). Let F ∈ PROm . Then F admits a representation as in (3.1) with A,B,M,D
real matrices satisfying (3.2). We may assume n is even, at the expense of loosing
controllability. Indeed, if n is odd, one can simply add a zero row at the bottom of
B and extend A with a zero row at the bottom and zero column at the right, this does
not affect the validity of (3.1) and only the controllability in (3.2) falls away. Since
A = −AT is a real matrix, all nonzero eigenvalues are on iR and come in complex
conjugate pairs, while dimKerA is also even, since n is even. Let iω1, . . . , iωs be
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the eigenvalues on iR+ . If ω j �= 0, then let k j be the pole-multiplicity of iω j , while
k j = (dimKerA)/2 if ω j = 0. Then 2∑s

j=1 k j = n . Also, there exists an orthogonal
matrix U so that

UTAU = diag (A1, . . . ,As), with Aj = ω j

[
0 Ik j

−Ik j 0

]
.

Now decompose UT B accordingly as

UT B =

⎡⎢⎣B1
...

Bs

⎤⎥⎦ , with Bj ∈ R
2k j×m.

Set Q = M , R = D , Qj = BT
j B j and Rj = BT

j A jB j for j = 1, . . . ,s . We then have

F(z) = zM +D+BT(zIn −A)−1B = zQ+R+BTU(zIn−UTAU)−1UT B

= zQ+R+
s

∑
j=1

BT
j (zI2k j −Aj)−1Bj = zQ+R+

s

∑
j=1

BT
j

[
zIk j −ω jIk j

ω jIk j zIk j

]−1

Bj

= zQ+R+
s

∑
j=1

1

z2 + ω2
j

BT
j

[
zIk j ω jIk j

−ω jIk j zIk j

]
Bj

= zQ+R+
s

∑
j=1

1

z2 + ω2
j

BT
j (zI2k j +Aj)Bj = zQ+R+

s

∑
j=1

1

z2 + ω2
j

(zQj +Rj).

Hence (4.1) holds. For j = 1, . . . ,s , Q,Qj � 0 and R,Rj are skew-symmetric, since Aj

is skew-symmetric for each j . Furthermore, we have −ω jI2k j � iA j � ω jI2k j , which
provides (4.2) after multiplying by Bj on the right and BT

j on the left. �

For our proof of the sufficiency of (4.1) and (4.2) we require the following lemma.
We note here that in [20] a shorter, though less constructive, proof of the sufficiency of
(4.1) and (4.2) was given, using the convex invertible cone structure of PROm . The
advantage of the proof given here is that it enables us to explicitly construct a realization
as in Theorem 3.1 starting from the Foster representation formula (4.1).

LEMMA 4.3. Let ω > 0 , Rm×m � Q � 0 and R ∈ Rm×m skew-symmetric so that

−ωQ � iR � ωQ. (4.3)

Then there exists an integer q � 0 and B ∈ R2q×m so that

Q = BTB and R = BT AB with A =
[

0 ωIq
−ωIq 0

]
(4.4)

and (A,B) is a controllable pair.

Proof. Throughout the proof, for any matrix C we define ΛC =
[

0 C
−CT 0

]
. Assume

ω , Q and R are as in the lemma. Factor Q = BT
0 B0 with B0 ∈ Rp×m and p = rankQ .

Then B0 is right-invertible. We write B+
0 for the Moore-Penrose right inverse of B0 .



POSITIVE REAL ODD RATIONAL MATRIX FUNCTIONS 365

Set S0 = (B+
0 )T RB+

0 ∈ Rp×p . Note that (4.3) implies that KerQ ⊂ KerR and ranR ⊂
ranQ . Therefore, we have

BT
0 S0B0 = BT

0 (B+
0 )T RB+

0 B0 = PImQRPKerQ⊥ = R.

Moreover, S0 is skew-symmetric and (4.3) implies −ωIp � iS0 � ωIp . In particular,
the eigenvalues of S0 come in complex conjugate pairs (iα,−iα) with α ∈ [0,ω ] ,
except possibly 0 which may have odd multiplicity.

We first consider the case that p is even, say p = 2k . Then there exists an orthog-
onal matrix U0 ∈ R

p×p so that S0 = U0diag (Λα1 , . . . ,Λαk )U
T
0 with ω � α1 � . . . �

αk � 0 so that iα j , j = 1, . . . ,k are the eigenvalues of S0 on iR+ , multiplicities taken
into account. Define B1 = UT

0 B0 and A1 = diag (Λα1 , . . . ,Λαk) . Then BT
1 B1 = Q and

BT
1 A1B1 = BT

0 S0B0 = R .
Let 1 � l � k be so that α1 = · · · = αl = ω and αl+1 < ω , setting l = 0 in

case α1 < ω and l = k if α j = ω for all j . Set q = l + 2(k− l) = k + (k− l) and
define A = ΛωIq in R

2q×2q as above. Then there exists a permutation matrix W so that
WT AW = diag (Λα1 , . . .Λαl ,ΛωI2 , . . . ,ΛωI2 ) =: A2 , using α1 = · · · = αl = ω .

For j = l + 1, . . . ,k set Uj = ω−1
[

α j η j
−η j α j

]
, where η j = (ω2 −α2

j )
1/2 , except if

ω = 0 when we set Uj = Λ1 , and define Û j =
[

Uj 0
0 I2

]
. Note that both Uj and Û j

are orthogonal and we have ΛωUj = Û jΛωI2Û
T
j . Now define the orthogonal matrix

Û = diag (I2, . . . , I2,ÛT
l+1, . . . ,Û

T
k ) in R2q×2q . Then

ÛTWT AWÛ = ÛTA2Û = diag (Λα1 , . . .Λαl ,ΛωUl+1 , . . . ,ΛωUk ) =: Ã1 ∈ R
2q×2q.

Note that A1 can be obtained by compressing Ã1 to the rows and columns indexed
by 1, . . . ,2l,2l +1,2l +3, . . . ,2l +4(k− l)−1 = 2q−1. Let b j , j = 1, . . . ,2k , be the
j -th row of B1 . We now extend B1 to a matrix B̃1 ∈ R2q×m by

B̃T
1 =

[
bT

1 · · · bT
2l bT

2l+1 0 bT
2l+2 0 · · · bT

2k 0
]
. (4.5)

Then we have Q = B̃T
1 B̃1 and R = B̃T

1 Ã1B̃1 . Set B =WÛB̃1 . Since A =WÛÃ1ÛTWT ,
with W and Û orthogonal, we find that (4.4) holds. Hence, it remains to show that the
pair (A,B) is controllable. Note that AjB = WÛÃ j

1B̃1 . Therefore, it is equivalent to
show (Ã1, B̃1) is a controllable pair. Note that[

B̃T
1

B̃T
1 ÃT

1

]
=

[
L1 · · · Ll Hl+1 · · · Hq

]
(4.6)

with for j = 1, . . . , l and s = l +1, . . . ,q we define

Lj =
[
bT

2 j−1 bT
2 j

ωbT
2 j ωbT

2 j−1

]
, Hs =

[
bT

2s−1 0
αsbT

2s −ηsbT
2s

]
∈ R

2m×2.

By construction {bT
1 , . . . ,bT

2k} forms a set of linearly independent vectors. Hence if
the matrix (4.6) were to have linearly dependent columns, they must be among the
columns indexed by 2l + 2,2l + 4, . . . ,2q . However, this can also not occur, since
ηl+1, . . . ,η2k �= 0 and {bT

2l+1, . . . ,b
T
2k} is a set of linearly independent vectors. This
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shows that [B̃1 Ã1B̃1] has full row rank, hence [B̃1 Ã1B̃1 · · · Ã2q−1
1 B̃1] has full row

rank, provided q � 1. In case q = 0, controllability is trivial. Hence we find that the
pair (A,B) is controllable.

Finally, we consider the case where p = rank (Q) is odd, say 2k+ 1. The above
procedure can be followed with a few modifications. We have S0 = U0A1UT

0 where
now A1 = diag (Λα1 , . . . ,Λαk ,0) ∈ R

2k+1×2k+1 . Set

A2 = diag (Λα1 , . . . ,Λαl ,ΛωI2 , . . . ,ΛωI2 ,Λω ), Û = diag (I2, . . . , I2,ÛT
l+1, . . . ,Û

T
k , I2),

hence we add 2×2 diagonal blocks Λω and I2 , respectively. Next define Ã1 = ÛT A2Û
and extend B1 =UT

0 B0 to B̃1 as in (4.5) except that B̃1 now has b2k+1 and 0 as its last
two rows. It is easy to see that A2 = WT AW holds for some permutation matrix W
and A as in (4.4) where now q = l + 2(k− l) + 1. Following the remainder of the
proof for the case where rank (Q) is even, with B = WÛB̃1 , we see that (4.4) holds
and that (A,B) is controllable, because (Ã1, B̃1) is controllable. For the latter, note that

b1, . . . ,b2k+1 are linearly independent vectors and in the above matrix

[
B̃T

1

B̃T
1 ÃT

1

]
after

the modification of the present paragraph the two columns

[
bT
2k+1 0

0 ωbT
2k+1

]
are added

leading to a new

[
B̃T

1

B̃T
1 ÃT

1

]
that still has full column rank. �

Proof of sufficiency part of Theorem 4.1. Using the previous lemma, we now show
how a realization as in Theorem 3.1 of a F ∈ PROm can be obtained from its Foster
representation. Hence, assume F ∈ PROm is given by (4.1)–(4.2). Without loss of
generality ω j �= ωk if j �= k . For j = 1, . . . ,s apply the factorization from Lemma 4.3,

i.e., Qj = BT
j B j and Rj = BT

j A jB j with Aj =
[ 0 ω j Iq j
−ω j Iq j 0

]
. We get

1

z2 + ω2
j

(zQj +Rj) =
1

z2 + ω2
j

BT
j

(
zI2q j +Aj

)
Bj =

1

z2 + ω2
j

BT
j

[ zIq j ω j Iq j
−ω j Iq j zIq j

]
Bj

= BT
j

[ zIq j −ω j Iq j
ω j Iq j zIq j

]−1
Bj = BT

j

(
zI2q j −Aj

)−1
Bj.

Now set M = Q , D = R , A = diag (A1, . . . ,As) and BT = [BT
1 · · · BT

s ] . It is clear from
the above computation that F in (4.1) is also given by (3.1) with this choice of M , D ,
A and B . To see that the pair (A,B) is controllable, note that

[
A−λ I B

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

A1−λ I 0 · · · 0 B1

0 A2−λ I B2
...

. . .
. . .

...
...

...
. . . As−1−λ I 0 Bs−1

0 · · · 0 As−λ I Bs

⎤⎥⎥⎥⎥⎥⎥⎦ .

Clearly, for λ �= ±iω j , for j = 1, . . . ,s , the matrix has full row rank. For λ = iω j or
λ = −iω j the (k,k) block entries for k �= j are still invertible, since ω j �= ωk , and
the rows in the j -th block row are independent because (Aj,Bj) is a controllable pair.
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Hence (A,B) is a controllable pair, as claimed. �

REMARK 4.4. Apart from a concrete procedure to determine a minimal realiza-
tion for F explicitly from the Foster representation, the above proof also shows how
the pole-multiplicities can be computed. For the pole at ∞ it is clear its multiplicity
is rankQ . Fix a finite pole iω j and let Rj and Qj be as in (4.1). In this case, the
multiplicity of ω j in not necessarily equal to rankQj , but rather the size of the ma-
trix Aj obtained from the construction of Lemma 4.3. Set p j = rankQj and determine
a factorization Qj = BT

0, jB0, j with Bj,0 ∈ R
p j×m , which is unique up to multiplica-

tion with a p j × p j unitary matrix. Set S j := (B+
0, j)

T R jB+
0, j , with B+

0, j the Moore-
Penrose right-inverse of B0, j . Then S j is skew-symmetric and all eigenvalues of S j

on iR+ are bounded by iω j . Let l j be the number of eigenvalues equal to iω j .
Then the pole-multiplicity of ω j is equal to l j + 2(p j/2− l j) in case p j is even and
l j +2((p j +1)/2− l j) in case p j is odd.

5. Inversion

Since PROm is a convex invertible cone, for a function F ∈ PROm , it follows
that F−1 is also in PROm , provided F is invertible, i.e., detF(z) �≡ 0. In this section,
we determine when F ∈ PROm is invertible and provide realization formulas for its
inverse, of the form as in Section 3, in case F is invertible. Throughout this section we
shall assume F is given in the transfer function form of Theorem 3.1, that is,

F(z) = zM +D+BT(zIn −A)−1B, (5.1)

for some integer n � 0, M,D ∈ Rm×m , B ∈ Rn×m and A ∈ Rn×n with

M � 0, AT = −A, DT = −D, (A,B) controllable. (5.2)

By the inversion result for descriptor systems from [24], we obtain the following
characterization for invertibility of F and of its inverse.

PROPOSITION 5.1. Let F ∈ PROm be given by (5.1)–(5.2). Then for any z ∈ C

we have

detF(z) �≡ 0 ⇐⇒ det

([
zIn 0
0 zM

]
−

[
A B

−BT −D

])
�≡ 0. (5.3)

Moreover, in that case we have

F(z)−1 =
[
0 Im

]([
zIn 0
0 zM

]
−

[
A B

−BT −D

])−1 [
0
Im

]
. (5.4)

Proof. From (5.1)–(5.2) one obtains the descriptor realization form in (3.3)–(3.4),
where q = rankM and K ∈ R

q×m is so that KT K = M . By the inversion formula for
descriptor systems from Theorem 3.1 in [24] it follows that

F(z)−1 =
[
0 Im

](
z

[
E◦ 0
0 0

]
−

[
A◦ B◦
C◦T D◦

])−1 [
0

−Im

]
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=
[
0 0 0 Im

]⎡⎢⎢⎣
zIn−A 0 0 −B

0 −Iq zIq 0
0 0 −Iq K

−BT −KT 0 −D

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

0
0
0

−Im

⎤⎥⎥⎦

=
[
0 Im 0 0

]⎡⎢⎢⎣
zIn−A −B 0 0
−BT −D −KT 0

0 0 −Iq zIq
0 K 0 −Iq

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

0
−Im
0
0

⎤⎥⎥⎦
and detF(z) �≡ 0 precisely when the 4× 4 block matrix is invertible. Since the right
lower 2×2 block

[−I zI
0 −I

]
is invertible for all z , it follows that the above inverse exists

if and only if the Schur complement with respect to this 2×2 block:

Δ(z) : =
[
zIn −A −B
−BT −D

]
−

[
0 0

−KT 0

][−Iq zIq
0 −Iq

]−1 [
0 0
0 K

]
= z

[
In 0
0 −M

]
−

[
A B
BT D

]
is invertible. Via the standard Schur complement inversion formula, cf., [30], one now
obtains that

F(z)−1 =
[
0 Im 0 0

][
Δ(z)−1 ∗

∗ ∗
]⎡⎢⎢⎣

0
−Im
0
0

⎤⎥⎥⎦
=

[
0 Im

](
z

[
In 0
0 −M

]
−

[
A B
BT D

])−1 [
0

−Im

]
=

[
0 Im

](
z

[
In 0
0 M

]
−

[
A B

−BT −D

])−1 [
0
Im

]
,

which proves our claim. �
Next we provide an easily verifiable criteria to determine when detF(z) �≡ 0.

LEMMA 5.2. Let F ∈ PROm be given by (5.1)–(5.2). Then detF(z) �≡ 0 if and
only if Ker ([ B

D ] |Ker M) = {0} .

Proof. In Proposition 5.1 we noted that detF(z) �≡ 0 precisely when the pair

(Ê, Â) with Ê =
[

In 0
0 M

]
and Â =

[
A B

−BT −D

]
is regular, that is, det(zÊ − Â) �≡ 0. The

claim now follows immediately from the following lemma. �

LEMMA 5.3. Let Ê � 0 and Â ∈ Rk×k skew-symmetric. Then the pair (Ê, Â) is
regular if and only if Ker (Â|Ker Ê) = {0} .

Proof. For the necessity, just note that Ker (Â|Ker Ê) is contained in Ker (zÊ −
Â) for all z ∈ C . So it remains to prove sufficiency. Assume Ker (Â|Ker Ê) = {0} .
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Decompose Rk = Im Ê ⊕Ker Ê . Further decompose Ker Ê = Z3 ⊕Z4 with Z3 =
Im(PKer Ê Â|Ker Ê) and Z4 = Ker (PKer Ê Â|Ker Ê) and Im Ê = Z1⊕Z2 with Z1 = Â(Z4)
and Z2 = Im Ê �Z1 . Note that Â maps Z4 into Im Ê by definition of Z4 . Using that
Ê is positive semidefinite and Â skew-symmetric, we now obtain that with respect to
the decomposition R

k = Z1⊕Z2⊕Z3⊕Z4 , the matrices Ê and Â have the following
form

Â =

⎡⎢⎢⎣
A11 A12 A13 A14

−AT
12 A22 A23 0

−AT
13 −AT

23 A33 0
−AT

14 0 0 0

⎤⎥⎥⎦ , Ê =

⎡⎢⎢⎣
E11 E12 0 0
ET

12 E22 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ ,

with
[

E11 E12
ET

12 E22

]
positive definite, and hence E11 and E22 positive definite, A33 invertible

and A14 full row-rank. The assumption Ker (Â|Ker Ê) = {0} is equivalent to KerA14 =
{0} , hence to A14 invertible. Now note that

zÊ − Â =

⎡⎢⎢⎣
zE11−A11 zE12−A12 −A13 −A14

zET
12 +AT

12 zE22−A22 −A23 0
AT

13 AT
23 −A33 0

AT
14 0 0 0

⎤⎥⎥⎦ .

Since A14 is invertible, and hence AT
14 is invertible, we obtain that zÊ − Â is invertible

if and only if [
zE22−A22 −A23

AT
23 −A33

]
is invertible. Taking the Schur complement with respect to −A33 we see that invertibil-
ity of this 2×2 block matrix is equivalent to invertibility of the Schur complement

zE22−A22− (−A23)(−A33)−1AT
23 = zE22− (A22 +A23A

−1
33 AT

23).

Note that A22 and A33 are skew-symmetric and E22 is positive definite. Therefore,
A22 +A23A

−1
33 AT

23 is skew-symmetric, and for any 0 �= z ∈R we have det(zE22−(A22 +
A23A

−1
33 AT

23)) �= 0. Since either det(zE22 − (A22 + A23A
−1
33 AT

23)) ≡ 0 or there are only
finitely many roots, we see that det(zE22− (A22 +A23A

−1
33 AT

23)) �≡ 0. Consequently, we
have det(zÊ − Â) �≡ 0, hence the pair (Ê, Â) is regular. �

The realization (5.4) will in general not be minimal, and hence some of the poles
of the resolvent may not be poles of F−1 , or the multiplicities may be inflated. To
obtain a minimal realization, we decompose the matrices M , D and B with respect to
the decomposition of Rm given by

R
m = X1⊕X2⊕X3, with

X1 = KerM⊥, X2 = Ker (PKer MD|Ker M)⊥, X3 = Ker (PKer MD|Ker M),
(5.5)

which yields decompositions of the form

B =
[
B1 B2 B3

]
, D =

⎡⎣ D11 D12 D13

−DT
12 D22 0

−DT
13 0 0

⎤⎦ , M =

⎡⎣M1 0 0
0 0 0
0 0 0

⎤⎦ , (5.6)
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with M1 and D22 invertible. In particular, M1 is positive definite and D22 is invertible
and real, skew-symmetric, so that X2 must have even dimension. We set

m1 = dimX1, m2 = dimX2, m3 = dimX3, so that m = m1 +m2 +m3, m2 even.

As an intermediate step towards our main result, we present a minimal descriptor
realization for F−1 which is not in Weierstrass form yet. For this purpose, consider
linear maps K1 and Ξ so that

K1 : X1 → R
m1 , KT

1 K1 = M1, Ξ : X3 → R
m3 , ΞT Ξ = IX3 . (5.7)

Note that K1 is invertible and Ξ orthogonal. Further, define

Ã =
[

A−B2D
−1
22 BT

2 (B1 +B2D
−1
22 DT

12)K
−1
1

K−T
1 (−BT

1 +D12D
−1
22 BT

2 ) −K−T
1 (D11 +D12D

−1
22 DT

12)K
−1
1

]
,

B̃ =
[

B3ΞT

−K−T
1 D13ΞT

]
.

(5.8)

In terms of the decomposition (5.5)–(5.6), the condition for detF(z) �≡ 0 of Lemma 5.2

translates to Ker
[

B3
D13

]
= {0} , or, equivalently, Ker B̃ = {0} .

PROPOSITION 5.4. Let F ∈ PROm be given by (5.1)–(5.2) and decompose B,
D, M as in (5.6). Define Ã and B̃ as in (5.8) with K1 and Ξ as in (5.7). Assume
Ker B̃ = {0} , so that detF(z) �≡ 0 . Then

F(z)−1 = D̂inv + B̂T
inv(zÊinv− Âinv)−1B̂inv, (5.9)

where

Êinv =
[
In+m1 0

0 0

]
, Âinv =

[
Ã B̃

−B̃T 0

]
,

B̂inv =

⎡⎣ 0 B2D
−1
22 0

K−T
1 −K−T

1 D12D
−1
22 0

0 0 Ξ

⎤⎦ , D̂inv =

⎡⎣0 0 0
0 D−1

22 0
0 0 0

⎤⎦ ,

(5.10)

and the descriptor realization (5.9) of F−1 is minimal.

Proof. Set

T1 =

⎡⎢⎢⎣
In 0 B2D

−1
22 0

0 K−T
1 −K−T

1 D12D
−1
22 0

0 0 0 Ξ
0 0 IX2 0

⎤⎥⎥⎦ ,

and note that T1 is invertible. A straightforward computation shows that

T1

[
zIn−A −B

BT zM +D

]
TT
1 =

[
zÊinv− Âinv 0

0 D22

]
.

Since D22 is invertible, we have that zÊinv−Âinv is invertible if and only if
[

zI−A −B
BT zM+D

]
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is invertible. Applying this transformation to the formula for F−1 in (5.4) we obtain
that

F(z)−1 =
[
0 Im

][
zIn−A −B

BT zM +D

]−1 [
0
Im

]
=

[
0 Im

]
TT
1

[
zÊinv− Âinv 0

0 D22

]−1

T1

[
0
Im

]

=

⎡⎣ 0 K−1
1 0 0

−D−1
22 BT

2 D−1
22 DT

12K
−1
1 0 IX2

0 0 ΞT 0

⎤⎦

×
[
(zÊinv− Âinv)−1 0

0 D−1
22

]⎡⎢⎢⎣
0 B2D

−1
22 0

K−T
1 −K−T

1 D12D
−1
22 0

0 0 Ξ
0 IX2 0

⎤⎥⎥⎦
=

⎡⎣0 0 0
0 D−1

22 0
0 0 0

⎤⎦+

⎡⎣ 0 K−1
1 0

−D−1
22 BT

2 D−1
22 DT

12K
−1
1 0

0 0 ΞT

⎤⎦
× (zÊinv− Âinv)−1

⎡⎣ 0 B2D
−1
22 0

K−T
1 −K−T

1 D12D
−1
22 0

0 0 Ξ

⎤⎦
= D̂inv + B̂T

inv(zÊinv− Âinv)−1B̂inv.

Hence, we established (5.9). It remains to prove that this descriptor realization is min-
imal. By Theorem 6.2 from [18], see also Section 2, the descriptor realization (5.9) is
minimal if and only if the following five conditions are met:

(i) rank
[
zÊinv− Âinv B̂inv

]
= n+m1 +m3 for all z ∈ C ;

(ii) rank
[
Êinv B̂inv

]
= n+m1 +m3 ;

(iii) rank
[
zÊT

inv− ÂT
inv B̂inv

]
= n+m1 +m3 for all z ∈ C ;

(iv) rank
[
ÊT

inv B̂inv
]
= n+m1 +m3 ;

(v) Âinv(Ker Êinv) ⊂ Im Êinv .

Since ÂT
inv = −Âinv and ÊT

inv = Êinv , conditions (iii) and (iv) follow from (i) and (ii),
hence it suffices to verify (i), (ii) and (v). From the formulas of Êinv and B̂inv it is clear
that rank [ Êinv B̂inv ] = n + m1 + rank Ξ = n + m1 + m3 , since Ξ is a orthogonal map,

hence (ii) holds. Also, Âinv(Ker Êinv) = Im
[

B̃
0

]
⊂ Rn+m1 ⊕{0} = Im Êinv . Thus (v) is

also satisfied, and it remains to prove (i). First note that

rank

[
zIn−A −B 0

BT zM +D Im

]
= rank

[
zIn −A −B

]
+m = n+m,
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since (A,B) is assumed to be a controllable pair. Using the invertible matrix T1 defined
above we note that

T1

[
zIn−A −B 0

BT zM +D Im

][
TT
1 0
0 Im

]
=

[
zÊinv− Âinv 0 B̂inv

0 D22 R

]
with R =

[
0 IX2 0

]
. Consequently, since D22 is invertible, we have

n+m1 +m2 +m3 = n+m = rank

[
zÊinv− Âinv 0 B̂inv

0 D22 R

]
= m2 + rank

[
zÊinv− Âinv B̂inv

]
.

Hence, rank [ zÊinv−Âinv B̂inv ] = m+m1 +m3 , as desired. �

We are now ready to present the minimal Weierstrass realization for F−1 .

THEOREM 5.5. Let F ∈ PROm be given by (5.1)–(5.2) and decompose B, D,
M with respect to the decomposition (5.5) of Rm as in (5.6). Define Ã and B̃ as in
(5.8), with K1 and Ξ as in (5.7), and assume Ker B̃ = {0} so that detF(z) �≡ 0 . Set
k = n + m1 −m3 and let Γ ∈ R(n+m1)×k be an isometry with ImΓ ⊥ Im B̃ . Then a
minimal Weierstrass descriptor realization of the inverse of F is given by

F(z)−1 = D◦
inv +C◦T

inv(zE
◦
inv−A◦

inv)
−1B◦

inv (5.11)

with

E◦
inv =

⎡⎣Ik 0 0
0 0 Im3

0 0 0

⎤⎦ , A◦
inv =

⎡⎣Ainv 0 0
0 Im3 0
0 0 Im3

⎤⎦ , B◦
inv =

⎡⎣ Binv

0
−Kinv

⎤⎦ , (5.12)

C◦
inv =

⎡⎣Binv

Kinv

0

⎤⎦ , D◦
inv =

⎡⎣ 0 0 −M−1
1 D13Φ−1

33
0 D−1

22 −D−1
22 Φ23Φ−1

33
Φ−1

33 DT
13M

−1
1 −Φ−1

33 ΦT
23D

−1
22 −Φ−1

33 ΞT B̃T ÃB̃ΞΦ−1
33

⎤⎦ ,

where we define

Ainv = ΓT ÃΓ, Kinv =
[
0 0 −ΞΦ−1/2

33

]
,

Binv = ΓT
[

0 B2D
−1
22 (AB3−B1M

−1
1 D13−B2D

−1
22 Φ23)Φ−1

33

K−T
1 −K−T

1 D12D
−1
22 −K−T

1 (BT
1 B3−D11M

−1
1 D13−D12D

−1
22 Φ23)Φ−1

33

]
,

Φ33 = BT
3 B3 +DT

13M
−1
1 D13, Φ23 = BT

2 B3 +DT
12M

−1
1 D13,

(5.13)

and where

ΞT B̃T ÃB̃Ξ = BT
3 AB3−BT

3 B1M
−1
1 D13 +DT

13M
−1
1 BT

1 B3

−DT
13M

−1
1 D11M

−1
1 D13−Φ23D

−1
22 Φ23.

Proof. Consider the realization of F(z)−1 in Proposition 5.4. Define Γ and Ξ ,
as well as E◦

inv,A
◦
inv, . . . ,D

◦
inv and Ã and B̃ as in the theorem. Let B̃+ := (B̃T B̃)−1B̃T

be the Moore-Penrose left inverse of B̃ . Set ϒ := B̃(B̃T B̃)−1/2 . By definition of Γ we
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have B̃+Γ = 0 and ϒT Γ = 0. Moreover, ϒ is an isometry and
[
Γ ϒ

]
is unitary. Now

define the invertible matrices

L1 =

⎡⎣Ik 0 ΓT Ã(B̃+)T

0 Im3
1
2 ϒT Ã(B̃+)T

0 0 −(B̃T B̃)−1/2

⎤⎦⎡⎣ΓT 0
ϒT 0
0 Im3

⎤⎦
=

⎡⎣ΓT ΓT Ã(B̃+)T

ϒT 1
2 ϒT Ã(B̃+)T

0 −(B̃T B̃)−1/2

⎤⎦ ,

L2 =
[

Γ ϒ 0
0 0 Im3

]⎡⎣ Ik 0 0
0 0 Im3

−B̃+ÃΓ (B̃T B̃)−1/2 − 1
2 B̃+Ãϒ

⎤⎦
=

[
Γ 0 ϒ

−B̃+ÃΓ (B̃T B̃)−1/2 − 1
2 B̃+Ãϒ

]
.

A direct computation, using B̃T Γ = 0 and ϒT B̃B̃+ = ϒT PImB̃ = ϒT , shows that the

matrices Âinv and Êinv given by (5.10) satisfy

L1ÂinvL2 = A◦
inv and L1ÊinvL2 = E◦

inv.

Hence (zÊinv − Ãinv)−1 = L2(zE◦
inv − A◦

inv)
−1L1 . Note that B̃T B̃ = ΞΦ33ΞT , so that

(B̃T B̃)
1
2 = ΞΦ

1
2
33ΞT , since Ξ is unitary. Furthermore, one can compute that

ÃB̃ =
[

AB3−B1M
−1
1 D13−B2D

−1
22 Φ23

−K−T
1 (BT

1 B3−D11M
−1
1 D13−D12D

−1
22 Φ23)

]
ΞT .

Using these identities it follows that

L1B̂inv =

⎡⎣Binv

R
Kinv

⎤⎦ and B̂T
invL2 =

[
BT

inv −KT
inv RT

]
where

R = ΞΦ−1/2
33

[−DT
13M

−1
1 ΦT

23D
−1
22

1
2 ΞT B̃T ÃB̃ΞΦ−1

33

]
and a further computation shows that

ΞT B̃T ÃB̃Ξ = BT
3 AB3−BT

3 B1M
−1
1 D13 +DT

13M
−1
1 BT

1 B3

−DT
13M

−1
1 D11M

−1
1 D13−ΦT

23D
−1
22 Φ23.

Therefore, we have

F(z)−1 = D̂inv + B̂T
inv(zÊinv− Âinv)−1B̂inv

= D̂inv + B̂T
invL2(zE◦

inv−A◦
inv)

−1L1B̂inv

= D̂inv +
[
BT

inv −KT
inv RT

]
(zE◦

inv−A◦
inv)

−1

⎡⎣Binv

R
Kinv

⎤⎦
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= D̂inv +C◦T
inv(zE

◦
inv−A◦

inv)
−1B◦

inv

+
[
0 RT

][−Im3 zIm3

0 −Im3

]−1 [
R

Kinv

]
+

[−KT
inv −RT

][−Im3 zIm3

0 −Im3

]−1 [
R
0

]
= D̂inv−RTKinv +KT

invR+C◦T
inv(zE

◦
inv−A◦

inv)
−1B◦

inv.

So we arrive at (5.11) by noting that

D̂inv +KT
invR−RTKinv = D◦

inv.

Minimality of the realization (5.11) follows directly from the minimality of (5.9). �

Note that the descriptor realization for F−1 of Theorem 5.5 precisely has the form
of the realization in Theorem 3.2. Reversing the argument in Section 3, we also obtain
a realization of the type in Theorem 3.1.

THEOREM 5.6. Let F ∈ PROm be given by (5.1)–(5.2) and decompose B, D,
M with respect to the decomposition (5.5) of Rm as in (5.6). Assume detF(z) �≡ 0 .
Then

F(z)−1 = zMinv +Dinv +BT
inv(zIn−Ainv)−1Binv, (5.14)

where Binv and Ainv are as in (5.13), Dinv = D◦
inv and Minv = KT

invKinv with D◦
inv as in

(5.12) and Kinv as in (5.13). Moreover, the pair (Ainv,Binv) is controllable.

6. Poles and zeros of PROm functions

In the scalar case, i.e., m = 1, the poles and zeros of functions in PRO interlace
on the imaginary axis. This follows easily from the Foster representation (1.1) for
PRO . For m > 1 the situation is more complicated, yet still a (partial) analogue
of the scalar result can be obtained. We shall assume F ∈ PROm is given by the
realization formula of Theorem 3.1 so that F−1 admits a realization as in Theorem 5.6.
Recall that the zeros of F are defined as the poles of F−1 , hence, for finite zeros, as
the eigenvalues of Ainv with multiplicities equal to the dimensions of the corresponding
eigen spaces. Hence, for finite poles and zeros one has to analyse the spectrum of Ainv ,
in relation to the spectrum of A . At ∞ the situation is reasonably straightforward, the
pole-multiplicity of F is given by rankM while the zero-multiplicity of F is equal
to rankMinv = rank Φ33 = rank B̃ = m3 . There are three steps from A to Ainv that
influence the eigenvalues:

(i) The perturbation from A to Â := A−B2D
−1
22 BT

2 via a perturbation of at most rank
m2 ;

(ii) The extension of Â to Ã =
[

Â �
� �

] ∈ R(n+m1)×(n+m1) in (5.8);

(iii) The compression from Ã to Ainv ∈ R
(n+m1−m3)×(n+m1−m3) in (5.13).
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In general, all three steps can occur. However, for m = 1, step (i) cannot occur, since m2

must be even, but both steps (ii) and (iii) can occur separately, but not the combination
of the two, hence there are only two cases to analyse. For m = 2 the situation is already
more complicated, step (i) can occur, but not together with steps (ii) and (iii), however
steps (ii) and (iii) can happen separately, but also together, leading to four cases. In [20]
we included an analysis of the various cases that occur for m = 1 and m = 2.

Here we present a partial analogue of the results in [20] for the general case. This
requires some variational principles for eigenvalues of Hermitian matrices, which can
be found in Sections 4.2 and 4.3 of [19]. For the readers convenience we include the
results here. Given a Hermitian matrix H ∈C

k×k we order the eigenvalues in increasing
order, λ1(H) � λ2(H) � · · · � λk(H) , multiplicities taken into account. For simplicity
of the statement of our results, we also define λ j(H) = −∞ for j < 1 and λ j(H) = ∞
for j > k .

THEOREM 6.1. (Weyl’s Inequality, Theorem 4.3.7 in [19]) Let M,N ∈ Cm×m be
Hermitian. Then for all integers j,k > 0 we have

λ j+k−m(M +N) � λ j(M)+ λk(N) � λ j+k−1(M +N). (6.1)

When the number of positive and negative eigenvalues of the perturbation N are
known, we have the following result.

COROLLARY 6.2. Let M,N ∈ Cm×m be Hermitian. Assume r− and r+ are the
number of negative and positive eigenvalues of N , multiplicities taken into account.
Then for any integer j � 0 we have

λ j−r+(M +N) � λ j(M) � λ j+r−(M +N),
λ j−r−(M) � λ j(M +N) � λ j+r+(M).

Proof. If r+ = m or r− = m , then N is positive definite or negative definite, re-
spectively, and the validity of the claim follows from Theorem 4 in [27]. Hence assume
r+ �= m and r− �= m . For j = 0 it is easily verified that the inequalities hold. Let j > 0.
Note that λk(N) � 0 when k � m− r+ . Therefore, using (6.1) with k = m− r+ , we
have

λ j−r+(M +N) = λ j−(m−r+)−m(M +N) � λ j(M)+ λm−r+(N) � λ j(M).

Moreover, we have λk(N) � 0 for k � r− +1, so that (6.1) with k = r− +1 yields

λ j+r−(M +N) = λ j+(r−+1)−1(M +N) � λ j(M)+ λr++1(N) � λ j(M).

This proves the first pair of inequalities. For the second set of inequalities, apply the
same argument with M and N replaced by M +N and −N , respectively, noting that
−N has r+ negative eigenvalues and r− positive eigenvalues, multiplicities taken into
account. �

THEOREM 6.3. (Cauchy Interlacing Theorem, Theorem 4.3.15 in [19]) For a Her-
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mitian H ∈ C(m+k)×(m+k) , partitioned accordingly as

H =
[
M K
K∗ N

]
, (6.2)

we have
λ j(H) � λ j(M) � λ j+k(H), j � 0. (6.3)

Using the above results, we can prove the following result for the poles and zeros
of functions in PROm .

THEOREM 6.4. Let F ∈ PROm be given by a minimal state space realization
(5.1)–(5.2), so that F−1 has a minimal state space realization as in Theorem 5.6. Then
for any integer j � 0 we have

λ j−m2
2 −m3

(iAinv) � λ j(iA) � λ j+1(iA) � λ j+ m2
2 +m1+1(iAinv),

λ j−m2
2 −m1

(iA) � λ j(iAinv) � λ j+1(iAinv) � λ j+ m2
2 +m3+1(iA).

(6.4)

In particular, if 0 � ω j < ω j+1 are such that iω j and iω j+1 are subsequent poles of
F , then in the interval (iω j, iω j+1) on iR F can have zeros whose multiplicities do not
add up to more than m. Moreover, if 0 � ν j < ν j+1 are such that iν j and iν j+1 are
subsequent zeros of F , then in the interval (iν j, iν j+1) on iR F can have poles whose
multiplicities do not add up to more than m.

We should remark here, that, unlike in the scalar case, for m > 1 it is possible
that poles and zeros of F ∈ PROm occur at the same point on iR . Hence, as in the
theorem, if iω j and iω j+1 are subsequent poles of F , then zeros with a multiplicities
adding up to at most m can occur between iω j and iω j+1 , but the theorem does not
exclude the possibility that F also has zeros at iω j and iω j+1 .

Proof of Theorem 6.4. Let A , Â , Ã and Ainv be as in steps (i)-(iii) above. Then iA ,
iÂ , iÃ and iAinv are Hermitian, hence with eigenvalues on R which are mirrored in 0
because the matrices A , Â , Ã and Ainv are real skew-symmetric. Also, the perturbation
Λ := −B2D

−1
22 BT

2 in step (i) is real skew-symmetric and has a rank of at most m2 so
that iΛ has at most m2/2 positive eigenvalues and at most m2/2 negative eigenvalues.
Therefore, by Corollary 6.2 we have

λ j−m2
2

(iÂ) � λ j(iA) and λ j+1(iA) � λ j+ m2
2 +1(iÂ).

Since Ã =
[

Â �
� �

] ∈ R(n+m1)×(n+m1) , we can apply Theorem 6.3 to obtain

λ j−m2
2

(iÃ) � λ j−m2
2

(iÂ) and λ j+ m2
2 +1(iÂ) � λ j+ m2

2 +m1+1(iÃ).

Furthermore, after a change of basis, we can write Ã =
[

Ainv �
� �

]
with Ã of size (n +

m1)× (n+m1) and Ainv of size (n+m1−m3)× (n+m1−m3) . Hence, again applying
Theorem 6.3 we obtain

λ j−m2
2 −m3

(iAinv) � λ j−m2
2

(iÃ) and λ j+ m2
2 +m1+1(iÃ) � λ j+ m2

2 +m1+1(iAinv).
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Putting these inequalities together we find that

λ j−m2
2 −m3

(iAinv) � λ j−m2
2

(iÃ) � λ j−m2
2

(iÂ) � λ j(iA)

and
λ j+1(iA) � λ j+ m2

2 +1(iÂ) � λ j+ m2
2 +m1+1(iÃ) � λ j+ m2

2 +m1+1(iAinv).

Hence we proved the first set of inequalities in (6.4). The second set of inequalities in
(6.4) follows by a similar analysis, reversing the construction from A to Ainv . �

Note that it may happen that the perturbation Λ = −B2D−1
22 BT

2 has rank 2d < m2 .
In this case, the proof shows that the inequalities in (6.4) can be improved by replacing
m2/2 by d .

We conclude this paper with an example illustrating the pole-zero properties of
PROm functions.

EXAMPLE 6.5. Consider F ∈PRO2 given in the state space realization form of
Theorem 3.1 with

A = diag

([
0 1
−1 0

]
,

[
0 2
−2 0

]
,

[
0 3
−3 0

]
,

[
0 4
−4 0

]
,

[
0 1
−1 0

]
,

[
0 5
−5 0

])
,

BT =
[

0 1
10000

1
10

5
1000 0 0 5

1000 0 0 0 0 1
1000

1000 0 1 0 0 1
10000 0 0 0 1

1000 0 0

]
, D =

[
0 50

−50 0

]
,M = 0.

Then m = m2 = 2 and m1 = m3 = 0. Hence F has no pole and no zero at ∞ . One can
verify that

rank
[
B AB A2B . . . A11B

]
= 12.

Hence (A,B) is a controllable pair. In particular, the state space realization in (3.1) is
minimal, so that the (finite) poles of F coincide with the eigenvalues of A :

±5i, ±4i, ±3i, ±2i, ±1i (multiplicity 2).

In this case, since m1 = m3 = 0, the state matrix of F−1 is given by

Ainv = A−BD−1BT ,

a rank 2 perturbation of A . Using Matlab we found the eigenvalues of Ainv to be

−λ1 (Ainv) = λ12 (Ainv) = 5.000052i, −λ2 (Ainv) = λ11 (Ainv) = 4.002068i,

−λ3 (Ainv) = λ10 (Ainv) = 3.00000000000012i, −λ4 (Ainv) = λ9 (Ainv) = 2.921053i,

−λ5 (Ainv) = λ8 (Ainv) = 1i, −λ6 (Ainv) = λ7 (Ainv) = 0.682921i,

which correspond to the zeros of F . It follows that there is one zero below −5i , one
in each of the intervals (−5i,−4i) , (−4i,−3i) and (−3i,−2i) and two in the interval
(−i, i) , with ±i the only points on iR where both a pole and a zero coexist (although
±3i may have been missed as a zero by a round off error). The example shows, in
particular, that it may occur that between two subsequent poles, there are zeros with
multiplicities that add up to m = 2, while these two poles are also zeros of F .
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keit, Archiv für Elektrotechnik 17 (1926), 355–388.
[10] D. CHU AND R. C. E. TAN, Algebraic characterizations for positive realness of descriptor systems,

SIAM J. Matrix Anal. Appl. 30 (2008), 197–222.
[11] N. COHEN AND I. LEWKOWICZ, The Lyapunov order for real matrices, Linear Algebra Appl. 430

(2009), 1849–1866.
[12] N. COHEN AND I. LEWKOWICZ, Convex invertible cones and positive real analytic functions, Linear

Algebra Appl. 425 (2007), 797–813.
[13] N. COHEN AND I. LEWKOWICZ, Convex invertible cones of state space systems, Math. Control Sig-

nals Systems 10 (1997), 265–286.
[14] N. COHEN AND I. LEWKOWICZ, Convex invertible cones and the Lyapunov equation, Linear Algebra

Appl. 250 (1997), 105–131.
[15] L. DAI, Singular control systems, Lecture Notes in Control and Information Sciences 118, Springer-

Verlag, Berlin, 1989.
[16] G. E. DULLERUD AND F. PAGANINI,A Course in Robust Control Theory: A Convex Approach, Texts

in Applied Mathematics Vol. 36, Springer-Verlag, New York, 2000.
[17] R. M. FOSTER, A reactance theorem, Bell System Technical Journal 3 (1924), 259–267.
[18] R. W. FREUND AND F. JARRE, An extension of the positive real lemma to descriptor systems, Optim.

Methods Softw. 19 (2004), 69–87.
[19] R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge U.P., Cambridge, 1985.
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