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NUMERICAL RANGES ENCIRCLED BY ANALYTIC CURVES
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Abstract. Let D be a bounded convex domain in C with a regular analytic boundary. Suppose
that the numerical range W (A) of a bounded linear operator A is contained in D . If W(A)
intersects the boundary ∂D at infinitely many points while the essential numerical range Wess(A)
does not intersect ∂D , then W (A) = D . This generalizes some infinite dimensional analogues
of a result of Anderson [2, 4].

1. Introduction

Let H be a complex Hilbert space and let B(H ) denote the set of bounded
linear operators on H . Let SH denote the unit sphere in H . For an operator A ∈
B(H ) , the numerical range of A , denoted W (A) , is the range of the map fA : SH →C

defined by
fA(x) := 〈Ax,x〉 .

According to the Toeplitz-Hausdorff theorem, the numerical range is a convex set. It
is also well known that W (A) contains the spectrum of A , σ(A) . In 1970 Anderson
proved, but did not publish, the following striking theorem.

THEOREM 1.1. If the numerical range of a matrix A ∈ Cn×n is contained in the
closed unit disk D and W (A) intersects ∂D at more than n points, then W (A) = D .

At its heart, this theorem is an algebraic result since both the boundary of the
numerical range and the unit circle are algebraic curves [6]. As recounted in [4], An-
derson’s original proof combined Bézout’s theorem with Kippenhahn’s algebraic de-
scription of the boundary curves of the numerical range.

The following infinite dimensional analogue of Anderson’s theorem was proved
by Gau and Wu [4].

THEOREM 1.2. If A ∈ B(H ) is a compact operator with W (A) ⊆ D and W (A)
intersects ∂D at infinitely many points, then W (A) = D .
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The boundary of W (A) need not be an algebraic curve when H is infinite di-
mensional. Instead, the proof of Theorem 1.2 relies on an observation, first made by
Narcowich [10], that the boundary of the numerical range of a compact operator con-
sists of a countable number of regular analytic curves. Recall that a curve is analytic if
it is the range of an analytic function γ from an interval I ⊆ R into C . It is regular if
γ ′(t) �= 0 for all t ∈ I .

Recently, Theorem 1.2 has been generalized to compact plus normal operators [2].
For non-compact operators, the boundary of the numerical range need not be piecewise
analytic. In fact, if N ∈ B(H ) is normal, then W (N) is the convex hull of σ(N) [1].
Therefore one can choose N such that W (N) is any compact convex subset of C . To
avoid pathological cases, Birbonshi et al. place conditions on the essential spectrum in
[2, Theorems 3 and 4]. The main contribution of this paper is to generalize the results
of [2, 4] to arbitrary bounded operators by utilizing the essential numerical range. Note
that [9] independently applies the essential numerical range to extend Theorem 1.2,
although their results are limited to certain special classes of operators. Because these
results are analytic rather than algebraic in nature, we also observe that any bounded
convex domain with a regular analytic boundary can take the place of the unit disk.

The essential numerical range of A is

Wess(A) :=
⋂

W (A+K),

where the intersection is taken over all compact operators K ∈ B(H ) . The essential
numerical range was introduced in [14]. Several equivalent characterizations of Wess(A)
were given in [3], one of which is the following.

Wess(A) = {λ ∈ C : ∃xk ∈ SH with xk
w−→ 0 and 〈Axk,xk〉 → λ}.

From the definition, it is clear that Wess(A) is a nonempty, compact, convex subset of
C , unless H is finite dimensional in which case Wess(A) = ∅ . If A is a compact
operator on an infinite dimensional Hilbert space, then Wess(A) = {0} . The essential
numerical range Wess(A) contains the essential spectrum σess(A) , which is the set of all
λ ∈ C such that A−λ I is not Fredholm [14] (see also [3] for a discussion of alternative
notions of essential spectra). When A is self-adjoint, σ(A)\σess(A) = σdisc(A) where
σdisc(A) is the discrete spectrum of A consisting of all isolated eigenvalues of A with
finite multiplicity [11, Section VII.3].

Our main result is the following theorem which generalizes [2, Theorem 3] (see
Remark 2.4).

THEOREM 1.3. Let A∈B(H ) and suppose that W (A)⊆D where D is a convex
set. Let Γ be a compact regular analytic curve contained in ∂D such that none of the
tangent lines to Γ intersect Wess(A) and Γ is not a line segment. If W (A) intersects Γ
at infinitely many points, then Γ ⊂W (A) .

An immediate corollary is the following infinite dimensional analogue of Ander-
son’s theorem that generalizes both Theorem 1.2 and [2, Theorem 4].
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COROLLARY 1.4. Let D be a bounded open convex subset of C with a regular
analytic boundary curve. Suppose that W (A) ⊆ D and Wess(A) ⊂ D for some A ∈
B(H ) . If W (A) intersects ∂D at infinitely many points, then W (A) = D.

2. Proof of main result

Before proving Theorem 1.3, we collect some known facts related to numerical
ranges. For any operator B ∈ B(H ) , recall that the real part of B is the self-adjoint
operator Re(B) = 1

2 (B+B∗) . The following result is well known. See, for example,
[10, Theorem 3.1] and its proof.

LEMMA 2.1. Let A ∈ B(H ) and let μ(θ ) denote the maximum of the spectrum
of Re(e−iθ A) for all θ ∈ R . Then,

W (A) =
⋂

0�θ<2π
{z ∈ C : Re(e−iθ z) � μ(θ )}.

Furthermore, any z ∈ ∂W (A) lies on a support line Lθ where

Lθ := {z ∈ C : Re(e−iθ z) = μ(θ )}

for some θ ∈ [0,2π) .

The following lemma uses the same notation as Lemma 2.1. We don’t claim that
this is a new result, but it doesn’t appear to be widely known, so we include a proof (see
also [8, Lemma 4.1]).

LEMMA 2.2. There is a point z ∈Wess(A)∩Lθ if and only if μ(θ ) is in the es-
sential spectrum of Re(e−iθ A) .

Proof. Since W (e−iθ A) = e−iθW (A) and Wess(e−iθ A) = e−iθWess(A) , we may as-
sume without loss of generality that θ = 0. Suppose that z∈Wess(A)∩L0 . There is a se-
quence xk ∈ SH such that xk converges weakly to zero, and 〈Axk,xk〉→ z . By Lemma
2.1, Re〈Axk,xk〉 = 〈Re(A)xk,xk〉 converges to μ(0) . Thus μ(0) ∈Wess(Re(A)) . For
a self-adjoint operator, the essential numerical range is the convex hull of the essential
spectrum [14, Corollary 1], therefore μ(0) is in the essential spectrum of Re(A) .

Conversely, if μ(0) ∈ σess(Re(A)) , then μ(0) ∈ Wess(Re(A)) so there is a se-
quence xk ∈ SH such that xk

w−→ 0 and 〈Re(A)xk,xk〉 → μ(0) . By passing to a subse-
quence, we may assume that 〈Axk,xk〉 converges to some z∈ L0 and since the sequence
xk converges weakly to zero, z ∈Wess(A) . �

The final crucial ingredient of our proof is the perturbation theory for eigenvalues
of an analytic family of self-adjoint operators. First introduced by Rellich [12] and
later refined by Kato [5] and Sz.-Nagy [16], this theory was used by Narcowich [10]
to show that the boundary of the numerical range of a compact operator is a countable
union of regular analytic arcs. In fact, although it is not explicitly stated, the results in



384 B. LINS

[10] imply that for A ∈ B(H ) , any closed arc of ∂W (A) whose support lines do not
intersect Wess(A) is a finite union of regular analytic curves that are contained in W (A)
[8, Proposition 4.2]. For a readable introduction to analytic perturbation theory and a
proof of the following theorem, see [13, Section 136].

THEOREM 2.3. Suppose that A(t) is a self-adjoint operator valued function of a
real parameter t given by

A(t) = A(0) +A(1)t +A(2)t2 + . . .

where the coefficients A(k) ∈ B(H ) are self-adjoint and ∑k∈N tk‖A(k)‖ converges for
all t in a neighborhood of 0 . If A(0) has an isolated eigenvalue λ (0) of finite multi-
plicity m, then there exists ε > 0 such that when −ε < t < ε , the spectrum of A(t) in
a neighborhood of λ (0) consists of m (not necessarily distinct) real values λ j(t) given
by

λ j(t) = λ (0) + λ (1)
j t + λ (2)

j t2 + . . . .

Furthermore there are m corresponding orthogonal ϕ j(t) ∈ SH given by

ϕ j(t) = ϕ(0)
j + ϕ(1)

j t + ϕ(2)
j t2 + . . .

such that A(t)ϕ j(t) = λ j(t)ϕ j(t) for all j and −ε < t < ε .

Proof of Theorem 1.3. If W (A) intersects Γ at infinitely many points, then there is
a sequence of distinct points zk ∈W (A)∩Γ that converge to some z . Since both W (A)
and Γ are closed sets, z ∈W (A)∩Γ . The tangent line to Γ at z is a support line for
the convex set D , and since W (A) ⊆ D , it must also be a support line for W (A) . We
may assume without loss of generality that this line is L0 , as defined in Lemma 2.1.
By assumption, L0 does not intersect Wess(A) . Therefore the maximum element of the
spectrum of Re(A) , which is Re(z) , is an isolated eigenvalue with finite multiplicity by
Lemma 2.2.

We can now apply Theorem 2.3 to the analytic family of self-adjoint operators
Re(e−iθ A) . There is a finite collection of real analytic functions λ j(θ ) defined in an
ε -neighborhood of θ = 0 such that λ j(0) = Re(z) for all j , and each λ j(θ ) is an
eigenvalue of Re(e−iθ A) for all −ε < θ < ε . All other elements of the spectrum
of Re(e−iθ A) are strictly less than the minimum λ j(θ ) when θ ∈ (−ε,ε) . To each
λ j(θ ) , there is a corresponding eigenvector ϕ j(θ ) ∈ SH , and these eigenvectors are
also analytic functions of θ in the interval (−ε,ε) . Each pair (λ j,ϕ j) has an associated
analytic curve ζ j(θ ) := fA(ϕ j(θ )) contained in W (A) . Each of the curves ζ j(θ ) is
either regular or its range is a single point [10, Lemma 3.1].

The boundary of W (A) in the vicinity of z consists of either a single analytic curve
corresponding to one of the ζ j(θ ) , or to two analytic curves which can either be line
segments with one endpoint at z or curves that correspond to some of the ζ j(θ ) [10,
Theorem 5.1]. Since the sequence zk approaches z along the boundary of W (A) , and
the zk are not contained in a line segment, we conclude that there are infinitely many zk
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contained in an arc of ∂W (A) that is parametrized by one of the functions ζ j(θ ) . This
means that the curve given by ζ j(θ ) intersects Γ at infinitely many points.

Both ζ j(θ ) and Γ are regular analytic curves, and both have a vertical tangent line
at z , so we may parameterize both curves analytically in a neighborhoodof z using their
imaginary coordinate as the common parameter. Then, since the two analytic curves
intersect infinitely many times and the intersection points accumulate at z , we conclude
that the two curves are identical in a neighborhood of z (possibly one-sided if z is an
endpoint of Γ). Every point of Γ in that neighborhood also lies on the curve ζ j(θ )
for some θ , and is therefore contained in W (A) . We can repeat this argument at the
endpoint(s) of the neighborhood where ζ j(θ ) and Γ coincide to analytically continue
the functions λ j , ϕ j , and ζ j until the range of ζ j(θ ) contains all of Γ . Therefore
Γ ⊂W (A) . �

REMARK 2.4. If A = N+K where N ∈B(H ) is normal and K is compact, then
Wess(A) = Wess(N) . The essential numerical range of a normal operator is the convex
hull of its essential spectrum, and this essential spectrum does not change when N is
replaced by N +K [3]. Therefore the essential numerical range of A is the convex hull
of the essential spectrum of A . So Theorem 1.3 implies [2, Theorems 3 and 4].

3. Examples

The following examples illustrate the how the conditions of Theorem 1.3 and
Corollary 1.4 can fail.

EXAMPLE 3.1. It is easy to construct a normal operator A ∈ B(H ) such that
W (A) is contained in the closed unit circle D and W (A) intersects ∂D at infinitely
many points without W (A) equaling D . For example, take a diagonal operator on
�2(N) with diagonal entries ei/k , k ∈ N . For such an operator, the accumulation point
of W (A)∩∂D is contained in the essential numerical range Wess(A) , and therefore the
conditions of of Theorem 1.3 and Corollary 1.4 are not satisfied.

EXAMPLE 3.2. A weighted shift operator S : �2(N)→ �2(N) is defined by Sek :=
skek+1 where {ek} is the elementary basis of �2(N) and sk is a bounded sequence of
weights. It is possible to choose the sk so that the numerical range W (S) is the open
unit disk D [15, Proposition 6]. In that case, W (S) intersects every point on ∂D but
Corollary 1.4 does not apply since every point in ∂D is an element of the essential
numerical range Wess(S) by [7, Theorem 1].

The requirement that Γ not be a line segment in Theorem 1.3 is essential, as the
following two examples show.

EXAMPLE 3.3. Suppose that D is the convex hull of {0,2,2i} and A is the 3-by-3
diagonal matrix with diagonal entries 0, 1, and i . Clearly, W (A)⊂D . The line segment
[0,2] is a regular analytic curve contained in ∂D that intersects W (A) at infinitely many
points but is not contained in W (A) .
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EXAMPLE 3.4. Consider the compact diagonal operator A on �2(N) with diago-
nal entries, 1 and i/k for k ∈ N . Then W (A) is the convex hull of {0,1, i} , but the line
segment [0,1) is not in W (A) .
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