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Abstract. This paper deals with the closed range property of operator matrices. The necessary
and sufficient condition is given for an unbounded upper triangular partial operator matrix to
have a closed range completion. In particular, the bounded case is its direct consequence.

1. Introduction

Partial operator matrices are operator matrices the entries of which are specified
only on a subset of its positions, while a completion of a partial operator matrix is
the operator matrix resulting from filling in its unspecified entries. The operator matrix
completion problem was shown to be very useful in various pure and applied mathemat-
ical fields, e.g., in operator theory, numerical analysis, optimal control theory, systems
theory and engineering sciences (see [2] and references therein). In this problem, one is
concerned with conditions under which a partial operator matrix has completions with
some given properties. Recently, many results were given dealing with invertible or
closed range completion of operator matrices [1, 3, 4, 10, 11, 13]. These results, in fact,
are concerned with bounded operator matrices. Because the entries of operator matrices
often appear as unbounded operators in infinite dimensional systems, it is expected to
study the completion problem of unbounded cases.

Let L (X1,X2) be the collection of all (linear) operators between Hilbert spaces
X1 and X2 . For T ∈ L (X1,X2) , T ∗ denotes its adjoint operator; the domain, range
and kernel of T are, respectively, represented by D(T ) , R(T ) and N (T ) ; write
n(T ) = dimN (T ) and d(T ) = dimR(T )⊥ .

In [1], the closedness of the range R(MC) of the bounded partial operator matrix
MC =

(
A C
0 B

)
was investigated by the method of decomposing spaces. It is shown that

for the given bounded operators A and B , there exists a bounded operator C such that
MC =

(
A C
0 B

)
has a closed range if and only if

⎧⎨
⎩

n(B) = ∞, if R(A) is not closed and R(B) is closed;
d(A) = ∞, if R(A) is closed and R(B) is not closed;
n(B) = d(A) = ∞, if none of R(A) and R(B) is closed.

(1.1)

Mathematics subject classification (2020): Primary 47A10, 47A55.
Keywords and phrases: Unbounded operator matrix, closed range, completion.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-15-28

413

http://dx.doi.org/10.7153/oam-2021-15-28


414 Y. QI, J. HUANG AND A. CHEN

Here one has three cases to consider to address the description (1.1), which are based
on the discussions for the closedness of R(A) and R(B) .

In the present paper we consider the closed range completion of unbounded opera-
tor matrices. In this case, the domain of an unbounded operator does not necessarily be
split into an orthogonal sum under some given orthogonal decomposition of its domain
space, so it can not be represented as a row operator form; also, for unbounded oper-
ators T and S , ST−1 and T−1S are not bounded any more. Based on discussions for
the dimension d(A) of R(A)⊥ , the preceding setbacks can be effectively avoided, and
necessary and sufficient conditions are given for a partial unbounded upper triangular
operator matrix to have a closed range completion: Let A be a densely defined closed
operator and B be a closed operator. If d(A) < ∞ , then there exists a closable operator
C such that MC =

(
A C
0 B

)
: D(A)⊕D(B)⊂ X1⊕X2 → X3⊕X4 is a closed operator with

closed range if and only if
(i) R(B) is closed,
(ii) R(A) is closed or n(B) = ∞ ;

while if d(A) = ∞ , and if B is further densely defined, then there exists a closable
operator C such that MC =

(
A C
0 B

)
: D(A)⊕D(B) ⊂ X1 ⊕ X2 → X3 ⊕ X4 is a closed

operator with closed range if and only if R(A) is closed or n(B) = ∞ .
In the case when A is closed and B is a densely defined closed operator, or when

A is an arbitrary linear operator and B is a bounded operator, we investigate the closed
range properties of MC based on the dimension n(B) of N (B) .

2. Auxiliary propositions

In this section, we present some basic lemmas and auxiliary propositions, which
are necessary to prove the main results of this paper.

In what follows, we always assume A ∈ L (X1,X3) , B ∈ L (X2,X4) and C ∈
L (X2,X3) , where X1 , X2 , X3 and X4 are all complex infinite dimensional separa-
ble Hilbert spaces. For a subspace G of a Hilbert space, PG represents the orthogonal
projection onto G along G ⊥ (if G is closed) and T |G stands for the restriction of T
to G .

Let T and S be operators with the same domain space X1 such that D(T )⊂D(S)
and

‖Su‖� a‖u‖+b‖Tu‖, u ∈ D(T ),

where a,b are nonnegative constants. Then we say that S is relatively bounded with
respect to T or simply T -bounded (see [8]).

LEMMA 2.1. Let T : D(T ) ⊂ X1 → X2 be a closed operator and let S : D(S) ⊂
X1 → X2 be T -bounded and dimR(S) < ∞ . Then, R(T + S) is closed if and only if
R(T ) is closed.

Proof. Since S is T -bounded, the desired result can be reduced to the special case
when T and S are bounded. Indeed, setting

|||u||| = ‖u‖+‖Tu‖, u ∈ D(T ),
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we easily see that D(T ) becomes a Banach space X̂1 if ||| · ||| is chosen as the norm.
Then T and S can be regarded as bounded operators from X̂1 into X2 (see [8, Remark
IV.1.4]). By Lemma 2.1 in [1], the desired result follows immediately. �

REMARK 2.2. If T is closed and S is closable, the inclusion D(T ) ⊂ D(S)
implies that S is T -bounded (see [8, Remark IV.1.5]), and hence, by Lemma 2.1,
R(T +S) is closed if and only if R(T ) is closed.

LEMMA 2.3. Let M =
(

A C
0 B

)
: D(A)⊕ (D(B)∩D(C)) ⊂ X1⊕X2 → X3⊕X4 with

R(M) closed. If R(A) = X3 , then R(B|D(B)∩D(C)) is closed.

Proof. Write B1 = B|D(B)∩D(C) and C1 = C|D(B)∩D(C) . Let {vn}∞
n=1 ⊂ R(B1) be

a sequence with vn → v ∈ X4 (n → ∞) . To prove the closedness of R(B1) , it suffices
to verify ( 0

v ) ∈ R(M) . In fact, if (0
v ) ∈ R(M) , then there exists a vector ( x

y ) ∈ D(M)
such that M ( x

y) = (0
v ) , i.e. {

Ax+C1y = 0,
B1y = v,

so v ∈ R(B1) .
For vn ∈ R(B1) , there exists a vector yn ∈ D(B)∩D(C) such that B1yn = vn .
Since R(A) = X3 , for −C1yn ∈ X3 , there exists an element, say xn ∈ D(A) , such

that |Axn +C1yn| < 1
n for each n ∈ N . Thus, M ( xn

yn ) → (0
v ) (n → ∞) . Therefore,

(0
v ) ∈ R(M) follows from the fact that R(M) is closed. �

An operator between Hilbert spaces admits column representation under every
orthogonal decomposition of its range space. Using this property, we may give the
following two results.

PROPOSITION 2.4. Let M =
(

A C
0 B

)
: D(A)⊕(D(B)∩D(C))⊂X1⊕X2 →X3⊕X4

be a linear operator, where B|D(B)∩D(C) is closed and C is closable. If R(M) is closed
and d(A) < ∞ , then R(B|D(B)∩D(C)) is closed.

Proof. As an operator from X1⊕X2 to R(A)⊕R(A)⊥⊕X4 , M has the following
block representation

M =
(

A C
0 B

)
=

⎛
⎝A1 C1

0 C2

0 B

⎞
⎠ ,

where A1 = PR(A)A , C1 = PR(A)C and C2 = PR(A)⊥C . Since R(A1) = R(A) , R(A1)

is clearly dense in R(A) . According to Lemma 2.3, the closedness of R(M) im-

plies that R
(

C2
B|D(B)∩D(C)

)
is closed. Here C2 is a B|D(B)∩D(C) -bounded operator with

dimR(C2) < ∞ . By Lemma 2.1, we see that R(B|D(B)∩D(C)) is closed. �
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PROPOSITION 2.5. Let M =
(

A C
0 B

)
: D(A)⊕D(B) ⊂ X1 ⊕X2 → X3 ⊕ X4 be a

densely defined closed operator, where B is closed and C is B-bounded such that C∗
is A∗ -bounded, with both relative bounds smaller than one. If R(M) is closed and
n(B) < ∞ , then R(A) is closed.

Proof. Write T =
(

A 0
0 B

)
and S =

(
0 C
0 0

)
. Since the upper triangular operator M is

closed, A is clearly closed, and hence T is closed. From the assumptions of relative
boundedness, it follows that S is T -bounded and S∗ is T ∗ -bounded, with both relative
bounds smaller than one. Thus, M∗ = T ∗ +S∗ =

(
A∗ 0
C∗ B∗

)
by Corollary 1 in [6].

According to the closed range theorem, the closedness of R(M) implies that of
R(M∗) . Also, as an operator from X3 ⊕X4 to X1⊕R(B∗)⊥⊕R(B∗) , M∗ admits the
following block representation

M∗ =
(

A∗ 0
C∗ B∗

)
=

⎛
⎝A∗ 0

C∗
1 0

C∗
2 B∗

1

⎞
⎠ ,

where C∗
1 = PR(B∗)⊥C∗ , C∗

2 = PR(B∗)C
∗ and B∗

1 = PR(B∗)B
∗ . Note that R(B∗

1) is dense

in R(B∗) and n(B) = dimR(B∗)⊥ . Similar to the proof of Proposition 2.4, we see that
R(A∗) is closed, and hence R(A) is closed. �

Clearly, we have the result of Proposition 2.5 without any artificial assumptions for
bounded operator matrix. In fact, we claim that this still holds true for the unbounded
case. In order to remove such assumptions in Proposition 2.5, however, we require the
following well known lemma:

LEMMA 2.6. Let T : D(T ) ⊂ X1 → X2 and S : D(S) ⊂ X3 → X2 be linear oper-
ators. If R(T ) ⊂ R(S) , then there exists a linear operator G : D(T ) → X3 such that
T = SG. In addition, if T is bounded on X1 and S is closed, then G is bounded on X1 .

As is stated previously, the domain of an unbounded operator can not be decom-
posed arbitrarily. But if n(B|D(B)∩D(C)) < ∞ , then N (B|D(B)∩D(C)) is a closed sub-
space of D(B)∩D(C) , which may provide a useful decomposition method.

PROPOSITION 2.7. Let M =
(

A C
0 B

)
: D(A)⊕(D(B)∩D(C))⊂X1⊕X2 →X3⊕X4

be a closed operator. If R(M) is closed and n(B) < ∞ , then R(A) is closed.

Proof. Write B1 = B|D(B)∩D(C) , then n(B1) < ∞ from n(B) < ∞ , and hence

N (B1) is closed. As an operator from X1 ⊕N (B1)⊕N (B1)⊥ to R(A)⊕R(A)⊥⊕
X4 , M can be written as

M =

⎛
⎝A1 C1 C2

0 C3 C4

0 0 B11

⎞
⎠ ,

where A1 = PR(A)A , C1 = PR(A)C|N (B1) , C2 = PR(A)C|N (B1)⊥∩(D(B)∩D(C)) , C3 =
PR(A)⊥C|N (B1) , C4 = PR(A)⊥C|N (B)⊥∩D(B)∩D(C) and B11 = B|N (B1)⊥∩D(B)∩D(C) . From
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n(B1) < ∞ , we know that
(

C1
C3

)
is of finite rank, and hence

M1 =

⎛
⎝A1 0 C2

0 0 C4

0 0 B11

⎞
⎠

is a closed operator and R(M1) is closed. Set

Q =

⎛
⎝IR(A) 0 0

0 0 0
0 0 0

⎞
⎠ :

⎛
⎝ R(A)

R(A)⊥
X4

⎞
⎠ →

⎛
⎝ R(A)

R(A)⊥
X4

⎞
⎠ .

Then, it follows from R(A) ⊂ R(M1) that R(Q) ⊂ R(M1) .
By Lemma 2.6, then there exists a bounded G such that

Q = M1G.

Because G is a bounded operator defined on the whole space, it can be written as the
following block operator matrix,

G =

⎛
⎝G11 G12 G13

G21 G22 G23

G31 G32 G33

⎞
⎠ :

⎛
⎝ R(A)

R(A)⊥
X4

⎞
⎠ →

⎛
⎝ X1

N (B1)
N (B1)⊥

⎞
⎠ .

Then

Q =

⎛
⎝A1 0 C2

0 0 C4

0 0 B11

⎞
⎠

⎛
⎝G11 G12 G13

G21 G22 G23

G31 G32 G33

⎞
⎠

=

⎛
⎝A1G11 +C2G31 A1G12 +C2G32 A1G13 +C2G33

C4G31 C4G32 C4G33

B11G31 B11G32 B11G33

⎞
⎠ .

From the above equation, we see that

A1G11 +C2G31 = IR(A),

B11G31 = 0.

Thus, G31 = 0 since B11 is injective, and hence A1G11 = IR(A) . Note that A1 is a

closed operator and G11 is bounded. Therefore, A1 is right invertible, i.e., R(A) =
R(A1) = R(A) . This proves that R(A) is closed. �

In Proposition 2.7, the operator matrix M is required to be closed. The follow-
ing lemma is devoted to the study for more general cases, which follows from Kato’s
Lemma ([9, Lemma 331]) by considering the quotient (N (S)+R(T))/N (S) .

LEMMA 2.8. Assume that T : D(T ) ⊂ X1 → X2 is a linear operator, and S :
D(S) ⊂ X2 → X3 is a closed operator with closed range. Then, R(ST ) is closed if
N (S)+R(T) is closed. Here, in fact, X1,X2 and X3 could be any Banach spaces.
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REMARK 2.9. In particular, when S is bounded with closed range, the similar
argument of (1.2) in [5, Theorem 1] holds, i.e., R(ST ) is closed if and only if N (S)+
R(T ) is closed.

PROPOSITION 2.10. Let M =
(

A C
0 B

)
: D(A)⊕D(B) ⊂ X1 ⊕X2 → X3 ⊕X4 be a

linear operator, and let B be a closed operator with closed range and n(B) < ∞ . If
R(

(
A C
0 I

)
) is closed, then R(M) is closed. In addition, if B and C are further bounded

operators on Y , then the closedness of R(A) implies that of R(M) .

Proof. Evidently, the factorization formula

M =
(

I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
(2.1)

holds. Write S =
(

I 0
0 B

)
, T1 =

(
I C
0 I

)
and T2 =

(
A 0
0 I

)
. From the assumptions, it follows

that S is closed with closed range and n(S) < ∞ . Since R(
(

A C
0 I

)
) is closed, N (S)+

R(T1T2) is closed. Thus, R(M) = R(ST1T2) is closed by Lemma 2.8.
If B and C are bounded operators on X2 , then T1 is a bounded operator with a

bounded inverse defined on the whole space. Therefore, R(T1T2) is closed if and only
if R(T2) is closed, which is equivalent to the closedness of R(A) . �

COROLLARY 2.11. Let M =
(

A C
0 B

)
: D(A)⊕X2 ⊂ X1⊕X2 → X3⊕X4 be a linear

operator with B and C bounded. If n(B) < ∞ and R(M) is closed, then R(A) is
closed.

Proof. Make the factorization as in (2.1). When B is bounded, S is clearly
bounded. From Remark 2.9, it follows that N (S)+ R(T1T2) is closed. Since C is
bounded and n(B)< ∞ , we deduce that R(T2) is closed, and hence R(A) is closed. �

3. Main results

In the following, we analyze the closed range properties of partial triangular oper-
ator matrices in the cases d(A) < ∞ and d(A) = ∞ , respectively.

THEOREM 3.1. Let A be a densely defined closed operator, and let B be a closed
operator. If d(A) < ∞ , then there exists a closable operator C such that MC =

(
A C
0 B

)
:

D(A)⊕D(B) ⊂ X1 ⊕X2 → X3 ⊕X4 is a closed operator with closed range if and only
if

(i) R(B) is closed; and
(ii) R(A) is closed or n(B) = ∞ .

Proof. Assume that there exists a desired closable operator C such that MC =(
A C
0 B

)
is a closed operator defined on D(A)⊕D(B) with closed range. Then, the claim

(i) follows from Proposition 2.4. If n(B) < ∞ , R(A) is closed by Proposition 2.7, and
hence (ii) holds.
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Conversely, if R(A) and R(B) are both closed, then MC is obviously a closed
operator with closed range when we take C = 0.

If R(A) is not closed and R(B) is closed with n(B)= ∞ , then we know dimR(A)
= ∞ , and hence we may let { fi}∞

i=1 and {gi}∞
i=1 be orthogonal bases of N (B) and

R(A) , respectively. Define the unitary operator C1 by

C1 fi = gi, i = 1,2,3, . . . .

Then, taking C =
(

C1 0
0 0

)
: N (B)⊕N (B)⊥ →R(A)⊕R(A)⊥ , we immediately obtain

the desired operator MC . In fact,
(
A1 C1

)
: X1 ⊕N (B) → R(A) is a densely defined

closed operator and
(
A1 C1

)∗ =
(

A∗
1

C∗
1

)
, where A1 = PR(A)A . Thus,

(
A1 C1

)(
A∗

1
C∗

1

)
=

A1A∗
1 + IR(A) : R(A)→R(A) is a densely defined closed operator with bounded inverse

([7, Proposition 2.14]), which implies that R(
(
A1 C1

)(
A1 C1

)∗) is closed in R(A) .
By [7, Proposition 2.11], we see that R(

(
A1 C1

)
) is closed. This together with the

closedness of R(B) deduces that MC is a closed operator with closed range. �
The following is a simple illustrating example of the result above.

EXAMPLE 3.2. Denote by L2[0,+∞) the Hilbert space of square Lebesgue inte-
grable complex-valued functions on [0,+∞) , and by A the space of complex-valued
functions on [0,+∞) that are absolutely continuous on every compact subinterval of
[0,+∞) . Let Xi = L2[0,+∞), i = 1,2,3,4. Consider the operators B = 0 and A in X1

defined by
D(A) = {y ∈ X1∩A : y′ ∈ X1,y(0) = 0},

Ay = y′ − y . Clearly, d(A) < ∞ , n(B) = ∞ and R(B) is closed. Then, by Theorem
3.1 and its proof, we can easily find the desired operator C such that MC =

(
A C
0 B

)
is

a closed operator with closed range. Since B = 0, this example in fact reduces to the
completion problem of row operators.

THEOREM 3.3. Let A and B be densely defined closed operators. If d(A) = ∞ ,
then there exists a closable operator C such that MC =

(
A C
0 B

)
: D(A)⊕D(B) ⊂ X1 ⊕

X2 → X3 ⊕X4 is a closed operator with closed range if and only if R(A) is closed or
n(B) = ∞ .

Proof. The proof of necessity is the same as that in Theorem 3.1. Now we prove
the sufficiency. If R(B) is closed, then the proof is similar to that in Theorem 3.1.

If R(A) is closed with d(A)= ∞ and R(B) is not closed, we can take C =
(0 0

0 C4

)
:

N (B)⊕N (B)⊥ → R(A)⊕R(A)⊥ , where the unitary operator C4 is defined by

C4 fi = gi, i = 1,2,3, . . . .

Note that the non-closedness of R(B) implies that dimR(B)= ∞ , and hence dimN (B)⊥
= ∞ , and { fi}∞

i=1 and {gi}∞
i=1 are orthogonal bases of N (B)⊥ and R(A)⊥ , respec-

tively. In order to prove the closedness of R(MC) , it suffices to prove that R(
(

C4
B1

)
)
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is closed, where B1 = B|N (B)⊥∩D(B) . Since
(

C4
B1

)
is a densely defined closed operator

and C4 is bounded, we have
(

C4
B1

)∗
=

(
C∗

4 B∗
1

)
. Thus, R(

(
C∗

4 B∗
1

)(
C4
B1

)
) is closed,

since
(
C∗

4 B∗
1

)(
C4
B1

)
= IN (B)⊥ +B∗

1B1 is a boundedly invertible closed operator. There-

fore, R
(
C∗

4 B∗
1

)
is closed, and hence R

(
C4
B1

)
is closed.

If none of R(A) and R(B) are closed and n(B) = ∞ , we take C =
(

C1 0
0 C4

)
:

N (B)⊕N (B)⊥ → R(A)⊕R(A)⊥. Here C1 and C4 are unitary operators defined as
follows:

C1 f (1)
i = g(1)

i , i = 1,2,3, . . . ,

C4 f (2)
i = g(2)

i , i = 1,2,3, . . . .

Note that the non-closedness of R(A) implies that dimR(A) = ∞ , and { f (1)
i }∞

i=1 ,

{ f (2)
i }∞

i=1 , {g(1)
i }∞

i=1 and {g(2)
i }∞

i=1 are orthogonal bases of N (B) , N (B)⊥ , R(A)

and R(A)⊥ , respectively. Thus, R(MC) = R(
(
A1 C1

)
)⊕R(

(
C4
B1

)
) , R(MCM∗

C) =

R(
(
A1 C1

)(
A1 C1

)∗)⊕R(
(

C4
B1

)(
C4
B1

)∗
) , and the closedness of R(MC) is equivalent

to the closedness of R(
(
A1 C1

)
) and R(

(
C4
B1

)
) , where A1 = PR(A)A and B1 is de-

fined as in last paragraph. Finally, we can easily obtain our result by [7, Proposition
2.11]. �

Based on the discussions in the cases n(B) < ∞ and n(B) = ∞ , we may similarly
have the following two theorems. Note that they can not be proved by employing the
adjoint operation to the original operator matrix, since the operator matrices involved
are unbounded (even not necessarily densely defined).

THEOREM 3.4. Let A be a closed operator, and let B be a densely defined closed
operator. If n(B) < ∞ , then there exists a closable operator C such that MC =

(
A C
0 B

)
:

D(A)⊕D(B) ⊂ X1 ⊕X2 → X3 ⊕X4 is a closed operator with closed range if and only
if

(i) R(A) is closed; and
(ii) R(B) is closed or d(A) = ∞ .

Proof. The necessity follows from Propositions 2.4 and 2.7. Conversely, if R(A)
and R(B) are both closed, then taking C = 0 will demonstrate that MC is a closed op-
erator with closed range. If R(A) is closed with d(A) = ∞ and R(B) is not closed, we
can take C =

(0 0
0 C4

)
: N (B)⊕N (B)⊥ → R(A)⊕R(A)⊥ , where the unitary operator

C4 is defined by
C4 fi = gi, i = 1,2,3, . . . .

Note that the non-closeness of R(B) implies that dimN (B)⊥ = ∞ , and { fi}∞
i=1 and

{gi}∞
i=1 are orthonormal bases of N (B)⊥ and R(A)⊥ , respectively. In order to prove

the closeness of R(MC) , it suffices to prove that R(
(

C4
B1

)
) is closed, where B1 =
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B|D(B)∩N (B)⊥ . Since
(

C4
B1

)
: D(B) ∩N (B)⊥ → R(A)⊥ ⊕W is a densely defined

closed operator and C4 is bounded, we have
(

C4
B1

)∗
=

(
C∗

4 B∗
1

)
. Thus, R(

(
C∗

4 B∗
1

)(
C4
B1

)
)

is closed, since
(
C∗

4 B∗
1

)(
C4
B1

)
= IN (B)⊥ +B∗

1B1 : N (B)⊥ → N (B)⊥ is a boundedly

invertible closed operator. Therefore, R
(
C∗

4 B∗
1

)
is closed, and hence R

(
C4
B1

)
is

closed. �

THEOREM 3.5. Let A and B be densely defined closed operators. If n(B) = ∞ ,
then there exists a closable operator C such that MC =

(
A C
0 B

)
: D(A)⊕D(B) ⊂ X1 ⊕

X2 → X3 ⊕X4 is a linear operator with closed range if and only if R(B) is closed, or
R(B) is not closed and d(A) = ∞ .

Proof. The proof of the necessity is the same as in Theorem 3.4. Conversely, the
case of A with closed range is similar to that in Theorem 3.4, and the case of A with
non-closed range is similar to that in Theorem 3.3. �

By Corollary 2.11, for a general linear operator (not necessarily densely defined
closed) A , we actually have the following theorem.

THEOREM 3.6. Let A be a linear operator, and let B be a bounded operator. If
n(B) < ∞ , then there exists a bounded operator C such that MC =

(
A C
0 B

)
: D(A)⊕

D(B) ⊂ X1⊕X2 → X3⊕X4 is a linear operator with closed range if and only if
(i) R(A) is closed; and
(ii) R(B) is closed or d(A) = ∞ .

Proof. The proof of the necessity holds by Corollary 2.11. The rest of the proof is
analogous to that in Theorem 3.3. �
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d’Analyse Mathématique, 1958, 6: 261–322.

[10] K. B. LAURSEN, M. MBEKHTA, Closed range multipliers and generalized inverses, Studia Mathe-
matica, 1993, 107 (2): 127–135.

[11] Y. LI, X. H. SUN, H. K. DU, The intersection of left (right) spectra of 2×2 upper triangular operator
matrices, Lin. Algebr. Appl., 2006, 418: 112-121.
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