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SHARP OPERATOR MEAN INEQUALITIES OF THE NUMERICAL RADII
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(Communicated by F. Kittaneh)

Abstract. We present several sharp upper bounds and some extension for product operators.
Among other inequalities, it is shown that if 0 < mI � B∗ f 2(|X |)B , A∗g2(|X∗|)A � MI , f ,g
are non-negative continuous functions on [0,∞) such that f (t)g(t) = t , (t � 0) , then for all
non-negative operator monotone decreasing function h on [0,∞) , we obtain that

∥∥h(B∗ f 2(|X |)B)σh
(
A∗g2(|X∗|)A)∥∥� mk

M
h(|〈(A∗XB)x,x〉|) ,

As an application of the above inequality, it is shown that

ω
(
A∗XB

)
� mk

M

∥∥B∗ f 2(|X |)B!A∗g2(|X∗|)A∥∥ ,

where, k =
(M +m)2

4mM
and σ is an operator mean s.t., ! � σ � � .

1. Introduction

Let B(H ) denote the C∗ -algebra of all bounded linear operators on a complex
Hilbert space H . An operator A ∈ B(H ) is called positive if 〈Ax,x〉 � 0 for all
x ∈ H . We write A � 0 if A is positive.

A continuous real-valued function f defined on interval J is said to be operator
monotone increasing (decreasing) if for every two positive operators A and B with
spectral in J , the inequality A � B implies f (A) � f (B) ( f (A) � f (B)), respectively.
As an example, it is well known that the power function xr on (0,∞) is operator mono-
tone increasing if r ∈ [0,1] and operator monotone decreasing if and only if r ∈ [−1,0] .

If f : J → R is a convex function and A is a self-adjoint operator with spectrum
in J , then

f
(〈Ax,x〉)� 〈 f (A)x,x〉. (1.1)

for each x ∈ H with ‖x‖ = 1, and the reverse inequality holds if f is concave (see
[10]).

The spectral radius and the numerical radius of A∈B(H ) are defined by r(A) =
sup{|λ | : λ ∈ sp(A)} and

ω(A) = sup{|〈Ax,x〉| : x ∈ H, ‖x‖ = 1},
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respectively. It is well-known that r(A) � ω(A) and ω(.) defines a norm on B(H ) ,
which is equivalent to the usual operator norm ‖.‖ .

In fact, for any A ∈ B(H ) ,

1
2
‖A‖ � ω(A) � ‖A‖. (1.2)

Kittaneh [9] has shown that for A ∈ B(H ) ,

ω2(A) � 1
2
‖|A|2 + |A∗|2‖, (1.3)

which is a refinement of right hand side of inequality (1.2).
Dragomir [5] proved that for any A,B ∈ B(H ) and for all p � 1,

ω p(B∗A) � 1
2
‖(A∗A)p +(B∗B)p‖. (1.4)

In [12], it has been shown that if A,B ∈ B(H ) and p � 1, then

ω p(B∗A) � 1
4
‖(AA∗)p +(BB∗)p‖+

1
2

ω p(AB∗), (1.5)

which is generalization of inequality (1.4) and in particular cases is sharper than this
inequality. Shebrawi et al. [11] generalized inequalities (1.3) and (1.4), as follows:

If A,B,X ∈ B(H ) and p � 1, we have

ω p(A∗XB) � 1
2
‖(A∗|X∗|A)p +(B∗|X |B)p‖. (1.6)

In this paper, we first derive a new lower bound for inner-product of products
A∗XB involving operator monotone decreasing function, and, so we give refinement of
the inequalities (1.4) and (1.6). We prove a numerical radius, which is similar to (1.5)
in some example is sharper than (1.5).

In particular, we extend inequality (1.5) and also find some example which show
that is a refinement of (1.6). In the next, we present numerical radius inequalities for
products of operators, which one of the applications of our results is a generalization of
(1.3).

2. Main results

We first recall that for positive invertible operators A,B ∈ B(H ) , the weighted
operator arithmetic and harmonic means are defined, by

A�ν B = (1−ν)A+ νB

and
A!νB =

(
(1−ν)A−1 + νB−1)

)−1
.

It is well-known that if σν is an operator mean, then

A!νB � AσνB � A�ν B.

To prove our numerical radius inequalities, we need several lemmas.
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LEMMA 2.1. [7] If A ∈ B(H ) and f ,g are non-negative continuous functions
on [0,∞) satisfying f (t)g(t) = t , (t � 0) , then for each x,y ∈ H

|〈Ax,y〉| � ‖ f (|A|)x‖‖g(|A∗|)y‖.

LEMMA 2.2. [6] Let 0 < mI � A,B � MI , 0 � ν � 1 , !ν � τν ,σν � �ν and Φ
be a positive unital linear map. If h is an operator monotone decreasing function on
(0,∞) , then

h
(
Φ(A)

)
σνh

(
Φ(B)

)
� kh

(
Φ(AτνB)

)
where, k =

(M +m)2

4mM
stands for the known Kantorovich constant.

LEMMA 2.3. Let A ∈ B(H ) be a strictly positive operator. Then for all non-
negative decreasing continuous function h on [0,∞) , we have

‖h(A−1)‖ � h(‖A‖−1).

Proof. From A � ‖A‖I , it follows that ‖A‖−1I � A−1 . That is sp(A−1)⊆ (‖A‖−1,∞) .
So sp(h(A−1))= h(sp(A−1))⊆ h(‖A‖−1,∞) . Since h is decreasing, we have h(A−1)�
h(‖A‖−1)I and therefore ‖h(A−1)‖ � h(‖A‖−1) . �

THEOREM 2.4. Let A,B,X ∈B(H ) and f ,g are non-negative continuous func-
tions on [0,∞) in which, f (t)g(t) = t , (t � 0) .

If 0 < mI � B∗ f 2(|X |)B, A∗g2(|X∗|)A � MI , h : [0,∞) → [0,∞) is an operator
monotone decreasing function and σ is an arbitrary mean between � and ! , then for
any unit vextor x ∈ H ,∥∥h(B∗ f 2(|X |)B)σh

(
A∗g2(|X∗|)A)∥∥� mk

M
h(|〈(A∗XB)x,x〉|) , (2.1)

where, k =
(M +m)2

4mM
.

In particular,∥∥h(B∗ f 2(|X |)B)σh
(
A∗g2(|X∗|)A)∥∥� h(|〈(A∗XB)x,x〉|) . (2.2)

Proof. Let x∈H be a unit vector. Now applying Lemma 2.1, AM-GM inequality
and since every operator monotone decreasing function is operator convex [2], we have

m
M

h(|〈A∗XBx,x〉|) =
m
M

h(|〈XBx,Ax〉|)

� m
M

h

(√
〈B∗ f 2(|X |)Bx,x〉 〈A∗g2(|X∗|)Ax,x〉

)

� m
M

h

(〈(
B∗ f 2(|X |)B+A∗g2(|X∗|)A

2

)
x,x

〉)
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� h

(
m
M

〈(
B∗ f 2(|X |)B+A∗g2(|X∗|)A

2

)
x,x

〉)

� h

(
m
M

∥∥∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

∥∥∥∥
)

By hypothesis and operator convexity of t 
→ t−1 , we obtain,∥∥∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

∥∥∥∥� M

and ∥∥∥∥∥
(

B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

)−1
∥∥∥∥∥� 1

m

Therefore∥∥∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

∥∥∥∥� M
m

∥∥∥∥∥
(

B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

)−1
∥∥∥∥∥
−1

(2.3)

By using inequality (2.3) and Lemma 2.3, we have

h

(
m
M

∥∥∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

∥∥∥∥
)

� h

⎛
⎝
∥∥∥∥∥
(

B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

)−1
∥∥∥∥∥
−1
⎞
⎠

�
∥∥∥∥h
(

B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

)∥∥∥∥
� 1

k

∥∥h(B∗ f 2(|X |)B)σh
(
A∗g2(|X∗|)A)∥∥

where, in the last inequality, we used Lemma 2.2 for ν =
1
2

. Hence inequality (2.1)

is proved. Now by inequality (2.1) and the fact that
mk
M

� 1, we obtain inequality

(2.2). �

REMARK 2.5. In the assumptions of Theorem 2.4, we can replace 0 < mI �

B∗ f 2(|X |)B , A∗g2(|X∗|)A � MI with 0 < mI � B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

� MI .

So, if we assume that
B∗ f 2(|X |)B+A∗g2(|X∗|)A

2
is invertible, we can conclude

(2.2).

Similarly, if
B∗ f 2(|X |)B+A∗g2(|X∗|)A

2
is not invertible, we can prove that∥∥h(B∗ f 2(|X |)B+ εI

)
σh
(
A∗g2(|X∗|)A+ εI

)∥∥� h(|〈(A∗XB)x,x〉|)
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and taking limit of ε → 0, we can conclude (2.2) without the assumption 0 < mI �
B∗ f 2(|X |)B , A∗g2(|X∗|)A � MI .

REMARK 2.6. Under the assumptions of Theorem 2.4, if !ν � σν � �ν and

0 < mI � (B∗ f 2(|X |)B)
1

1−ν ,(A∗g2(|X∗|)A)
1
ν � MI,

then by applying (1.1) for the concave function tν (0 < ν < 1) and AM-GM inequality,
respectively, we can write
m
M

h
(
|〈A∗XBx,x〉|2

)
� m

M
h
(〈

B∗ f 2(|X |)Bx,x
〉〈

A∗g2(|X∗|)Ax,x
〉)

� m
M

h

(〈
(B∗ f 2(|X |)B)

1
1−ν x,x

〉1−ν 〈
(A∗g2(|X∗|)A)

1
ν x,x

〉ν
)

� m
M

h
(〈[

(1−ν)(B∗ f 2(|X |)B)
1

1−ν + ν(A∗g2(|X∗|)A)
1
ν
]
x,x
〉)

Therefore, by similar argument to the proof of Theorem 2.4, we obtain∥∥∥h((B∗ f 2(|X |)B)
1

1−ν
)
σνh

(
(A∗g2(|X∗|)A)

1
ν
)∥∥∥� mk

M
h
(
|〈(A∗XB)x,x〉|2

)
(2.4)

LEMMA 2.7. [1] If A,B are positive operators and f is a non-negative non-
decreasing convex function on [0,∞) , then

‖ f
(
(1−ν)A+ νB

)‖ � ‖(1−ν) f (A)+ ν f (B)‖,
for all 0 < ν < 1 .

Applying Theorem 2.4 to the decreasing convex function h(t) = t−1 and σ =
�(:= � 1

2
) , we reach the following corollary:

COROLLARY 2.8. Let A,B,X ∈ B(H ) and f ,g are non-negative continuous
functions on [0,∞) satisfying f (t)g(t)= t , (t � 0) . If 0 < mI � B∗ f 2(|X |)B, A∗g2(|X∗|)A
� MI , then

ω
(
A∗XB

)
� mk

M

∥∥B∗ f 2(|X |)B!A∗g2(|X∗|)A∥∥ . (2.5)

Furthermore, for increasing convex function h′ : [0,∞)→ [0,∞) s.t. h′(0) = 0 , we have

h′
(
ω
(
A∗XB

))
� mk

2M

∥∥h′ (B∗ f 2(|X |)B)+h′
(
A∗g2(|X∗|)A)∥∥ . (2.6)

In particular, for all p � 1

ω p(A∗XB
)

� mk
2M

∥∥∥(B∗ f 2(|X |)B)p
+
(
A∗g2(|X∗|)A)p

∥∥∥ . (2.7)

Proof. Let x ∈ H be a unit vector. Put h(t) = t−1 and σ = � in (2.1). Then we
have ∥∥∥∥∥

(
B∗ f 2(|X |)B)−1 +

(
A∗g2(|X∗|)A)−1

2

∥∥∥∥∥� mk
M

(|〈(A∗XB)x,x〉|)−1
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Therefore

|〈(A∗XB)x,x〉| � mk
M

∥∥∥∥∥
(
B∗ f 2(|X |)B)−1 +

(
A∗g2(|X∗|)A)−1

2

∥∥∥∥∥
−1

� mk
M

∥∥∥∥∥∥
((

B∗ f 2(|X |)B)−1 +
(
A∗g2(|X∗|)A)−1

2

)−1
∥∥∥∥∥∥ .

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we obtain
(2.5).

Let us prove (2.6). By an inequality (2.5) and Lemma 2.7, we get

h′
(
ω
(
A∗XB

))
� h′

(
mk
2M

∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A∥∥)

� mk
M

h′
(∥∥∥∥B∗ f 2(|X |)B+A∗g2(|X∗|)A

2

∥∥∥∥
)

� mk
M

∥∥∥∥h′
(

B∗ f 2(|X |)B+A∗g2(|X∗|)A
2

)∥∥∥∥
� mk

2M

∥∥h′(B∗ f 2(|X |)B)+h′
(
A∗g2(|X∗|)A)∥∥

The third inequality in the above inequalities follows from (1.1) (in fact, a similar ar-
gument to the proof of Lemma 2.3, leads to equality). The last inequality obtains from
Lemma 2.7.

By taking h′(t) = t p(p > 1) , we reach inequality (2.7). �

By taking f (t) = g(t) = t
1
2 in an inequality (2.5) we get a refinement of inequality

(1.6) for p = 1, and if we put f (t) = g(t) = t
1
2 in (2.7), we present a refinement of

inequality (1.6).
Applying inequality (2.4) to the decreasing convex function h(t) = t−1 , one can

reach the similar results as Corollary 2.8 (we omit the detail).
The following lemma will be useful in the proof of the next result.

LEMMA 2.9. [3] Let A1,A2,B1,B2 ∈ B(H ) . Then

r(A1B1 +A2B2) � 1
2
(ω(B1A1)+ ω(B2A2))

+
1
2

√
(ω(B1A1)−ω(B2A2))2 +4‖B1A2‖‖B2A1‖.

In the next theorem, we give an inequality similar to (1.5).

THEOREM 2.10. Let A,B ∈ B(H ) . Then for all non-negative non-decreasing
convex function h on [0,∞) , we have

h
(
ω(A∗B)

)
� 1

2
h(‖A‖‖B‖)+

1
2
h
(
ω(BA∗)

)
. (2.8)
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Proof. Let θ ∈ R . Letting A1 = eiθ A∗ , B1 = B , A2 = B∗ and B2 = e−iθA in
Lemma 2.9 we can write

‖Re(eiθ (A∗B))‖ = r(Re(eiθ (A∗B))

� 1
4
(ω(BA∗)+ ω(AB∗))

+
1
4

√
(ω(BA∗)−ω(AB∗))2 +4‖AA∗‖‖BB∗‖

=
1
2

ω(BA∗)+
1
2
‖A‖‖B‖

Hence, by Lemma 2.14 (a) and convexity of h , we get (2.8). �

EXAMPLE 2.11. Letting A =
[

1 0
−1 2

]
and B =

[
1 5
−1 2

]
. Since

1
4
‖AA∗+BB∗‖ =

7.5432 and
1
2
‖A‖‖B‖= 6.1962, we can say that inequality (2.8), in this example, is a

refinement of (1.5).

COROLLARY 2.12. Let A,B ∈ B(H ) . Then for all p � 1 we have

ω p(A∗B) � 1
2
‖A‖p‖B‖p +

1
2

ω p(BA∗).

COROLLARY 2.13. Let A ∈ B(H ) , A =U |A| be the polar decomposition of A,
and f , g be two non-negative continuous functions on [0,∞) such that f (t)g(t) = t
(t � 0) and let Ã f ,g = f (|A|)Ug(|A|) be generalize the Aluthge transform of A. Then
for all p � 1 ,

ω p(A) � 1
2
‖ f (|A|)‖p‖g(|A|)‖p +

1
2

ω p(Ã f ,g).

Next, we need the following two lemmas. The first lemma in part (a), which
contains a very useful formula of numerical radius, can be found in [13]. Part (b) is
well-known (see [4]) and two lemma concerning norm inequalities was given in [8].

LEMMA 2.14. Let A be an operator in B(H ) . Then

(a) ω(A) = sup
θ∈R

‖Re(eiθ A)‖ =
1
2

sup
θ∈R

‖A+ eiθA∗‖ .

(b) ω
([

A 0
0 B

])
= max(ω(A),ω(B)) .

LEMMA 2.15. If A1,A2,B1,B2,X and Y are operators in B(H ) . Then

2
∥∥A1XA∗

2 +B1YB∗
2

∥∥�
∥∥∥∥
[
A∗

1A1X +XA∗
2A2 A∗

1B1Y +XA∗
2B2

B∗
1A1X +YB∗

2A2 B∗
1B1Y +YB∗

2B2

]∥∥∥∥ (2.9)
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THEOREM 2.16. Let A,B,X ∈ B(H ) . Then

ω(A∗XB) � 1
4
‖AA∗X +XBB∗‖+

1
2

ω
([

XBA∗ 0
0 BA∗X

])
(2.10)

Proof. Applying the first inequality in Lemma 2.14 (a) and by letting A1 = B2 =
eiθ A∗ , A2 = B1 = B∗ and Y = X∗ in inequality (2.9), we have

ω(A∗XB) = sup
θ∈R

∥∥Re(eiθ A∗XB)
∥∥

=
1
2

sup
θ∈R

∥∥eiθ A∗XB+ e−iθB∗X∗A
∥∥

� 1
4

sup
θ∈R

∥∥∥∥
[

AA∗X +XBB∗ e−iθ AB∗X∗ + eiθXBA∗

eiθ BA∗X + e−iθX∗AB∗ BB∗X∗ +X∗AA∗

]∥∥∥∥
� 1

4
sup
θ∈R

∥∥∥∥
[
AA∗X +XBB∗ 0

0 BB∗X∗+X∗AA∗
]∥∥∥∥

+
1
4

sup
θ∈R

∥∥∥∥
[

0 eiθ (XBA∗ + e−2iθAB∗X∗

eiθ (BA∗X + e−2iθX∗AB∗ 0

]∥∥∥∥
=

1
4

∥∥AA∗X +XBB∗∥∥
+

1
4

sup
θ∈R

(
max

{∥∥XBA∗+ e−2iθAB∗X∗∥∥,∥∥BA∗X + e−2iθX∗AB∗∥∥})
Using the second equality in Lemma 2.14 (a), (b), respectively, we deduce the desired
inequality (2.10). �

REMARK 2.17. By letting X = I in the inequality (2.10), and by using Lemma
2.14 (b), it is easy to see that the inequality (2.10) generalizes inequality (1.5) for p = 1.

EXAMPLE 2.18. Taking A =
[
1 2
3 0

]
, B =

[
3 4
1 5

]
and X =

[
1 2
0 1

]
. By an easy

computation, we find that

1
2
‖A∗|X∗|A+B∗|X |B‖ ≈ 59.5407,

1
4
‖AA∗X +XBB∗‖+

1
2

ω
([

XBA∗ 0
0 BA∗X

])
≈ 57.7024

and ω(A∗XB) ≈ 42.2677. This show that the inequality (2.10), in this example, pro-
vides an improvement of the inequality (1.6) for p = 1.

COROLLARY 2.19. Let A ∈ B(H ) , A =U |A| be the polar decomposition of A,
and f ,g be two non-negative continuous functions on [0,∞) such that f (x)g(x) = x
(x � 0) and let Ã f ,g = f (|A|)Ug(|A|) be generalize the Aluthge transform of A.. Then
for all non-negative and increasing convex function h on [0,∞) , we have

h
(
ω(A)

)
� 1

4

∥∥h( f 2(|A|))+h
(
g2(|A|))∥∥+

1
2
h
(
ω(Ã f ,g)

)
. (2.11)
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Proof. Since

ω(A) = ω(Ug(|A|) f (|A|)) = ω(Ug(|A|)UU∗ f (|A|)).
If we take A∗ = Ug(|A|) , X = U and B = U∗ f (|A|) in (2.10), we get

ω(A) � 1
4

∥∥( f 2(|A|)+g2(|A|))U‖+
1
2

ω(Ã f ,g).

By the fact that ‖U‖ = 1 and convexity of h , we obtain (2.11). �

THEOREM 2.20. Let A,B,X ∈ B(H ) . Then

ω(A∗XB+B∗XA) �
(

1
2

(‖A‖2 +‖B‖2)+‖AB∗‖
)

ω(X).

Proof. By using the first equality in Lemma 2.14 (a) and the fact that Re(eiθ (A∗XB
+B∗XA))= A∗Re(eiθ X)B+B∗Re(eiθ X)A and putting A1 = B2 = A∗ , X =Y = Re(eiθ X)
and A2 = B1 = B∗ in inequality (2.9), we get

sup
θ∈R

∥∥Re(eiθ (A∗XB+B∗XA))
∥∥

�1
2

sup
θ∈R

∥∥∥∥
[
AA∗Re(eiθ X)+Re(eiθ X)BB∗ AB∗Re(eiθ X)+Re(eiθ X)BA∗

BA∗Re(eiθ X)+Re(eiθ X)AB∗ BB∗Re(eiθ X)+Re(eiθ X)AA∗

]∥∥∥∥
�1

2
sup
θ∈R

∥∥∥∥
[
AA∗Re(eiθ X)+Re(eiθ X)BB∗ 0

0 BB∗Re(eiθ X)+Re(eiθ X)AA∗

]∥∥∥∥
+

1
2

sup
θ∈R

∥∥∥∥
[

0 AB∗Re(eiθ X)+Re(eiθ X)BA∗

BA∗Re(eiθ X)+Re(eiθ X)AB∗ 0

]∥∥∥∥
Using the first equality in Lemma 2.14 (a), we obtain

ω(A∗XB+B∗XA) � 1
2
(‖A‖2 +‖B‖2)ω(X)+‖AB∗‖ω(X).

This completes the proof. �

The following lemma is due to Kittaneh [7]

LEMMA 2.21. Let A,B ∈ B(H ) such that |A|B = B∗|A| . If f and g are non-
negative continuous function on [0,∞) satisfying f (t)g(t) = t (t � 0) , then for any
vectors x,y ∈ H

|〈ABx,y〉| � r(B)‖ f (|A|)x‖‖g(|A∗|)y‖.

THEOREM 2.22. Let A,B,X ∈B(H ) satisfying |A∗|X = X∗|A∗| and f ,g be two
non-negative continuous functions on [0,∞) such that f (t)g(t) = t (t � 0) . If h is a
nonnegative increasing convex function on [0,∞) , then

h
(
ω2(A∗XB)

)
�
∥∥(1−ν)h

(
r2(X)(B∗ f 2(|A∗|)B)

1
1−ν
)
+ νh

(
r2(X)g

2
ν (|A|))∥∥
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for all 0 < ν < 1 . Moreover, in special case for r(X) � 1 and h(0) = 0 , we have

h
(
ω2(A∗XB)

)
� r2(X)

∥∥(1−ν)h
(
(B∗ f 2(|A∗|)B)

1
1−ν
)
+ νh

(
g

2
ν (|A|))∥∥

Proof. Setting y = x in Lemma 2.21 and using (1.1) for the concave function tν ,
respectively, we get

|〈A∗XBx,x〉|2 � r2(X)‖ f (|A∗|)Bx‖2‖g(|A|)x‖2

= r2(X)〈B∗ f 2(|A∗|)Bx,x〉〈g2(|A|)x,x〉

= r2(X)

〈((
B∗ f 2(|A|)B) 1

1−ν

)1−ν
x,x

〉〈((
g2(|A|)) 1

ν
)ν

x,x

〉

� r2(X)
〈(

B∗ f 2(|A∗|)B) 1
1−ν x,x

〉1−ν 〈
(g2(|A|)) 1

ν x,x
〉ν

� r2(X)
〈

(1−ν)
(
B∗ f 2(|A∗|)B) 1

1−ν + νg
2
ν (|A|)x,x

〉
.

Hence by taking the supremum over x ∈ H , we get

ω2(A∗XB) � r2(X)
∥∥(1−ν)

(
B∗ f 2(|A∗|)B) 1

1−ν + νg
2
ν (|A|)∥∥.

Since h is an increasing convex function, we have

h
(
ω2(A∗XB)

)
� h

(
r2(X)

∥∥(1−ν)
(
B∗ f 2(|A∗|)B) 1

1−ν + νg
2
ν (|A|)∥∥)

=
∥∥h(r2(X)(1−ν)

(
B∗ f 2(|A∗|)B) 1

1−ν + νg
2
ν (|A|)

)∥∥
�
∥∥(1−ν)h

(
r2(X)(B∗ f 2(|A∗|)B)

1
1−ν
)
+ νh

(
r2(X)g

2
ν (|A|))∥∥

where, in the last inequality we used Lemma 2.7. �

Now we present some applications of Theorem 2.22.
Letting f (t) = t1−ν and g(t) = tν for 0 < ν < 1 in Theorem 2.22 we get

COROLLARY 2.23. Let A,B,X ∈ B(H ) satisfying |A∗|X = X∗|A∗| . If h is a
nonnegative increasing convex function on [0,∞) , then for all 0 < ν < 1

h
(
ω2(A∗XB)

)
�
∥∥(1−ν)h

(
r2(X)(B∗|A∗|2B)

)
+ νh

(
r2(X)|A|2)∥∥.

Inparticullar, for r(X) � 1 and h(0) = 0

h
(
ω2(A∗XB)

)
� r2(X)

∥∥(1−ν)h(B∗|A∗|2B)+ νh(|A|2)∥∥.
By the convexity h(t) = t p for p � 1 we have

COROLLARY 2.24. Let A,B,X ∈ B(H ) , then for all 0 < ν < 1 and p � 1

ω2p(A∗XB) � r2p(X)
∥∥(1−ν)(B∗|A∗|2B)p + ν|A|2p

∥∥.
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In addition, by using Theorem 2.22 and corollaries 2.23, 2.24 for X = B = I , we
obtain several generalization of inequality 1.3.
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