SHARP OPERATOR MEAN INEQUALITIES OF THE NUMERICAL RADII

Hosna Jafarmanesh and Maryam Khosravi

(Communicated by F. Kittaneh)

Abstract. We present several sharp upper bounds and some extension for product operators. Among other inequalities, it is shown that if $0<m I \leqslant B^{*} f^{2}(|X|) B, A^{*} g^{2}\left(\left|X^{*}\right|\right) A \leqslant M I, f, g$ are non-negative continuous functions on $[0, \infty)$ such that $f(t) g(t)=t,(t \geqslant 0)$, then for all non-negative operator monotone decreasing function h on $[0, \infty)$, we obtain that

$$
\left\|h\left(B^{*} f^{2}(|X|) B\right) \sigma h\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\| \leqslant \frac{m k}{M} h\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|\right)
$$

As an application of the above inequality, it is shown that

$$
\omega\left(A^{*} X B\right) \leqslant \frac{m k}{M}\left\|B^{*} f^{2}(|X|) B!A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right\|
$$

where, $k=\frac{(M+m)^{2}}{4 m M}$ and σ is an operator mean s.t., $!\leqslant \sigma \leqslant \nabla$.

1. Introduction

Let $\mathscr{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathscr{H}. An operator $A \in \mathscr{B}(\mathscr{H})$ is called positive if $\langle A x, x\rangle \geqslant 0$ for all $x \in \mathscr{H}$. We write $A \geqslant 0$ if A is positive.

A continuous real-valued function f defined on interval J is said to be operator monotone increasing (decreasing) if for every two positive operators A and B with spectral in J, the inequality $A \leqslant B$ implies $f(A) \leqslant f(B)(f(A) \geqslant f(B))$, respectively. As an example, it is well known that the power function x^{r} on $(0, \infty)$ is operator monotone increasing if $r \in[0,1]$ and operator monotone decreasing if and only if $r \in[-1,0]$.

If $f: J \rightarrow \mathbb{R}$ is a convex function and A is a self-adjoint operator with spectrum in J, then

$$
\begin{equation*}
f(\langle A x, x\rangle) \leqslant\langle f(A) x, x\rangle \tag{1.1}
\end{equation*}
$$

for each $x \in \mathscr{H}$ with $\|x\|=1$, and the reverse inequality holds if f is concave (see [10]).

The spectral radius and the numerical radius of $A \in \mathscr{B}(\mathscr{H})$ are defined by $r(A)=$ $\sup \{|\lambda|: \lambda \in \operatorname{sp}(A)\}$ and

$$
\omega(A)=\sup \{|\langle A x, x\rangle|: x \in H,\|x\|=1\}
$$

Mathematics subject classification (2020): Primary 47A63; Secondary 47A64.
Keywords and phrases: Numerical radius, operator norm, inequality, refine.
respectively. It is well-known that $r(A) \leqslant \omega(A)$ and $\omega($.$) defines a norm on \mathscr{B}(\mathscr{H})$, which is equivalent to the usual operator norm $\|$.$\| .$

In fact, for any $A \in \mathscr{B}(\mathscr{H})$,

$$
\begin{equation*}
\frac{1}{2}\|A\| \leqslant \omega(A) \leqslant\|A\| \tag{1.2}
\end{equation*}
$$

Kittaneh [9] has shown that for $A \in \mathscr{B}(\mathscr{H})$,

$$
\begin{equation*}
\omega^{2}(A) \leqslant \frac{1}{2}\left\||A|^{2}+\left|A^{*}\right|^{2}\right\| \tag{1.3}
\end{equation*}
$$

which is a refinement of right hand side of inequality (1.2).
Dragomir [5] proved that for any $A, B \in \mathscr{B}(\mathscr{H})$ and for all $p \geqslant 1$,

$$
\begin{equation*}
\omega^{p}\left(B^{*} A\right) \leqslant \frac{1}{2}\left\|\left(A^{*} A\right)^{p}+\left(B^{*} B\right)^{p}\right\| \tag{1.4}
\end{equation*}
$$

In [12], it has been shown that if $A, B \in \mathscr{B}(\mathscr{H})$ and $p \geqslant 1$, then

$$
\begin{equation*}
\omega^{p}\left(B^{*} A\right) \leqslant \frac{1}{4}\left\|\left(A A^{*}\right)^{p}+\left(B B^{*}\right)^{p}\right\|+\frac{1}{2} \omega^{p}\left(A B^{*}\right) \tag{1.5}
\end{equation*}
$$

which is generalization of inequality (1.4) and in particular cases is sharper than this inequality. Shebrawi et al. [11] generalized inequalities (1.3) and (1.4), as follows:

If $A, B, X \in \mathscr{B}(\mathscr{H})$ and $p \geqslant 1$, we have

$$
\begin{equation*}
\omega^{p}\left(A^{*} X B\right) \leqslant \frac{1}{2}\left\|\left(A^{*}\left|X^{*}\right| A\right)^{p}+\left(B^{*}|X| B\right)^{p}\right\| \tag{1.6}
\end{equation*}
$$

In this paper, we first derive a new lower bound for inner-product of products $A^{*} X B$ involving operator monotone decreasing function, and, so we give refinement of the inequalities (1.4) and (1.6). We prove a numerical radius, which is similar to (1.5) in some example is sharper than (1.5).

In particular, we extend inequality (1.5) and also find some example which show that is a refinement of (1.6). In the next, we present numerical radius inequalities for products of operators, which one of the applications of our results is a generalization of (1.3).

2. Main results

We first recall that for positive invertible operators $A, B \in \mathscr{B}(\mathscr{H})$, the weighted operator arithmetic and harmonic means are defined, by

$$
A \nabla_{v} B=(1-v) A+v B
$$

and

$$
\left.A!_{v} B=\left((1-v) A^{-1}+v B^{-1}\right)\right)^{-1}
$$

It is well-known that if σ_{v} is an operator mean, then

$$
A!_{v} B \leqslant A \sigma_{v} B \leqslant A \nabla_{v} B
$$

To prove our numerical radius inequalities, we need several lemmas.

LEMMA 2.1. [7] If $A \in B(\mathscr{H})$ and f, g are non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t,(t \geqslant 0)$, then for each $x, y \in \mathscr{H}$

$$
|\langle A x, y\rangle| \leqslant\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\| .
$$

LEMMA 2.2. [6] Let $0<m I \leqslant A, B \leqslant M I, 0 \leqslant v \leqslant 1,!_{v} \leqslant \tau_{v}, \sigma_{v} \leqslant \nabla_{v}$ and Φ be a positive unital linear map. If h is an operator monotone decreasing function on $(0, \infty)$, then

$$
h(\Phi(A)) \sigma_{v} h(\Phi(B)) \leqslant k h\left(\Phi\left(A \tau_{v} B\right)\right)
$$

where, $k=\frac{(M+m)^{2}}{4 m M}$ stands for the known Kantorovich constant.
Lemma 2.3. Let $A \in \mathscr{B}(\mathscr{H})$ be a strictly positive operator. Then for all nonnegative decreasing continuous function h on $[0, \infty)$, we have

$$
\left\|h\left(A^{-1}\right)\right\| \leqslant h\left(\|A\|^{-1}\right)
$$

Proof. From $A \leqslant\|A\| I$, it follows that $\|A\|^{-1} I \leqslant A^{-1}$. That is $\operatorname{sp}\left(A^{-1}\right) \subseteq\left(\|A\|^{-1}, \infty\right)$. So $\operatorname{sp}\left(h\left(A^{-1}\right)\right)=h\left(\operatorname{sp}\left(A^{-1}\right)\right) \subseteq h\left(\|A\|^{-1}, \infty\right)$. Since h is decreasing, we have $h\left(A^{-1}\right) \leqslant$ $h\left(\|A\|^{-1}\right) I$ and therefore $\left\|h\left(A^{-1}\right)\right\| \leqslant h\left(\|A\|^{-1}\right)$.

THEOREM 2.4. Let $A, B, X \in \mathscr{B}(\mathscr{H})$ and f, g are non-negative continuous functions on $[0, \infty)$ in which, $f(t) g(t)=t,(t \geqslant 0)$.

If $0<m I \leqslant B^{*} f^{2}(|X|) B, A^{*} g^{2}\left(\left|X^{*}\right|\right) A \leqslant M I, h:[0, \infty) \rightarrow[0, \infty)$ is an operator monotone decreasing function and σ is an arbitrary mean between ∇ and !, then for any unit vextor $x \in \mathscr{H}$,

$$
\begin{equation*}
\left\|h\left(B^{*} f^{2}(|X|) B\right) \sigma h\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\| \leqslant \frac{m k}{M} h\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|\right) \tag{2.1}
\end{equation*}
$$

where, $k=\frac{(M+m)^{2}}{4 m M}$.
In particular,

$$
\begin{equation*}
\left\|h\left(B^{*} f^{2}(|X|) B\right) \sigma h\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\| \leqslant h\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|\right) \tag{2.2}
\end{equation*}
$$

Proof. Let $x \in \mathscr{H}$ be a unit vector. Now applying Lemma 2.1, AM-GM inequality and since every operator monotone decreasing function is operator convex [2], we have

$$
\begin{aligned}
\frac{m}{M} h\left(\left|\left\langle A^{*} X B x, x\right\rangle\right|\right) & =\frac{m}{M} h(|\langle X B x, A x\rangle|) \\
& \geqslant \frac{m}{M} h\left(\sqrt{\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle}\right) \\
& \geqslant \frac{m}{M} h\left(\left\langle\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right) x, x\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant h\left(\frac{m}{M}\left\langle\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right) x, x\right\rangle\right) \\
& \geqslant h\left(\frac{m}{M}\left\|\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right\|\right)
\end{aligned}
$$

By hypothesis and operator convexity of $t \mapsto t^{-1}$, we obtain,

$$
\left\|\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right\| \leqslant M
$$

and

$$
\left\|\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right)^{-1}\right\| \leqslant \frac{1}{m}
$$

Therefore

$$
\begin{equation*}
\left\|\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right\| \leqslant \frac{M}{m}\left\|\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right)^{-1}\right\|^{-1} \tag{2.3}
\end{equation*}
$$

By using inequality (2.3) and Lemma 2.3, we have

$$
\begin{aligned}
& h\left(\frac{m}{M}\left\|\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right\|\right) \\
& \geqslant h\left(\left\|\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right)^{-1}\right\|^{-1}\right) \\
& \geqslant\left\|h\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right)\right\| \\
& \geqslant \frac{1}{k}\left\|h\left(B^{*} f^{2}(|X|) B\right) \sigma h\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\|
\end{aligned}
$$

where, in the last inequality, we used Lemma 2.2 for $v=\frac{1}{2}$. Hence inequality (2.1) is proved. Now by inequality (2.1) and the fact that $\frac{m k}{M} \leqslant 1$, we obtain inequality (2.2).

REMARK 2.5. In the assumptions of Theorem 2.4, we can replace $0<m I \leqslant$ $B^{*} f^{2}(|X|) B, A^{*} g^{2}\left(\left|X^{*}\right|\right) A \leqslant M I$ with $0<m I \leqslant \frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2} \leqslant M I$.

So, if we assume that $\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}$ is invertible, we can conclude (2.2).

Similarly, if $\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}$ is not invertible, we can prove that

$$
\left\|h\left(B^{*} f^{2}(|X|) B+\varepsilon I\right) \sigma h\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A+\varepsilon I\right)\right\| \leqslant h\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|\right)
$$

and taking limit of $\varepsilon \rightarrow 0$, we can conclude (2.2) without the assumption $0<m I \leqslant$ $B^{*} f^{2}(|X|) B, A^{*} g^{2}\left(\left|X^{*}\right|\right) A \leqslant M I$.

REMARK 2.6. Under the assumptions of Theorem 2.4, if $!_{v} \leqslant \sigma_{v} \leqslant \nabla v$ and

$$
0<m I \leqslant\left(B^{*} f^{2}(|X|) B\right)^{\frac{1}{1-v}},\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{\frac{1}{v}} \leqslant M I
$$

then by applying (1.1) for the concave function $t^{\nu}(0<v<1)$ and AM-GM inequality, respectively, we can write

$$
\begin{aligned}
\frac{m}{M} h\left(\left|\left\langle A^{*} X B x, x\right\rangle\right|^{2}\right) & \geqslant \frac{m}{M} h\left(\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle\right) \\
& \geqslant \frac{m}{M} h\left(\left\langle\left(B^{*} f^{2}(|X|) B\right)^{\frac{1}{1-v}} x, x\right\rangle^{1-v}\left\langle\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{\frac{1}{v}} x, x\right\rangle^{v}\right) \\
& \geqslant \frac{m}{M} h\left(\left\langle\left[(1-v)\left(B^{*} f^{2}(|X|) B\right)^{\frac{1}{1-v}}+v\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{\frac{1}{v}}\right] x, x\right\rangle\right)
\end{aligned}
$$

Therefore, by similar argument to the proof of Theorem 2.4, we obtain

$$
\begin{equation*}
\left\|h\left(\left(B^{*} f^{2}(|X|) B\right)^{\frac{1}{1-v}}\right) \sigma_{v} h\left(\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{\frac{1}{v}}\right)\right\| \leqslant \frac{m k}{M} h\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|^{2}\right) \tag{2.4}
\end{equation*}
$$

LEMMA 2.7. [1] If A, B are positive operators and f is a non-negative nondecreasing convex function on $[0, \infty)$, then

$$
\|f((1-v) A+v B)\| \leqslant\|(1-v) f(A)+v f(B)\|
$$

for all $0<v<1$.
Applying Theorem 2.4 to the decreasing convex function $h(t)=t^{-1}$ and $\sigma=$ $\nabla\left(:=\nabla_{\frac{1}{2}}\right)$, we reach the following corollary:

Corollary 2.8. Let $A, B, X \in \mathscr{B}(\mathscr{H})$ and f, g are non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t,(t \geqslant 0)$. If $0<m I \leqslant B^{*} f^{2}(|X|) B, A^{*} g^{2}\left(\left|X^{*}\right|\right) A$ $\leqslant M I$, then

$$
\begin{equation*}
\omega\left(A^{*} X B\right) \leqslant \frac{m k}{M}\left\|B^{*} f^{2}(|X|) B!A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right\| \tag{2.5}
\end{equation*}
$$

Furthermore, for increasing convex function $h^{\prime}:[0, \infty) \rightarrow[0, \infty)$ s.t. $h^{\prime}(0)=0$, we have

$$
\begin{equation*}
h^{\prime}\left(\omega\left(A^{*} X B\right)\right) \leqslant \frac{m k}{2 M}\left\|h^{\prime}\left(B^{*} f^{2}(|X|) B\right)+h^{\prime}\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\| \tag{2.6}
\end{equation*}
$$

In particular, for all $p \geqslant 1$

$$
\begin{equation*}
\omega^{p}\left(A^{*} X B\right) \leqslant \frac{m k}{2 M}\left\|\left(B^{*} f^{2}(|X|) B\right)^{p}+\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{p}\right\| \tag{2.7}
\end{equation*}
$$

Proof. Let $x \in \mathscr{H}$ be a unit vector. Put $h(t)=t^{-1}$ and $\sigma=\nabla$ in (2.1). Then we have

$$
\left\|\frac{\left(B^{*} f^{2}(|X|) B\right)^{-1}+\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{-1}}{2}\right\| \leqslant \frac{m k}{M}\left(\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right|\right)^{-1}
$$

Therefore

$$
\begin{aligned}
\left|\left\langle\left(A^{*} X B\right) x, x\right\rangle\right| & \leqslant \frac{m k}{M}\left\|\frac{\left(B^{*} f^{2}(|X|) B\right)^{-1}+\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{-1}}{2}\right\|^{-1} \\
& \leqslant \frac{m k}{M}\left\|\left(\frac{\left(B^{*} f^{2}(|X|) B\right)^{-1}+\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)^{-1}}{2}\right)^{-1}\right\|
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H}$ with $\|x\|=1$ in the above inequality, we obtain (2.5).

Let us prove (2.6). By an inequality (2.5) and Lemma 2.7, we get

$$
\begin{aligned}
h^{\prime}\left(\omega\left(A^{*} X B\right)\right) & \leqslant h^{\prime}\left(\frac{m k}{2 M}\left\|B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right\|\right) \\
& \leqslant \frac{m k}{M} h^{\prime}\left(\left\|\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right\|\right) \\
& \leqslant \frac{m k}{M}\left\|h^{\prime}\left(\frac{B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A}{2}\right)\right\| \\
& \leqslant \frac{m k}{2 M}\left\|h^{\prime}\left(B^{*} f^{2}(|X|) B\right)+h^{\prime}\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\|
\end{aligned}
$$

The third inequality in the above inequalities follows from (1.1) (in fact, a similar argument to the proof of Lemma 2.3, leads to equality). The last inequality obtains from Lemma 2.7.

By taking $h^{\prime}(t)=t^{p}(p>1)$, we reach inequality (2.7).
By taking $f(t)=g(t)=t^{\frac{1}{2}}$ in an inequality (2.5) we get a refinement of inequality (1.6) for $p=1$, and if we put $f(t)=g(t)=t^{\frac{1}{2}}$ in (2.7), we present a refinement of inequality (1.6).

Applying inequality (2.4) to the decreasing convex function $h(t)=t^{-1}$, one can reach the similar results as Corollary 2.8 (we omit the detail).

The following lemma will be useful in the proof of the next result.

Lemma 2.9. [3] Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathscr{B}(\mathscr{H})$. Then

$$
\begin{aligned}
r\left(A_{1} B_{1}+A_{2} B_{2}\right) \leqslant & \frac{1}{2}\left(\omega\left(B_{1} A_{1}\right)+\omega\left(B_{2} A_{2}\right)\right) \\
& +\frac{1}{2} \sqrt{\left(\omega\left(B_{1} A_{1}\right)-\omega\left(B_{2} A_{2}\right)\right)^{2}+4\left\|B_{1} A_{2}\right\|\left\|B_{2} A_{1}\right\|}
\end{aligned}
$$

In the next theorem, we give an inequality similar to (1.5).

THEOREM 2.10. Let $A, B \in \mathscr{B}(\mathscr{H})$. Then for all non-negative non-decreasing convex function h on $[0, \infty)$, we have

$$
\begin{equation*}
h\left(\omega\left(A^{*} B\right)\right) \leqslant \frac{1}{2} h(\|A\|\|B\|)+\frac{1}{2} h\left(\omega\left(B A^{*}\right)\right) . \tag{2.8}
\end{equation*}
$$

Proof. Let $\theta \in \mathbb{R}$. Letting $A_{1}=e^{i \theta} A^{*}, B_{1}=B, A_{2}=B^{*}$ and $B_{2}=e^{-i \theta} A$ in Lemma 2.9 we can write

$$
\begin{aligned}
\left\|\operatorname{Re}\left(e^{i \theta}\left(A^{*} B\right)\right)\right\|= & r\left(\operatorname{Re}\left(e^{i \theta}\left(A^{*} B\right)\right)\right. \\
\leqslant & \frac{1}{4}\left(\omega\left(B A^{*}\right)+\omega\left(A B^{*}\right)\right) \\
& +\frac{1}{4} \sqrt{\left(\omega\left(B A^{*}\right)-\omega\left(A B^{*}\right)\right)^{2}+4\left\|A A^{*}\right\|\left\|B B^{*}\right\|} \\
= & \frac{1}{2} \omega\left(B A^{*}\right)+\frac{1}{2}\|A\|\|B\|
\end{aligned}
$$

Hence, by Lemma 2.14 (a) and convexity of h, we get (2.8).
EXAMPLE 2.11. Letting $A=\left[\begin{array}{rr}1 & 0 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]$. Since $\frac{1}{4}\left\|A A^{*}+B B^{*}\right\|=$ 7.5432 and $\frac{1}{2}\|A\|\|B\|=6.1962$, we can say that inequality (2.8), in this example, is a refinement of (1.5).

Corollary 2.12. Let $A, B \in \mathscr{B}(\mathscr{H})$. Then for all $p \geqslant 1$ we have

$$
\omega^{p}\left(A^{*} B\right) \leqslant \frac{1}{2}\|A\|^{p}\|B\|^{p}+\frac{1}{2} \omega^{p}\left(B A^{*}\right)
$$

Corollary 2.13. Let $A \in \mathscr{B}(\mathscr{H}), A=U|A|$ be the polar decomposition of A, and f, g be two non-negative continuous functions on $[0, \infty)$ such that $f(t) g(t)=t$ $(t \geqslant 0)$ and let $\tilde{A}_{f, g}=f(|A|) U g(|A|)$ be generalize the Aluthge transform of A. Then for all $p \geqslant 1$,

$$
\omega^{p}(A) \leqslant \frac{1}{2}\|f(|A|)\|^{p}\|g(|A|)\|^{p}+\frac{1}{2} \omega^{p}\left(\tilde{A}_{f, g}\right)
$$

Next, we need the following two lemmas. The first lemma in part (a), which contains a very useful formula of numerical radius, can be found in [13]. Part (b) is well-known (see [4]) and two lemma concerning norm inequalities was given in [8].

Lemma 2.14. Let A be an operator in $\mathscr{B}(\mathscr{H})$. Then
(a) $\omega(A)=\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|=\frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\|A+e^{i \theta} A^{*}\right\|$.
(b) $\omega\left(\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]\right)=\max (\omega(A), \omega(B))$.

LEMMA 2.15. If $A_{1}, A_{2}, B_{1}, B_{2}, X$ and Y are operators in $\mathscr{B}(\mathscr{H})$. Then

$$
2\left\|A_{1} X A_{2}^{*}+B_{1} Y B_{2}^{*}\right\| \leqslant\left\|\left[\begin{array}{ll}
A_{1}^{*} A_{1} X+X A_{2}^{*} A_{2} & A_{1}^{*} B_{1} Y+X A_{2}^{*} B_{2} \tag{2.9}\\
B_{1}^{*} A_{1} X+Y B_{2}^{*} A_{2} & B_{1}^{*} B_{1} Y+Y B_{2}^{*} B_{2}
\end{array}\right]\right\|
$$

Theorem 2.16. Let $A, B, X \in \mathscr{B}(\mathscr{H})$. Then

$$
\omega\left(A^{*} X B\right) \leqslant \frac{1}{4}\left\|A A^{*} X+X B B^{*}\right\|+\frac{1}{2} \omega\left(\left[\begin{array}{cc}
X B A^{*} & 0 \tag{2.10}\\
0 & B A^{*} X
\end{array}\right]\right)
$$

Proof. Applying the first inequality in Lemma 2.14 (a) and by letting $A_{1}=B_{2}=$ $e^{i \theta} A^{*}, A_{2}=B_{1}=B^{*}$ and $Y=X^{*}$ in inequality (2.9), we have

$$
\begin{aligned}
& \omega\left(A^{*} X B\right)=\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \theta} \mathrm{~A}^{*} \mathrm{XB}\right)\right\| \\
& =\frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\|e^{i \theta} A^{*} X B+e^{-i \theta} B^{*} X^{*} A\right\| \\
& \leqslant \frac{1}{4} \sup _{\theta \in \mathbb{R}}\left\|\left[\begin{array}{cc}
A A^{*} X+X B B^{*} & e^{-i \theta} A B^{*} X^{*}+e^{i \theta} X B A^{*} \\
e^{i \theta} B A^{*} X+e^{-i \theta} X^{*} A B^{*} & B B^{*} X^{*}+X^{*} A A^{*}
\end{array}\right]\right\| \\
& \leqslant \frac{1}{4} \sup _{\theta \in \mathbb{R}}\left\|\left[\begin{array}{cc}
A A^{*} X+X B B^{*} & 0 \\
0 & B B^{*} X^{*}+X^{*} A A^{*}
\end{array}\right]\right\| \\
& +\frac{1}{4} \sup _{\theta \in \mathbb{R}}\left\|\left[\begin{array}{cc}
0 & e^{i \theta}\left(X B A^{*}+e^{-2 i \theta} A B^{*} X^{*}\right. \\
e^{i \theta}\left(B A^{*} X+e^{-2 i \theta} X^{*} A B^{*}\right. & 0
\end{array}\right]\right\| \\
& =\frac{1}{4}\left\|A A^{*} X+X B B^{*}\right\| \\
& +\frac{1}{4} \sup _{\theta \in \mathbb{R}}\left(\max \left\{\left\|X B A^{*}+e^{-2 i \theta} A B^{*} X^{*}\right\|,\left\|B A^{*} X+e^{-2 i \theta} X^{*} A B^{*}\right\|\right\}\right)
\end{aligned}
$$

Using the second equality in Lemma 2.14 (a), (b), respectively, we deduce the desired inequality (2.10).

REMARK 2.17. By letting $X=I$ in the inequality (2.10), and by using Lemma 2.14 (b), it is easy to see that the inequality (2.10) generalizes inequality (1.5) for $p=1$.

EXAMPLE 2.18. Taking $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ 1 & 5\end{array}\right]$ and $X=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. By an easy computation, we find that

$$
\begin{gathered}
\frac{1}{2}\left\|A^{*}\left|X^{*}\right| A+B^{*}|X| B\right\| \approx 59.5407 \\
\frac{1}{4}\left\|A A^{*} X+X B B^{*}\right\|+\frac{1}{2} \omega\left(\left[\begin{array}{cc}
X B A^{*} & 0 \\
0 & B A^{*} X
\end{array}\right]\right) \approx 57.7024
\end{gathered}
$$

and $\omega\left(A^{*} X B\right) \approx 42.2677$. This show that the inequality (2.10), in this example, provides an improvement of the inequality (1.6) for $p=1$.

Corollary 2.19. Let $A \in \mathscr{B}(\mathscr{H}), A=U|A|$ be the polar decomposition of A, and f, g be two non-negative continuous functions on $[0, \infty)$ such that $f(x) g(x)=x$ $(x \geqslant 0)$ and let $\tilde{A}_{f, g}=f(|A|) U g(|A|)$ be generalize the Aluthge transform of A.. Then for all non-negative and increasing convex function h on $[0, \infty)$, we have

$$
\begin{equation*}
h(\omega(A)) \leqslant \frac{1}{4}\left\|h\left(f^{2}(|A|)\right)+h\left(g^{2}(|A|)\right)\right\|+\frac{1}{2} h\left(\omega\left(\tilde{A}_{f, g}\right)\right) . \tag{2.11}
\end{equation*}
$$

Proof. Since

$$
\omega(A)=\omega(U g(|A|) f(|A|))=\omega\left(U g(|A|) U U^{*} f(|A|)\right)
$$

If we take $A^{*}=U g(|A|), X=U$ and $B=U^{*} f(|A|)$ in (2.10), we get

$$
\omega(A) \leqslant \frac{1}{4}\left\|\left(f^{2}(|A|)+g^{2}(|A|)\right) U\right\|+\frac{1}{2} \omega\left(\tilde{A}_{f, g}\right)
$$

By the fact that $\|U\|=1$ and convexity of h, we obtain (2.11).

Theorem 2.20. Let $A, B, X \in \mathscr{B}(\mathscr{H})$. Then

$$
\omega\left(A^{*} X B+B^{*} X A\right) \leqslant\left(\frac{1}{2}\left(\|A\|^{2}+\|B\|^{2}\right)+\left\|A B^{*}\right\|\right) \omega(X)
$$

Proof. By using the first equality in Lemma 2.14 (a) and the fact that $\operatorname{Re}\left(e^{i \theta}\left(A^{*} X B\right.\right.$ $\left.\left.+B^{*} X A\right)\right)=A^{*} \operatorname{Re}\left(e^{i \theta} X\right) B+B^{*} \operatorname{Re}\left(e^{i \theta} X\right) A$ and putting $A_{1}=B_{2}=A^{*}, X=Y=\operatorname{Re}\left(e^{i \theta} X\right)$ and $A_{2}=B_{1}=B^{*}$ in inequality (2.9), we get

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta}\left(A^{*} X B+B^{*} X A\right)\right)\right\| \\
\leqslant & \frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\|\left[\begin{array}{l}
A A^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) B B^{*} A B^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) B A^{*} \\
B A^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A B^{*} B B^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A A^{*}
\end{array}\right]\right\| \\
\leqslant & \frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\|\left[\begin{array}{cc}
A A^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) B B^{*} & 0 \\
0 & B B^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A A^{*}
\end{array}\right]\right\| \\
& +\frac{1}{2} \sup _{\theta \in \mathbb{R}}\| \|\left[\begin{array}{cc}
0 & A B^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) B A^{*} \\
B A^{*} \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A B^{*} & 0
\end{array}\right] \|
\end{aligned}
$$

Using the first equality in Lemma 2.14 (a), we obtain

$$
\omega\left(A^{*} X B+B^{*} X A\right) \leqslant \frac{1}{2}\left(\|A\|^{2}+\|B\|^{2}\right) \omega(X)+\left\|A B^{*}\right\| \omega(X)
$$

This completes the proof.
The following lemma is due to Kittaneh [7]

Lemma 2.21. Let $A, B \in \mathscr{B}(\mathscr{H})$ such that $|A| B=B^{*}|A|$. If f and g are nonnegative continuous function on $[0, \infty)$ satisfying $f(t) g(t)=t(t \geqslant 0)$, then for any vectors $x, y \in \mathscr{H}$

$$
|\langle A B x, y\rangle| \leqslant r(B)\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\| .
$$

Theorem 2.22. Let $A, B, X \in \mathscr{B}(\mathscr{H})$ satisfying $\left|A^{*}\right| X=X^{*}\left|A^{*}\right|$ and f, g be two non-negative continuous functions on $[0, \infty)$ such that $f(t) g(t)=t(t \geqslant 0)$. If h is a nonnegative increasing convex function on $[0, \infty)$, then

$$
h\left(\omega^{2}\left(A^{*} X B\right)\right) \leqslant\left\|(1-v) h\left(r^{2}(X)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}\right)+v h\left(r^{2}(X) g^{\frac{2}{v}}(|A|)\right)\right\|
$$

for all $0<v<1$. Moreover, in special case for $r(X) \leqslant 1$ and $h(0)=0$, we have

$$
h\left(\omega^{2}\left(A^{*} X B\right)\right) \leqslant r^{2}(X)\left\|(1-v) h\left(\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}\right)+v h\left(g^{\frac{2}{v}}(|A|)\right)\right\|
$$

Proof. Setting $y=x$ in Lemma 2.21 and using (1.1) for the concave function t^{v}, respectively, we get

$$
\begin{aligned}
\left|\left\langle A^{*} X B x, x\right\rangle\right|^{2} & \leqslant r^{2}(X)\left\|f\left(\left|A^{*}\right|\right) B x\right\|^{2}\|g(|A|) x\|^{2} \\
& =r^{2}(X)\left\langle B^{*} f^{2}\left(\left|A^{*}\right|\right) B x, x\right\rangle\left\langle g^{2}(|A|) x, x\right\rangle \\
& =r^{2}(X)\left\langle\left(\left(B^{*} f^{2}(|A|) B\right)^{\frac{1}{1-v}}\right)^{1-v} x, x\right\rangle\left\langle\left(\left(g^{2}(|A|)\right)^{\frac{1}{v}}\right)^{v} x, x\right\rangle \\
& \leqslant r^{2}(X)\left\langle\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}} x, x\right\rangle^{1-v}\left\langle\left(g^{2}(|A|)\right)^{\frac{1}{v}} x, x\right\rangle^{v} \\
& \leqslant r^{2}(X)\left\langle(1-v)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}+v g^{\frac{2}{v}}(|A|) x, x\right\rangle
\end{aligned}
$$

Hence by taking the supremum over $x \in \mathscr{H}$, we get

$$
\omega^{2}\left(A^{*} X B\right) \leqslant r^{2}(X)\left\|(1-v)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}+v g^{\frac{2}{v}}(|A|)\right\|
$$

Since h is an increasing convex function, we have

$$
\begin{aligned}
h\left(\omega^{2}\left(A^{*} X B\right)\right) & \leqslant h\left(r^{2}(X)\left\|(1-v)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}+v g^{\frac{2}{v}}(|A|)\right\|\right) \\
& =\left\|h\left(r^{2}(X)(1-v)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}+v g^{\frac{2}{v}}(|A|)\right)\right\| \\
& \leqslant\left\|(1-v) h\left(r^{2}(X)\left(B^{*} f^{2}\left(\left|A^{*}\right|\right) B\right)^{\frac{1}{1-v}}\right)+v h\left(r^{2}(X) g^{\frac{2}{v}}(|A|)\right)\right\|
\end{aligned}
$$

where, in the last inequality we used Lemma 2.7.
Now we present some applications of Theorem 2.22.
Letting $f(t)=t^{1-v}$ and $g(t)=t^{v}$ for $0<v<1$ in Theorem 2.22 we get
Corollary 2.23. Let $A, B, X \in \mathscr{B}(\mathscr{H})$ satisfying $\left|A^{*}\right| X=X^{*}\left|A^{*}\right|$. If h is a nonnegative increasing convex function on $[0, \infty)$, then for all $0<v<1$

$$
h\left(\omega^{2}\left(A^{*} X B\right)\right) \leqslant\left\|(1-v) h\left(r^{2}(X)\left(B^{*}\left|A^{*}\right|^{2} B\right)\right)+v h\left(r^{2}(X)|A|^{2}\right)\right\| .
$$

Inparticullar, for $r(X) \leqslant 1$ and $h(0)=0$

$$
h\left(\omega^{2}\left(A^{*} X B\right)\right) \leqslant r^{2}(X)\left\|(1-v) h\left(B^{*}\left|A^{*}\right|^{2} B\right)+v h\left(|A|^{2}\right)\right\|
$$

By the convexity $h(t)=t^{p}$ for $p \geqslant 1$ we have
Corollary 2.24. Let $A, B, X \in \mathscr{B}(\mathscr{H})$, then for all $0<v<1$ and $p \geqslant 1$

$$
\omega^{2 p}\left(A^{*} X B\right) \leqslant r^{2 p}(X)\left\|(1-v)\left(B^{*}\left|A^{*}\right|^{2} B\right)^{p}+v|A|^{2 p}\right\|
$$

In addition, by using Theorem 2.22 and corollaries $2.23,2.24$ for $X=B=I$, we obtain several generalization of inequality 1.3.

REFERENCES

[1] J. S. Aujla and F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217-233.
[2] T. Ando and F. Hiai, Operator log-convex functions and operator means, Math. Ann. 350 (2011), 611-630
[3] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (2013), 69-75.
[4] R. Bhatia, Matrix Analysis, Springer, NewYork (1997).
[5] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (18) (2) (2009) 269-278.
[6] H. Jafarmanesh, M. Khosravi and A. Sheikhhosseini, Some operator inequalities involving operator monotone functions, Bulletin des Sciences Mathematiques, 2021, doi:10.1016/j.bulsci.2020.102938.
[7] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Ints. Math. Sci., 1988, 24 (2): 283-293.
[8] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory 48 (2002), 95103.
[9] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 1681 (2005), 73-80.
[10] B. Mond and J. Pecaric, On Jensen's inequality for operator convex functions, Houston J Math, 1995, 21: 739-753.
[11] K. Shebrawi and H. Albadawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. 2009, Art. ID 492154, 11-pp.
[12] M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl, 470 (2014), 1-12.
[13] T. YAMAZAKI, On upper and lower bounds of the numerical radius and on equality condition, Studia Math. 178, (2007), 83-89.
(Received June 4, 2020)
Hosna Jafarmanesh
Department of Mathematics and Computer Sciences Hakim Sabzevari University
Sabzevar, P. O. Box 397, Iran
e-mail: Hosna.jafarmanesh@yahoo.com
Maryam Khosravi
Department of Pure Mathematics
Faculty of Mathematics and Computer Shahid Bahonar University of Kerman

Kerman, Iran
e-mail: khosravi_m@uk.ac.ir

