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NEW RESULTS ON a-SPECTRAL RADIUS OF GRAPHS

HONGYING LIN AND BO ZHOU *

(Communicated by R. A. Brualdi)

Abstract. For 0 < o0 < 1, Nikiforov proposed to study the spectral properties of the family of
matrices Aq(G) = oD(G) + (1 — a)A(G) of a graph G, where D(G) is the degree diagonal
matrix and A(G) is the adjacency matrix. The o -spectral radius of G is the largest eigenvalue
of Ag(G). For 0 < o < 1, we give a lower bound for the o -spectral radius, and bounds for
the maximum and minimum entries of the o -Perron vector, and we determine the unique graph
with maximum o -spectral radius among graphs with given number of odd vertices.

1. Introduction

We consider simple graphs. Let G be a graph on n vertex set V(G) = {vi,...,v,}
and edge set E(G). For v e V(G), let 86(v) (or 8,) and Ng(v) be the degree of v and
the set of neighbors of v in G, respectively. We say G is r-regular if the degree of each
vertex is 7. The adjacency matrix A(G) of G is an n x n matrix (a;;), where a;; = 1
if viv; € E(G) and 0 otherwise. Let D(G) be the diagonal matrix of the degrees of G.
The signless Laplacian matrix of G is known as Q(G) = D(G) + A(G). The spectral
properties of the adjacency matrix and the signless Laplacian matrix of a graph have
been investigated for a long time, see, e.g., [3, 4,7, 11, 12, 13]. For any real o € [0, 1),
Nikiforov [8] proposed to study the spectral properties of the family of matrices Ay (G)
defined by the convex linear combination:

Aa(G) = aD(G) + (1 — 0)A(G).

It is easily seen that A(G) = Ao(G) and Q(G) = ZA% (G).

For any real o € [0,1), Ay(G) is a symmetric nonnegative matrix, and thus its
eigenvalues are all real. We call the largest eigenvalue of Ay (G) the o -spectral radius
of G, denoted by py(G). If G is connected, then for 0 < o < 1, Ay (G) is irreducible,
we have by the Perron-Frobenius theorem that p (G) is simple and positive, and there
is a unique positive unit eigenvector corresponding to py(G), which is called the o-
Perron vector of G, see [8].

Let K, be the complete graph on n vertices. Nikiforov [8] showed that the r-
partite Turdn graph is the unique graph with maximum o -spectral radius for 0 < o <
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1-— % among K, -free graphs on n vertices with » > 2. Nikiforov and Rojo [9] de-
termined the unique graph with maximum ¢« -spectral radius among connected graphs
on n vertices with diameter (at least) k. Guo and Zhou [5] gave upper bounds for
o -spectral radius for unicyclic graphs with given maximum degree connected irregu-
lar graphs with given maximum degree and some other graph parameters, and graphs
with given domination number, respectively. They also determined the unique tree with
maximum o -spectral radius among trees with given diameter.

A vertex in a graph is said to be odd (even, respectively) if its degree is odd (even,
respectively). It is well known that the number of odd vertices in a graph is always
even.

In this paper, for 0 < o0 < 1, we obtain a lower bound for the o -spectral radius,
and bounds for the maximum and minimum entries of the o -Perron vector, and de-
termine the unique graph with maximum o -spectral radius among graphs with given
number of odd vertices.

2. Preliminaries

Let G be a graph with V(G) = {vy,...,v,}. A column vector x = (x,,,...,%,,) €
R" can be considered as a function defined on V(G) that maps vertex v; to x,,, i.e.,
x(vi) =x, fori=1,...,n. Then

xTAa Gx=a 2 Oc (u x—|—21— 2 XXy
ueV(G) uveE(G)

Moreover, A is an eigenvalue of Ay (G) if and only if x # 0 and for each u € V(G),
we have the following eigenequation:

Axy=odsu)x,+(1—a) Y x.

vENG (1)

LEMMA 1. [8] Let G be a connected graph. If H is an induced subgraph of G,
thenfor 0 < a <1, po(H) < pa(G).

LEMMA 2. [8] Let G be a connected graph with 1 being an automorphism of
G. Let 0 < o < 1 and x be the o -Perron vector of G. Then for u,v € V(G), n(u) =v
implies that x, = x,.

For a vertex subset W C V(G), let G|W] be the subgraph of G induced by W .

For an edge subset S of G, G— S denotes the graph obtained from G by deleting
the edges in S. For an edge subset S’ of the complement of G, G+ S’ denotes the
graph obtained from G by adding the edges in §'. If S = {e} and S’ = {¢'}, then we
simplify G— {e} as G—e and G+ {¢'} as G+¢'.

LEMMA 3. [5] Let G be a connected graph with u,v € V(G). Suppose that
Vi, vs ENG(V)\ (NG () U{u}) with 1 <s < 0g(v). Let G =G—{wv;:i=1,...,s}+
{uvi:i=1,...,s}. Let 0< oo < 1 and x be the o.-Perron vector of G. If x, > Xy, then
Pa(G') > pa(G).
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For two vertex disjoint graphs G and H, the join of G and H, written as GV H,
is the graph obtained by joining each vertex of V(G) to each vertex of V(H).

Denote by Jsx; the s x ¢ all ones matrix, and as usual, I, denotes the unit matrix
of order n.

3. Lower bounds for the ¢ -spectral radius

Let G be a graph on n vertices with m edges. For 0 <o < 1,

2m
G) > —
pa(G) "
with equality if and only if G is regular. From [8, Proposition 18] and [1], if G 1is
irregular graph, then po(G) = po(G) and po(G) — 2’” 2 Ry +2) SO
2m 1
G)——2= , 1

where A is the maximum degree of G. Here we give lower bounds for the difference
between py(G) and 27'” by using the techniques in [1].

THEOREM 1. Let G be a connected graph on n vertices with m edges. Suppose
that 0 # S CV(G) and s=|S|. Thenfor 0< a <1,

2m _ o 583 2(1—
pulG) - 2> 23 (Mg )+ 2[5 - 4.
n N yes ZW€S 53) ues ues
where ¢ =1 if S is an independent set, and ¢ = 2 otherwise.

Proof. Write D= D(G) and A = A(G). Let s = |S|. If s = 1, the result is trivial.
Suppose in the following that s > 2.

Suppose first that S is an independent set. Let x be a positive vector such that
Xy = % foru e S and x, = ﬁ for u € V(G)\ S with ¥,cga2 = s, where the value of
ay for u € § will be determined later. It is easily seen that x is unit. Then

2 2
pa(G) — 7’” >x (oD + (1 — a)A)x— 7’”
1—

=q 2 5,,x—|—1— 2 2Xp Xy — arl-a 2 Ou

eV (G) VWEE (G) n uev(G)
5 O Ou
=a Y (6y——)+1-0)| Y 2xxe— » —
uev(G) n WeEE(G) uev(G)

(%5 ai—1) ) (%aus —%6) 2)
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Let S = {uj,...,u;}. Choose ay,,...,ay, such that 5+ = .. = 5= Then
2

Zau5u = Zaﬁ 25,3 25253.

ues ues ues ues
AS Ycs aﬁ = s, we have aﬁl_ = Z 52 for 1 <i<s. Then from (2), we have

2m _ o 583 2(1—
pu(G)— — = — ( “ —5)+ sY 82— 6.,
¢ n n % ZWES 5\4% ! LZ:S‘ LZ:S“ !

as desired.

Now suppose that S is not an independent setin G. Let G’ be the bipartite graph
with vertex set V(G) x {1,2} such that for (u,i),(v,j) € V(G) x {1,2}, (u,i) is adja-
centto (v,j) in G’ if and only if u is adjacent to v in G and i # j. Then

, D (1-a)A
A“(G):<(lga)A al()X )’

and thus
det(thy — Ag(G')) = det t" A tl - £>
= det((tl,, —(1—-a)?A?)
:det((tln—(aD—I—(l— a)A))(tl, — (oD — (1 — a)A)))
= det(tl, — Ax(G)) - det(tl, — (aD — (1 — «r)A)).

It follows that the eigenvalues of A (G’) are just the union of the eigenvalues of Ay (G)
and the eigenvalues of oD — (1 — a)A. By [6, Corollary 2.1, p. 38], for any eigenvalue
Aof aD—(1—a)A, |A| < pa(G). Thus pu(G') = pe(G). Note that S x {1} is an
independent set in G’'. Applying (2) to G’, we have

2m 4dm

pa(G) — o pa(G') — o

222( S532_5M) 5y, 823 8,
2n ues ZWGS 6W ues ues

as desired. [

COROLLARY 1. Let G be an irregular graph on n vertices with m edges, maxi-
mum degree A and minimum degree 6. For 0 < a < 1,

po(G)— 25 A-0P@AYE) (- 0)A-bp

n 2n(A? + 82) n(M—l—A—l—S)

3)
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Proof. Let u,v be two vertices such that 6g(u) = A and 6(v) = 6. Let S =
{u,v}. By Theorem 1, the result follows. [J
Now we compare (1) and (3). For the star K, on n vertices with n > 7, the

. while the bound in (3) is 5242 - ( (;(—n«?_(;n—j;n) >

bound in (1) is AT
(n—=2)?
2n(n?—2n+2)
For the path P, on n vertices with n > 3, the bound in (1) is %, while the bound
. s 3o (1_(1)
in (3)is 15, + n(VI013)
Thus the lower bounds in (1) and (3) are incomparable in general.

> % . The lower bound in (3) is larger than the one in (1).

< 1(3)—n. The lower bound in (1) is larger than the one in (3).

4. Extreme entries of the o -Perron vector

For a connected graph G and 0 < & < 1, let xpax and xpj, be the maximum and
minimum entries of the ¢ -Perron vector x of G, respectively. For oo = 0, Cioabd and

Gregory [2] proved
[ A Po(G)
s 2 Amax 2 ————
A+po(G)2~ ™ \/ 2vev(c) 67

~_(A=po(G))y/n
min S TN 2m

and

and Nikiforov [10] proved

o
min S ’
* \/ Po(G)> +8(n—0)

where n is the number of vertices, m is the number of edges, and A and § are the
maximum and minimum degrees, respectively. The arguments in [2, 10] lead to the
following results. For completeness, we include a proof here.

THEOREM 2. Let G be a connected graph with maximum degree A > 1. Let
Po=pal(G). For0< o<1,

Po — A < max < (1 — ) A
(1 _a) ,72146‘/(0) 5142 X Amax X (1 —OC)2A+(P0¢—OCA)2'

The left equality holds if and only if G is regular, and the right equality holds if and
only if G is the join of a vertex u and a regular graph on n— 1 vertices.

Proof. For u € V(G), we have

(po — 0A)xy < (po — 8)xu=(1—a) Y, x < (1 —)8uXmax,
vENG (u)
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i.e.,
(pO! - OCA)in < xilax(l - a)26142'

Note that ¥,cv(g) x2 = 1. Summing the above equation for each vertex u € V(G), we
have
(Po — OA)? < X2 2y 8
ueV(G)

Thus
Po — QA

Xmax =
(1—a)y/Suev(c) 62

with equality if and only if x, = xmax for each u € V(G), that is, G is regular.
Suppose that u is a vertex in V(G) such that x, = xmax. By Cauchy-Schwarz
inequality, we have

(pa—ab)u=(1-0a) Y x<(l-a) [8 Y i,
VENG (1) VENG (1)

i.e.,
—od,)*x2
Z xf 2)5
VENG )
Then
_ 2 _ 2
2 x xﬁ—i— 2 x%);i(Lp%)}xi(l_FM),
veV(G) vENG (ut) (1 o (X) u (1 o (X) A
and thus
1 A
Xmax =Xy § —F———= l-o .
e >\/ (1= a/'A+ (pu— aA)?
+ (1—a)2A

Suppose that the equality holds. Then all above inequalities are equalities, and thus

V(G) = {u} UNG(u) and x, = La=9% for v € Ng(u). Since for vi,v2 € N (u),

Paxy, = 00y, Xy, + (1 — o) (x, + (8, —1)xy,) and
PoXvy = 008y xy, + (1= 0) (xu+ (8, = D)xy,),
we have 0,, = 8,,. Then G — u is regular, and thus G is the join of a vertex u and a

regular graph on n — 1 vertices. Conversely, suppose that G is the join of a vertex u
and a regular graph H of degree r on n — 1 vertices. Let

an—2)—r++/(a(n—2)—r2+4(1-0a)(n—1)
2(1-a) '
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Evidently, note that ¢ > 1 is equivalent to

V0@ —2) =2 140 - 0P(n—1)>2+r—an,

ie.,
on—(r+14+o)+(l—o)(n—1)=m—-1)—(r+1)>0.
Let y be a vector defined on V(G) such that y,, = ¢ if w=u and y,, = 1 otherwise.

Then
an—1)  (1—0)J 1 ¢
Aa(G)y = ((1 — ) 1)1 Aal(H) Jrla(ln11>> (](n_l)xl)
_( (ac+1—a)(n—1) )
(A =a)e+r+ o)1)«

(ac+1—o)(n—1)
:((1 —(X)C+r+ OC) (I—ot)c+r+a
(n—1)x1

=(1-a)c+r+a) (J(,,_i)w) '

Note that y is a positive vector. By the Perron-Frobenius theorem, x := is the

Yy
V24n—1
o -Perron vector of G and pa = (1 —a)c+r+ o. By the expression of ¢, we have

c 1

Xmax = = 5
V2 +n—1 (pa—a(n—1))2
L+ =)

as desired. [

THEOREM 3. Let G be a connected irregular graph on n vertices with m edges
and maximum degree A. Write po, = po(G). For 0 < a < 1,

(A—pa)yn
min S A om
Proof. For u e V(G),

PoXy = 000Xy + Z Xy.

VENG )

Summing the above equation for each vertex u € V(G),

Pe Y xu=0a Y Sx+(1-a) Y D x

ueV(G) ueV(G) uEV(G) vENG (1)
=0 Z 6qu Z 5uxu
ueV(G) ucV(G)

Z SuXy-

ueV(G)
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Then

(A_p06>\/_ A Pa Z Xu

ueV(G)
= Z (A—0y)xy
ucV(G)
P z (A_au)xmin
ueV(G)
= Xpin (RA — 2m),
where the first inequality follows from Cauchy-Schwarz inequality and the fact that

Suev(G)Xa = 1. Thus
(A—pa)yn
Amin nA—2m
If the equality holds, then the above inequalities are all equalities, and thus from Cauchy-
Schwarz inequality, all entries of the o -Perron vector of G are equal, implying that G
is regular, which is impossible. Hence

as desired. [

From Theorem 3 and (1), we have the following result immediately.

COROLLARY 2. Let G be a connected irregular graph on n vertices with m edges
and maximum degree A. For 0 < o < 1,

An—2m— 1= +2
Vn(An—2m) °

THEOREM 4. Let G be a connected graph on n > 2 vertices with minimum degree
0. Write pg, = pa(G). For 0< o < 1,

Xmin <

Xpni <(l—06)\/ °
min S (po—00)>+ (1 —a)?>(n—98)6

with equality if G is a regular graph or the join of (n— 0)K, and an r-regular graph
on 0 vertices, where n-+r > 20.

Proof. Let u be a vertex in V(G) such that dg(u) = 6. By Cauchy-Schwarz
inequality, we have

(Por — 08)Xmin < (por — 008)x,, 5 Y x

VGN(]( )
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Since ¥,cy(G)X = 1, we have

(Pa—a5)xmin<(1—a) 6<1_ 2 x%) <(1—OC)\/6 (l—(n—5)xfnin)7
veV( (u)

G)\Ng

and thus

in < (1 0
xmin S (L= 0 S T (1 @2 —0)8"

It is easily seen that the equality holds if G is regular. Suppose that G = (n —
0)K, vV H with H being an r-regular graph on 0 vertices, where n— 8 +r > 0. Let

—o(n—28) —r++/(a(n—28)+r)2+4(1 —a)25(n—9)
2(1—a)(n—298) )

CcC =

Evidently, ¢ > 0. It may be easily checked that ¢ < 1. Let y be a vector defined on
V(G) suchthat y,, =c if wg V(H) and y,, = 1 if we V(H). Then

odl,_ (1 —o)Jip_)x
Aa(Gly = ((1 )yt s) AalHy) + ot §>15) y
_ ( (@dc+(1— 0)8)J_g)x1 )
(I—a)e(n—==08)+r+(n—=08)a)lsy

odc+(1-0)d J
=(1—a)c(n—8)+r+(n—38)a) (1—a)c(n—5)+3+(n—5)a (n=8)x1
ox1

=((l—a)c(n—=08)+r+(n—-=08)a)y

By Perron-Frobenius theorem, x := m is the o -Perron vector of G and py =
n—o)c
odc+(1—0)d odc+(1-a)d

(I1—a)e(n—98)+r+(n—0)a. Since D = T=@)cn=8) T+ (n=8)a
(1-a)8

have ¢ = Tl Thus

=c, we

¢ 0
SV e “‘W (pa— 0@+ (1 aP(n— 95"

as desired. [

Let G =K 3 with vertex set {vy,...,v4}, where 8¢(vi) =3 and 8¢ (v2) = 0g(v3) =
1 271
12(14—+/7)
0.367654. Using the notations of Theorem 3, A=3, n =4, m =3, and sO xpjn <
1-— @ ~ 0.39237. Using the notations of Theorem 4, 6 =1, n =4, and s0 xpin <
L 2/

56+4v7 T \/12(14—/7)

Theorem 3.

S

> Xmin =

N‘

8G(v4) = 1. By direct calculation, for oz = §, we have p 1=

. The upper bound in Theorem 4 is smaller than the one in
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Let G = K; V2K,. By direct calculation, for o0 = ‘l‘, we have p% = % + @,
6 1 _ 6 ~ : : _
Ymin = 77735 \/( - >2+4 = oo 0.22418. Using the notations of The
1+/145
orem 3, A=4, n=5, m=6, and S0 xpjn < % ~ 0.38287. Using the

i — — . 2 ~
notations of Theorem 4, § =2, n =175, and SO Xy < 6,/ 366T10V1ES ™ 0.38474. The
upper bound in Theorem 3 is smaller than the one in Theorem 4. Therefore the upper

bounds in Theorems 3 and 4 are incomparable in general.

5. Maximum o -spectral radius of graphs with given number of odd vertices

For an even integer n > 2, let K, be the graph obtained from K, by deleting a
perfect matching. For integers n,k and an even integer ¢ with n >4, 1 <n and 0 <
k< % —1,let Bk = ((K1 UK2k+1) \/Kt—Zk—2) V K,,—; . In particular, Bio=K VK,
and B = (Kl UK2k+l) VK, if k= % —1.

LEMMA 4. Let n,k,t be integers suchthat n >4, n>1t, 0 <k < % —1 andt is
even. For 0< o <1, ifn—on > 1, then pa(Bn; ) < Pa(Bnso) with equality if and
only if k=0.

Proof. Let G = B, ;. Denote by Vi,V,,V3 and V4 the vertex sets of the graphs
Ky, Koy, Ii_zk_g and K,,_,, respectively, appearing in the definition of B, . Let x
be the o -Perron vector of G. By Lemma 2, all entries of x corresponding to vertices
in V; are equal if |V;| > 1 for i =2,3,4. Denote by xi,x,x3 and x4 the entry of x
corresponding to a vertex in Vi, V,V3 and V4, respectively. Let pgx = po (Bn7,7k) and
B = 1— o. Then by the eigenequations of G at a vertex in V;,V,,V3 and V,, we have

(Pak — 0t(n—2k—2))x; — B(t — 2k — 2)x3 — B (n—1)x4 =0,

(Paj—a(n—2) =2Bk)xy — B(r — 2k —2)x3— B (n—1)x4 =0,

—Bx1 — B(2k+ 1)x2+ (pax — 0t(n—2) — Bt — 2k — 4))x3 — B(n—1)x4 =0,

—Bx1— B(2k+1)xy— Bt — 2k —2)x3+ (pax —a(n—1) = B(n—1—1)) x4 =0.
We view these equations as a homogeneous linear system in the four variables x;, x»,
x3 and x4 . Since it has a nontrivial solution, the determinant of the matrix of coefficients

of this homogeneous linear system is zero. By direct calculation, this determinant is
equal to fy i (Po k), Where

fa,k(p)

=p*+p* (—n(3a+1)+20k+20+5)+p* Ban* (o +1)
—n(130+ 20k + 407k +40” +4) + 100+ + 100tk — ot +8)
+p (—o*n(a+3) +an*(11o+4ak+20%k + 202 +8)
—2n(100 — k+ 60k + ot + 50%k — ot 4+ 607 +2)



NEW RESULTS ON 0 -SPECTRAL RADIUS 445

—2(2k — 80t —1t — 120tk — 4ak® + 20°k + 0t 4+ 2k* + 20k — okt + okt —2))
+ o®n* — o?nd B+ 20k +4) + an® (1200 — 2k + 120tk + o — 0%t + 20> +4)
+2n(2k — 60— 60tk — ot + 200k* — 60k + 20k + o’ — 4o — 402 k>
+203K% — okt + o kt) — 2(2k — 4o — 8ok — 20 + kt — 4ok +20%k
+ 2021 + 2k + 20%k* — 4okt + 30%ke).

In the above, we assume that k < 5§ — 1. If k=5 —1, then V3 = 0. We consider the

homogeneous linear system in three variables x; ,xz and x4, whose determinant of the

matrix of coefficients is m - f(Pak). So, for any 0 < k < % —1, pg is the

largest root of the equation fy «(p) = 0. Noting that

fa,O(p)
=(p—an+20)(p—an+2)(p*—plan+n—3)+oan’—an—2n+t—at +2),

we have pg o = n(la) -3/ (nf 12 ) +1)?-dr(l-a) , which is also true for t = 2. Observe

that

n(1 -3 —4n(l -«
Po,o > +o)- +\/ 2 ul )—n—2>an—1.

In the following, suppose that £ > 1. Then since n — an > 1, we have

fok(Peo) =2k(1 — @) ((n— 2k — 2)pe0— on® + 2n(ak+ ot + 1) — 1 — 2k — 2)
>2k(1 — 00)?((n—2k —2)(an— 1) — on’ 4 2n(otk + o+ 1) —1 — 2k — 2)
=2k(1 —a)? (n—1)
>0,

Fat(Po0) =6Pa0l(1— 0)(n — 2k —2) + 2k + 1) — 6an*(1 — @)
—4don(1+k)(2oe+1)—100n+ 16n+200(1 +k) — 10t (1 — o) — 8
>6(n—2)(n(1— o) +20a(14k) — 1) — 60n*(1 — )
—4don(14+k) 2o+ 1) —100n+ 16n +200(1 + k)
—10(n—1)(1—0a)—8
=6(n(1— o) —1)>+4a(1+k)(2n(1 —a) — 1)+ 8 — 100
=6(n(1 — o) —1)* +40(1 +k)+8— 10
>0,

£ (Pa0) =24pao+6(—n(30+1) + 20+ 20k +5)
>24(n—2) +6(—n(30+ 1) + 20+ 20tk + 5)
=18(n(l —a)—1)+ 12a(l+k)
>0,
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£ (pao) =24.

It remains to determine the sign of f él_;Z(Pa,o). By direct calculation,

£ (Pao) =pao(m*(1 — o)+ 20u(k+ 1) (n — o+ 1) —2(1 — o) — 1)

—an*(l—a)?—2n°(1—a)(a+ ok+o® —1)

—n(r — 4ot +30%t — 2k + 602 — 500+ 40°k) + 4o — 2

— 4% (1 — o) — dk(0* —3004+1) — (1 + 4ok + 30— 4a* — 40°k)

>(n—2)(n*(1—a)> +20a(k+1)(n— an+1) = 2(1 — o) — 1)

—an*(l—a)?—2n(1—a)(a+ o’k+ o —1)

—n(r — 4ot +30%t — 2k + 602 — 500+ 40°k) + 4o — 2

— 4% (1 — o) — dk(0* —30041) — (1 + 4ok + 30— 4o’k — 40%)

=(l—-a)(n*(1—0a)(n—oan+20+20k)+n2o+2k—1)
—4k(k+1)(1 — o) —t(4o+4ak+3n—3on—3))
>(1—a)(n*(1— o) (n— an+ 20+ 20k) +n(20+ 2k — 1)
—4k(k+1)(1 —o) — (n—1)(40.+ 40k +3n—30n —3))
:( o) (n*(1—a)((1 — ) (n—2—2k) +2k—1)

+n((5+2k)(1—0a)—20k) —4k(k+1)(1 — o) +4a(l +k) —3)
<1— o) (?(1— ) (1 — e0) (n —2 — 2k) + 2k — 1)
+n((5+2k)(1—a)—20k) —2k(n—1)(l —a) +4a(l+k)—3)
=(1—oa)(n*(1—a)(1—o)(n—2—2k)+k—1)
+n(5-50+k(n—an—2a))+2k—3+4a+2ka),
where the first inequality is obtained by
(1 —a) +20(k+1)(n—on+1)—2t(1— o) — 1
n?(1— o) +20(k+1)(n—on+1)—2(n—1)(1—oa) — 1
=n(1 — a)*(n—2) +20kn(1 — &) + 20tk + 1
>0,
the second inequality is obtained by n > ¢ and

doo+4ok+3n—3an—3>4o+40k >0,
and the third inequality is obtainedby n > >2+2k. f 0 < o0 < %, then
S (Paco) >(1— o) (1= @) (1 — o) (n— 2~ 2K) +k— 1)

+n(5—=50+k(n—an—2a))+2k—3+40+2ka)
>0.
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If % <o <1,then,as n—oan > 1, we have

Fi(Pao) =(1— ) (r*(1 = ) (1 — o) (n —2— 2K) +k—1)
+n(5—50+k(n—an—2a))+2k—3+4a+2ko)
=(1—a)2k(an*(1—a) —on+ o+ 1) +n*(1 —a)*(n—2) —n*(1 — a)
—5on+5n+4a—3)
>(1—a)2(on*(1—a)—an+o+1)+nr*(1—a)(n—2)(1 - a)
—n*(1—a)—5an+5n+40—3)

=(1—0)(n*(1 — )2 —1)+n*(1 —0)*(n—2) — Ton+5n+ 60— 1)
>(1—a)(na—1—Ta+5)+n*(1 —a)*(n—2)+6a—1)
>(1—o)(n(—50+4)+ (n—2) + 60— 1)
=(1—-a)(n(-50+5)+60—3)

>0.

Thus, for i =0,1,2,3, we have /" (pa0) > 0,50 £33 " (p) = fo% " (Pao) > O for
p = payo. Particularly, f i(po,0) > 0 for P = Pa.o, which together with the fact that
fax(p) > 0if p > py s, implies that py i < peo. O

For a positive integer n and an even integer ¢ with 0 <7 < n, let G(n,r) be the
set of connected graphs with n vertices and ¢ odd vertices, and let H,; be the graph
obtained from K, by deleting % disjoint edges if » is odd, and the graph obtained from
K, by deleting "5 disjoint edges if # is even.

THEOREM 5. Let G € G(n,t), where 0 <t <n, n>4 and t is even. For 0 <
a<l,ifn—an>1, then

n(14 o) —3++/(n( —41(1 - o)

ifnisodd
Pa(G) <

n(14 o) —3++/(n( 1)2—4(n—1)(1—a)

if nis even

with equality if and only if G = H,;.

Proof. Let G be a graph that maximizes the o -spectral radius over graphs in
G(n,1).

Suppose that V,, and V, be the sets of vertices of odd degree and even degree in
G, respectively. Obviously, |V, | =¢. Let x be the o -Perron vector of G.

CLAIM. Each vertex of V, is adjacent to each vertex of V, if V, 20 and V, # 0.

Suppose that there are two vertices u € V,, and v € V, such that « is not adjacent
to v. Let G’ = G+uv. Noting that 6g (u) = 6g(u) +1, 85 (v) = 6g(v) +1 and
Og (w) = 6g(w) for w € V(G) \ {u,v}, we have G’ € G(n,r). By Lemma 1, we have
Pa(G") > pa(G), a contradiction. This proves our claim.
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Case 1. n is odd.

In this case, 0 <t <n—1. If t =0, then it is trivial that G = K,, = H, o by
Lemma 1. Suppose that 7 > 2. Then V, # 0 and V, # 0. By the Claim, G = G[V,] V
G[V.]. Evidently, G[V,] is a spanning subgraph of K,_;. Suppose that G[V,] is not
a complete graph. Then it is a proper spanning subgraph of K,_;, so G is a proper
subgraph of G[V,]V K,_;. Note that G[V,]V K,—; € G(n,t). By Lemma 1, we have
Pa(G) < pa(G[V,] V Ky—t), a contradiction. This shows that G[V,] = K,,—,. That is,
G = G[V,|V K,—:. So, each even vertex is of degree n — 1 and each odd vertex is of
degree at most n— 2. For any odd vertex v of G, ¢y, (v) +n—1t=06(v) <n—2,s0
Sy, (v) <1 -2.

Next, we show that G[V,] is a (1 —2)-regular graph. This is trivial if 7 = 2.
Suppose that it is not true. Then ¢ > 4 and &gy, (u) <t —4 for some u € V,. Assume
that x,, is minimum among the vertices in V,, with degree at most # —4 in G[V,].

Let .4, be the set of vertices except u that are not adjacent to u in G. By the
above claim, 4, CV,. Asu €V, and ¢ iseven, |4;| =2k+1<r—1 forsome k > 1,
so 1 <k« % —1. Let Ay = {uy,...,uz+1}. Suppose that G[4;] is not complete,
say u; is not adjacent to uy, 1. Let G' = G+ uuy + uuppy1 + uyuspyq. Obviously,
G’ € G(n,t). By Lemma 1, we have py(G') > pa(G), a contradiction. Thus G[.4;] is
a complete graph, i.e., G[4;] = Ky 1 -

Suppose without loss of generality that x,, = min{x,, : 1 <i<2k+1}. Suppose
that x, > x,,, . Let G = G — ujupgy1 + uny + unppyy . Itis easﬂy seen that G € G(n,1).
Since

pa(G") — pa(G)
>x" (Ag(G") — Ag(G))x

—o 2 (86r(v) — 8 (V)2 +2(1 — o ( Y oxx— Y x,,xZ)

vzeE(G") vz€E(G)
=200+ 2(1 — &) (=X, Xy . | + XXy + XX, )

:2axﬁ +2(1—«a) (xuxul + (xy —xul)me)

we have py(G”) > pa(G), a contradiction. Thus x, < x, .

If k=% —1, then we have by Lemma 1 that G[V,] = K; UK; 1, and thus G =
n,t,%—l .

Suppose that 1 <k < §—2. Then Ng(u) NV, # 0. Suppose that gy, (u;) <t —4
for some i with 1 < i< 2k+ 1. Then there are at least two vertices, say w; and w»,
in Ng(u) NV,, that are not adjacent to u;. Let G* = G —uw; — uwy + ujwy + ujws .
Note that G* € G(n,1). By the choice of u and Lemma 3, we have py(G*) > pu(G),
a contradiction. Thus each vertex of .4, is of degree 7 —2 in G[V,].

Suppose that w € Ng(u) NV, is of degree less that t —4 in G[V,]. Then there
are at least three vertices, say vy, vo and v, in Ng(u)NV,, that are not adjacent to
w. Let G** = G —uvy — uvy +wvy +wyy. Itis easily seen that G** € G(n,r). Recall
that x, = min{x, : 0g(v) <n—4,v €V, }. By Lemma 3, we have py(G*™) > pu(G),

B
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a contradiction. Thus each vertex of Ng(u) NV, is of degree # —2 in G[V,]. That is,
G[NG(M) n Va] =K, _7x—n. Thus G = Bn,t,k .

Note that By, ;0 € G(n,t). By Lemma 4, we have po(G) = po(Busx) < Pa(Bnio)
for 1 <k < % — 1, also a contradiction. Therefore, G[V,| is indeed a (¢ — 2)-regular
graph,and G=H,;.

Case 2. n is even.

If t =n, then n is even, and by Lemma 1, we have G =K, = H,,,. If t =0, then
it is evident that G = H,, o, which is the only graph on n vertices with no odd vertices
that is regular of degree n — 2. Suppose that 2 <t < n—2. By Lemma 1 and similar
argument as in Case 1, G[V,]| 2 K;, G[V,] is an (n—t —2)-regular graph, and so by the
claim, G= H,;.

Combining the above two cases, we have G = H,,;. The expression for py(Hy)
follows by direct computation as the ¢¢-Perron vector of H,,; has at most two different
entries or from the proof of Lemma 4 and direct check if r =0 and 7 = n for even n as
Hyy = B0 forodd n and H,; =B, ,,_; foreven n and 2 <t <n. [

COROLLARY 3. Let G € G(n,t), where 0 <t <n, t is even and n > 4. Then

Po(G) < po(Hy,s) and p1(G) < p1 (Hny)

L
2

with either equality if and only if G= H,, ;.
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