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NEW RESULTS ON α –SPECTRAL RADIUS OF GRAPHS
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(Communicated by R. A. Brualdi)

Abstract. For 0 � α < 1 , Nikiforov proposed to study the spectral properties of the family of
matrices Aα(G) = αD(G)+ (1−α)A(G) of a graph G , where D(G) is the degree diagonal
matrix and A(G) is the adjacency matrix. The α -spectral radius of G is the largest eigenvalue
of Aα(G) . For 0 � α < 1 , we give a lower bound for the α -spectral radius, and bounds for
the maximum and minimum entries of the α -Perron vector, and we determine the unique graph
with maximum α -spectral radius among graphs with given number of odd vertices.

1. Introduction

We consider simple graphs. Let G be a graph on n vertex set V (G) = {v1, . . . ,vn}
and edge set E(G) . For v ∈V (G) , let δG(v) (or δv ) and NG(v) be the degree of v and
the set of neighbors of v in G , respectively. We say G is r -regular if the degree of each
vertex is r . The adjacency matrix A(G) of G is an n×n matrix (ai j) , where ai j = 1
if viv j ∈ E(G) and 0 otherwise. Let D(G) be the diagonal matrix of the degrees of G .
The signless Laplacian matrix of G is known as Q(G) = D(G)+A(G) . The spectral
properties of the adjacency matrix and the signless Laplacian matrix of a graph have
been investigated for a long time, see, e.g., [3, 4, 7, 11, 12, 13]. For any real α ∈ [0,1) ,
Nikiforov [8] proposed to study the spectral properties of the family of matrices Aα(G)
defined by the convex linear combination:

Aα(G) = αD(G)+ (1−α)A(G).

It is easily seen that A(G) = A0(G) and Q(G) = 2A 1
2
(G) .

For any real α ∈ [0,1) , Aα(G) is a symmetric nonnegative matrix, and thus its
eigenvalues are all real. We call the largest eigenvalue of Aα(G) the α -spectral radius
of G , denoted by ρα(G) . If G is connected, then for 0 � α < 1, Aα(G) is irreducible,
we have by the Perron-Frobenius theorem that ρα(G) is simple and positive, and there
is a unique positive unit eigenvector corresponding to ρα(G) , which is called the α -
Perron vector of G , see [8].

Let Kn be the complete graph on n vertices. Nikiforov [8] showed that the r -
partite Turán graph is the unique graph with maximum α -spectral radius for 0 < α <
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1− 1
r among Kr+1 -free graphs on n vertices with r � 2. Nikiforov and Rojo [9] de-

termined the unique graph with maximum α -spectral radius among connected graphs
on n vertices with diameter (at least) k . Guo and Zhou [5] gave upper bounds for
α -spectral radius for unicyclic graphs with given maximum degree connected irregu-
lar graphs with given maximum degree and some other graph parameters, and graphs
with given domination number, respectively. They also determined the unique tree with
maximum α -spectral radius among trees with given diameter.

A vertex in a graph is said to be odd (even, respectively) if its degree is odd (even,
respectively). It is well known that the number of odd vertices in a graph is always
even.

In this paper, for 0 � α < 1, we obtain a lower bound for the α -spectral radius,
and bounds for the maximum and minimum entries of the α -Perron vector, and de-
termine the unique graph with maximum α -spectral radius among graphs with given
number of odd vertices.

2. Preliminaries

Let G be a graph with V (G) = {v1, . . . ,vn} . A column vector x = (xv1 , . . . ,xvn)
� ∈

Rn can be considered as a function defined on V (G) that maps vertex vi to xvi , i.e.,
x(vi) = xvi for i = 1, . . . ,n . Then

x�Aα(G)x = α ∑
u∈V (G)

δG(u)x2
u +2(1−α) ∑

uv∈E(G)
xuxv.

Moreover, λ is an eigenvalue of Aα(G) if and only if x �= 0 and for each u ∈ V (G) ,
we have the following eigenequation:

λxu = αδG(u)xu +(1−α) ∑
v∈NG(u)

xv.

LEMMA 1. [8] Let G be a connected graph. If H is an induced subgraph of G,
then for 0 � α < 1 , ρα(H) < ρα(G) .

LEMMA 2. [8] Let G be a connected graph with η being an automorphism of
G. Let 0 � α < 1 and x be the α -Perron vector of G. Then for u,v ∈V (G) , η(u) = v
implies that xu = xv .

For a vertex subset W ⊆V (G) , let G[W ] be the subgraph of G induced by W .
For an edge subset S of G , G−S denotes the graph obtained from G by deleting

the edges in S . For an edge subset S′ of the complement of G , G + S′ denotes the
graph obtained from G by adding the edges in S′ . If S = {e} and S′ = {e′} , then we
simplify G−{e} as G− e and G+{e′} as G+ e′ .

LEMMA 3. [5] Let G be a connected graph with u,v ∈ V (G) . Suppose that
v1, . . . ,vs ∈NG(v)\(NG(u)∪{u}) with 1 � s � δG(v) . Let G′ = G−{vvi : i = 1, . . . ,s}+
{uvi : i = 1, . . . ,s} . Let 0 � α < 1 and x be the α -Perron vector of G. If xu � xv , then
ρα(G′) > ρα(G) .
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For two vertex disjoint graphs G and H , the join of G and H , written as G∨H ,
is the graph obtained by joining each vertex of V (G) to each vertex of V (H) .

Denote by Js×t the s× t all ones matrix, and as usual, In denotes the unit matrix
of order n .

3. Lower bounds for the α -spectral radius

Let G be a graph on n vertices with m edges. For 0 � α < 1,

ρα(G) � 2m
n

with equality if and only if G is regular. From [8, Proposition 18] and [1], if G is
irregular graph, then ρα(G) � ρ0(G) and ρ0(G)− 2m

n � 1
n(Δ+2) , so

ρα(G)− 2m
n

� 1
n(Δ +2)

, (1)

where Δ is the maximum degree of G . Here we give lower bounds for the difference
between ρα(G) and 2m

n by using the techniques in [1].

THEOREM 1. Let G be a connected graph on n vertices with m edges. Suppose
that /0 �= S ⊆V (G) and s = |S| . Then for 0 � α < 1 ,

ρα(G)− 2m
n

� α
cn ∑

u∈S

(
sδ 3

u

∑w∈S δ 2
w
− δu

)
+

2(1−α)
cn

(√
s ∑

u∈S

δ 2
u − ∑

u∈S

δu

)
,

where c = 1 if S is an independent set, and c = 2 otherwise.

Proof. Write D = D(G) and A = A(G) . Let s = |S| . If s = 1, the result is trivial.
Suppose in the following that s � 2.

Suppose first that S is an independent set. Let x be a positive vector such that
xu = au√

n for u ∈ S and xu = 1√
n for u ∈V (G)\S with ∑u∈S a2

u = s , where the value of
au for u ∈ S will be determined later. It is easily seen that x is unit. Then

ρα(G)− 2m
n

� x�(αD+(1−α)A)x− 2m
n

= α ∑
u∈V (G)

δux
2
u +(1−α) ∑

vw∈E(G)
2xvxw − α +1−α

n ∑
u∈V (G)

δu

= α ∑
u∈V (G)

(
δux

2
u −

δu

n

)
+(1−α)

(
∑

vw∈E(G)
2xvxw − ∑

u∈V(G)

δu

n

)

=
α
n

(
∑
u∈S

δu(a2
u−1)

)
+

2(1−α)
n

(
∑
u∈S

auδu − ∑
u∈S

δu

)
. (2)
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Let S = {u1, . . . ,us} . Choose au1 , . . . ,aus such that
au1
δu1

= · · · = aus
δus

. Then

(
∑
u∈S

auδu

)2

=

(
∑
u∈S

a2
u

)(
∑
u∈S

δ 2
u

)
= s ∑

u∈S

δ 2
u .

As ∑u∈S a2
u = s , we have a2

ui
=

sδ 2
ui

∑u∈S δ 2
u

for 1 � i � s . Then from (2), we have

ρα(G)− 2m
n

� α
n ∑

u∈S

(
sδ 3

u

∑w∈S δ 2
w
− δu

)
+

2(1−α)
n

(√
s ∑

u∈S

δ 2
u − ∑

u∈S

δu

)
,

as desired.
Now suppose that S is not an independent set in G . Let G′ be the bipartite graph

with vertex set V (G)×{1,2} such that for (u, i),(v, j) ∈V (G)×{1,2} , (u, i) is adja-
cent to (v, j) in G′ if and only if u is adjacent to v in G and i �= j . Then

Aα(G′) =
(

αD (1−α)A
(1−α)A αD

)
,

and thus

det(tI2n−Aα(G′)) = det

(
tIn−αD −(1−α)A
−(1−α)A tIn−αD

)
= det

(
(tIn−αD)2− (1−α)2A2)

= det((tIn− (αD+(1−α)A))(tIn− (αD− (1−α)A)))
= det(tIn−Aα(G)) ·det(tIn− (αD− (1−α)A)).

It follows that the eigenvalues of Aα(G′) are just the union of the eigenvalues of Aα(G)
and the eigenvalues of αD− (1−α)A . By [6, Corollary 2.1, p. 38], for any eigenvalue
λ of αD− (1−α)A , |λ | � ρα(G) . Thus ρα(G′) = ρα(G) . Note that S×{1} is an
independent set in G′ . Applying (2) to G′ , we have

ρα(G)− 2m
n

= ρα(G′)− 4m
2n

� α
2n ∑

u∈S

(
sδ 3

u

∑w∈S δ 2
w
− δu

)
+

1−α
n

(√
s ∑

u∈S

δ 2
u − ∑

u∈S

δu

)
,

as desired. �

COROLLARY 1. Let G be an irregular graph on n vertices with m edges, maxi-
mum degree Δ and minimum degree δ . For 0 � α < 1 ,

ρα(G)− 2m
n

� α(Δ− δ )2(Δ + δ )
2n(Δ2 + δ 2)

+
(1−α)(Δ− δ )2

n
(√

2(Δ2 + δ 2)+ Δ + δ
) . (3)
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Proof. Let u,v be two vertices such that δG(u) = Δ and δG(v) = δ . Let S =
{u,v} . By Theorem 1, the result follows. �

Now we compare (1) and (3). For the star K1,n−1 on n vertices with n � 7, the

bound in (1) is 1
n(n+1) , while the bound in (3) is α(n−2)2n

2n(n2−2n+2) + (1−α)(n−2)2

n
(√

2(n2−2n+2)+n
) �

(n−2)2

2n(n2−2n+2) > 1
3n . The lower bound in (3) is larger than the one in (1).

For the path Pn on n vertices with n � 3, the bound in (1) is 1
3n , while the bound

in (3) is 3α
10n + (1−α)

n(
√

10+3)
< 3

10n . The lower bound in (1) is larger than the one in (3).

Thus the lower bounds in (1) and (3) are incomparable in general.

4. Extreme entries of the α -Perron vector

For a connected graph G and 0 � α < 1, let xmax and xmin be the maximum and
minimum entries of the α -Perron vector x of G , respectively. For α = 0, Cioabă and
Gregory [2] proved √

Δ
Δ + ρ0(G)2 � xmax � ρ0(G)√

∑v∈V (G) δ 2
v

and

xmin <
(Δ−ρ0(G))

√
n

nΔ−2m
,

and Nikiforov [10] proved

xmin �
√

δ
ρ0(G)2 + δ (n− δ )

,

where n is the number of vertices, m is the number of edges, and Δ and δ are the
maximum and minimum degrees, respectively. The arguments in [2, 10] lead to the
following results. For completeness, we include a proof here.

THEOREM 2. Let G be a connected graph with maximum degree Δ � 1 . Let
ρα = ρα(G) . For 0 � α < 1 ,

ρα −αΔ

(1−α)
√

∑u∈V (G) δ 2
u

� xmax � (1−α)

√
Δ

(1−α)2Δ +(ρα −αΔ)2 .

The left equality holds if and only if G is regular, and the right equality holds if and
only if G is the join of a vertex u and a regular graph on n−1 vertices.

Proof. For u ∈V (G) , we have

(ρα −αΔ)xu � (ρα −αδu)xu = (1−α) ∑
v∈NG(u)

xv � (1−α)δuxmax,
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i.e.,
(ρα −αΔ)2x2

u � x2
max(1−α)2δ 2

u .

Note that ∑u∈V (G) x
2
u = 1. Summing the above equation for each vertex u ∈V (G) , we

have
(ρα −αΔ)2 � x2

max(1−α)2 ∑
u∈V (G)

δ 2
u .

Thus

xmax � ρα −αΔ

(1−α)
√

∑u∈V (G) δ 2
u

with equality if and only if xu = xmax for each u ∈V (G) , that is, G is regular.
Suppose that u is a vertex in V (G) such that xu = xmax . By Cauchy-Schwarz

inequality, we have

(ρα −αδu)xu = (1−α) ∑
v∈NG(u)

xv � (1−α)
√

δu ∑
v∈NG(u)

x2
v ,

i.e.,

∑
v∈NG(u)

x2
v � (ρα −αδu)2x2

u

(1−α)2δu
.

Then

1 = ∑
v∈V (G)

x2
v � x2

u + ∑
v∈NG(u)

x2
v � x2

u

(
1+

(ρα −αδu)2

(1−α)2δu

)
� x2

u

(
1+

(ρα −αΔ)2

(1−α)2Δ

)
,

and thus

xmax = xu � 1√
1+ (ρα−αΔ)2

(1−α)2Δ

= (1−α)

√
Δ

(1−α)2Δ +(ρα −αΔ)2 .

Suppose that the equality holds. Then all above inequalities are equalities, and thus
V (G) = {u}∪NG(u) and xv = (ρα−αδu)xu

(1−α)δu
for v ∈ NG(u) . Since for v1,v2 ∈ NG(u) ,

ραxv1 = αδv1xv1 +(1−α)(xu +(δv1 −1)xv1) and

ραxv2 = αδv2xv2 +(1−α)(xu +(δv2 −1)xv2) ,

we have δv1 = δv2 . Then G− u is regular, and thus G is the join of a vertex u and a
regular graph on n− 1 vertices. Conversely, suppose that G is the join of a vertex u
and a regular graph H of degree r on n−1 vertices. Let

c =
α(n−2)− r+

√
(α(n−2)− r)2 +4(1−α)2(n−1)

2(1−α)
.
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Evidently, note that c � 1 is equivalent to√
(α(n−2)− r)2 +4(1−α)2(n−1) � 2+ r−αn,

i.e.,
αn− (r+1+ α)+ (1−α)(n−1)= (n−1)− (r+1)� 0.

Let y be a vector defined on V (G) such that yw = c if w = u and yw = 1 otherwise.
Then

Aα(G)y =
(

α(n−1) (1−α)J1×(n−1)
(1−α)J(n−1)×1 Aα(H)+ αIn−1

)(
c

J(n−1)×1

)
=
(

(αc+1−α)(n−1)
((1−α)c+ r+ α)J(n−1)×1

)
=((1−α)c+ r+ α)

(
(αc+1−α)(n−1)

(1−α)c+r+α
J(n−1)×1

)

=((1−α)c+ r+ α)
(

c
J(n−1)×1

)
.

Note that y is a positive vector. By the Perron-Frobenius theorem, x := y√
c2+n−1

is the

α -Perron vector of G and ρα = (1−α)c + r+ α . By the expression of c , we have
(αc+1−α)(n−1)

ρα
= c , so c = (1−α)(n−1)

ρα−α(n−1) . Thus

xmax =
c√

c2 +n−1
=

1√
1+ (ρα−α(n−1))2

(1−α)2(n−1)

,

as desired. �

THEOREM 3. Let G be a connected irregular graph on n vertices with m edges
and maximum degree Δ . Write ρα = ρα(G) . For 0 � α < 1 ,

xmin <
(Δ−ρα)

√
n

nΔ−2m
.

Proof. For u ∈V (G) ,

ραxu = αδuxu +(1−α) ∑
v∈NG(u)

xv.

Summing the above equation for each vertex u ∈V (G) ,

ρα ∑
u∈V (G)

xu = α ∑
u∈V (G)

δuxu +(1−α) ∑
u∈V(G)

∑
v∈NG(u)

xv

= α ∑
u∈V (G)

δuxu +(1−α) ∑
u∈V(G)

δuxu

= ∑
u∈V (G)

δuxu.
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Then

(Δ−ρα)
√

n � (Δ−ρα) ∑
u∈V (G)

xu

= ∑
u∈V (G)

(Δ− δu)xu

� ∑
u∈V(G)

(Δ− δu)xmin

= xmin(nΔ−2m),

where the first inequality follows from Cauchy-Schwarz inequality and the fact that
∑u∈V (G) x

2
u = 1. Thus

xmin � (Δ−ρα)
√

n
nΔ−2m

.

If the equality holds, then the above inequalities are all equalities, and thus from Cauchy-
Schwarz inequality, all entries of the α -Perron vector of G are equal, implying that G
is regular, which is impossible. Hence

xmin <
(Δ−ρα)

√
n

nΔ−2m
,

as desired. �
From Theorem 3 and (1), we have the following result immediately.

COROLLARY 2. Let G be a connected irregular graph on n vertices with m edges
and maximum degree Δ . For 0 � α < 1 ,

xmin <
Δn−2m− 1

Δ+2√
n(Δn−2m)

.

THEOREM 4. Let G be a connected graph on n � 2 vertices with minimum degree
δ . Write ρα = ρα(G) . For 0 � α < 1 ,

xmin � (1−α)

√
δ

(ρα −αδ )2 +(1−α)2(n− δ )δ

with equality if G is a regular graph or the join of (n− δ )K1 and an r -regular graph
on δ vertices, where n+ r > 2δ .

Proof. Let u be a vertex in V (G) such that δG(u) = δ . By Cauchy-Schwarz
inequality, we have

(ρα −αδ )xmin � (ρα −αδ )xu � (1−α)
√

δ ∑
v∈NG(u)

x2
v .
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Since ∑v∈V (G) x
2
v = 1, we have

(ρα −αδ )xmin � (1−α)

√√√√δ

(
1− ∑

v∈V(G)\NG(u)
x2
v

)
� (1−α)

√
δ
(
1− (n− δ )x2

min

)
,

and thus

xmin � (1−α)

√
δ

(ρα −αδ )2 +(1−α)2(n− δ )δ
.

It is easily seen that the equality holds if G is regular. Suppose that G = (n−
δ )K1 ∨H with H being an r -regular graph on δ vertices, where n− δ + r > δ . Let

c =
−α(n−2δ )− r+

√
(α(n−2δ )+ r)2 +4(1−α)2δ (n− δ )
2(1−α)(n− δ )

.

Evidently, c > 0. It may be easily checked that c < 1. Let y be a vector defined on
V (G) such that yw = c if w �∈V (H) and yw = 1 if w ∈V (H) . Then

Aα(G)y =
(

αδ In−δ (1−α)J(n−δ )×δ
(1−α)Jδ×(n−δ ) Aα(Hδ )+ α(n− δ )Iδ

)
y

=
(

(αδc+(1−α)δ )J(n−δ )×1

((1−α)c(n− δ )+ r+(n− δ )α)Jδ×1

)
=((1−α)c(n− δ )+ r+(n− δ )α)

(
αδc+(1−α)δ

(1−α)c(n−δ )+r+(n−δ )α J(n−δ )×1

Jδ×1

)
=((1−α)c(n− δ )+ r+(n− δ )α)y

By Perron-Frobenius theorem, x := y√
(n−δ )c2+δ

is the α -Perron vector of G and ρα =

(1−α)c(n− δ )+ r + (n− δ )α . Since αδc+(1−α)δ
ρα

= αδc+(1−α)δ
(1−α)c(n−δ )+r+(n−δ )α = c , we

have c = (1−α)δ
ρα−αδ . Thus

xmin =
c√

(n− δ )c2 + δ
= (1−α)

√
δ

(ρα −αδ )2 +(1−α)2(n− δ )δ
,

as desired. �
Let G = K1,3 with vertex set {v1, . . . ,v4} , where δG(v1)= 3 and δG(v2)= δG(v3)=

δG(v4)= 1. By direct calculation, for α = 1
4 , we have ρ 1

4
= 1+

√
7

2 , xmin = 2
√

7−1√
12(14−√

7)
≈

0.367654. Using the notations of Theorem 3, Δ = 3, n = 4, m = 3, and so xmin <

1−
√

7+1
6 ≈ 0.39237. Using the notations of Theorem 4, δ = 1, n = 4, and so xmin �

3
√

1
56+4

√
7

= 2
√

7−1√
12(14−√

7)
. The upper bound in Theorem 4 is smaller than the one in

Theorem 3.
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Let G = K1 ∨ 2K2 . By direct calculation, for α = 1
4 , we have ρ 1

4
= 9

8 +
√

145
8 ,

xmin = 6
1+

√
145

· 1√(
6

1+
√

145

)2
+4

= 6√
620+8

√
145

≈ 0.22418. Using the notations of The-

orem 3, Δ = 4, n = 5, m = 6, and so xmin <
√

5(23−√
145)

64 ≈ 0.38287. Using the

notations of Theorem 4, δ = 2, n = 5, and so xmin � 6
√

2
366+10

√
145

≈ 0.38474. The

upper bound in Theorem 3 is smaller than the one in Theorem 4. Therefore the upper
bounds in Theorems 3 and 4 are incomparable in general.

5. Maximum α -spectral radius of graphs with given number of odd vertices

For an even integer n � 2, let K̃n be the graph obtained from Kn by deleting a
perfect matching. For integers n,k and an even integer t with n � 4, t < n and 0 �
k � t

2 −1, let Bn,t,k = ((K1∪K2k+1)∨ K̃t−2k−2)∨Kn−t . In particular, Bn,t,0
∼= K̃t ∨Kn−t

and Bn,t,k
∼= (K1 ∪K2k+1)∨Kn−t if k = t

2 −1.

LEMMA 4. Let n,k,t be integers such that n � 4 , n > t , 0 � k � t
2 −1 and t is

even. For 0 � α < 1 , if n−αn � 1 , then ρα(Bn,t,k) � ρα(Bn,t,0) with equality if and
only if k = 0 .

Proof. Let G = Bn,t,k . Denote by V1,V2,V3 and V4 the vertex sets of the graphs
K1 , K2k+1 , K̃t−2k−2 and Kn−t , respectively, appearing in the definition of Bn,t,k . Let x
be the α -Perron vector of G . By Lemma 2, all entries of x corresponding to vertices
in Vi are equal if |Vi| > 1 for i = 2,3,4. Denote by x1,x2,x3 and x4 the entry of x
corresponding to a vertex in V1,V2,V3 and V4 , respectively. Let ρα ,k = ρα(Bn,t,k) and
β = 1−α . Then by the eigenequations of G at a vertex in V1,V2,V3 and V4 , we have(

ρα ,k −α(n−2k−2)
)
x1−β (t−2k−2)x3−β (n− t)x4 =0,(

ρα ,k −α(n−2)−2βk
)
x2−β (t−2k−2)x3−β (n− t)x4 =0,

−βx1−β (2k+1)x2 +
(
ρα ,k −α(n−2)−β (t−2k−4)

)
x3−β (n− t)x4 =0,

−βx1−β (2k+1)x2−β (t−2k−2)x3 +
(
ρα ,k −α(n−1)−β (n− t−1)

)
x4 =0.

We view these equations as a homogeneous linear system in the four variables x1 , x2 ,
x3 and x4 . Since it has a nontrivial solution, the determinant of the matrix of coefficients
of this homogeneous linear system is zero. By direct calculation, this determinant is
equal to fα ,k(ρα ,k) , where

fα ,k(ρ)

=ρ4 + ρ3 (−n(3α +1)+2αk+2α +5)+ ρ2 (3αn2(α +1)

−n(13α +2αk+4α2k+4α2 +4)+10α + t +10αk−αt +8
)

+ ρ
(−α2n3(α +3)+ αn2(11α +4αk+2α2k+2α2 +8)

−2n(10α − k+6αk+ αt +5α2k−α2t +6α2 +2)
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−2(2k−8α − t−12αk−4αk2 +2α2k+ α2t +2k2 +2α2k2 −αkt + α2kt−2))

+ α3n4−α2n3(3α +2αk+4)+ αn2(12α −2k+12αk+ αt−α2t +2α2 +4)

+2n(2k−6α−6αk−αt +2αk2−6α2k+2α3k+ α3t−4α2−4α2k2

+2α3k2−α2kt + α3kt)−2(2k−4α−8αk−2αt + kt−4αk2 +2α2k

+2α2t +2k2 +2α2k2−4αkt +3α2kt).

In the above, we assume that k < t
2 − 1. If k = t

2 − 1, then V3 = /0 . We consider the
homogeneous linear system in three variables x1,x2 and x4 , whose determinant of the
matrix of coefficients is 1

ρα,k−αn+2 · f (ρα ,k) . So, for any 0 � k � t
2 − 1, ρα ,k is the

largest root of the equation fα ,k(ρ) = 0. Noting that

fα ,0(ρ)

=(ρ −αn+2α)(ρ−αn+2)(ρ2−ρ(αn+n−3)+αn2−αn−2n+ t−αt +2),

we have ρα ,0 = n(1+α)−3+
√

(n(1−α)+1)2−4t(1−α)
2 , which is also true for t = 2. Observe

that

ρα ,0 >
n(1+ α)−3+

√
(n(1−α)+1)2−4n(1−α)

2
= n−2 � αn−1.

In the following, suppose that k � 1. Then since n−αn � 1, we have

fα ,k(ρα ,0) =2k(1−α)2 ((n−2k−2)ρα ,0−αn2 +2n(αk+ α +1)− t−2k−2
)

>2k(1−α)2((n−2k−2)(αn−1)−αn2+2n(αk+ α +1)− t−2k−2)

=2k(1−α)2 (n− t)
>0,

f (2)
α ,k(ρα ,0) =6ρα ,0((1−α)(n−2k−2)+2k+1)−6αn2(1−α)

−4αn(1+ k)(2α +1)−10αn+16n+20α(1+ k)−10t(1−α)−8

�6(n−2)(n(1−α)+2α(1+ k)−1)−6αn2(1−α)
−4αn(1+ k)(2α +1)−10αn+16n+20α(1+ k)
−10(n−1)(1−α)−8

=6(n(1−α)−1)2 +4α(1+ k)(2n(1−α)−1)+8−10α

=6(n(1−α)−1)2 +4α(1+ k)+8−10α
>0,

f (3)
α ,k(ρα ,0) =24ρα ,0 +6(−n(3α +1)+2α +2αk+5)

>24(n−2)+6(−n(3α +1)+2α +2αk+5)
=18(n(1−α)−1)+12α(1+ k)
>0,
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f (4)
α ,k(ρα ,0) =24.

It remains to determine the sign of f (1)
α ,k(ρα ,0) . By direct calculation,

f (1)
α ,k(ρα ,0) =ρα ,0(n2(1−α)2 +2α(k+1)(n−αn+1)−2t(1−α)−1)

−αn3(1−α)2−2n2(1−α)(α + α2k+ α2−1)

−n(t−4αt +3α2t −2k+6α2−5α +4α2k)+4α −2

−4k2(1−α)2−4k(α2−3α +1)− t(1+4αk+3α−4α2−4α2k)

�(n−2)(n2(1−α)2 +2α(k+1)(n−αn+1)−2t(1−α)−1)

−αn3(1−α)2−2n2(1−α)(α + α2k+ α2−1)

−n(t−4αt +3α2t −2k+6α2−5α +4α2k)+4α −2

−4k2(1−α)2−4k(α2−3α +1)− t(1+4αk+3α−4α2k−4α2)

=(1−α)(n2(1−α)(n−αn+2α +2αk)+n(2α +2k−1)
−4k(k+1)(1−α)− t(4α +4αk+3n−3αn−3))

�(1−α)(n2(1−α)(n−αn+2α +2αk)+n(2α +2k−1)
−4k(k+1)(1−α)− (n−1)(4α +4αk+3n−3αn−3))

=(1−α)(n2(1−α)((1−α)(n−2−2k)+2k−1)
+n((5+2k)(1−α)−2αk)−4k(k+1)(1−α)+4α(1+ k)−3)

�(1−α)(n2(1−α)((1−α)(n−2−2k)+2k−1)
+n((5+2k)(1−α)−2αk)−2k(n−1)(1−α)+4α(1+ k)−3)

=(1−α)(n2(1−α)((1−α)(n−2−2k)+ k−1)
+n(5−5α + k(n−αn−2α))+2k−3+4α+2kα),

where the first inequality is obtained by

n2(1−α)2 +2α(k+1)(n−αn+1)−2t(1−α)−1

>n2(1−α)2 +2α(k+1)(n−αn+1)−2(n−1)(1−α)−1

=n(1−α)2(n−2)+2αkn(1−α)+2αk+1

>0,

the second inequality is obtained by n > t and

4α +4αk+3n−3αn−3� 4α +4αk � 0,

and the third inequality is obtained by n > t � 2+2k . If 0 � α � 1
2 , then

f (1)
α ,k(ρα ,0) �(1−α)(n2(1−α)((1−α)(n−2−2k)+ k−1)

+n(5−5α + k(n−αn−2α))+2k−3+4α +2kα)
>0.
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If 1
2 < α < 1, then, as n−αn � 1, we have

f (1)
α ,k(ρα ,0) �(1−α)(n2(1−α)((1−α)(n−2−2k)+ k−1)

+n(5−5α + k(n−αn−2α))+2k−3+4α+2kα)

=(1−α)(2k(αn2(1−α)−αn+ α +1)+n2(1−α)2(n−2)−n2(1−α)
−5αn+5n+4α−3)

�(1−α)(2(αn2(1−α)−αn+ α +1)+n2(1−α)(n−2)(1−α)

−n2(1−α)−5αn+5n+4α−3)

=(1−α)(n2(1−α)(2α −1)+n2(1−α)2(n−2)−7αn+5n+6α−1)

�(1−α)(n(2α −1−7α +5)+n2(1−α)2(n−2)+6α−1)
�(1−α)(n(−5α +4)+ (n−2)+6α−1)
=(1−α)(n(−5α +5)+6α−3)
>0.

Thus, for i = 0,1,2,3, we have f (4−i)
α ,k (ρα ,0) > 0, so f (3−i)

α ,k (ρ) � f (3−i)
α ,k (ρα ,0) > 0 for

ρ � ρα ,0 . Particularly, fα ,k(ρα ,0) > 0 for ρ � ρα ,0 , which together with the fact that
fα ,k(ρ) > 0 if ρ > ρα ,k , implies that ρα ,k < ρα ,0 . �

For a positive integer n and an even integer t with 0 � t � n , let G(n,t) be the
set of connected graphs with n vertices and t odd vertices, and let Hn,t be the graph
obtained from Kn by deleting t

2 disjoint edges if n is odd, and the graph obtained from
Kn by deleting n−t

2 disjoint edges if n is even.

THEOREM 5. Let G ∈ G(n,t) , where 0 � t � n, n � 4 and t is even. For 0 �
α < 1 , if n−αn � 1 , then

ρα(G) �

⎧⎪⎪⎨⎪⎪⎩
n(1+ α)−3+

√
(n(1−α)+1)2−4t(1−α)

2
if n is odd

n(1+ α)−3+
√

(n(1−α)+1)2−4(n− t)(1−α)
2

if n is even

with equality if and only if G ∼= Hn,t .

Proof. Let G be a graph that maximizes the α -spectral radius over graphs in
G(n,t) .

Suppose that Vo and Ve be the sets of vertices of odd degree and even degree in
G , respectively. Obviously, |Vo| = t . Let x be the α -Perron vector of G .

CLAIM. Each vertex of Vo is adjacent to each vertex of Ve if Vo �= /0 and Ve �= /0 .
Suppose that there are two vertices u ∈Vo and v ∈ Ve such that u is not adjacent

to v . Let G′ = G + uv . Noting that δG′(u) = δG(u) + 1, δG′(v) = δG(v) + 1 and
δG′(w) = δG(w) for w ∈ V (G) \ {u,v} , we have G′ ∈ G(n, t) . By Lemma 1, we have
ρα(G′) > ρα(G) , a contradiction. This proves our claim.
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Case 1 . n is odd.
In this case, 0 � t � n− 1. If t = 0, then it is trivial that G ∼= Kn

∼= Hn,0 by
Lemma 1. Suppose that t � 2. Then Vo �= /0 and Ve �= /0 . By the Claim, G ∼= G[Vo]∨
G[Ve] . Evidently, G[Ve] is a spanning subgraph of Kn−t . Suppose that G[Ve] is not
a complete graph. Then it is a proper spanning subgraph of Kn−t , so G is a proper
subgraph of G[Vo]∨Kn−t . Note that G[Vo]∨Kn−t ∈ G(n,t) . By Lemma 1, we have
ρα(G) < ρα(G[Vo]∨Kn−t) , a contradiction. This shows that G[Ve] ∼= Kn−t . That is,
G ∼= G[Vo]∨Kn−t . So, each even vertex is of degree n− 1 and each odd vertex is of
degree at most n−2. For any odd vertex v of G , δG[Vo](v)+n− t = δG(v) � n−2, so
δG[Vo](v) � t−2.

Next, we show that G[Vo] is a (t − 2)-regular graph. This is trivial if t = 2.
Suppose that it is not true. Then t � 4 and δG[Vo](u) � t−4 for some u ∈Vo . Assume
that xu is minimum among the vertices in Vo with degree at most t−4 in G[Vo] .

Let Nu be the set of vertices except u that are not adjacent to u in G . By the
above claim, Nu ⊆Vo . As u∈Vo and t is even, |Nu|= 2k+1 � t−1 for some k � 1,
so 1 � k � t

2 − 1. Let Nu = {u1, . . . ,u2k+1} . Suppose that G[Nu] is not complete,
say u1 is not adjacent to u2k+1 . Let G′ = G + uu1 + uu2k+1 + u1u2k+1 . Obviously,
G′ ∈ G(n, t) . By Lemma 1, we have ρα(G′) > ρα(G) , a contradiction. Thus G[Nu] is
a complete graph, i.e., G[Nu] ∼= K2k+1 .

Suppose without loss of generality that xu1 = min{xui : 1 � i � 2k+1} . Suppose
that xu � xu1 . Let G′′ = G−u1u2k+1 +uu1+uu2k+1 . It is easily seen that G′′ ∈G(n, t) .
Since

ρα(G′′)−ρα(G)

�x�(Aα(G′′)−Aα(G))x

=α ∑
v∈V (G)

(δG′′(v)− δG(v))x2
v +2(1−α)

(
∑

vz∈E(G′′)
xvxz − ∑

vz∈E(G)
xvxz

)
=2αx2

u +2(1−α)
(−xu1xu2k+1 + xuxu1 + xuxu2k+1

)
=2αx2

u +2(1−α)
(
xuxu1 +(xu− xu1)xu2k+1

)
>0,

we have ρα(G′′) > ρα(G) , a contradiction. Thus xu < xu1 .
If k = t

2 − 1, then we have by Lemma 1 that G[Vo] = K1 ∪Kt−1 , and thus G ∼=
Bn,t, t

2−1 .

Suppose that 1 � k � t
2 −2. Then NG(u)∩Vo �= /0 . Suppose that δG[Vo](ui) � t−4

for some i with 1 � i � 2k + 1. Then there are at least two vertices, say w1 and w2 ,
in NG(u)∩Vo , that are not adjacent to ui . Let G∗ = G− uw1 − uw2 + uiw1 + uiw2 .
Note that G∗ ∈ G(n, t) . By the choice of u and Lemma 3, we have ρα(G∗) > ρα(G) ,
a contradiction. Thus each vertex of Nu is of degree t −2 in G[Vo] .

Suppose that w ∈ NG(u)∩Vo is of degree less that t − 4 in G[Vo] . Then there
are at least three vertices, say v1 , v2 and v3 , in NG(u)∩Vo , that are not adjacent to
w . Let G∗∗ = G− uv1− uv2 +wv1 +wv2 . It is easily seen that G∗∗ ∈ G(n, t) . Recall
that xu = min{xv : δG(v) � n− 4,v ∈ Vo} . By Lemma 3, we have ρα(G∗∗) > ρα(G) ,
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a contradiction. Thus each vertex of NG(u)∩Vo is of degree t − 2 in G[Vo] . That is,
G[NG(u)∩Vo] ∼= K̃t−2k−2 . Thus G ∼= Bn,t,k .

Note that Bn,t,0 ∈ G(n,t) . By Lemma 4, we have ρα(G) = ρα(Bn,t,k) < ρα(Bn,t,0)
for 1 � k � t

2 − 1, also a contradiction. Therefore, G[Vo] is indeed a (t − 2)-regular
graph, and G ∼= Hn,t .

Case 2 . n is even.

If t = n , then n is even, and by Lemma 1, we have G ∼= Kn
∼= Hn,n . If t = 0, then

it is evident that G ∼= Hn,0 , which is the only graph on n vertices with no odd vertices
that is regular of degree n− 2. Suppose that 2 � t � n− 2. By Lemma 1 and similar
argument as in Case 1, G[Vo]∼= Kt , G[Ve] is an (n− t−2)-regular graph, and so by the
claim, G ∼= Hn,t .

Combining the above two cases, we have G ∼= Hn,t . The expression for ρα(Hn,t)
follows by direct computation as the α -Perron vector of Hn,t has at most two different
entries or from the proof of Lemma 4 and direct check if t = 0 and t = n for even n as
Hn,t

∼= Bn,t,0 for odd n and Hn,t
∼= Bn,n−t,0 for even n and 2 � t < n . �

COROLLARY 3. Let G ∈ G(n,t) , where 0 � t � n, t is even and n � 4 . Then

ρ0(G) � ρ0(Hn,t) and ρ 1
2
(G) � ρ 1

2
(Hn,t)

with either equality if and only if G ∼= Hn,t .
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