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A NOTE ON THE STRUCTURE OF NORMAL HAMILTONIAN MATRICES

CHRISTOS CHORIANOPOULOS

(Communicated by Y.-T. Poon)

Abstract. The structures of the blocks of a normal Hamiltonian matrix are studied. In this note it

is obtained that all four blocks of a normal Hamiltonian matrix H =
[

A B
C −A∗

]
can be expressed

as linear combinations of four other matrices.

1. Introduction and preliminaries

Hamiltonian matrices have been a topic of extensive research since they have many
applications in engineering and physics. In the context of linear algebra, one of their
most important applications is the fact that they are linearizations of gyroscopic systems
that can be represented by self–adjoint quadratic matrix polynomials. For more insight
on these topics, see [2], [3], [4] and the references therein.

We denote by Cn×n and Rn×n the set of complex and real n× n matrices, re-

spectively. A complex 2n× 2n matrix H =
[

A B
C D

]
, with A,B,C,D ∈ Cn×n is called

Hamiltonian if the matrix JH is hermitian, where J =
[

0 In
−In 0

]
. It follows that JH is

hermitian if and only if D = −A∗ and B∗ = B and C∗ = C . Therefore, the considered
Hamiltonian matrix has the general form

H =
[

A B
C −A∗

]
, A,B,C ∈ C

n×n, B∗ = B, C∗ =C.

In the remainder we will need the following notation and definitions:

• I is the set of imaginary numbers and In×n the set of n×n matrices with imagi-
nary entries.

• σ(A) is the set of eigenvalues of a square matrix A .

• tr(A) is the trace of a square matrix A .

• ‖A‖F is the Frobenious norm of a matrix A , ‖A‖F =
√

tr(A∗A) .
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• In is the n×n identity matrix.

• Re(A) ∈ Rn×n and Im(A) ∈ Rn×n are the real and imaginary parts of a complex
matrix A respectively, so that A = Re(A)+ iIm(A) .

• Let G be a normal matrix such that G2 = −In . Then a matrix A is called G–
Hamiltonian (resp., G–Skew–Hamiltonian) when (AG)∗ = AG (resp., (AG)∗ =
−AG).

• A is the complex conjugate of a complex matrix A .

The purpose of this note is to take advantage of the symmetries that a normal

Hamiltonian matrix H =
[

A B
C −A∗

]
provides in order to examine the structures of the

blocks A,B,C and investigate how these strucrures are related. More precisely, it is
proved that the matrices A,B,C of a normal Hamiltonian are linear combinations of
four other matrices that satisfy a strong relation. The analysis here is much based on
Theorem 1 in the work of Gigola, Lebtahi and Thome [1]. There, the authors give
a unitary equivalence result for normal G–Hamiltonian matrices. This definition of
G–Hamiltonian matrix is a generalization of Hamiltonian matrices, since J satisfies
the conditions of G . A similar theorem for the case of normal G–skew–Hamiltonian
matrices can be found in [5]. For clarity, we state them here as items a and b of the
following thorem, respectively.

THEOREM 1. If U is a unitary matrix such that G = U

[
iIn 0
0 −iIn

]
U∗ , then

a. A ∈ C2n×2n is a normal G–Hamiltonian matrix if and only if

A = U

[
A1 W
W ∗ A2

]
U∗,

where A∗
1 = −A1,A∗

2 = −A2 and A1W = WA2 .

b. A ∈ C2n×2n is a normal G–skew–Hamiltonian matrix if and only if

A = U

[
A1 W

−W ∗ A2

]
U∗,

where A∗
1 = A1,A∗

2 = A2 and A1W = WA2 .

The structure of this paper is as follows: In Section 2 we prove the main results
for complex normal Hamiltonian matrices. In Section 3 we move to the real setting and
exploit the results of Section 2 to explore the structures of the blocks of real normal
Hamiltonian matrices. These results can be used to construct normal Hamiltonian ma-
trices, which is not a trivial affair if we exclude the hermitian or skew hermitian cases.
This is illustrated through an example. Finally, a last section is included to express
similar results for normal–skew–Hamiltonian matrices.
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2. Main results

At the beginning we prove that a 2n× 2n unitary matrix that diagonalizes the
normal matrix J has a very specific form. Note that σ(J) = {i,−i} .

PROPOSITION 1. A matrix U =
[
U1 U2

U3 U4

]
∈ C2n×2n , Ui ∈ Cn×n, i = 1,2,3,4 is

unitary such that JU =U

[
iIn 0
0 −iIn

]
if and only if U3 = iU1 , U4 = −iU2 and U1U∗

1 =

U2U∗
2 = 1

2 In .

Proof. Let U be a unitry matrix such that

JU = U

[
iIn 0
0 −iIn

]

or [
0 In

−In 0

][
U1 U2

U3 U4

]
=

[
U1 U2

U3 U4

][
iIn 0
0 −iIn

]

or [
U3 U4

−U1 −U2

]
=

[
iU1 −iU2

iU3 −iU4

]

The last matrix equality yields U3 = iU1 , U4 = −iU2 . Moreover,

UU∗ = I2n

or [
U1 U2

iU1 −iU2

][
U∗

1 −iU∗
1

U∗
2 iU∗

2

]
=

[
In 0
0 In

]

or [
U1U∗

1 +U2U∗
2 −iU1U∗

1 + iU2U∗
2

iU1U∗
1 − iU2U∗

2 U1U∗
1 +U2U∗

2

]
=

[
In 0
0 In

]
.

By this equality we have U1U∗
1 = U2U∗

2 = 1
2 In .

Conversely, let U =
[

U1 U2

iU1 −iU2

]
with U1U∗

1 = U2U∗
2 = 1

2 In . Then U is unitary

since

UU∗ =
[

U1 U2

iU1 −iU2

][
U∗

1 −iU∗
1

U∗
2 iU∗

2

]
=

[
In 0
0 In

]
.
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Moreover, it holds that

U∗JU =
[
U∗

1 −iU∗
1

U∗
2 iU∗

2

][
0 In

−In 0

][
U1 U2

iU1 −iU2

]

=
[

iU∗
1 U∗

1
−iU∗

2 U∗
2

][
U1 U2

iU1 −iU2

]

=
[

2iU∗
1U1 0
0 −2iU∗

2U2

]

=
[

iIn 0
0 −iIn

]
. �

Before we prove the main result, we present a lemma that will be useful for its
proof.

LEMMA 1. The matrix H =
[

A B
C −A∗

]
, A,B,C ∈ Cn×n, B∗ = B, C∗ = C is a

complex normal Hamiltonian matrix if and only if AC− BA is skew–hermitian and
AA∗ −A∗A = C2 −B2 .

Proof. For the normality of H , it is required that

HH∗ = H∗H

⇐⇒
[

A B
C −A∗

][
A∗ C
B −A

]
=

[
A∗ C
B −A

][
A B
C −A∗

]

⇐⇒
[

AA∗+B2 AC−BA
CA∗ −A∗B C2 +A∗A

]
=

[
A∗A+C2 A∗B−CA∗
BA−AC B2 +AA∗

]

or equivalently,
AA∗+B2 = A∗A+C2 (1)

and
AC−BA = A∗B−CA∗, (2)

and the proof is complete. �

COROLLARY 1. Let the matrix H =
[

A B
C −A∗

]
, A,B,C ∈ Cn×n, B∗ = B, C∗ =C

be a complex normal Hamiltonian matrix. Then tr(B2) = tr(C2) , that is ‖B‖F = ‖C‖F .

THEOREM 2. The matrix

[
A B
C −A∗

]
, A,B,C ∈ Cn×n, B∗ = B, C∗ =C is a com-

plex normal Hamiltonian matrix if and only if there are skew hermitian K1,K2 ∈ Cn×n

and a matrix Z ∈ C
n×n satisfying K1Z = ZK2 , such that

A = K1 +K2 +Z +Z∗,
B = −i(K1 −K2)+ i(Z−Z∗),
C = i(K1 −K2)+ i(Z−Z∗).



STRUCTURE OF NORMAL HAMILTONIAN MATRICES 455

Proof. According to Theorem 1 and Proposition 1, there is a unitary matrix U =[
U1 U2

iU1 −iU2

]
with U1U∗

1 = U2U∗
2 = 1

2 In , skew–hermitian matrices A1,A2 ∈ Cn×n and

a matrix W ∈ Cn×n satisfying A1W = WA2 , such that
[

A B
C −A∗

]
= U

[
A1 W
W ∗ A2

]
U∗

or [
A B
C −A∗

]
=

[
U1 U2

iU1 −iU2

][
A1 W
W ∗ A2

][
U∗

1 −iU∗
1

U∗
2 iU∗

2

]

or [
A B
C −A∗

]
=

[
U1A1 +U2W ∗ U1W +U2A2

iU1A1 − iU2W ∗ iU1W − iU2A2

][
U∗

1 −iU∗
1

U∗
2 iU∗

2

]

Performing the last matrix multiplication yields

A = U1A1U
∗
1 +U2W

∗U∗
1 +U1WU∗

2 +U2A2U
∗
2 ,

B = −iU1A1U
∗
1 − iU2W

∗U∗
1 + iU1WU∗

2 + iU2A2U
∗
2 ,

C = iU1A1U
∗
1 − iU2W

∗U∗
1 + iU1WU∗

2 − iU2A2U
∗
2 .

Setting K1 =U1A1U∗
1 and K2 =U2A2U∗

2 which are skew–hermitian, and Z =U1WU∗
2 ,

we have the desired forms of A,B and C . Finally, keeping in mind that U1U∗
1 =U2U∗

2 =
1
2 In , we have

K1Z = U1A1U
∗
1U1WU∗

2

=
1
2
U1A1WU∗

2

=
1
2
U1WA2U

∗
2

= U1WU∗
2U2A2U

∗
2

= ZK2.

For the converse, assume that there are skew hermitian K1,K2 ∈Cn×n and a matrix
Z ∈ C

n×n satisfying K1Z = ZK2 such that

A = K1 +K2 +Z +Z∗,
B = −i(K1 −K2)+ i(Z−Z∗),
C = i(K1 −K2)+ i(Z−Z∗).

We will use Lemma 1 to show that the Hamiltonian matrix

[
A B
C −A∗

]
is normal. It

suffices to show that AC−BA is skew–hermitian and that AA∗ −A∗A = C2 −B2 .
Performing the necessary operations, we obtain

AA∗ = −(K1 +K2)2 +(Z∗ +Z)2 +[K1Z
∗ −ZK1 +K2Z−Z∗K2],
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A∗A = −(K1 +K2)2 +(Z∗ +Z)2− [K1Z
∗ −ZK1 +K2Z−Z∗K2],

B2 = −(K1 −K2)2− (Z−Z∗)2− [K1Z
∗ −ZK1 +K2Z−Z∗K2],

and
C2 = −(K1 −K2)2 − (Z−Z∗)2 +[K1Z

∗ −ZK1 +K2Z−Z∗K2].

Clearly, AA∗−A∗A = C2 −B2 . Finally,

AC−BA = 2i[K2
1 −K2

2 ]+2i[Z∗Z−ZZ∗],

which is skew–hermitian, and the proof is complete. �

REMARK 1. Note that, instead of using any unitary transformation to apply The-

orem 2, we can use the matrix Q =
1√
2

[
In In
iIn −iIn

]
which is unitary and

Q∗JQ =
1
2

[
In −iIn
In iIn

][
0 In

−In 0

][
In In
iIn −iIn

]

or

Q∗JQ =
[

iIn 0
0 −iIn

]
,

satisfying the conditions required. By doing that we have the submatrices A,B and C
of the Hamiltonian expressed directly as linear combinations of matrices A1,A2,W,W ∗
of Theorem 1, and not of K1,K2,Z,Z∗ which are transformations of them. Verily,

H = Q

[
A1 W
W ∗ A2

]
Q∗

or [
A B
C −A∗

]
=

[
In In
iIn −iIn

][
A1 W
W ∗ A2

][
In −iIn
In iIn

]

or [
A B
C −A∗

]
=

[
A1 +A2 +W +W∗ −iA1 + iA2 + iW − iW∗

iA1 − iA2− iW∗ + iW A1 +A2−W −W ∗

]
,

so that

A = A1 +A2 +W +W∗,
A∗ = −A1−A2 +W +W∗

and

B = −i(A1−A2)+ i(W −W∗),
C = i(A1 −A2)+ i(W −W∗).
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3. Real normal Hamiltonian matrices

Here we leave the general complex setting, and focus on real normal Hamiltonian
matrices.

PROPOSITION 2. The real Hamiltonian matrix H =
[

A B
C −AT

]
is normal if and

only if there is a skew–hermitian matrix K1 ∈ Cn×n and a complex symmetric matrix Z
with K1Z = ZK1 such that

A = 2Re(K1)+2Re(Z), B = 2Im(K1)−2Im(Z),

and
C = −2Im(K1)−2Im(Z).

Proof. From Theorem 2 we have that there are skew hermitian K1,K2 ∈ Cn×n and
a matrix Z ∈ Cn×n satisfying K1Z = ZK2 such that

A = K1 +K2 +Z +Z∗,
B = −i(K1−K2)+ i(Z−Z∗),
C = i(K1 −K2)+ i(Z−Z∗),

AT = A∗ = −K1−K2 +Z +Z∗.

Since A,B,C are all real n×n matrices, we have:

B+C ∈ R
n×n ⇒ i(Z−Z∗) ∈ R

n×n ⇒ (Z−Z∗) ∈ I
n×n,

so, if Z = [zi j] , i, j = 1, · · · ,n , then zi j − z ji ∈ I, and hence,

Re(zi j) = Re(z ji). (3)

Moreover,
A+AT ∈ R

n×n ⇒ Z +Z∗ ∈ R
n×n,

so, zi j + z ji ∈ R, and consequently,

Im(zi j) = Im(z ji). (4)

Equations (3) and (4) imply that zi j = z ji , making Z a complex symmetric matrix.
Now,

C−B ∈ R
n×n ⇒ i(K1 −K2) ∈ R

n×n ⇒ (K1 −K2) ∈ I
n×n,

which yields Re(K1) = Re(K2) . Similarly,

A−AT ∈ R
n×n ⇒ K1 +K2 ∈ R

n×n,

so, Im(K1) = −Im(K2) . Therefore, we conclude K1 = K2 and K1Z = ZK1 . The forms
of A,B,C follow from the facts that K1 = K2 and Z is complex symmetric making
Z∗ = Z . �

The next corollary gives a form similar to that of Theorem 1 for the case of real
normal Hamiltonian matrices.
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COROLLARY 2. Let H =
[

A B
C −AT

]
, A,B,C ∈ Rn×n be a real normal Hamilto-

nian matrix and U1 ∈ Cn×n such that U1U∗
1 = 1

2 In . If U =
[

U1 U1

iU1 −iU1

]
. Then

a. U is unitary and U∗JU =
[

iIn 0
0 −iIn

]
, and

b. there are matrices A1,W , where A1 is skew–hermitian and A1W = WA1 , such

that H = U

[
A1 W
W ∗ A1

]
U∗ .

Proof.

a. Let U1 ∈ Cn×n so that U1U∗
1 = 1

2 In . Then, if U =
[

U1 U1

iU1 −iU1

]
, we have

UU∗ =
[

U1 U1

iU1 −iU1

][
U∗

1 −iU∗
1

UT
1 iUT

1

]

=
[
U1U∗

1 +U1UT
1 0

0 U1U∗
1 +U1UT

1

]

=
[
U1U∗

1 +(U1U∗
1 )T 0

0 U1U∗
1 +(U1U∗

1 )T

]

=
[

In 0
0 In

]
.

Moreover,

U∗JU =
[

U∗
1 −iU∗

1
UT

1 iUT
1

][
0 In

−In 0

][
U1 U1

iU1 −iU1

]

=
[

iIn 0
0 −iIn

]
.

b. According to Theorem 1, we have that there are skew–hermitian matrices A1, A2

and a matrix W satisfying A1W = WA2 such that[
A1 W
W ∗ A2

]
= U∗HU

=
[

U∗
1 −iU∗

1
UT

1 iUT
1

][
A B
C −AT

][
U1 U1

iU1 −iU1

]
.

Performing the necessary operations we obtain

A1 = U∗
1 AU1− i(U∗

1CU1−U∗
1 BU1)−U∗

1 ATU1

and
A2 =UT

1 AU1 + i(UT
1 CU1−UT

1 BU1)−UT
1 ATU1.

Evidently, A1 = A2 . �



STRUCTURE OF NORMAL HAMILTONIAN MATRICES 459

We include a last proposition to investigate the strong relation of Z to A1 . This
is useful when we want to apply Proposition 2 to construct a real normal Hamiltonian
matrix, a procedure that is not that trivial, unless we are referring to symmetric or skew–
symmetric matrices. It is a sylvester equation type result that relates the choice on the
entries of Z to the spectrum of the skew–hermitian matrix A1 .

PROPOSITION 3. Let K1 ∈ Cn×n be a skew–hermitian matrix, and Z ∈ Cn×n be
a symmetric matrix such that K1Z = ZK1 . Let also R ∈ Cn×n be a unitary matrix that
diagonalizes K1 , so that, R∗K1R = diag{λ1,λ2, · · · ,λn} . Then Z = RSRT , where S is
complex symmetric and si j = s ji = 0 , if λi + λ j �= 0 , and sii = 0 , if λi �= 0 .

Proof. R∗K1R = diag{λ1,λ2, · · · ,λn} , and since the eigenvalues of K1 are imagi-
nary, we have RT K1R = −diag{λ1,λ2, · · · ,λn} . Also, note that (RT )−1 = R , so

K1Z = ZK1

and

R∗K1RR∗ZR = R∗Z(RT )−1RT K1R.

Setting S = R∗ZR , which is a complex symmetric matrix since ST = (R∗ZR)T = R∗ZT R
= S , we have diag{λ1,λ2, · · · ,λn}S = −Sdiag{λ1,λ2, · · · ,λn} .

Equating the diagonal entries of the left hand side product and the right hand side
product, we obtain 2λisii = 0 which yields sii = 0 when λi �= 0, and equating the
off diagonal entries, we have si j(λi + λ j) = 0 by which we have si j = s ji = 0 when
(λi + λ j) �= 0. �

EXAMPLE. Let’s illustrate the use of Propositions 2 and 3 in constructing a real
normal Hamiltonian matrix.

Let

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1+ i
2

−1
2

0

− i√
3

i√
3

1√
3

0

5i

2
√

15

3+ i

2
√

15

4+3i

2
√

15
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

be unitary and K1 = Rdiag{−5i,5i,−i,0}R∗ be a skew–hermitian matrix.

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

i
5+3i√

3

−8+6i√
15

0

−5+3i√
3

−i
3

−9+13i√
45

0

8+6i√
15

9+13i√
45

−5i
3

0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then Z = RSRT , and the entries of S are determined by the eigenvalues of K1

according to Proposition 3, λ1 =−5i , λ2 = 5i , λ3 =−i , λ4 = 0, so s11 = s22 = s33 = 0,
s44 ∈ C , s12 = s21 ∈ C and all other entries are equal to zero. Setting,

S =

⎡
⎢⎢⎣

0 1− i 0 0
1− i 0 0 0

0 0 0 0
0 0 0

√
2+ i

⎤
⎥⎥⎦ ,

we have

Z = RSRT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1− i

2
√

3

1+2i√
15

0

1− i

2
√

3

2−2i
3

−7+ i

2
√

45
0

1+2i√
15

−7+ i

2
√

45

1+2i
3

0

0 0 0
√

2+ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we are ready to construct the blocks A,B,C of the normal Hamiltonian ma-
trix. In particular,

A = 2Re(K1)+2Re(Z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
11√

3

−14√
15

0

−9√
3

4
3

−25√
45

0

18√
15

11√
45

2
3

0

0 0 0 2
√

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B = 2Im(K1)−2Im(Z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
7√
3

8√
15

0

7√
3

2
3

25√
45

0

8√
15

25√
45

−14
3

0

0 0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

C = −2Im(K1)−2Im(Z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2
−5√

3

−16√
15

0

−5√
3

2
−27√

45
0

−16√
15

−27√
45

2 0

0 0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is a matter of simple computations to show that H =
[

A B
C −AT

]
is normal.
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4. Skew–Hamiltonian matrices

Using the same techniques, similar results can be proved for skew-Hamiltonian
matrices. This is done with the use of Theorem 1b.

THEOREM 3. a. The matrix

[
E F
K E∗

]
, E,F,K ∈ Cn×n, F∗ = −F, K∗ = −K

is a complex normal skew–Hamiltonian matrix if and only if there are hermitian
M1,M2 ∈ Cn×n and a matrix D ∈ Cn×n satisfying M1D = DM2 such that

E = M1 +M2 +D−D∗,
F = −i(M1 −M2)+ i(D+D∗),
K = i(M1 −M2)+ i(D+D∗).

b. The matrix

[
E F
K ET

]
, E,F,K ∈ Rn×n, F∗ = −F, K∗ = −K is a real normal

skew–Hamiltonian matrix if and only if there is a Hermitian matrix M1 ∈ Cn×n

and a skew–symmetric complex matrix D ∈ Cn×n satisfying M1D = DM1 such
that

E = 2Re(M1)+2Re(D),
F = −2Im(M1)−2Im(D),
K = 2Im(M1)−2Im(D).
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