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Abstract. Let ϕ be a self map of [0,1], and W be a map on [0,1]. If f belongs to the Lp space
of [0,1], then the operator CW ,ϕ defined by CW ,ϕ ( f ) = W · f ◦ϕ , is a weighted composition
operator. The spectrum of such an operator when ϕ is a monotonic contraction map and W is
a Lipschitz continuous function is computed in this work.

1. Introduction

Let 1 � p < ∞, and ϕ be a self map of [0,1]. Assume that f is in the Lp space
of [0,1]. The operator that takes f to f ◦ϕ is a composition operator and is denoted
by Cϕ . For more details on composition operators on Lp spaces see Chapter 2 of [3].

Now let W be a function on [0,1]. The operator that takes f to W · f ◦ϕ is a
weighted composition operator and is denoted by CW ,ϕ . See [1] and [2] for weighted
composition operators on different spaces.

In this work we take ϕ to be a strictly monotonic contraction map which maps the
interval [0,1] into itself that induces a bounded composition operator on Lp . We take
W to be a Lipschitz continuous function on [0,1]. We first construct some eigenvec-
tors of CW ,ϕ . Next we estimate its spectral radius and this allows us to compute the
spectrum of CW ,ϕ .

2. Preliminaries

Let 1 � p < ∞. Denote the interval [0,1] by I and the Lebesgue measure by m.
A measurable function φ from I into I is said to be non-singular, if m(φ−1(S)) = 0,
whenever m(S) = 0 for measurable S.

Assume that ϕ is a Lebesgue measurable non-singular self map of I. Suppose that
there is a positive constant K such that for all Lebesgue measurable subsets E of I,

m(ϕ−1(E)) � Km(E). (1)

Then, a bounded linear operator Cϕ on Lp can be defined by

Cϕ( f ) = f ◦ϕ
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see Chapter 2 of [3] for a proof. Now let W be a Lipschitz continuous function on I.
Denote the operator that takes f to W · f ◦ϕ by CW ,ϕ , i.e

CW ,ϕ( f ) = W · f ◦ϕ

Since we have taken Cϕ as a bounded operator and W a continuous function, it easily
follows that CW ,ϕ is a bounded operator. However, in general it is possible to have
bounded weighted composition operators induced by weight functions that are not con-
tinuous.

Let n be an integer greater than 1. We use ϕn to denote ϕ composed with itself
n times. Moreover, we take ϕ0(x) = x. Also we use Cn

ϕ to denote the operator Cϕ
composed with itself n times. It is easy to see that Cn

ϕ ( f ) = f ◦ϕn. Therefore,

Cn
ϕ = Cϕn

Similarly, it is easy to see that Cn
W ,ϕ( f ) = (W )(W ◦ϕ) · · ·(W ◦ϕn−1) · f ◦ϕn hence

Cn
W ,ϕ = C(W )(W ◦ϕ)(W ◦ϕ2)···(W ◦ϕn−1),ϕn

We refer to strictly increasing functions as increasing functions and strictly decreasing
functions as decreasing functions.

Suppose that ϕ is a strictly monotonic contraction map whose Lipschitz constant
is β . Thus, for any x,y in I,

|ϕ(x)−ϕ(y)| � β · |x− y|

where 0 < β < 1. If Cϕ is bounded, and ϕ is differentiable at x0, then from (1) it

follows that |ϕ ′(x0)| � 1
K

. Notice that ϕ ′ exists almost everywhere. It is well known

that ϕ has a unique fixed point ζ and if x �= ζ , the sequence {ϕn(x)} converges to
ζ . Here ϕ is a strictly monotonic map, hence if x �= ζ , then ϕn(x) �= ζ , for any n.
Whenever the one sided derivatives of ϕ at 0 and 1 exist, we denote them by ϕ ′(0) and
ϕ ′(1).

3. Spectra

We begin our work by constructing some eigenvectors for Cϕ .

LEMMA 3.1. Let ϕ be an increasing contraction map that takes I into itself. Let
the unique fixed point of ϕ be ζ . Suppose that Cϕ is bounded on Lp and ϕ ′(ζ ) exist.

Then the point spectrum of Cϕ contains the open disk of radius (ϕ ′(ζ ))−
1
p centered at

the origin.

Proof. We will first consider the case 0 � ζ < 1.
Since ϕ has only one fixed point, ϕ(1) < 1. Moreover, ϕ is an increasing func-

tion, thus ϕn(1)< ϕn−1(1), for all n � 1. The function ϕ is a contraction map, thus the
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sequence {ϕn(1)} converges to ζ . For a positive integer n, let An = (ϕn(1),ϕn−1(1)].

If 0 < |λ | < (ϕ ′(ζ ))−
1
p , then define

f (x) =

{
λ n−1, if x ∈ An

0, if x � ζ

Clearly
∫
I | f (x)|pdx = ∑∞

n=1 m(An)|λ n−1|p. It can be very easily seen that
m(An)

m(An−1)
=

ϕn−1(1)−ϕn(1)
ϕn−2(1)−ϕn−1(1)

. Now, since limn→∞ ϕn(1) = ζ , it follows that lim
n→∞

m(An)
m(An−1)

=

ϕ ′(ζ ). Therefore, if 0 < |λ | < (ϕ ′(ζ ))−
1
p , then

lim
n→∞

m(An)|λ n−1|p
m(An−1)|λ n−2|p < 1.

Hence f ∈ Lp.
To prove that f is an eigenvector, first, let x ∈ [0,ζ ]. Then f (x) = 0. Since ϕ is

increasing, if 0 � x � ζ , then 0 � ϕ(x) � ζ , hence f (ϕ(x)) = 0.
Next let x ∈ (ζ ,1]. Then x ∈ An, for some n and hence f (x) = λ n−1. Since

ϕ is increasing it easily follows that An+1 = ϕ(An). Therefore, ϕ(x) ∈ An+1, hence
f (ϕ(x)) = λ n.

Therefore, for all x in I we get that

f (ϕ(x)) = λ f (x)

This proves that λ is an eigenvalue when 0 � ζ < 1.
Now assume that ζ = 1.
Then {ϕn(0)} is an increasing sequence that converges to 1. For a positive integer

n, let Bn = [ϕn−1(0),ϕn(0)). If 0 < |λ | < (ϕ ′(1))−
1
p , define

g(x) =

{
λ n−1, if x ∈ Bn

0, if x = 1

Using arguments very similar to the ones used when ζ < 1, it can be proved that g is
an eigenvector for eigenvalue λ .

Clearly m(ϕ(I)) < 1, and the characteristic function of I \ϕ(I) is in the kernel of
Cϕ . Therefore 0 is in the point spectrum as well. �

Let T be a bounded linear operator on Lp . Below, the spectral radius of T is
denoted by r(T ) and the supremum of the set {‖T ( f )‖p : ‖ f‖p = 1} is denoted by
‖T‖. Moreover, σ(T ) denotes the spectrum of T.

LEMMA 3.2. Let ϕ be an increasing contraction map that takes I into itself. Let
ζ be the unique fixed point of ϕ . Assume that ϕ ′ exists and is continuous at ζ . If Cϕ

is bounded on Lp , then the spectral radius of Cϕ is not larger than (ϕ ′(ζ ))−
1
p .
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Proof. First assume that 0 < ζ < 1.
Let f ∈ Lp. Then ‖Cn

ϕ( f )‖p
p =

∫
I | f (ϕn(x))|pdx. By a change of variables it can

be easily seen that

‖Cn
ϕ( f )‖p

p =
∫

An

| f (y)|p 1
(ϕn)′((ϕn)−1(y))

dy (2)

where An = [ϕn(0),ϕn(1)] and (ϕn)−1 is defined on An . Let z = (ϕn)−1(y). By ap-
plying the chain rule repeatedly we get (ϕn)′(z) = ∏n

j=1 ϕ ′(ϕn− j(z)).
Let 0 < ε < 1. Clearly ϕn(I)= [ϕn(0),ϕn(1)]. Notice that both sequences {ϕn(0)}

and {ϕn(1)} tend to ζ . Hence, ϕ ′(ζ ) · (1− ε) < ϕ ′(ϕn+N(z)) for n > N, for some N
and all z ∈ I. Thus (ϕ ′(ζ ) · (1− ε))n−NωN < ∏n

j=1 ϕ ′(ϕn− j(z)), where ω is the infi-
mum of ϕ ′ on I. Therefore, from (2) it follows that

‖Cn
ϕ( f )‖p

p � 1
(ϕ ′(ζ ) · (1− ε))n−NωN

∫
I
| f (y)|pdy

Hence ‖Cn
ϕ‖ � 1

((ϕ ′(ζ ) · (1− ε))n−NωN)
1
p

. Now it easily follows that

‖Cn
ϕ‖

1
n � 1

((ϕ ′(ζ ) · (1− ε))1− N
n ω

N
n )

1
p .

Thus

lim
n→∞

‖Cn
ϕ‖

1
n � 1

(ϕ ′(ζ ) · (1− ε))
1
p

Since the inequality above is true for all ε in (0,1), it easily follows that r(Cϕ ) �
(ϕ ′(ζ ))−

1
p .

If ζ = 0, then {ϕn(1)} tends to 0 and ϕn(I) = [0,ϕn(1)]. If ζ = 1, then {ϕn(0)}
tends to 1 and ϕn(I) = [ϕn(0),1]. Thus, a proof similar to the one used for 0 < ζ < 1,
yields the desired result when ζ = 0 or ζ = 1. �

Using the result above, next we estimate the spectral radius of CW ,ϕ .

LEMMA 3.3. Let ϕ be an increasing contraction map that takes I into itself and
W be a Lipschitz continuous map on I. Let ζ be the unique fixed point of ϕ . Suppose
that ϕ ′ exists and continuous at ζ . If Cϕ is bounded on Lp , then the spectral radius

of CW ,ϕ is not larger than |W (ζ )| · (ϕ ′(ζ ))−
1
p .

Proof. First assume that 0 < ζ < 1.
Let f ∈ Lp. Then ‖Cn

W ,ϕ( f )‖p
p =

∫
I |∏n

j=1 W (ϕ j(x)) · f (ϕn(x))|pdx.
Let 0 < ε. Clearly ϕn(I) = [ϕn(0),ϕn(1)]. Notice that both sequences {ϕn(0)}

and {ϕn(1)} tend to ζ . Thus |W (ϕ j(x))|� |W (ζ )|+ε for j > N, for some N. There-
fore,

‖Cn
W ,ϕ( f )‖p

p � (|W (ζ )|+ ε)p(n−N)
∫

I
|CN

W ,ϕCn−N
ϕ ( f )(x)|pdx
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Thus, ‖Cn
W ,ϕ ( f )‖p

p � (|W (ζ )|+ε)p(n−N)‖CN
W ,ϕ‖p · ‖Cn−N

ϕ ‖p · ‖ f‖p
p and now it follows

that
‖Cn

W ,ϕ‖ � (|W (ζ )|+ ε)(n−N)‖CN
W ,ϕ‖ · ‖Cn−N

ϕ ‖
Therefore

‖Cn
W ,ϕ‖

1
n � (|W (ζ )|+ ε)|(1− N

n )‖CN
W ,ϕ‖

1
n · (‖Cn−N

ϕ ‖ 1
(n−N) )1− N

n

By letting n tend to infinity we get

r(CW ,ϕ) � |W (ζ )|+ ε

(ϕ ′(ζ ))
1
p

Since ε is arbitrary, it easily follows that r(CW ,ϕ ) � |W (ζ )| · (ϕ ′(ζ ))−
1
p .

If ζ = 0, then {ϕn(1)} tends to 0 and ϕn(I) = [0,ϕn(1)]. If ζ = 1, then {ϕn(0)}
tends to 1 and ϕn(I) = [ϕn(0),1]. Thus, a proof similar to the one used for 0 < ζ < 1,
yields the desired result when ζ = 0 or ζ = 1. �

In order to create eigenvectors for weighted composition operators we first inves-
tigate some infinite products.

LEMMA 3.4. Let ϕ be a contraction map that takes I into itself. Assume that
ζ is the unique fixed point of ϕ . If Φ is a Lipschitz continuous function on I and
Φ(ζ ) = 1, then the infinite product (

∞

∏
n=0

Φ◦ϕn

)

converges to a bounded function that is non-zero on a neighborhood of ζ .

Proof. Let γ̃ be the Lipschitz constant of Φ and β be the Lipschitz constant of
ϕ . Then, |Φ(ϕn(x))−Φ(ζ )| � γ̃|ϕn(x)− ζ |. Thus for all x in I,

|Φ(ϕn(x))−1|� γ̃β n

Hence the infinite product ∏∞
n=0 Φ(ϕn(x)) converges to a function W (x) . Moreover,

|
∞

∏
n=0

Φ(ϕn(x))| � e
γ̃

(1−β)

for all x ∈ I. See page 162 of [6] for convergence and the upper bound of the infinite
product.

There is a neighborhood U of positive measure that contains ζ such that Φ(x) �=
0, for x ∈ U. Clearly ϕn(U) ⊆ U, thus Φ(ϕn(x)) �= 0, when x ∈ U and all n ∈ N.
Thus W (x) �= 0, for all x ∈U ; see page 163 of [6]. �

The infinite product above allows us to construct eigenvectors of weighted com-
position operators.
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LEMMA 3.5. Let ϕ be a contraction map that takes I into itself. Assume that
ζ is the unique fixed point of ϕ . Further assume that Φ is a Lipschitz continuous
function on I and Φ(ζ ) = 1. Suppose that Cϕ is a bounded operator and λ is a non-
zero eigenvalue with the eigenvector f . Then λ is also an eigenvalue of CΦ,ϕ with the
eigenvector (

∞

∏
n=0

Φ◦ϕn

)
· f

Proof. Let W (x) = ∏∞
n=0 Φ ◦ϕn(x). Then W is bounded on I . Thus, W · f is in

Lp . Now,

CΦ,ϕ(W · f ) = Φ ·W ◦ϕ · f ◦ϕ

= Φ ·
(

∞

∏
n=0

Φ◦ϕn

)
◦ϕ · (λ f )

= λ ·Φ ·
(

∞

∏
n=0

Φ◦ϕn+1

)
· f

Incorporating the term Φ into the infinite product results in

CΦ,ϕ (W · f ) = λ ·
(

∞

∏
n=0

Φ◦ϕn

)
· f

Finally we prove that W · f is not the zero function. Let n� 1. Since f is an eigenvector
for λ , it follows that Cn

ϕ( f ) = λ n f . Therefore

f ◦ϕn = λ n f , (3)

almost everywhere. If U is a neighborhood of ζ , then ϕn(I) ⊂ U, for all n large
enough. If f is zero almost everywhere on U, then it follows from equation above that
f is zero almost everywhere on I. Since f is an eigenvector this is impossible, hence
f cannot be zero a.e on any neighborhood of ζ .

Since W is non-zero on some neighborhood of ζ now it follows that W · f is
a non-zero element in Lp . Thus λ is an eigenvalue of CΦ,ϕ with the eigenvector
W · f . �

Notice that results in Lemma 3.4 and Lemma 3.5 were obtained without assuming
that ϕ is monotonic. It suffices that ϕ is a contraction map.

If r > 0, we denote the open disc of radius r centered at the origin by B(r).

LEMMA 3.6. Let ϕ be an increasing contraction map that takes I into itself and
W be a Lipschitz continuous map on I. Let ζ be the unique fixed point of ϕ . Suppose
that ϕ ′ exists and continuous at ζ . Assume that Cϕ is bounded on Lp and W (ζ ) �= 0.

If λ is in B(|W (ζ )| · (ϕ ′(ζ ))−
1
p )\ {0}, then λ is an eigenvalue of CW ,ϕ .
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Proof. Let Φ(x) =
W (x)
W (ζ )

for x ∈ I. Now consider the weighted composition op-

erator CΦ,ϕ . Let λ ∈ B((ϕ ′(ζ ))−
1
p )\ {0}. Then λ is an eigenvalue of Cϕ , and hence

it is an eigenvalue of CΦ,ϕ ; see Lemma 3.5 and Lemma 3.1. Since W (ζ )CΦ,ϕ =CW ,ϕ ,
it is easy to see that W (ζ )λ is an eigenvalue of CW ,ϕ . This is the desired result. �

Next we compute the spectrum when ϕ is increasing.

THEOREM 3.7. Let ϕ be an increasing contraction map that takes I into itself
and W be a Lipschitz continuous map on I. Let ζ be the unique fixed point of ϕ .
Suppose that ϕ ′ exists and continuous at ζ . If Cϕ is bounded on Lp , then the spectrum

of CW ,ϕ is the closed disk of radius |W (ζ )| · (ϕ ′(ζ ))−
1
p centered at the origin.

Proof. If W (ζ ) = 0, then r(CW ,ϕ) = 0, and hence the spectrum is {0}.
Now assume that W (ζ ) �= 0. From Lemma 3.6 it follows that σ(CW ,ϕ ) contains

B(|W (ζ )| · (ϕ ′(ζ ))−
1
p ) \ {0}, and from Lemma 3.3 it follows that σ(CW ,ϕ ) is con-

tained in the closure of B(|W (ζ )| · (ϕ ′(ζ ))−
1
p ). Since σ(CW ,ϕ) is a closed set, the

desired result follows. �
Below, we denote the unit circle centered at origin by T and the point spectrum of

an operator T by σp(T ) .
Next, we compute the spectrum when ϕ is decreasing.

THEOREM 3.8. Let ϕ be a decreasing contraction map that takes I into itself and
W be a Lipschitz continuous map on I. Let ζ be the unique fixed point of ϕ . Suppose
that ϕ ′ exists and continuous at ζ . If Cϕ is bounded on Lp , then the spectrum of

CW ,ϕ is the closed disk of radius |W (ζ )| · (ϕ ′(ζ ))−
1
p centered at the origin.

Proof. First assume that W (ζ ) �= 0. If ϕ is decreasing, then ϕ2 is increasing.

Thus, from Lemma 3.1 it follows that σp(Cϕ2) contains B(((ϕ2)′(ζ ))−
1
p ). Recall that

C2
ϕ = Cϕ2 . Thus, (σp(Cϕ ))2 = σp(Cϕ2); see [5, p.266]. If λ ∈ σp(Cϕ) \T, and 0 �

θ < 2π , then λeiθ also belongs to σp(Cϕ ); see [4]. Since (ϕ2)′(ζ ) = (ϕ ′(ζ ))2 it

follows that σp(Cϕ) contains B((ϕ ′(ζ ))−
1
p )\T.

If λ is a non-zero eigenvalue of Cϕ , then λ is also an eigenvalue of CΦ,ϕ where

Φ(x) =
W (x)
W (ζ )

, therefore, W (ζ )λ ∈ σp(CW ,ϕ); see Lemma 3.5. Thus it follows that

σp(CW ,ϕ) contains B(|W (ζ )| · (ϕ ′(ζ ))−
1
p )\ ({0}∪T).

It is not difficult to see that W ·W ◦ϕ is Lipschitz continuous on I. Thus from
Theorem 3.7 it follows that σ(CW ·W ◦ϕ,ϕ2) is the closure

of B(|W (ζ )|2((ϕ2)′(ζ ))−
1
p ).

Recall that C2
W ,ϕ = CW ·W ◦ϕ,ϕ2 . Thus, (σ(CW ,ϕ))2 = σ(CW ·W ◦ϕ,ϕ2). Therefore,

r(CW ,ϕ) = (|W (ζ )|2((ϕ2)′(ζ ))−
1
p )

1
2 . Since σ(CW ,ϕ) is a closed set, the desired result

follows.
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If W (ζ ) = 0, then r(CW ,ϕ) = 0 and hence σ(CW ,ϕ) = {0} . �
We close this paper with the following example.
Let ϕ(x) = kx, where 0 < k < 1 and W (x) = ex. The spectrum of CW ,ϕ on Lp is

the closed disk of radius k−
1
p ; see Theorem 3.7.

Now, (∏∞
n=0 W ◦ϕn)(x) = ex(1+k+k2+···), which further simplifies to e

1
1−k x. Now

let fλ be an eigenvector for Cϕ as described in Lemma 3.1. Then e
1

1−k x fλ (x) is an
eigenvector for CW ,ϕ .
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