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CYLINDRICAL HARDY TYPE INEQUALITIES WITH BESSEL PAIRS

NGUYEN TUAN DUY AND LE LONG PHI ∗

(Communicated by D. Han)

Abstract. Using factorizations of suitable partial differential operators and the notion of Bessel
pairs, we establish several cylindrical Hardy’s type identities and inequaltities in the sense of
Badiale-Tarantello [2].

1. Introduction

In this paper, we concern the celebrated Hardy inequality in R
N , N � 3 : for all

u ∈C∞
0

(
R

N
)

: ∫
RN

|∇u|2 dx �
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx. (1.1)

Here
(

N−2
2

)2
is the best possible constant.

It is well-known that
(

N−2
2

)2
in (1.1) is never achieved by nontrivial functions.

Therefore, many efforts have been devoted to enhance the Hardy inequalities. One
way to do so is to add extra nonnegative terms to the RHS of (1.1). On the whole
space R

N , Ghoussoub and Moradifam showed in [22] that there is no strictly positive
W ∈C1 (0,∞) such that the inequality

∫
RN

|∇u|2 dx �
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx+

∫
RN

W (|x|) |u|2 dx

holds for all u ∈ C∞
0

(
R

N
)
. However, the situation on bounded domain is different.

Indeed, let Ω be a bounded domain in R
N , N � 3, with 0 ∈ Ω . Then Brezis and

Vázquez proved in [7] that for all u ∈W 1,2
0 (Ω) :

∫
Ω

|∇u|2 dx �
(

N−2
2

)2 ∫
Ω

|u|2
|x|2 dx+ z2

0ω
2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx (1.2)
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where ωN is the volume of the unit ball and z0 = 2.4048 . . . is the first zero of the

Bessel function J0 (z) . The constant z2
0ω

2
N
N |Ω|− 2

N is optimal when Ω is a ball. How-

ever, z2
0ω

2
N
N |Ω|− 2

N is not attained in W 1,2
0 (Ω) . Hence, it is conjectured by Brezis and

Vázquez that z2
0ω

2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx is just a first term of an infinite series of extra terms

that can be added to the RHS of (1.2). This question was addressed by many authors.
We refer the interested reader to [1, 4, 5, 14, 15, 18, 23, 32, 40, 41], to name just a few.
See also the monographs [3, 21, 25, 26, 34], for instance, that are excellent references
on the topic.

In [20, 21], Ghoussoub and Moradifam proved the following result to improve,
extend and unify several results about the Hardy type inequalities:

THEOREM A. Let 0 < R � ∞ , V and W be positive C1 -functions on (0,R) such

that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ . Then the following are equivalent:

(1) (V,W ) is a N -dimensional Bessel pair on (0,R) .

(2)
∫
BR

V (|x|) |∇u|2 dx � β (V,W ;R)
∫
BR

W (|x|) |u|2 dx for all u ∈C∞
0 (BR) with

β (V,W ;R) being the best constant.

Here we say that a couple of C1 -functions (V,W ) is a N -dimensional Bessel pair
on (0,R) if there exists c > 0 such that the ordinary differential equation

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

cW (r)
V (r)

y(r) = 0

has a positive solution on the interval (0,R) . Also, β (V,W ;R) is defined as the supre-
mum of such c. It can be also verified that (V,W ) is a N -dimensional Bessel pair on
(0,R) if and only if

(
rN−1V,rN−1W

)
is a 1-dimensional Bessel pair on (0,R) . See the

book [21] for more properties and examples about the N -dimensional Bessel pair.
Recently, the Hardy type inequalities and other functional and geometric inequal-

ities have been improved by replacing the usual ∇ by x
|x| · ∇ . It can be noted that

x
|x| ·∇u is the radial gradient of u . Indeed, in the polar coordinate,

∣∣∣ x
|x| ·∇u

∣∣∣= |∂ru(rσ)|

while |∇u| =
(
|∂ru(rσ)|2 + |∇

SN−1u(rσ)|2
r2

) 1
2

. Actually, the operator R = x
|x| ·∇ play

important roles in the literature. The interested reader is referred to [36] for the ap-
plications of the radial derivation R in the literature. We also mention here that the
Hardy type inequalities with radial gradient have been intensively studied recently. See
[9, 10, 11, 12, 24, 27, 28, 31, 33, 35, 36, 38], for example.

In an effort to unify many results about the Hardy type inequalities with radial
derivation, and to compute the exact remainders of the Hardy type inequalities, the
authors in [13] have proved the following result:
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THEOREM B. Let 0 < R � ∞ , V and W be positive C1 -functions on (0,R) . As-
sume that

(
rN−1V,rN−1W

)
is a Bessel pair on (0,R) . Then for all u ∈C∞

0 (BR \ {0}) :
∫
BR

V (|x|) |Ru|2 dx−
∫
BR

W (|x|) |u|2 dx

=
∫
BR

V (|x|)
∣∣∣∣∣R
(

u
ϕrN−1V,rN−1W ;R

)∣∣∣∣∣
2

ϕ2
rN−1V,rN−1W ;Rdx

and ∫
BR

V (|x|) |∇u|2 dx−
∫
BR

W (|x|) |u|2 dx

=
∫
BR

V (|x|)
∣∣∣∣∣∇
(

u
ϕrN−1V,rN−1W ;R

)∣∣∣∣∣
2

ϕ2
rN−1V,rN−1W ;Rdx

where ϕrN−1V,rN−1W ;R is the positive solution of

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

W (r)
V (r)

y(r) = 0

on the interval (0,R) .

Here (V,W ) is a Bessel pair on (0,R) if the ordinary differential equation

y′′(r)+
Vr (r)
V (r)

y′(r)+
W (r)
V (r)

y(r) = 0

(equivalently, (Vy′)′ +Wy = 0) has a positive solution on the interval (0,R) . Bessel
pair can be considered as normalized 1-dimensional Bessel pair.

It is worth mentioning that the results in Theorem B also hold for u ∈ C∞
0 (BR)

if we impose extra assumptions on the pair (V,W ) such as

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ .

The method has been used in [13] is the factorizations of suitable differential oper-
ators. We note here that factorizations of singular partial differential operators has been
applied in [19] to give a simple approach to the classical Hardy inequality and in [17]
for the radial and logarithmic refinements of the Hardy inequality. Recently, in [19],
the factorization method was used to obtain Hardy, Hardy-Rellich and refined Hardy
inequalities on general stratified groups and weighted Hardy inequalities on general
homogeneous groups in [37]. More recently, several Hardy’s type identities on half-
spaces were established in [29, 30] using factorizations. For a thorough review, the
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history and properties of the factorization method, we refer the interested reader to
[16].

In [2], Badiale and Tarantello studied the existence and nonexistence of cylindrical
solutions for the following nonlinear elliptic equation in R

3 :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu = φ
(√

x2
1 + x2

2

)
|u|p−2 u in R

3

u(x) > 0 in R
3

∫
R3

φ
(√

x2
1 + x2

2

)
|u|p−1 dx < ∞

with p > 1. This equation has been proposed by Bertin and Ciotti as a model describing
the dynamics of elliptic galaxies. See [6, 8]. Badiale and Tarantello then investigated
the following cylindrical Hardy type inequalities: for 1 < p < k � N and u ∈C∞

0

(
R

N
)

∫
RN

|∇u(x)|p dx � CN,k,p

∫
RN

|u(x)|p
|y|p dx (1.3)

where x = (y,z) ∈ R
k ×R

N−k . The optimal constant CN,k,p =
(

k−p
p

)p
was also con-

jectured in [2] and then verified in [39].
Recently, in [28], the following result about the cylindrical Hardy type inequalities

with Bessel pairs has been set up:

THEOREM C. Let V and W be positive C1 -functions on (0,R) such that

∞∫
0

1
rk−1V (r)dr

= ∞ and

∞∫
0

rk−1V (r)dr < ∞ . Then the following are equivalent:

(1)
(
rk−1V,rk−1W

)
is a 1 -dimensional Bessel pair on (0,∞) .

(2)
∫

RN−k

∫
Rk

V (|y|)
∣∣∣ y
|y| ·∇yu(x)

∣∣∣2 dydz� c
∫

RN−k

∫
Rk

W (|y|) |u(x)|2 dydz for all u∈C∞
0

(
R

N
)

for some c > 0 .

(3)
∫

RN−k

∫
Rk

V (|y|) ∣∣∇yu(x)
∣∣2 dydz� c

∫
RN−k

∫
Rk

W (|y|) |u(x)|2 dydz for all u∈C∞
0

(
R

N
)

for some c > 0 .

(4)
∫

RN−k

∫
Rk

V (|y|) |∇u(x)|2 dydz � c
∫

RN−k

∫
Rk

W (|y|) |u(x)|2 dydz for all u∈C∞
0

(
R

N
)

for some c > 0 .
Moreover, β

(
rk−1V,rk−1W ;∞

)
is the optimal constant.

Motivated by the cylindrical Hardy type inequalities studied in [2, 28], and the
method and results in [13], our principal goal of this paper is to use the factorization
method to investigate the cylindrical Hardy type inequalities with Bessel pairs and with
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exact remainder terms. Let x = (y,z) ∈ R
k ×R

N−k , 1 � k � N . Our main result can be
read as follows:

THEOREM 1.1. Let 0 < R � ∞ , V and W be positive C1 -functions on (0,R) . As-
sume that

(
rk−1V,rk−1W

)
is a Bessel pair on (0,R) . Then for u∈C∞

0 ({0 < |y| < R}) :∫
0<|y|<R

V (|y|) |∇u(x)|2 dydz−
∫

0<|y|<R

W (|y|) |u(x)|2 dydz

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣∇
(

u(x)
ϕ (|y|)

)∣∣∣∣
2

dydz.

and
∫

0<|y|<R

V (|y|)
∣∣∣∣ y
|y| ·∇yu(x)

∣∣∣∣
2

dydz−
∫

0<|y|<R

W (|y|) |u(x)|2 dydz

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣ y
|y| ·∇y

(
u(x)

ϕ (|y|)
)∣∣∣∣

2

dydz.

Here ϕ is the positive solution of(
rk−1V (r)y′(r)

)′
+ rk−1W (r)y(r) = 0

on the interval (0,R) .

We will list here a few applications of our result. First, since
(
rk−1, (k−2)2

4 rk−3
)

is a Bessel pair on (0,∞) with ϕ = r−
k−2
2 , we deduce from Theorem 1.1 that

COROLLARY 1.1. For u ∈C∞
0

(
R

N \ {0}) :

∫
RN

|∇u|2 dx−
(

k−2
2

)2 ∫
RN

|u|2
|y|2 dx

=
∫

RN

1

|y|k−2

∣∣∣∇(|y| k−2
2 u
)∣∣∣2 dx

and
∫

RN

∣∣∣∣ y
|y| ·∇yu

∣∣∣∣
2

dx−
(

k−2
2

)2 ∫
RN

|u|2
|y|2 dx

=
∫

RN

1

|y|k−2

∣∣∣∣ y
|y| ·∇y

(
|y| k−2

2 u
)∣∣∣∣

2

dx.
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Obviously, our Corollary 1.1 provides a direct understanding and precise informa-
tion on the cylindrical Hardy inequality to (1.3).

More generally, since
(
rk−1−α ,

(k−2−α)2

4 rk−3−α
)

is a Bessel pair on (0,∞) with

ϕ = r−
k−2−α

2 , we obtain

COROLLARY 1.2. For u ∈C∞
0

(
R

N \ {0}) :
∫

RN

|∇u|2
|y|α dx−

(
k−2−α

2

)2 ∫
RN

|u|2
|y|2+α dx

=
∫

RN

1

|y|k−2

∣∣∣∇(|y| k−2−α
2 u

)∣∣∣2 dx

and

∫
RN

∣∣∣ y
|y| ·∇yu

∣∣∣2
|y|α dx−

(
k−2−α

2

)2 ∫
RN

|u|2
|y|2+α dx

=
∫

RN

1

|y|k−2

∣∣∣∣ y
|y| ·∇y

(
|y| k−2−α

2 u
)∣∣∣∣

2

dx.

Now, since

(
rk−1 1

rk−2 ,rk−1 1

4rk|log r
R |2
)

is a Bessel pair on (0,R) with ϕ =
√∣∣log r

R

∣∣ .
By Theorem 1.1, we get the cylindrical critical Hardy inequalities:

COROLLARY 1.3. For u ∈C∞
0 ({0 < |y| < R}) :∫

0<|y|<R

|∇u(x)|2
|y|k−2 dx− 1

4

∫
0<|y|<R

|u(x)|2

|y|k
∣∣∣log R

|y|
∣∣∣2 dx

=
∫

0<|y|<R

1

|y|k−2 log
R
|y|

∣∣∣∣∣∣∇
⎛
⎝ u(x)√

log R
|y|

⎞
⎠
∣∣∣∣∣∣
2

dx

and

∫
0<|y|<R

∣∣∣ y
|y| ·∇yu(x)

∣∣∣2
|y|k−2 dx− 1

4

∫
0<|y|<R

|u(x)|2

|y|k
∣∣∣log R

|y|
∣∣∣2 dx

=
∫

0<|y|<R

1

|y|k−2 log
R
|y|

∣∣∣∣∣∣
y
|y| ·∇y

⎛
⎝ u(x)√

log R
|y|

⎞
⎠
∣∣∣∣∣∣
2

dx.

Actually, we can obtain as many cylindrical Hardy type inequalities as we can set
up Bessel pairs. For more examples of the Bessel pairs, the interested reader is referred
to [21].
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2. Proof of Theorem 1.1

Proof of Theorem 1.1. For u ∈C∞
0 ({0 < |y| < R}) , one denotes

Su =
√

V (|y|)∇u−
√

V (|y|)ϕ ′ (|y|)
ϕ (|y|)

(y,0)
|y| u.

Then a direct computation shows that its formal adjoint is

S∗−→v = −div
(√

V (|y|)−→v
)
−
√

V (|y|)ϕ ′ (|y|)
ϕ (|y|)

(y,0)
|y| ·−→v .

As a consequence, one gets∫
0<|y|<R

u(x)(S∗Su)(x)dx

=
∫

0<|y|<R

|Su(x)|2 dx

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣∇
(

u(x)
ϕ (|y|)

)∣∣∣∣
2

dx. (2.1)

On the other hand, one has

S∗Su(x) = −div

(
V (|y|)

[
∇u(x)− ϕ ′ (|y|)

ϕ (|y|) u(x)
(y,0)
|y|

])

−V (|y|) ϕ ′ (|y|)
ϕ (|y|)

(y,0)
|y| ·∇u(x)+V (|y|)

(
ϕ ′ (|y|)
ϕ (|y|)

)2

u(x)

= −V (|y|)Δu(x)−V ′ (|y|) (y,0)
|y| ·∇u(x)+V ′ (|y|) ϕ ′ (|y|)

ϕ (|y|) u(x)

+V (|y|) ϕ ′′ (|y|)
ϕ (|y|) u(x)+V (|y|) ϕ ′ (|y|)

ϕ (|y|) u(x)
k−1
|y| .

Hence, one obtains∫
0<|y|<R

u(x) (S∗Su)(x)dx

=
∫

0<|y|<R

V (|y|) |∇u(x)|2 dx

+
∫

0<|y|<R

V (|y|)
ϕ (|y|)

[
ϕ ′′ (|y|)+

V ′ (|y|)
V (|y|) ϕ ′ (|y|)+ ϕ ′ (|y|) k−1

|y|
]
|u(x)|2 dx

=
∫

0<|y|<R

V (|y|) |∇u(x)|2 dx−
∫

0<|y|<R

W (|y|) |u(x)|2 dx. (2.2)
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Thus, from (2.1) and (2.2), one deduces that∫
0<|y|<R

V (|y|) |∇u(x)|2 dx−
∫

0<|y|<R

W (|y|) |u(x)|2 dx

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣∇
(

u(x)
ϕ (|y|)

)∣∣∣∣
2

dx.

Now, u ∈C∞
0 ({0 < |y| < R}) , one denotes

Tu(x) =
√

V (|y|) (y,0)
|y| ·∇u(x)−

√
V (|y|)ϕ ′ (|y|)

ϕ (|y|) u(x)

Then its formal adjoint is

T ∗v(x) = −div

(√
V (|y|) (y,0)

|y| v(x)
)
−
√

V (|y|)ϕ ′ (|y|)
ϕ (|y|) v(x) .

As a consequence ∫
0<|y|<R

u(x) (T ∗Tu)(x)dx

=
∫

0<|y|<R

|Tu(x)|2 dx

=
∫

0<|y|<R

V (|y|)
∣∣∣∣(y,0)
|y| ·∇u(x)−

(
ϕ ′ (|y|)
ϕ (|y|)

)
u(x)

∣∣∣∣
2

dx

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣ (y,0)
|y| ·∇

(
u(x)

ϕ (|y|)
)∣∣∣∣

2

dx. (2.3)

Also, by direct computation, one gets

T ∗Tu(x) = −div

(
V (|y|) (y,0)

|y|
[
(y,0)
|y| ·∇u(x)− ϕ ′ (|y|)

ϕ (|y|) u(x)
])

−V (|y|) ϕ ′ (|y|)
ϕ (|y|)

(y,0)
|y| ·∇u(x)+V (|y|)

(
ϕ ′ (|y|)
ϕ (|y|)

)2

u(x)

= −V (|y|) (y,0)
|y| ·∇

(
(y,0)
|y| ·∇u(x)

)
−V ′ (|y|) (y,0)

|y| ·∇u(x)

−V (|y|) (y,0)
|y| ·∇u(x)

k−1
|y| +V ′ (|y|) ϕ ′ (|y|)

ϕ (|y|) u(x)

+V (|y|) ϕ ′′ (|y|)
ϕ (|y|) u(x)+V (|y|) ϕ ′ (|y|)

ϕ (|y|) u(x)
k−1
|y| .
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Hence∫
0<|y|<R

u(x) (T ∗Tu)(x)dx

=
∫

0<|y|<R

V (|y|)
∣∣∣∣(y,0)
|y| ·∇u(x)

∣∣∣∣
2

dx

+
∫

0<|y|<R

V (|y|)
ϕ (|y|)

[
ϕ ′′ (|y|)+

V ′ (|y|)
V (|y|) ϕ ′ (|y|)+ ϕ ′ (|y|) k−1

|y|
]
|u(x)|2 dx

=
∫

0<|y|<R

V (|y|)
∣∣∣∣(y,0)
|y| ·∇u(x)

∣∣∣∣
2

dx−
∫

0<|y|<R

W (|y|) |u(x)|2 dx. (2.4)

From (2.3) and (2.4), one obtains

∫
0<|y|<R

V (|y|)
∣∣∣∣ y
|y| ·∇yu(x)

∣∣∣∣
2

dx−
∫

0<|y|<R

W (|y|) |u(x)|2 dx

=
∫

0<|y|<R

V (|y|)ϕ2 (|y|)
∣∣∣∣ y
|y| ·∇y

(
u(x)

ϕ (|y|)
)∣∣∣∣

2

dx. �
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