A BISHOP-PHELPS-BOLLOBÁS TYPE PROPERTY FOR MINIMUM ATTAINING OPERATORS

Neeru Bala and G. Ramesh

(Communicated by T. S. S. R. K. Rao)

Abstract

In this article, we study the Bishop-Phelps-Bollobás type theorem for minimum attaining operators. More explicitly, if we consider a bounded linear operator T on a Hilbert space H and a unit vector $x_{0} \in H$ such that $\left\|T x_{0}\right\|$ is very close to the minimum modulus of T, then T and x_{0} are simultaneously approximated by a minimum attaining operator S on H and a unit vector $y \in H$ for which $\|S y\|$ is equal to the minimum modulus of S. Further, we extend this result to a more general class of densely defined closed operators (need not be bounded) in Hilbert space. As a consequence, we get the denseness of the set of minimum attaining operators in the class of densely defined closed operators with respect to the gap metric.

1. Introduction

The renowned Bishop-Phelps theorem states that the space of norm attaining functionals on a Banach space is dense in the dual of the Banach space. Bollobás gave a quantitative version of the Bishop-Phelps theorem, which is known as the Bishop-Phelps-Bollobás theorem.

The operator version of the Bishop-Phelps theorem asks whether the class of all norm attaining operators between any two Banach spaces is dense in the space of all bounded linear operators between the Banach spaces with respect to the operator norm. There are several authors who have studied the operator version of Bishop-Phelps theorem on various Banach spaces, for example [1, 3, 10]. In general, the operator version of the Bishop-Phelps theorem need not hold. Lindenstrauss [10] gave a counter example which illustrated this fact. He also proved that the answer is affirmative if the domain space is reflexive.

Acosta et. al. [1] defined the notion of the Bishop-Phelps-Bollobás property (BPBP), which asserts that a pair of Banach spaces (X, Y) is said to have BPBP if for every $\varepsilon>0$, there are $\alpha(\varepsilon)>0$ and $\beta(\varepsilon)>0$ with $\beta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ such that for every bounded linear operator T from X into Y with $\|T\|=1$, if $x_{0} \in X$ with $\left\|x_{0}\right\|=1$ such that $\left\|T x_{0}\right\|>1-\alpha(\varepsilon)$, then there exist $x_{\varepsilon} \in X,\left\|x_{\varepsilon}\right\|=1$ and a bounded linear operator S from X into Y with $\|S\|=1$ such that

$$
\left\|S x_{\varepsilon}\right\|=1,\left\|x_{\varepsilon}-x_{0}\right\|<\beta(\varepsilon) \text { and }\|T-S\|<\varepsilon
$$

[^0]It is proved by Chang and Dong [3] that for every Hilbert space $H,(H, H)$ have the BPB property.

If T is a bounded linear operator on a Hilbert space H, then the minimum modulus of T is defined by $m(T)=\inf \{\|T x\|: x \in H,\|x\|=1\}$. In this article, we introduce the minimum attaining analog of BPBP on Hilbert spaces. In particular, we show that:

Let T be a bounded linear operator on a Hilbert space H with $m(T)>0$. Then for all $\varepsilon \in(0, m(T))$ and a unit vector x_{0} in H satisfying

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{1.1}
\end{equation*}
$$

there exist a bounded linear operator T_{ε} on H and a unit vector x_{ε} in H satisfying the following;

1. $\left\|T_{\mathcal{\varepsilon}} x_{\mathcal{E}}\right\|=m\left(T_{\mathcal{E}}\right)=m(T)$,
2. $\left\|T-T_{\mathcal{\varepsilon}}\right\|<\eta(\varepsilon, T)$,
3. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
In case, if $m(T)=0$ then for all $\varepsilon>0$ and a unit vector x_{0} satisfying (1.1), there exists a bounded operator T_{ε} on H satisfying all the conditions (1), (2) and (3).

Later we extend this notion to a more general class of densely defined closed operators defined between Hilbert spaces.

This article is divided into four sections. In section 2, we set up some notations and terminologies. In section 3, we deal with the BPBP analog of bounded minimum attaining operators in the space of all bounded linear operators on a Hilbert space. In section 4 , we extend the results of section 3 to the class of densely defined closed operators.

2. Preliminaries

In this article, we deal with complex Hilbert spaces, which are denoted by H, H_{1}, H_{2} etc. If M is a subspace of H, then the unit sphere in M is defined by $S_{M}:=\{x \in M$: $\|x\|=1\}$.

By a linear operator from H_{1} to H_{2}, we mean a linear mapping T whose domain $D(T)$ and range $R(T)$ are subspaces of H_{1} and H_{2}, respectively. It is called densely defined, if $\overline{D(T)}=H_{1}$. For every densely defined linear operator T, there exist a unique linear operator T^{*} called the adjoint of T, which satisfies

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \text { for } x \in D(T), y \in D\left(T^{*}\right)
$$

where $D\left(T^{*}\right)=\left\{y \in H_{2}: x \rightarrow\langle T x, y\rangle\right.$ is a continuous functional on $\left.D(T)\right\}$.
The graph $\mathscr{G}(T)$ of a linear operator T from H_{1} to H_{2} is the subspace $\{(x, T x)$: $x \in D(T)\}$ of $H_{1} \oplus H_{2}$. A linear operator T is said to be closed if $\mathscr{G}(T)$ is a closed subspace of $H_{1} \oplus H_{2}$. We denote the class of closed linear operators from H_{1} to H_{2} by $\mathscr{C}\left(H_{1}, H_{2}\right)$. In particular, $\mathscr{C}(H):=\mathscr{C}(H, H)$. By the closed graph theorem, a linear
operator T is bounded if and only if T is closed and $D(T)=H$. We denote the class of bounded linear operators from H_{1} to H_{2} by $\mathscr{B}\left(H_{1}, H_{2}\right)$ and $\mathscr{B}(H, H)$ is simply denoted by $\mathscr{B}(H)$.

Let $T \in \mathscr{C}\left(H_{1}, H_{2}\right)$ be a densely defined injective operator. Then the inverse of T is the linear map from $R(T)$ into H_{1}, satisfying $T^{-1} T x=x$ for all $x \in D(T)$. In addition, if T is onto, then $T^{-1} \in \mathscr{B}\left(H_{2}, H_{1}\right)$ and in addition satisfy $T T^{-1} y=y$ for all $y \in H_{2}$.

An operator $A \in \mathscr{B}\left(H_{1}, H_{2}\right)$ is called an isometry, if $\|A x\|=\|x\|$, for every $x \in H_{1}$ and is a partial isometry, if $\left.A\right|_{N(A)^{\perp}}$ is an isometry, where $N(A)$ denotes the null space of A. For the partial isometry $A, N(A)^{\perp}$ is called the initial space and $R(A)$ is called the final space.

A linear operator S is called an extension of T, if $D(T) \subseteq D(S)$ and $S x=T x$, for all $x \in D(T)$. It is denoted by $T \subseteq S$. In addition if $D(S)=D(T)$, then $S=T$. A linear operator T in H is said to be normal if T is densely defined, closed and $T^{*} T=T T^{*}$. If $T=T^{*}$, then it is called self-adjoint. If T is self-adjoint and $\langle T x, x\rangle \geqslant 0$, for every $x \in D(T)$, then T is called a positive operator.

THEOREM 2.1. [12, Theorem 13.31] If $T \in \mathscr{C}(H)$ is a densely defined positive operator, then there exists a unique positive operator $S \in \mathscr{C}(H)$ such that $S^{2}=T$. This unique S is denoted by \sqrt{T}.

THEOREM 2.2. [2, Theorem 2, Page 184] Let $T \in \mathscr{C}\left(H_{1}, H_{2}\right)$ be a densely defined operator. Then there exists a unique partial isometry $V: H_{1} \rightarrow H_{2}$ with the initial space $N(T)^{\perp}$ and the final space $\overline{R(T)}$ such that

$$
\begin{equation*}
T=V|T|, \text { where }|T|=\sqrt{T^{*} T} \tag{2.1}
\end{equation*}
$$

Note that $D(T)=D(|T|)$. The Equation (2.1) is called the polar decomposition of T.

Let Σ be a σ-algebra of subsets of a set X and H be a Hilbert space. A spectral measure for (X, Σ, H) is a map $E: \Sigma \rightarrow \mathscr{B}(H)$ such that

1. For each $\omega \in \Sigma, E(\omega)$ is an orthogonal projection.
2. $E(\emptyset)=0, E(X)=I$.
3. $E\left(\omega_{1} \cap \omega_{2}\right)=E\left(\omega_{1}\right) E\left(\omega_{2}\right)$, for all $\omega_{1}, \omega_{2} \in \Sigma$.
4. If $\left\{\omega_{n}\right\}_{n=1}^{\infty}$ is a sequence of mutually disjoint sets in Σ, then

$$
E\left(\bigcup_{n=1}^{\infty} \omega_{n}\right)=\sum_{n=1}^{\infty} E\left(\omega_{n}\right)
$$

where the series on the right hand side converges in the strong operator topology.

Theorem 2.3. [12, Theorem 13.30] To every self-adjoint operator A in H, there corresponds a unique spectral measure E on the Borel subsets of real line, such that

$$
A=\int_{-\infty}^{\infty} \lambda d E .
$$

Moreover, E is concentrated on $\sigma(A) \subset(-\infty, \infty)$, in the sense that $E(\sigma(A))=I$.
The above theorem is called the spectral theorem for self-adjoint operators. For more detail about spectral theory, we refer $[4,12]$.

If T is a linear operator from H_{1} to H_{2}, then the minimum modulus of T is defined by $m(T)=\inf \left\{\|T x\|: x \in S_{D(T)}\right\}$.

It is well known that T has bounded inverse if and only if $m(T)>0$. In this case $\left\|T^{-1}\right\|=1 / m(T)$. For more details about minimum modulus, we refer to [13].

Definition 2.4. [9, Definition 2.3] Let $T \in \mathscr{C}\left(H_{1}, H_{2}\right)$ be a densely defined operator. Then T is called minimum attaining, if there exists $x_{0} \in S_{D(T)}$ such that $\left\|T x_{0}\right\|=m(T)$.

Among bounded operators, finite rank operators, partial isometries, all non injective operators are always minimum attaining. In fact, the set of all bounded minimum attaining operators is dense in the space all bounded operators with respect to the operator norm. For more details of this class, we refer to [5, 9].

3. Bounded operators

This section is dedicated to the Bishop-Phelps type theorem for the minimum attaining operators in $\mathscr{B}(H)$. First, we prove a quantitative version of the Bishop-Phelps theorem for norm attaining operators. To some extent, this result is same as the one proved in [3, Theorem 3.1]. We need a few observations from this result which we use in proving our further results.

Theorem 3.1. Let $0<\varepsilon<1 / 2$. For every self adjoint operator $T \in \mathscr{B}(H)$ and $x_{0} \in S_{H}$ such that $\left\|T x_{0}\right\|>\|T\|(1-\varepsilon)$, there exist a self adjoint operator $S \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ such that

1. $\left\|S x_{\varepsilon}\right\|=\|S\|=\|T\|$,
2. $\|S-T\|<C \sqrt{2 \varepsilon}$, for some constant $C>2\|T\|$,
3. $\left\|x_{0}-x_{\varepsilon}\right\|<\sqrt{2 \varepsilon}+\sqrt[4]{2 \varepsilon}$.

Moreover, we have the following;
(a) If T is positive, then S is positive.
(b) $N(T)=N(S)$.
(c) $m(S) \geqslant m(T)$.

Proof. Without loss of generality, we assume that $\|T\|=1$. Suppose E is the spectral measure associated with T. Define $\omega_{1}=\sigma(T) \cap[-1,-(1-\sqrt{2 \varepsilon})]$, $\omega_{2}=$ $\sigma(T) \cap[(1-\sqrt{2 \varepsilon}), 1]$ and $\omega_{3}=\sigma(T) \cap(-(1-\sqrt{2 \varepsilon}),(1-\sqrt{2 \varepsilon}))$. Note that ω_{1}, ω_{2} and ω_{3} are mutually disjoint. Next, define

$$
\begin{equation*}
S=\left[-E\left(\omega_{1}\right)+E\left(\omega_{2}\right)\right]+T E\left(\omega_{3}\right) \tag{3.1}
\end{equation*}
$$

Clearly, S is self-adjoint, as it is the sum of self-adjoint operators.
Let $x_{0}=x_{1}+x_{2}$, where $x_{1} \in R\left(E\left(\omega_{1} \cup \omega_{2}\right)\right)$ and $x_{2} \in R\left(E\left(\omega_{3}\right)\right)$. Let $x_{\varepsilon}=$ $x_{1} /\left\|x_{1}\right\|$. Observe that $\left\|S x_{\varepsilon}\right\|=1$ and

$$
S-T=\int_{\omega_{1}}(-1-\lambda) d E(\lambda)+\int_{\omega_{2}}(1-\lambda) d E(\lambda)
$$

Note that if $\lambda \in \omega_{1}$, then $-1 \leqslant \lambda \leqslant-(1-\sqrt{2 \varepsilon})$ so that $\sup _{\lambda \in \omega_{1}}|1+\lambda|=\sqrt{2 \varepsilon}$. Similarly $\sup |1-\lambda|=\sqrt{2 \varepsilon}$, so that $\lambda \in \omega_{2}$

$$
\|S-T\| \leqslant \sup _{\lambda \in \omega_{1}}|1+\lambda|+\sup _{\lambda \in \omega_{2}}|1-\lambda| \leqslant 2 \sqrt{2 \varepsilon}
$$

Thus in (2) we can choose $C>2$. Observe that $\left\|\left.T\right|_{R\left(E\left(\omega_{1} \cup \omega_{2}\right)\right)}\right\| \leqslant 1$ and $\left\|\left.T\right|_{R\left(E\left(\omega_{3}\right)\right)}\right\| \leqslant$ $(1-\sqrt{2 \varepsilon})$, thus we get

$$
\begin{aligned}
(1-\varepsilon)^{2} & <\left\|T x_{0}\right\|^{2} \leqslant\left\|x_{1}\right\|^{2}+\left((1-\sqrt{2 \varepsilon})\left\|x_{2}\right\|\right)^{2} \\
& =\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)+(2 \varepsilon-2 \sqrt{2 \varepsilon})\left\|x_{2}\right\|^{2} \\
& =1+(2 \varepsilon-2 \sqrt{2 \varepsilon})\left\|x_{2}\right\|^{2} .
\end{aligned}
$$

That is, $\varepsilon^{2}-2 \varepsilon<(2 \varepsilon-2 \sqrt{2 \varepsilon})\left\|x_{2}\right\|^{2}$. From this inequality, on simplification we obtain,

$$
\left\|x_{2}\right\|^{2}<\frac{2 \varepsilon-\varepsilon^{2}}{2(\sqrt{2 \varepsilon}-\varepsilon)}=\frac{\sqrt{2 \varepsilon}+\varepsilon}{2} \leqslant \sqrt{2 \varepsilon}
$$

Consequently, we have

$$
\left\|x_{1}\right\|=\sqrt{1-\left\|x_{2}\right\|^{2}}>\sqrt{1-\sqrt{2 \varepsilon}} \geqslant 1-\sqrt{2 \varepsilon}
$$

and

$$
\left\|x_{0}-x_{\varepsilon}\right\|=\left\|x_{1}-\left(x_{1} /\left\|x_{1}\right\|\right)+x_{2}\right\| \leqslant 1-\left\|x_{1}\right\|+\left\|x_{2}\right\|<\sqrt{2 \varepsilon}+\sqrt[4]{2 \varepsilon}
$$

Proof of (a): Suppose T is positive. Then $\sigma(T) \subseteq[0,1]$ and the operator in Equation (3.1) takes the form

$$
\begin{equation*}
S=E\left(\omega_{2}\right)+T E(\sigma(T) \cap[0,(1-\sqrt{2 \varepsilon}))) \tag{3.2}
\end{equation*}
$$

For every $x \in H$, we have $x=x_{1}+x_{2}$, where $x_{1} \in R\left[E\left(\omega_{2}\right)\right]$, $x_{2} \in R[E(\sigma(T) \cap$ $[0,(1-\sqrt{2 \varepsilon})))]$. Hence

$$
\begin{equation*}
\langle S x, x\rangle=\left\|x_{1}\right\|^{2}+\left\langle T x_{2}, x_{2}\right\rangle \geqslant\langle T x, x\rangle . \tag{3.3}
\end{equation*}
$$

The above inequality implies that S is positive, whenever T is positive. By the definition of the minimum modulus, we can easily verify that $m(S) \geqslant m(T)$.

Proof of (b): Let $x \in N(S)$. Then $x=x_{1}+x_{2}+x_{3}$, where $x_{1} \in R\left(E\left(\omega_{1}\right)\right), x_{2} \in$ $R\left(E\left(\omega_{2}\right)\right)$ and $x_{3} \in R\left(E\left(\omega_{3}\right)\right)$. For $i=1,2$, we have $(-1)^{i}\left\|x_{i}\right\|^{2}=\left\langle S x, x_{i}\right\rangle=0$, which implies $x_{i}=0$. Thus we get $T x=T x_{3}=S x_{3}=0$ and consequently $N(S) \subseteq N(T)$.

Conversely, if $y \in N(T)$, then $y \in R(E\{0\}) \subseteq R\left(E\left(\omega_{3}\right)\right)$, by [2, Theorem 4, Page 155]. This gives $S y=T y=0$. Hence $N(T) \subseteq N(S)$.

Proof of (c): Let T be an arbitrary element of $\mathscr{B}(H)$ and $T=W|T|$ be its polar decomposition. Let S_{1} be the operator defined in (3.2) corresponding to the operator $|T|$. That is,

$$
S_{1}=E(\sigma(|T|) \backslash[0,(1-\sqrt{2 \varepsilon})))+|T| E(\sigma(|T|) \cap[0,(1-\sqrt{2 \varepsilon})))
$$

Let $S=W S_{1}$. Then $m\left(S_{1}\right) \geqslant m(|T|)=m(T)$. By part (b), we have $N\left(S_{1}\right)=N(|T|)=$ $N(T)$. It can be easily verified that $N(S)=N\left(S_{1}\right)$.

For $y \in H$, we have $y=y_{1}+y_{2}$, where $y_{1} \in N(T)$ and $y_{2} \in N(T)^{\perp}$. Hence

$$
\|S y\|=\left\|W S_{1} y_{1}+W S_{1} y_{2}\right\|=\left\|W S_{1} y_{2}\right\|=\left\|S_{1} y\right\|
$$

The above equality implies that $m(S)=m\left(S_{1}\right) \geqslant m(T)$.
REMARK 3.2.

1. Given $\varepsilon>0$, it is possible to find a unit vector x_{0} such that $\left\|T x_{0}\right\|>\|T\|(1-\varepsilon)$ by the definition of the norm
2. If we do not assume $\|T\|=1$ in Theorem 3.1, we have to define S as $S=$ $\|T\|\left[E\left(\omega_{2}\right)-E\left(\omega_{1}\right)\right]+T E\left(\omega_{3}\right)$.

The following result is a Bishop-Phelps type theorem for minimum attaining operators.

THEOREM 3.3. Let $T \in \mathscr{B}(H)$ be a positive operator, $0<\varepsilon<m(T)$ and $x_{0} \in S_{H}$ with

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{3.4}
\end{equation*}
$$

Then there exist a positive operator $T_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ satisfying the following.

1. $\left\|T_{\varepsilon} x_{\mathcal{E}}\right\|=m\left(T_{\varepsilon}\right)=m(T)$,
2. $\left\|T-T_{\varepsilon}\right\|<\eta(\varepsilon, T)$,
3. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. Note that T is invertible and $T^{-1} \in \mathscr{B}(H)$, hence $T x_{0} \neq 0$. By inequality (3.4), and the fact that $m(T)=1 /\left\|T^{-1}\right\|, T^{-1}$ satisfies the following condition;

$$
\begin{equation*}
\left\|T^{-1} \frac{T x_{0}}{\left\|T x_{0}\right\|}\right\|>\left\|T^{-1}\right\|(1-\delta), \text { where } \delta=\frac{\varepsilon}{m(T)+\varepsilon} \tag{3.5}
\end{equation*}
$$

As $0<\varepsilon<m(T)$ we get $0<\delta<1 / 2$. By Theorem 3.1, there exist a positive operator $S_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon}^{1} \in S_{H}$, such that

$$
\begin{gather*}
\left\|S_{\mathcal{\varepsilon}} x_{\mathcal{E}}^{1}\right\|=\left\|S_{\mathcal{E}}\right\|=\left\|T^{-1}\right\| \tag{3.6}\\
\left\|T^{-1}-S_{\mathcal{E}}\right\|<C \sqrt{2 \delta} \text { for some constant } C>0 \tag{3.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|x_{\varepsilon}^{1}-\frac{T x_{0}}{\left\|T x_{0}\right\|}\right\|<\sqrt{2 \delta}+\sqrt[4]{2 \delta} \tag{3.8}
\end{equation*}
$$

As a consequence of part (c) of Theorem 3.1, S_{ε}^{-1} exists. Define $T_{\varepsilon}:=S_{\varepsilon}^{-1}$ and $x_{\varepsilon}:=$ $\frac{S_{\varepsilon} x_{\varepsilon}^{1}}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}$. It can be easily seen from Equation (3.6) that

$$
\begin{aligned}
\left\|T_{\varepsilon} \frac{S_{\varepsilon} x_{\varepsilon}^{1}}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}\right\| & =\frac{\left\|x_{\varepsilon}^{1}\right\|}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}=\frac{1}{\left\|S_{\varepsilon}\right\|} \\
& =m\left(S_{\varepsilon}^{-1}\right)=m\left(T_{\varepsilon}\right)=m(T)
\end{aligned}
$$

We know that the inverse of a positive operator is positive, hence T_{ε} is positive.
By part (c) of Theorem 3.1, we have $m\left(S_{\varepsilon}\right) \geqslant m\left(T^{-1}\right)$. Using this inequality and relations (3.6), (3.7) we get that

$$
\begin{aligned}
\left\|T_{\varepsilon}-T\right\|=\left\|T_{\varepsilon}\left(T^{-1}-T_{\varepsilon}^{-1}\right) T\right\| & \leqslant\left\|S_{\varepsilon}^{-1}\right\|\left\|T^{-1}-S_{\varepsilon}\right\|\|T\| \\
& \leqslant \frac{1}{m\left(S_{\varepsilon}\right)}\left\|T^{-1}-S_{\varepsilon}\right\|\|T\| \\
& <C\|T\|^{2} \sqrt{2 \delta} \\
& =\eta(\varepsilon, T)
\end{aligned}
$$

where $\eta(\varepsilon, T)=\|T\|^{2} C \sqrt{2 \delta}$. From the inequality (3.5), it is easy to see that $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$. Consequently, $\eta(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

From inequalities (3.4), (3.6), (3.7) and (3.8) we have the following estimate;

$$
\begin{aligned}
\left\|x_{\varepsilon}-x_{0}\right\|= & \left\|\frac{S_{\varepsilon} x_{\varepsilon}^{1}}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}-x_{0}\right\| \\
\leqslant & \left\|\frac{S_{\varepsilon} x_{\varepsilon}^{1}}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}-\frac{T^{-1} x_{\varepsilon}^{1}}{\left\|S_{\mathcal{\varepsilon}} x_{\varepsilon}^{1}\right\|}\right\|+\left\|\frac{T^{-1} x_{\varepsilon}^{1}}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}-\frac{x_{0}}{\left\|T x_{0}\right\|\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}\right\| \\
& +\left\|\frac{x_{0}}{\left\|T x_{0}\right\|\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}-x_{0}\right\| \\
\leqslant & \frac{\left\|S_{\varepsilon}-T^{-1}\right\|}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}+\frac{\left\|T^{-1}\right\|}{\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}\left\|x_{\varepsilon}^{1}-\frac{T x_{0}}{\left\|T x_{0}\right\|}\right\| \\
& +\frac{\left\|x_{0}\right\|}{\left\|T x_{0}\right\|\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|}\left|1-\left\|T x_{0}\right\|\left\|S_{\varepsilon} x_{\varepsilon}^{1}\right\|\right| \\
< & m(T) C \sqrt{2 \delta}+\sqrt{2 \delta}+\sqrt[4]{2 \delta}+\frac{m(T)}{\left\|T x_{0}\right\|} \frac{\mid m(T)-\left\|T x_{0}\right\| \|}{m(T)} \\
\leqslant & m(T) C \sqrt{2 \delta}+\sqrt{2 \delta}+\sqrt[4]{2 \delta}+\frac{\mid m(T)-\left\|T x_{0}\right\| \|}{m(T)}, \text { as }\left\|T x_{0}\right\| \geqslant m(T) \\
= & \gamma(\varepsilon . T),
\end{aligned}
$$

where $\gamma(\varepsilon, T)=C m(T) \sqrt{2 \delta}+\sqrt{2 \delta}+\sqrt[4]{2 \delta}+\varepsilon / m(T)$. Again using the fact from inequality (3.5) that $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$, we conclude that $\gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

REMARK 3.4. Here we explain how to get explicitly T_{ε} satisfying the conclusions of Theorem 3.1. By (2) of Remark 3.2, we have

$$
S_{\varepsilon}=\left[\begin{array}{cc}
\left\|T^{-1}\right\| E\left(\Delta_{1}\right) & 0 \\
0 & \left.T^{-1}\right|_{R\left[E\left(\Delta_{2}\right)\right]}
\end{array}\right]
$$

where $\Delta_{1}=\sigma\left(T^{-1}\right) \cap\left(\left\|T^{-1}\right\|(1-\sqrt{2 \delta}),\left\|T^{-1}\right\|\right], \Delta_{2}=\sigma\left(T^{-1}\right) \cap\left[m(T),\left\|T^{-1}\right\|(1-\right.$ $\sqrt{2 \delta})]$ and E is the spectral measure corresponding to T. Note that

$$
\begin{aligned}
\Delta_{1} & =\sigma\left(T^{-1}\right) \cap\left(\left\|T^{-1}\right\|(1-\sqrt{2 \delta}),\left\|T^{-1}\right\|\right] \\
& =\left\{\mu \in \sigma(T):\left\|T^{-1}\right\|(1-\sqrt{2 \delta})<\mu^{-1} \leqslant\left\|T^{-1}\right\|\right\} \\
& =\left\{\mu \in \sigma(T): m(T) \leqslant \mu<\frac{m(T)}{1-\sqrt{2 \delta}}=m(T)+\frac{m(T) \sqrt{2 \delta}}{1-\sqrt{2 \delta}}\right\} \\
& =\sigma(T) \cap\left[m(T), m(T)+m(T) \frac{\sqrt{2 \delta}}{1-\sqrt{2 \delta}}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\Delta_{2} & =\sigma\left(T^{-1}\right) \cap\left[m\left(T^{-1}\right),\left\|T^{-1}\right\|(1-\sqrt{2 \delta})\right] \\
& =\sigma(T) \cap\left[m(T)+m(T) \frac{\sqrt{2 \delta}}{1-\sqrt{2 \delta}},\|T\|\right]
\end{aligned}
$$

Thus

$$
T_{\varepsilon}=\left[\begin{array}{cc}
m(T) E\left(\sigma(T) \cap\left[m(T), m(T)+\delta_{1}\right]\right) & 0 \tag{3.9}\\
0 & \left.T\right|_{R\left[E\left(\sigma(T) \backslash\left[m(T), m(T)+\delta_{1}\right]\right)\right]}
\end{array}\right]
$$

where $\delta_{1}=(m(T) \sqrt{2 \delta}) /(1-\sqrt{2 \delta})$.

Theorem 3.5. Let $T \in \mathscr{B}(H), 0<\varepsilon<m(T)$ and $x_{0} \in S_{H}$ with

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{3.10}
\end{equation*}
$$

Then there exist $T_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ satisfying the following.

1. $\left\|T_{\varepsilon} x_{\varepsilon}\right\|=m\left(T_{\varepsilon}\right)=m(T)$,
2. $\left\|T-T_{\mathcal{\varepsilon}}\right\|<\eta(\varepsilon, T)$,
3. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. Let $T=V|T|$ be the polar decomposition of T. As $m(T)>0, T$ must be bounded below. In this case $N(V)=N(T)=\{0\}$. Hence V is an isometry. As $m(T)=m(|T|)$ and $\left\||T| x_{0}\right\|=\left\|T x_{0}\right\|$, by applying Theorem 3.3 to $|T|$, we can find $x_{\varepsilon} \in S_{H}$ and $S_{\varepsilon} \in \mathscr{B}(H)$ satisfying the conditions stated in Theorem 3.3.

Next, let $T_{\varepsilon}=V S_{\varepsilon}$. Since V is an isometry, we have $m\left(S_{\varepsilon}\right)=m\left(T_{\varepsilon}\right)$ and

$$
\left\|T_{\varepsilon} x_{\varepsilon}\right\|=\left\|V S_{\varepsilon} x_{\varepsilon}\right\|=\left\|S_{\varepsilon} x_{\varepsilon}\right\|=m\left(T_{\varepsilon}\right)=m(T)
$$

Next, $\left\|T_{\varepsilon}-T\right\|=\left\|V\left(S_{\varepsilon}-|T|\right)\right\|=\left\|S_{\varepsilon}-|T|\right\|<\eta(\varepsilon, T)$. This completes the proof.
Next we study the case when $m(T)=0$.

THEOREM 3.6. Let $\varepsilon>0$. Suppose $T \in \mathscr{B}(H)$ is a positive operator, $m(T)=0$ and $x_{0} \in S_{H}$ with

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{3.11}
\end{equation*}
$$

Then there exist a positive operator $T_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ satisfying the following.

1. $\left\|T_{\mathcal{\varepsilon}} x_{\mathcal{E}}\right\|=m\left(T_{\mathcal{\varepsilon}}\right)=m(T)$,
2. $\left\|T-T_{\varepsilon}\right\|<\eta(\varepsilon, T)$,
3. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. Consider $S_{\varepsilon}=T+2 \varepsilon I$. It is easy to see that S_{ε} is a positive operator and $m\left(S_{\varepsilon}\right)=2 \varepsilon$. From the condition (3.11), we get

$$
\begin{aligned}
\left\|S_{\varepsilon} x_{0}\right\| & \leqslant\left\|T x_{0}\right\|+2 \varepsilon \\
& <\varepsilon+2 \varepsilon=\varepsilon+m\left(S_{\varepsilon}\right)
\end{aligned}
$$

Note that $0<\varepsilon<m\left(S_{\varepsilon}\right)$. By Theorem 3.3, there exist a positive operator $T_{\varepsilon}^{1} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ such that

$$
\begin{equation*}
\left\|T_{\varepsilon}^{1} x_{\varepsilon}\right\|=2 \varepsilon=m\left(T_{\varepsilon}^{1}\right),\left\|T_{\varepsilon}^{1}-S_{\varepsilon}\right\|<\eta(\varepsilon, T) \text { and }\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T) \tag{3.12}
\end{equation*}
$$

with the condition that $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Since T_{ε}^{1} is a positive operator and $m\left(T_{\varepsilon}^{1}\right)=2 \varepsilon$, it follows that $T_{\varepsilon}^{1} x_{\varepsilon}=(2 \varepsilon) x_{\varepsilon}$ by [7, Proposition 3.9].

Take $T_{\varepsilon}:=T_{\varepsilon}^{1}-(2 \varepsilon) I$. Note that T_{ε} is a positive operator and $\left\|T_{\varepsilon} x_{\varepsilon}\right\|=\| T_{\varepsilon}^{1} x_{\varepsilon}-$ $(2 \varepsilon) I x_{\varepsilon} \|=0=m\left(T_{\varepsilon}\right)=m(T)$. By (3.12), we have that

$$
\begin{aligned}
\left\|T_{\varepsilon}-T\right\| & =\left\|T_{\varepsilon}^{1}-2 \varepsilon I-S_{\varepsilon}+2 \varepsilon I\right\| \\
& =\left\|T_{\varepsilon}^{1}-S_{\varepsilon}\right\| \\
& <\eta(\varepsilon, T) .
\end{aligned}
$$

REMARK 3.7. Here we indicate a procedure to get T_{ε} satisfying conclusions of Theorem 3.6. By Remark 3.4, we have

$$
T_{\varepsilon}^{1}=\left[\begin{array}{cc}
m\left(S_{\varepsilon}\right) E\left(\sigma\left(S_{\varepsilon}\right) \cap[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right) & 0 \\
0 & \left.S_{\varepsilon}\right|_{R\left[E\left(\sigma\left(S_{\varepsilon}\right) \backslash[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right)\right]}
\end{array}\right]
$$

for some function $\alpha(\varepsilon)$ of ε. Observe that

$$
2 \varepsilon I=2 \varepsilon E\left(\sigma\left(S_{\varepsilon}\right) \cap[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right)+2 \varepsilon E\left(\sigma\left(S_{\varepsilon}\right) \backslash[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right)
$$

We know that $\left.\left(S_{\varepsilon}-2 \varepsilon I\right)\right|_{R\left[E\left(\sigma\left(S_{\varepsilon}\right) \backslash[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right]\right]}=\left.T\right|_{R\left[E\left(\sigma\left(S_{\varepsilon}\right) \backslash[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]\right]\right]}$ and $\sigma\left(S_{\varepsilon}\right) \backslash$ $[2 \varepsilon, 2 \varepsilon+\alpha(\varepsilon)]=\sigma(T) \backslash[0, \alpha(\varepsilon)]$. Thus

$$
T_{\varepsilon}=\left[\begin{array}{lc}
0 & 0 \tag{3.13}\\
0 & \left.T\right|_{R[E(\sigma(T) \backslash[0, \alpha(\varepsilon)])]}
\end{array}\right]
$$

THEOREM 3.8. Let $\varepsilon>0$. Suppose $T \in \mathscr{B}(H)$ with $m(T)=0$ and $x_{0} \in S_{H}$ with

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{3.14}
\end{equation*}
$$

Then there exist $T_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ satisfying the following.

1. $\left\|T_{\varepsilon} x_{\mathcal{E}}\right\|=m\left(T_{\varepsilon}\right)=m(T)$,
2. $\left\|T-T_{\varepsilon}\right\|<\eta(\varepsilon, T)$,
3. $\left\|x_{0}-x_{\mathcal{\varepsilon}}\right\|<\gamma(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. Let $T=V|T|$ be the polar decomposition of T. Using the fact that $\left\||T| x_{0}\right\|=$ $\left\|T x_{0}\right\|<m(T)+\varepsilon$ and earlier arguments, we conclude that there exist a positive operator $\tilde{T}_{\varepsilon} \in \mathscr{B}(H)$ and $x_{\varepsilon} \in S_{H}$ such that

$$
\left\|\tilde{T}_{\varepsilon} x_{\varepsilon}\right\|=m\left(\tilde{T}_{\varepsilon}\right),\left\|\tilde{T}_{\varepsilon}-|T|\right\|<\eta(\varepsilon, T) \text { and }\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)
$$

Define $T_{\varepsilon}:=V \tilde{T}_{\varepsilon}$. From Equations (3.9), (3.13) and [2, Theorem 4, Page 155], we observe that $N(T) \subseteq R(E\{0\}) \subseteq N\left(\tilde{T}_{\varepsilon}\right)$, where E is the spectral measure associated with $|T|$. That is, $N\left(\tilde{T}_{\varepsilon}\right)^{\perp} \subseteq N(\bar{T})^{\perp}$.

Observe that $\left\|T_{\varepsilon} x_{\varepsilon}\right\|=\left\|V \tilde{T}_{\varepsilon} x_{\varepsilon}\right\|=\left\|\tilde{T}_{\varepsilon} x_{\mathcal{\varepsilon}}\right\|=m\left(\tilde{T}_{\varepsilon}\right)=m\left(T_{\varepsilon}\right)$. Here we used the fact that $\left.V\right|_{N\left(\tilde{T_{\varepsilon}}\right)^{\perp}}$ is an isometry.

Next, $\left\|T_{\varepsilon}-T\right\| \leqslant\|V\|\left\|\tilde{T}_{\varepsilon}-|T|\right\|<\eta(\varepsilon, T)$. This proves the result.
REMARK 3.9. Given $\varepsilon>0$ it is possible to find a unit vector x_{0} such that $\left\|T x_{0}\right\|<$ $m(T)+\varepsilon$ by the definition of the minimum modulus.

We illustrate Theorem 3.8 with a few examples.
EXAMPLE 3.10. Let $0<\varepsilon<1$. Consider the operator M : $L^{2}[-1,1] \rightarrow L^{2}[-1,1]$ defined by

$$
M f(t)=t f(t) \text { for } t \in[-1,1], f \in L^{2}[-1,1]
$$

It is easy to check that $m(M)=0$. We define a function $g=\left(1 / 2 \varepsilon^{2}\right) \chi_{\left(-\varepsilon^{2}, \varepsilon^{2}\right)}$. Then $g \in L^{2}[-1,1]$ and it satisfy

$$
\|M g\|_{2}=\frac{\varepsilon}{\sqrt{6}}<\varepsilon=m(M)+\varepsilon
$$

Now, we show that M and g can be approximated by an operator $M_{\varepsilon} \in \mathscr{B}\left(L^{2}[-1,1]\right)$ and $g_{\varepsilon} \in L^{2}[-1,1]$, respectively. To deduce this, we define $M_{\varepsilon}=M P_{\omega}$, where

$$
\omega=\left\{h \in L^{2}[-1,1]: \text { support of } h \subseteq[-1,1] \backslash\left(-\varepsilon^{2}, \varepsilon^{2}\right)\right\}
$$

P_{ω} is orthogonal projection onto ω and $g_{\varepsilon}:=g$. We observe that $\left\|M_{\varepsilon} g_{\varepsilon}\right\|=0$ and

$$
\begin{aligned}
\left\|g-g_{\varepsilon}\right\|_{2} & =0<\varepsilon \\
\left\|M-M_{\mathcal{E}}\right\| & \left.\leqslant\left(\sup _{t \in\left(-\varepsilon^{2}, \varepsilon^{2}\right)} \mid t\right)^{2}\right)^{\frac{1}{2}}<\sqrt{2} \varepsilon^{2}
\end{aligned}
$$

Example 3.11. Let $0<\varepsilon<1$. Consider the operator $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right) \text { for }\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}(\mathbb{N})
$$

Note that $\sigma(T)=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$ and $m(T)=d(0, \sigma(T))=\inf \{|\lambda|: \lambda \in \sigma(T)\}=$ 0 .

Suppose $x_{0}=\sum_{i=1}^{\infty} \alpha_{i} e_{i} \in \ell^{2}(\mathbb{N})$ satisfying $\left\|T x_{0}\right\|<\varepsilon=m(T)+\varepsilon$, where $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is the standard othonormal basis for $\ell^{2}(\mathbb{N})$ and α_{i} is a scalar for every $i \in \mathbb{N}$. As $\left(\frac{\alpha_{i}}{i}\right) \in \ell^{2}(\mathbb{N})$, we get an $n_{\varepsilon} \in \mathbb{N}$ such that $\frac{1}{n_{\varepsilon}}<\varepsilon$ and $\sum_{i=1}^{n_{\varepsilon}} \alpha_{i}^{2}<\varepsilon^{2}$.

Now we choose $x_{\varepsilon}=\sum_{i=n_{\varepsilon}+1}^{\infty} \alpha_{i} e_{i}$ and define $T_{\varepsilon} \in \mathscr{B}\left(\ell^{2}(\mathbb{N})\right)$ by

$$
T_{\varepsilon}\left(x_{1}, x_{2}, \ldots x_{n_{\varepsilon}}, x_{n_{\varepsilon}+1} \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \ldots \frac{x_{n_{\varepsilon}}}{n_{\varepsilon}}, 0, \ldots\right), \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

It is easy to observe that $\left\|T_{\varepsilon} x_{\varepsilon}\right\|=0,\left\|x_{0}-x_{\varepsilon}\right\|<\varepsilon$ and

$$
\left\|T-T_{\mathcal{E}}\right\|=\sup _{i \geqslant n_{\varepsilon}+1}|1 / i|=1 /\left(n_{\varepsilon}+1\right)<\varepsilon .
$$

It can be easily shown that T is not minimum attaining.
Let us take $\varepsilon=\frac{1}{3}, x_{0}=e_{4}$. Then

$$
\left\|T e_{4}\right\|=\frac{1}{4}<\frac{1}{3}=m(T)+\varepsilon .
$$

Now take $x_{\varepsilon}=e_{4}$. For $n \geqslant n_{0}=4$ we have $\frac{1}{n}<\varepsilon$. Define

$$
T_{\varepsilon}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, 0, \ldots\right) \text { for }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Then

$$
\left(T-T_{\varepsilon}\right)\left(x_{1}, x_{2}, \ldots\right)=\left(0,0,0, \frac{x_{4}}{4}, \frac{x_{5}}{5}, \ldots\right) .
$$

Hence $\left\|T-T_{\varepsilon}\right\|=\frac{1}{4}<\varepsilon$. Clearly $\left\|x_{0}-x_{\varepsilon}\right\|=0<\varepsilon$.
If we take $\varepsilon=\frac{1}{3}, x_{0}=e_{5}$. Then

$$
\left\|T e_{5}\right\|=\frac{1}{5}<\frac{1}{3}=m(T)+\varepsilon
$$

For $n \geqslant n_{0}=4, \frac{1}{n}<\varepsilon$. In this case, take $x_{\varepsilon}=e_{5}$. Define

$$
T_{\varepsilon}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \frac{x_{4}}{4}, 0, \ldots\right) \text { for }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Then

$$
\left(T-T_{\varepsilon}\right)\left(x_{1}, x_{2}, \ldots\right)=\left(0,0,0,0, \frac{x_{5}}{5}, \ldots\right)
$$

Hence $\left\|T-T_{\varepsilon}\right\|=\frac{1}{5}<\varepsilon$. Clearly $\left\|x_{0}-x_{\varepsilon}\right\|=0<\varepsilon$.

4. Unbounded operators

In this section, we generalize the results of the earlier section to densely defined closed operators, which are not necessarily bounded. In this case, we have to discuss the approximation of operators in the gap topology. For this purpose first we define the gap between two closed subspaces of a Hilbert space.

Let M, N be two closed subspaces of a Hilbert space H. Define $d(M, N)=$ $\sup \operatorname{dist}\left(x, S_{N}\right)$. The gap between M and N is defined by $x \in S_{M}$

$$
\theta(M, N)=\max \{d(M, N), d(N, M)\}
$$

For $T_{1}, T_{2} \in \mathscr{C}\left(H_{1}, H_{2}\right)$, the gap between T_{1} and T_{2} is defined by the gap between the corresponding graphs. That is,

$$
\theta\left(T_{1}, T_{2}\right)=\theta\left(\mathscr{G}\left(T_{1}\right), \mathscr{G}\left(T_{2}\right)\right)
$$

It is well known that $\theta(\cdot, \cdot)$ is a metric on $\mathscr{C}\left(H_{1}, H_{2}\right)$ and is called the gap metric. For more details about this metric we refer to $[6,8,11]$.

Proposition 4.1. [6, Theorem 2.20, Page 205] Let $S, T \in \mathscr{C}(H)$. Assume that both S^{-1} and T^{-1} exists. Then $\theta(S, T)=\theta\left(T^{-1}, S^{-1}\right)$.

Proposition 4.2. [9, Theorem 3.1(2)] Let $S, T \in \mathscr{C}\left(H_{1}, H_{2}\right)$ with $D(S)=D(T)$. If $S-T \in \mathscr{B}\left(H_{1}, H_{2}\right)$, then $\theta(S, T) \leqslant\|S-T\|$.

Next, we prove our main theorem in this section.
Proposition 4.3. Let $T \in \mathscr{C}(H)$ be positive. Let ε be such that $\varepsilon \in(0, m(T))$ if $m(T)>0$ and, $\varepsilon>0$ when $m(T)=0$. Let $x_{0} \in S_{D(T)}$ with

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{4.1}
\end{equation*}
$$

Then there exist a densely defined operator $T_{\varepsilon} \in \mathscr{C}(H)$ which is positive and $x_{\varepsilon} \in S_{D\left(T_{\varepsilon}\right)}$ satisfying the following.

1. $T_{\varepsilon} x_{\varepsilon}=m\left(T_{\varepsilon}\right) x_{\varepsilon}=m(T) x_{\varepsilon}$,
2. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
3. $\theta\left(T, T_{\varepsilon}\right)<\eta(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Proof. Case (1): $m(T)>0$: then T^{-1} exists and $T^{-1} \in \mathscr{B}(H)$. From the given condition (4.1), we deduce that

$$
\left\|\frac{T^{-1} T x_{0}}{\left\|T x_{0}\right\|}\right\|>\left\|T^{-1}\right\|(1-\delta), \text { where } \delta=\frac{\varepsilon}{m(T)+\varepsilon}
$$

As $0<\varepsilon<m(T)$, we have $0<\delta<\frac{1}{2}$. Hence by Theorem 3.1, there exist $S_{\varepsilon} \in \mathscr{B}(H)$ and $y_{\varepsilon} \in S_{H}$ such that

$$
\begin{align*}
\left\|S_{\varepsilon} y_{\varepsilon}\right\| & =\left\|S_{\mathcal{\varepsilon}}\right\|=\left\|T^{-1}\right\| \tag{4.2}\\
\left\|T^{-1}-S_{\varepsilon}\right\| & <C \sqrt{2 \delta}, \text { for some constant } C \tag{4.3}\\
\left\|\frac{T x_{0}}{\left\|T x_{0}\right\|}-y_{\varepsilon}\right\| & <\sqrt{2 \delta}+\sqrt[4]{2 \delta} \tag{4.4}
\end{align*}
$$

Also $N\left(S_{\varepsilon}\right)=N\left(T^{-1}\right)=\{0\}$. Hence $S_{\varepsilon}^{-1}: R\left(S_{\varepsilon}\right) \rightarrow H$ exists. We define $T_{\varepsilon}:=S_{\varepsilon}^{-1}$ and $x_{\varepsilon}:=\frac{S_{\varepsilon} y_{\varepsilon}}{\left\|S_{\varepsilon} y_{\varepsilon}\right\|}$. We have $D\left(T_{\varepsilon}\right)=R\left(S_{\varepsilon}\right)$ and as S_{ε} is injective, we have $\overline{R\left(S_{\varepsilon}\right)}=$ $N\left(S_{\varepsilon}\right)^{\perp}=H$. Hence T_{ε} is a densely defined operator. It is clear that $T_{\varepsilon} \in \mathscr{C}(H)$. Using the positivity it can be shown that T_{ε} is a positive operator. By similar explanation as given in the Proof of Theorem 3.3, we get

$$
\begin{aligned}
\left\|T_{\varepsilon} x_{\varepsilon}\right\| & =m\left(T_{\varepsilon}\right)(=m(T)) \text { and } \\
\left\|x_{\varepsilon}-x_{0}\right\| & <C m(T) \sqrt{2 \delta}+\sqrt{2 \delta}+\sqrt[4]{2 \delta}+\frac{\varepsilon}{m(T)} \\
& <\gamma(\varepsilon, T)
\end{aligned}
$$

where $\gamma(\varepsilon, T)=C m(T) \sqrt{2 \delta}+\sqrt{2 \delta}+\sqrt[4]{2 \delta}+\frac{\varepsilon}{m(T)}$. As T_{ε} is a positive operator, the equation $\left\|T_{\varepsilon} x_{\varepsilon}\right\|=m\left(T_{\varepsilon}\right)=m(T)$ implies that

$$
T_{\varepsilon} x_{\varepsilon}=m\left(T_{\varepsilon}\right) x_{\varepsilon}=m(T) x_{\varepsilon}, \text { by [7, Proposition 3.9]. }
$$

Since $N\left(T_{\varepsilon}\right)=\{0\}, R\left(T_{\varepsilon}\right)=D\left(S_{\varepsilon}\right)=H$, we get that $T_{\varepsilon}^{-1}: H \rightarrow R\left(S_{\varepsilon}\right)$ exists and $T_{\varepsilon}^{-1}=S_{\varepsilon}$. By Proposition 4.1, we have the following inequality;

$$
\theta\left(T_{\varepsilon}, T\right)=\theta\left(S_{\varepsilon}, T^{-1}\right) \leqslant\left\|S_{\varepsilon}-T^{-1}\right\|<C \sqrt{2 \delta}=: \eta(\varepsilon, T)
$$

Case (2): Let $m(T)=0$. Define $\hat{T}:=T+2 \varepsilon I$. Note that \hat{T} is positive, $D(\hat{T})=$ $D(T)$ and $m(\hat{T})=2 \varepsilon$. Also $\left\|\hat{T} x_{0}\right\| \leqslant\left\|T x_{0}\right\|+2 \varepsilon<\varepsilon+2 \varepsilon=\varepsilon+m(\hat{T})$. By Case (1), there exist a positive operator $T_{2} \in \mathscr{C}(H), x_{\varepsilon} \in S_{D\left(T_{2}\right)}$ such that

$$
T_{2} x_{\varepsilon}=m\left(T_{2}\right) x_{\varepsilon}=m(\hat{T}) x_{\varepsilon}, \theta\left(\hat{T}, T_{2}\right)<\eta_{1}(\varepsilon, T) \text { and }\left\|x-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)
$$

Define $T_{\varepsilon}:=T_{2}-2 \varepsilon I$. Clearly $D\left(T_{\varepsilon}\right)=D\left(T_{2}\right), m\left(T_{\varepsilon}\right)=m\left(T_{2}\right)-2 \varepsilon=0$ and by [7, Proposition 3.8] T_{ε} is positive. Also $T_{\varepsilon} x_{\varepsilon}=T_{2} x_{\varepsilon}-2 \varepsilon x_{\varepsilon}=0=m\left(T_{\varepsilon}\right) x_{\varepsilon}=m(T) x_{\varepsilon}$. We have the following approximation;

$$
\begin{aligned}
\theta\left(T, T_{\varepsilon}\right) & =\theta\left(\hat{T}-2 \varepsilon I, T_{2}-2 \varepsilon I\right) \\
& \leqslant \theta(\hat{T}-2 \varepsilon I, \hat{T})+\theta\left(\hat{T}, T_{2}\right)+\theta\left(T_{2}, T_{2}-2 \varepsilon I\right) \\
& \leqslant 2 \varepsilon+\eta_{1}(\varepsilon, T)+2 \varepsilon \\
& =4 \varepsilon+\eta_{1}(\varepsilon, T)(:=\eta(\varepsilon, T))
\end{aligned}
$$

This completes the proof.

REMARK 4.4. In Proposition 4.3, more precisely T_{ε} has the following structure.

$$
\begin{equation*}
T_{\varepsilon}=m(T) E(\sigma(T) \cap[0, m(T)+\alpha(\varepsilon)])+T E(\sigma(T) \backslash[0, m(T)+\alpha(\varepsilon)]) \tag{4.5}
\end{equation*}
$$

where $\alpha(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and E is the spectral measure corresponding to T. Moreover, $N(T) \subseteq N\left(T_{\varepsilon}\right)$.

Proof. Without loss of generality, we assume that $N(T) \neq\{0\}$. Then $m(T)=0$ and

$$
T_{\varepsilon}=T E(\sigma(T) \backslash[0, \alpha(\varepsilon)])
$$

By [2, Theorem 4, Page 155], we know that

$$
N(T) \subseteq R(E(\{0\})) \subseteq R(E(\sigma(T) \cap[0, \alpha(\varepsilon)])) \subseteq N\left(T_{\varepsilon}\right)
$$

THEOREM 4.5. Let $T \in \mathscr{C}(H)$ be densely defined. Let $\varepsilon \in(0, m(T))$ if $m(T)>0$ and, $\varepsilon>0$ when $m(T)=0$. Let $x_{0} \in S_{D(T)}$ be such that

$$
\begin{equation*}
\left\|T x_{0}\right\|<m(T)+\varepsilon \tag{4.6}
\end{equation*}
$$

Then there exist a densely defined operator $T_{\varepsilon} \in \mathscr{C}(H)$ and $x_{\varepsilon} \in S_{D\left(T_{\varepsilon}\right)}$ satisfying the following.

1. $\left\|T_{\varepsilon} x_{\mathcal{E}}\right\|=m\left(T_{\varepsilon}\right)=m(T)$,
2. $\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T)$,
3. $\theta\left(T, T_{\varepsilon}\right)<\eta(\varepsilon, T)$,
where $\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. Let $T=W|T|$ be the polar decomposition of T. From the given condition (4.6), we have $\left\||T| x_{0}\right\|=\left\|T x_{0}\right\|<m(T)+\varepsilon=m(|T|)+\varepsilon$. As a result of Proposition 4.3, there exist a densely defined positive operator $S_{\varepsilon} \in \mathscr{C}(H), x_{\varepsilon} \in S_{D\left(S_{\varepsilon}\right)}$ such that

$$
\begin{equation*}
S_{\varepsilon} x_{\varepsilon}=m\left(S_{\varepsilon}\right) x_{\varepsilon}=m(T) x_{\varepsilon}, \theta\left(S_{\varepsilon},|T|\right)<\eta(\varepsilon, T) \text { and }\left\|x_{0}-x_{\varepsilon}\right\|<\gamma(\varepsilon, T) \tag{4.7}
\end{equation*}
$$

$\eta(\varepsilon, T), \gamma(\varepsilon, T) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Define $T_{\varepsilon}=W S_{\varepsilon}$. Note that

1. $D\left(T_{\varepsilon}\right)=\left\{x \in D\left(S_{\varepsilon}\right): S_{\varepsilon} x \in D(W)=H\right\}=D\left(S_{\varepsilon}\right)$,
2. $N\left(T_{\varepsilon}\right)=N\left(S_{\varepsilon}\right)$,
3. $\left\|T_{\varepsilon} y\right\|=\left\|S_{\varepsilon} y\right\|$, for every $y \in D\left(T_{\varepsilon}\right)$.

Clearly $N\left(S_{\varepsilon}\right) \subseteq N\left(T_{\varepsilon}\right)$. To get the reverse containment, let $x \in N\left(T_{\varepsilon}\right)$. So $S_{\mathcal{\varepsilon}} x \in$ $N(W)=N(T) \subseteq N\left(S_{\varepsilon}\right)$, this implies $S_{\varepsilon}^{2} x=0$. Since S_{ε} is a positive operator, we see that $S_{\varepsilon} x=0$, that is $x \in N\left(S_{\varepsilon}\right)$. Hence $N\left(T_{\varepsilon}\right) \subseteq N\left(S_{\varepsilon}\right)$ and consequently $N\left(S_{\varepsilon}\right)=$ $N\left(T_{\varepsilon}\right)$.

Every $x \in D\left(S_{\varepsilon}\right)=D\left(T_{\varepsilon}\right)$ can be written as $x=x_{1}+x_{2}$, where $x_{1} \in N\left(S_{\varepsilon}\right)$ and $x_{2} \in N\left(S_{\varepsilon}\right)^{\perp} \cap D\left(S_{\varepsilon}\right)$. From Remark 4.4, $N\left(S_{\varepsilon}\right)^{\perp} \subseteq N(T)^{\perp}$. Thus $\left\|W S_{\varepsilon} x_{2}\right\|=\left\|S_{\varepsilon} x_{2}\right\|$. Consequently, we have the following equality;

$$
\left\|T_{\varepsilon} x\right\|=\left\|W S_{\varepsilon}\left(x_{1}+x_{2}\right)\right\|=\left\|W S_{\varepsilon} x_{2}\right\|=\left\|S_{\varepsilon} x_{2}\right\|=\left\|S_{\varepsilon} x\right\| .
$$

Thus we conclude that $\left\|T_{\mathcal{\varepsilon}} x_{\mathcal{\varepsilon}}\right\|=\left\|S_{\mathcal{\varepsilon}} x_{\mathcal{\varepsilon}}\right\|=m\left(S_{\varepsilon}\right)=m\left(T_{\varepsilon}\right)(=m(T))$.
We proceed to show that $\theta\left(T_{\varepsilon}, T\right)=\theta\left(S_{\varepsilon},|T|\right)$. First we claim that $\left\|T x-T_{\varepsilon} y\right\|=$ $\left\||T| x-S_{\varepsilon} y\right\|$ for every $x \in D(T)$ and $y \in D\left(T_{\varepsilon}\right)$. Assuming the claim, we have

$$
\begin{aligned}
& \operatorname{dist}\left((x, T x), S_{G \mathcal{G}\left(T_{\varepsilon}\right)}\right)=\inf _{\substack{y \in D\left(T_{\varepsilon}\right) \\
\|y\|^{2}+\left\|T_{\varepsilon} y\right\|^{2}=1}}\left\|(x, T x)-\left(y, T_{\varepsilon} y\right)\right\| \\
& =\inf _{\substack{y \in D\left(S_{\varepsilon}\right) \\
\|y\|^{2}+\left\|S_{\varepsilon} y\right\|^{2}=1}}\left\|(x, T x)-\left(y, T_{\varepsilon} y\right)\right\| \\
& =\inf _{\substack{y \in D\left(S_{s}\right) \\
\|y\|^{2}+\left\|S_{\varepsilon} y\right\|^{2}=1}} \sqrt{\|x-y\|^{2}+\left\|T x-T_{\varepsilon} y\right\|^{2}} \\
& =\inf _{\substack{y \in D\left(S_{\varepsilon}\right) \\
\|y\|^{2}+\left\|S_{\varepsilon} y\right\|^{2}=1}} \sqrt{\|x-y\|^{2}+\left\||T| x-S_{\varepsilon} y\right\|^{2}} \\
& =\operatorname{dist}\left((x,|T| x), S_{\mathscr{G}\left(S_{\varepsilon}\right)}\right), \forall x \in D(T) \text {. }
\end{aligned}
$$

By simple computation, we get $\theta\left(T_{\varepsilon}, T\right)=\theta\left(S_{\varepsilon},|T|\right)<\eta(\varepsilon, T)$.
To prove our claim, suppose $x \in D(T)$ and $y \in D\left(T_{\varepsilon}\right)$. Then $x=x_{1}+x_{2}$ and $y=$ $y_{1}+y_{2}$, where $x_{1} \in N(T), x_{2} \in N(T)^{\perp} \cap D(T), y_{1} \in N\left(T_{\varepsilon}\right)$ and $y_{2} \in N\left(T_{\varepsilon}\right)^{\perp} \cap D\left(T_{\varepsilon}\right)$. Using the fact that $N\left(T_{\varepsilon}\right)^{\perp} \subseteq N(T)^{\perp}$, we have

$$
\begin{aligned}
\left\|T x-T_{\varepsilon} y\right\| & =\left\|W|T| x_{2}-W S_{\varepsilon} y_{2}\right\| \\
& =\left\|W\left(|T| x_{2}-S_{\varepsilon} y_{2}\right)\right\| \\
& =\left\||T| x_{2}-S_{\varepsilon} y_{2}\right\| \\
& =\left\||T| x-S_{\varepsilon} y\right\| .
\end{aligned}
$$

This completes the proof.
As a consequence of Theorem 4.5, we conclude that the set of all minimum attaining operators is dense in the class of all densely defined closed operators with respect to the gap metric.

Corollary 4.6. Let $T \in \mathscr{C}\left(H_{1}, H_{2}\right)$ be densely defined. Then for $\varepsilon>0$ there exists a minimum attaining densely defined operator $S \in \mathscr{C}\left(H_{1}, H_{2}\right)$ such that $\theta(S, T) \leqslant$ ε.

A more sharpened version of the above corollary can be found in [9].
Acknowledgement. The authors are grateful to the referee for the critical comments which improved the quality of the paper.

REFERENCES

[1] M. D. Acosta et al., The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (2008), no. 11, 2780-2799. MR2414220
[2] M. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space (Russian), Leningrad. Univ., Leningrad, 1980. MR0609148
[3] L. X. Cheng and Y. B. Dong, A quantitative version of the Bishop-Phelps theorem for operators in Hilbert spaces, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 10, 2107-2114. MR2966957
[4] J. B. Conway, A course in operator theory, Graduate Studies in Mathematics, 21, American Mathematical Society, Providence, RI, 2000. MR1721402
[5] J. Ganesh, G. Ramesh and D. Sukumar, Perturbation of minimum attaining operators, Adv. Oper. Theory 3 (2018), no. 3, 473-490. MR3795095
[6] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR0203473
[7] S. H. Kulkarni and G. Ramesh, Absolutely minimum attaining closed operators, J Anal (2019), https://doi.org/10.1007/s41478-019-00189-x.
[8] S. H. Kulkarni and G. Ramesh, A formula for gap between two closed operators, Linear Algebra Appl. 432 (2010), no. 11, 3012-3017. MR2639265
[9] S. H. Kulkarni and G. Ramesh, On the denseness of minimum attaining operators, Oper. Matrices 12 (2018), no. 3, 699-709. MR3853362
[10] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148. MR0160094
[11] G. Ramesh, The Horn-Li-Merino formula for the gap and the spherical gap of unbounded operators, Proc. Amer. Math. Soc. 139 (2011), no. 3, 1081-1090. MR2745658
[12] W. Rudin, Functional analysis, second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR1157815
[13] A. E. TAYLOR, The minimum modulus of a linear operator, and its use for estimates in spectral theory, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 131-132. MR0152888

[^0]: Mathematics subject classification (2020): 46A32, 47A55, 47A58, 47L05.
 Keywords and phrases: Bishop-Phelps-Bollobás theorem, closed operator, minimum attaining operators.

