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Abstract. In this paper, by employing a result due to Bourin, Lee and Lin for block 2×2 positive
semidefinite matrices, and by using gradients of Gateaux differentiable G -increasing functions,
we show refinements of some majorization inequality by Lin and Wolkowicz for the eigenvalues
of these block matrices. In particular, we establish a refinement for 2×2 version of Hiroshima’s
inequality.

We also consider some special cases of the obtained result.

1. Introduction and summary

In this work, we study some majorization inequalities for block 2× 2 positive
semidefinite matrices. In Section 2 we demonstrate some preliminaries on matrix no-
tation and terminology. For instance we introduce (weakly) unitarily invariant norms.
The notions of majorization preordering and of Schur-convex functions on R

p are de-
fined, too. In this context, Ky Fan’s eigenvalue majorization inequality for Hermitian
matrices is presented. Next, for the standard group G of unitary similarities acting
on the matrix space Hp of Hermitian p× p matrices, we define G-majorization pre-
ordering and G-increasing functions on Hp . Furthemore, we define the notion of G-
synchronicity of two Hermitian matrices and show its relationship with the equality
case of Fan’s eigenvalue inequality. We complete Section 2 by quoting some relevant
results by Bourin, Lee and Lin [7, 6], Lin and Wolkowicz [13] and Hiroshima [11].

Results are presented in Section 3. By applying a decomposition statement due to
Bourin et al. [7, 6] for block 2×2 positive semidefinite matrices, we show a refinement
of some majorization inequality of Lin and Wolkowicz [13] for the eigenvalues of these
block matrices (see Theorem 1). In particular, we establish a refinement for 2× 2
version of Hiroshima’s inequality [11].

Our method in the proof of Theorem 1 is based on the above-mentioned Ky Fan’s
inequality and on G-synchronous pairs of matrices. We use some Gateaux differen-
tiable G-increasing functions ψ related to the standard Frobenius norm on the space of
block 2× 2 matrices. Their gradients preserve the G-synchronicity, which yields the
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equality case the Ky Fan’s inequality. Finally, this leads to the required refinement of
the investigated inequality by Lin and Wolkowicz [13].

In the rest of Section 3 we give interpretations of Theorem 1 for some special
forms of the function ψ or of the involved matrices A and B (see Corollaries 2–3 for
details).

2. Preliminaries

In this expository section we collect some notation, terminology and basic facts
related to our studies.

Throughout, for a positive integer p , the symbol Mp(C) stands for the linear
space of all matrices of size p× p with entries in the field C of complex numbers.
The associated inner product is given by 〈X ,Y 〉 = RetrXY ∗ for X ,Y ∈ Mp(C) , where
trZ and Z∗ mean the trace and the conjugate transpose, respectively, of a matrix Z ∈
Mn(C) . The norm induced by this inner product is given by ‖X‖2 = (trXX∗)1/2 for
X ∈ Mp(C) .

We use Hp to denote the real linear space of all Hermitian matrices of size p× p .
For a given matrix X ∈ Hp , we write 0 � X if X is positive semidefinite. By M

+
p (C)

is denoted the convex cone of all positive semidefinite matrices of size p× p .
For any interval J ⊂ R , by Hp(J) we denote the set of all Hermitian matrices of

size p× p with their eigenvalues belonging to J .
For a vector z = (z1,z2, . . . ,zp) ∈ R

p , by diagz we mean the diagonal matrix with
the entries z1,z2, . . . ,zp on its main diagonal.

For X ∈ Hp , by λ (X) we denote the p -tuple (λ1(X),λ2(X), . . . ,λp(X)) of the
eigenvalues of X ordered so that λ1(X) � λ2(X) � · · · � λp(X) .

We say that a p -tuple y = (y1,y2, . . . ,yp) ∈ R
p is majorized by a p -tuple x =

(x1,x2, . . . ,xp) ∈ R
p (written as y ≺ x ), if

k

∑
i=1

y[i] �
k

∑
i=1

x[i] for all k = 1,2, . . . , p , and
p

∑
i=1

yi =
p

∑
i=1

xi,

where z[i] means the i th largest entry of a vector z = (z1,z2, . . . ,zp)∈R
p (see [14, p. 8],

[2, p. 28])).
Given an interval J ⊂ R , a real function F : Jp → R is said to be Schur-convex on

Jp if for x,y ∈ Jp ,
y ≺ x implies F(y) � F(x)

(see [14, p. 80], [2, p. 40])).
Ky Fan’s eigenvalue majorization inequality asserts that

λ (X +Y) ≺ λ (X)+ λ (Y) for X ,Y ∈ Hp (1)

(see [8], cf. [2, p. 35])).
A norm ‖ · ‖ on Mp(C) is said to be a unitarily invariant norm (u.i. norm, for

short), if
‖U1XU2‖ = ‖X‖ for all X ∈ Mp(C) and U1,U2 ∈ Up
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(see [2, p. 91]).
A norm ‖·‖ on Mp(C) is said to be a weakly unitarily invariant norm (w.u.i. norm,

for short), if
‖U1XU∗

1 ‖ = ‖X‖ for all X ∈ Mp(C) and U1 ∈ Up

(see [2, p. 102]).
The group of all unitary matrices of size p× p is denoted by Up .
In what follows, we consider the group

G = {U1(·)U∗
1 : U1 ∈ Up}

acting on Hp .
We define preorder ≺G on Hp , as follows. For X ,Y ∈ Hp ,

Y ≺G X iff λ (Y ) ≺ λ (X)

(see [1, p. 234]). For a characterization of the preorder ≺G on Hermitian matrices, see
[1, Theorem 7.1, p. 235].

A set K ⊂ Hp is said to be G-invariant, if

U1XU∗
1 ∈ K for all X ∈ K and U1 ∈ Up .

A set K ⊂ Hp is said to be convex, if

X ,Y ∈ K implies tX +(1− t)Y ∈ K for all 0 � t � 1.

Let K ⊂ Hp be a G-invariant convex set. A function ψ : K → R is said to be
G-increasing on K , if for X ,Y ∈ K ,

Y ≺G X implies ψ(Y ) � ψ(X).

Two matrices X ,Y ∈ Hp are said to be G-synchronous, if the exists U1 ∈ Up such
that X = U1diagλ (X)U∗

1 and Y = U1diagλ (Y )U∗
1 .

As can be deduced from [10, Proposition 4.2], in general, for X ,Y ∈ Hp it holds
that

〈X ,Y 〉 � 〈λ (X),λ (Y )〉 (2)

with the trace inner product on Hp on the left-hand side of (2), and the standard inner
product on R

p on the right-hand side of (2).
However,

〈X ,Y 〉 = 〈λ (X),λ (Y )〉 iff X and Y are G-synchronous.

Also, if X ,Y ∈ Hp are G-synchronous, then

λ (X +Y) = λ (X)+ λ (Y). (3)

Thus the G-synchronicity of two matrices leads to the equality case of the Ky Fan’s
eigenvalue inequality (1).

In the sequel we shall explore the following interesting results due to Bourin, Lee
and Lin [6, 7] and to Lin and Wolkowicz [13].
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THEOREM A [7, Theorem 2.2]. Given any matrix in M
+
2n(C) partitioned into

blocks in Mn(C) with Hermitian off-diagonal blocks, we have

(
A C
C B

)
=

1
2

{
U

(
A+B 0

0 0

)
U∗ +V

(
0 0
0 A+B

)
V ∗

}
(4)

for some unitaries U,V ∈ M2n(C) .

THEOREM B [13, Theorem 1.1]. Let

(
A C
C∗ B

)
be a Hermitian positive semidef-

inite matrix. If, in addition, the block C is Hermitian then the following majorization
inequality holds:

λ
(

A C
C B

)
≺ λ

(
A+B 0

0 0

)
. (5)

Since all the involved matrices in (5) (except C ) are positive semidefinite, inequal-
ity (5) implies that ∥∥∥∥

(
A C
C B

)∥∥∥∥ �
∥∥∥∥
(

A+B 0
0 0

)∥∥∥∥ (6)

for any unitarily invariant norm ‖ · ‖ on M2n(C) . Inequality (6) is a 2×2 variant of a
Hiroshima’s result [11].

The case C = 0 of Theorem B is shown in [1, Corollary 7.3].
The present paper aims to derive some refinements for the inequalities (5) and (6)

as well as to give some corollaries.

3. Refinements of inequalities

In what follows, we study a real function ψ defined and Gateaux differentiable
at least on the set H2n(J) for a given interval J ⊂ [0,∞) . More precisely, it is always
assumed that there exists an open set S ⊂ H2n such that ψ : S → R and H2n(J) ⊂ S ,
and that ψ is Gateaux differentiable on S . Therefore there exists the gradient function
∇ψ(·) on S . For technical reasons, it is also assumed that this gradient function is
continuous on S .

Under the notation and terminology introduced in the previous section, we state
and prove the following result. It gives a refinement of an inequality presented in the
main result of [13].

THEOREM 1. Let

(
A C
C B

)
∈ M

+
2n(C) with C =C∗ ∈ Mn(C) so that (4) holds for

some unitaries U,V ∈U2n , and let A+B have the eigenvalues in the interval J = [0,a)
for some 0 < a � ∞ .

Let ψ be a real function defined and Gateaux differentiable on an open subset of
H2n including H2n(J) . Assume that ψ is G-increasing function on H2n(J) with con-
tinuous gradient ∇ψ(·) on H2n(J) such that the function 1

2‖ · ‖2
2 −ψ is G-increasing

on H2n(J) , where G = {U1(·)U∗
1 : U1 ∈ U2n} .
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Then

λ
(

A C
C B

)

≺ λ
(

1
2
U

(
A+B 0

0 0

)
U∗ +Z

)
+ λ

(
1
2
V

(
0 0
0 A+B

)
V ∗ −Z

)

≺ λ
(

A+B 0
0 0

)
, (7)

where

Z = ∇ψ
(

1
2
V

(
0 0
0 A+B

)
V ∗

)
or Z = −∇ψ

(
1
2
U

(
A+B 0

0 0

)
U∗

)
.

Proof. First of all, we shall prove that the matrix

(
A C
C B

)
belongs to the set

H2n(J) .

It is obvious that 0 � λi

(
A C
C B

)
for all i = 1, . . . ,2n . It remains to show that

λi

(
A C
C B

)
� a for all i = 1, . . . ,2n .

It follows from Theorem A via Ky Fan’s inequality (1) that

λ
(

A C
C B

)
≺ λ

(
1
2
U

(
A+B 0

0 0

)
U∗

)
+ λ

(
1
2
V

(
0 0
0 A+B

)
V ∗

)

=
1
2

λ
(

A+B 0
0 0

)
+

1
2

λ
(

0 0
0 A+B

)
= λ

(
A+B 0

0 0

)
.

Hence,

λ1

(
A C
C B

)
� λ1

(
A+B 0

0 0

)
.

Therefore,

0 � λ2n

(
A C
C B

)
� . . . � λ1

(
A C
C B

)
� λ1

(
A+B 0

0 0

)
< a.

In consequence,

(
A C
C B

)
∈ H2n(J) , where J = [0,a) , as wanted.

We now consider the case Z = ∇ψ
(

1
2V

(
0 0
0 A+B

)
V ∗

)
. We also denote

Y1 =
1
2
U

(
A+B 0

0 0

)
U∗,

Y2 =
1
2
V

(
0 0
0 A+B

)
V ∗.
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It is clear that Z = ∇ψ(Y2) and

∇
(

1
2
‖ · ‖2

2−ψ
)

(Y2) = ∇
(

1
2
‖ · ‖2

2

)
(Y2)−∇ψ(Y2) =Y2 −Z.

Because of the G-increase of the functions ψ and 1
2‖ · ‖2

2 − ψ , the matrices
Z = ∇ψ(Y2) and Y2 − Z = ∇

( 1
2‖ · ‖2

2−ψ
)
(Y2) are G-synchronous. In fact, with the

notation g =U1(·)U∗
1 for any U1 ∈ U2n , and D = {diag(λ1, . . . ,λ2n) : λ1 � . . . � λ2n} ,

we have

∇ψ(gD) = g∇ψ(D) ⊂ gD (8)

(see [16, Theorem 2.1]). By Spectral Theorem, there exists a g = U1(·)U∗
1 such that

Y2 = gdiagλ (Y2) ∈ gD . In consequence, by (8), ∇ψ(Y2) ∈ gD , which leads to the G-
synchronicity of Y2 and Z = ∇ψ(Y2) . Likewise, we get the G-synchronicity of Y2 and
Y2−Z . All of this yields the required G-synchronicity of Z and Y2−Z .

Therefore by (3) we have

λ (Y2−Z) = λ (Y2)−λ (Z).

In light of Fan’s inequality (1), we have

λ (Y1 +Y2) = λ (Y1 +Z +Y2−Z) ≺ λ (Y1 +Z)+ λ (Y2−Z)

= λ (Y1 +Z)+ λ (Y2)−λ (Z) ≺ λ (Y1)+ λ (Z)+ λ (Y2)−λ (Z) = λ (Y1)+ λ (Y2).

Therefore we can write

λ
(

A C
C B

)
= λ

(
1
2
U

(
A+B 0

0 0

)
U∗ +

1
2
V

(
0 0
0 A+B

)
V ∗

)

≺ λ
(

1
2
U

(
A+B 0

0 0

)
U∗ +Z

)
+ λ

(
1
2
V

(
0 0
0 A+B

)
V ∗ −Z

)

≺ λ
(

1
2
U

(
A+B 0

0 0

)
U∗

)
+ λ

(
1
2
V

(
0 0
0 A+B

)
V ∗

)

=
1
2

λ
(

U

(
A+B 0

0 0

)
U∗

)
+

1
2

λ
(

V

(
0 0
0 A+B

)
V ∗

)

= λ
(

A+B 0
0 0

)
.

This completes the proof of inequality (7) for Z = ∇ψ
(

1
2V

(
0 0
0 A+B

)
V ∗

)
.

The proof of (7) for Z = −∇ψ
(

1
2U

(
A+B 0

0 0

)
U∗

)
is analogous as above. �
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COROLLARY 1. Under the assumptions of Theorem 1, the following refinement of
Hiroshima’s inequality (6) holds: ∥∥∥∥

(
A C
C B

)∥∥∥∥
�

∥∥∥∥diag

(
λ

(
1
2
U

(
A+B 0

0 0

)
U∗ +Z

)
+ λ

(
1
2
V

(
0 0
0 A+B

)
V ∗ −Z

))∥∥∥∥
�

∥∥∥∥
(

A+B 0
0 0

)∥∥∥∥ (9)

for any weakly unitarily invariant norm ‖ · ‖ on H2n , where

Z = ∇ψ
(

1
2
V

(
0 0
0 A+B

)
V ∗

)
or Z = −∇ψ

(
1
2
U

(
A+B 0

0 0

)
U∗

)
.

Proof. Inequality (9) is a corollary to (7) via the Spectral Theorem for Hermitian
matrices and the weak unitary invariance of ‖ · ‖ . �

COROLLARY 2. Let

(
A C
C B

)
∈ M

+
2n(C) with C = C∗ ∈ Mn(C) so that (4) holds

for some unitaries U,V ∈ U2n .
Let 0 � t � 1 . Then

λ
(

A C
C B

)

≺ λ
((

A C
C B

)
− 1− t

2
V

(
0 0
0 A+B

)
V ∗

)
+

1− t
2

λ
(

0 0
0 A+B

)

≺ λ
(

A+B 0
0 0

)
. (10)

Proof. We set J = [0,∞) and ψ = t 1
2‖·‖2

2 on H2n . This is a G-increasing function
on H2n . It is not hard to check that ∇ψ(T ) = tT for T ∈ H2n . Therefore,

Z = ∇ψ
(

1
2
V

(
0 0
0 A+B

)
V ∗

)
=

t
2
V

(
0 0
0 A+B

)
V ∗.

By making use inequality (9) in Theorem 1, we get (10). �
Let X ,Y ∈ Mn(C) with X∗Y = Y ∗X . Then the matrix(

X∗ 0
Y ∗ 0

)(
X Y
0 0

)
=

(
X∗X X∗Y
X∗Y Y ∗Y

)

is positive semidefinite with X∗Y Hermitian.
By Theorem A, there exist unitaries U,V ∈ U2n such that(

X∗X X∗Y
X∗Y Y ∗Y

)
=

1
2
U

(
X∗X +Y∗Y 0

0 0

)
U∗ +

1
2
V

(
0 0
0 X∗X +Y∗Y

)
V ∗. (11)

The below result is related to [13, Corollary 2.2].
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COROLLARY 3. Let X ,Y ∈ Mn(C) with X∗Y = Y ∗X so that (11) holds for some
unitaries U,V ∈ U2n .

Let ψ : H2n → R be a Gateaux differentiable G-increasing function with continu-
ous gradient ∇ψ(·) on H2n such that the function 1

2‖ · ‖2
2−ψ is G-increasing, where

G = {U1(·)U∗
1 : U1 ∈ U2n} .

Then

λ
(

XX∗ +YY ∗ 0
0 0

)

≺ λ
(

1
2
U

(
X∗X +Y ∗Y 0

0 0

)
U∗ +Z

)
+ λ

(
1
2
V

(
0 0
0 X∗X +Y∗Y

)
V ∗ −Z

)

≺ λ
(

X∗X +Y∗Y 0
0 0

)
, (12)

where

Z = ∇ψ
(

1
2
V

(
0 0
0 X∗X +Y∗Y

)
V ∗

)
or Z = −∇ψ

(
1
2
U

(
X∗X +Y ∗Y 0

0 0

)
U∗

)
.

Proof. We put J = [0,∞) . It is sufficient to employ inequality (7) in Theorem 1
for A = X∗X , B = Y ∗Y and C = X∗Y with the equalities

λ
(

X∗X X∗Y
X∗Y Y ∗Y

)
= λ

((
X∗ 0
Y ∗ 0

)(
X Y
0 0

))

= λ
((

X Y
0 0

)(
X∗ 0
Y ∗ 0

))
= λ

(
XX∗+YY ∗ 0

0 0

)
. �
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(

1
2U

(
A+B 0

0 0

)
U∗
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