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Abstract. A basis-free formula for the generalized trace of a linear map between tensor prod-
ucts of vector spaces is proposed which does not refer to scalar multiplication or scalar valued
functions. The main application is to real vector spaces with complex structure operators.

1. Introduction

Defining the trace of a square matrix as the sum of its diagonal entries is simple
and useful, and generalizes to the contraction operation on multi-indexed tensors as a
sum over repeated indices. It is then well-known that the trace is an invariant quantity
under change of basis. So, for a finite dimensional vector space V , the trace TrV (A) of
a linear map A : V → V is independent of any matrix representation for A . There are
other ways to compute, or define, TrV (A) that do not require any initial choice of basis;
we will recall one such formula in Proposition 2.11, after developing some notation for
a more abstract approach to linear algebra as in [4]. An abstract analogue of tensor
contraction is the generalized trace, which takes as input a linear map between tensor
products, A : V ⊗U →V ⊗W , and returns as output a linear map U →W ; Proposition
2.12 shows how a basis-free definition coincides with the repeated index summation.

The abstract, basis-free approach to the trace and generalized trace is well-known
in category theory, because it can be adapted to define a trace of a morphism, in cat-
egories that have enough structure in common with the category of finite dimensional
vector spaces. For example, a generalized trace can be defined in some monoidal cat-
egories ([2], [7], [9]), where for two objects U and V there is another object U ⊗V ,
subject to certain properties including a notion of associativity and the existence of a
unit object K so that V ⊗K is isomorphic to V .

This article, in Section 3, will propose new abstract formulas for the generalized
trace in the category of vector spaces (Theorem 3.7, Proposition 3.8). The novelty
is that the formulas do not rely on the existence of, or a choice of, any unit object
for tensor products. So in addition to being basis-free, the formulation will be scalar-
free, and adaptable to some other categories without a unit object for ⊗ (a “semigroup
category” as in Remark 2.2.9 of [7], or [10]), although we are going to focus on linear
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algebra rather than going into any depth in category theory, tensor analysis, or other
applications. We will consider vector spaces over a fixed field; the main results of
Section 3 show that the claimed formulas for the generalized trace coincide with the
usual coordinate-based notion.

Section 4 presents the main motivating example of the general framework set up
in Section 3, a category where the objects are real vector spaces with complex structure
operators (real linear maps J with J ◦ J = −Id ), and the morphisms are real linear
maps that are compatible with the complex structures. Applying the ideas of Sections
2 and 3 to this category was originally motivated by differential-geometric calculations
in vector bundles (as in [15], [17]), where J can vary continuously from point to point,
and wanting to find a way to define a complex trace in almost complex geometry that
relies only on J and the real linear structure at each point.

A previously known matrix formula that will be generalized in Section 5 is:

TrV(A) =
1
2

(
TrV (A)−√−1TrV (A◦ J)

)
, (1.1)

from ([15], [17] Chapter 5). The LHS is a complex number valued trace of a complex
linear (A ◦ J = J ◦A) map V → V with a size N ×N complex matrix representation,
while the real valued RHS traces are applied to the same transformation considered as a
real linear map A , with 2N×2N real matrix representations for A and A◦J . Equation
(1.1) is the last time any complex number appears in this article; in Sections 2 and 3,
the scalars are from an arbitrary field K , and in Sections 4 and 5, the scalar field is R

and all maps are R-linear.
As a remark to conclude the Introduction, the methods used here are elementary

but maybe becoming old-fashioned; commutative diagrams, sums over repeated in-
dices, and in particular calculations involving a trace, can be more graphically presented
by various types of “string diagrams” as in [3], [5], [9], [10], [12], [13], [14], [16].

2. Notation

In this Section we recall some already known formulas for the trace, after devel-
oping enough notation to state them, and check that they coincide with the classical
summations after choosing a basis. Fix a field K , and consider vector spaces with
scalars K . The same symbol K denotes itself considered as a one-dimensional vector
space.

NOTATION 2.1. For vector spaces U and V over K , the vector space of all K -
linear maps from U to V is denoted Hom(U,V ) , and the term map will always refer to
a K -linear map. As a special case, we abbreviate Hom(V,K) , the dual space of V , by
V ∗ . For maps A :U ′ →U and B :V →V ′ , the map denoted Hom(A,B) : Hom(U,V )→
Hom(U ′,V ′) acts on F : U →V so that Hom(A,B) : F �→ B◦F ◦A : U ′ →V ′ .

NOTATION 2.2. The space U ⊗V is the tensor product over K , spanned by el-
ements of the form �u⊗�v for �u ∈ U and �v ∈ V . The products U ⊗ (V ⊗W ) and
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(U ⊗V )⊗W will be identified with each other and with the triple U ⊗V ⊗W , so
that these elements are equal:

(�u⊗�v)⊗�w =�u⊗ (�v⊗�w) =�u⊗�v⊗�w.

NOTATION 2.3. The invertible maps V ⊗K → V and K⊗V → V correspond-
ing to scalar multiplication are denoted � . The space K , taken together with these
isomorphisms, is a (two-sided) unit for the tensor product operation.

NOTATION 2.4. For any product V ⊗U , the switching map s :V ⊗U →U ⊗V is
linear and defined on elements of the form �v⊗�u by the formula s :�v⊗�u �→�u⊗�v .

NOTATION 2.5. For maps A : U1 →U2 , B : V1 →V2 , denote (with square brack-
ets) the map

[A⊗B] : U1⊗V1 →U2⊗V2

defined by acting on elements of the form �u⊗�v by [A⊗B] :�u⊗�v �→ (A(�u))⊗ (B(�v)) .

NOTATION 2.6. For any vector space V , there is a canonical identity map IdV ∈
Hom(V,V ) , so that IdV (�v) =�v .

NOTATION 2.7. For any vector space V , the operation of applying a linear map
φ ∈ V ∗ to a vector �v ∈ V to get the scalar φ(�v) ∈ K is bilinear in the pair (φ ,�v) .
This bilinear pairing defines a canonical evaluation map EvV : V ∗ ⊗V → K , acting on
elements of the form φ ⊗�v by EvV : φ ⊗�v �→ φ(�v) .

DEFINITION 2.8. A vector space V is dualizable means: there exists (D,ε,η) ,
where D is a vector space, and ε : D⊗V → K and η : K → V ⊗D are linear maps
such that the following diagrams are commutative.

K⊗V

�

��

[η⊗IdV ] �� V ⊗D⊗V

[IdV⊗ε]
��

V V ⊗K
���

D⊗K

�

��

[IdD⊗η] �� D⊗V ⊗D

[ε⊗IdD]
��

D K⊗D
���

REMARK 2.9. In category theory and other areas using versions of this construc-
tion ([12], [16]), ε is called an evaluation map and η a coevaluation map. A more
general notion, with left and right duals, is considered by [11].

PROPOSITION 2.10. If V is finite dimensional then V is dualizable.

Proof. An example of a triple of duality data is D = V ∗ , ε = EvV , and η chosen
in the following way. Let (�v1, . . . ,�vN) be a basis of V , and let (φ1, . . . ,φN) be the
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dual basis so that φi(�v j) = δi j . Then consider the following specific candidate for a
coevaluation, ηV , defined for α ∈ K by

ηV : α �→ α · (�v1⊗φ1 + · · ·+�vN ⊗φN). (2.1)

Checking that if η = ηV , then the identities from Definition 2.8 are satisfied is then
straightforward, using methods similar to the sums in the next Proof. �

PROPOSITION 2.11. If V is finite dimensional, then for any map A :V →V , and
any duality data (D,ε,η) , the image of 1 ∈ K under the following composite map:

K
η �� V ⊗D

s �� D⊗V
[IdD⊗A] �� D⊗V

ε �� K (2.2)

is an element of K that depends only on A and not on the choice of (D,ε,η) .

Proof. There exists some (D,ε,η) by Proposition 2.10, but the triple need not be
unique. Let (�v1, . . . ,�vN) be a basis of V , and let {ϕ j : j ∈ J} be a basis for D , with
index set J , so that the set {�vi⊗ϕ j : i = 1, . . . ,N, j ∈ J} is a basis of V ⊗D . There are
finitely many coefficients ηi j so that for α ∈ K ,

η : α �→ α ·
N

∑
i=1

M

∑
j=1

ηi j�vi ⊗ϕ j.

For any i = 1, . . . ,N , j ∈ J , there is some scalar ε ji so that ε : ϕ j ⊗�vi �→ ε ji . The
hypothesis that ε and η are an evaluation and coevaluation implies that for any α ∈ K

and basis element �vi′ ,

�(α ⊗�vi′) = (�◦ [IdV ⊗ ε]◦ [η ⊗ IdV ])(α ⊗�vi′)

α�vi′ = �

(
[IdV ⊗ ε]

((
α

N

∑
i=1

M

∑
j=1

ηi j�vi ⊗ϕ j

)
⊗�vi′

))

= �

(
α

N

∑
i=1

M

∑
j=1

ηi j�vi ⊗ ε ji′

)
= α

N

∑
i=1

M

∑
j=1

ηi jε ji′�vi,

so
M

∑
j=1

ηi jε ji′ = δii′ . (2.3)

This uses only the first diagram from Definition 2.8. Equation (2.3) can be interpreted
as a one-sided matrix inverse property.

With respect to the chosen basis for V , there are coefficients Ai′i so that

A(�vi) =
N

∑
i′=1

Ai′i�vi′ ,
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and the image of 1 under the map (2.2) is:

ε([IdD ⊗A](s(η(1)))) = ε

(
[IdD⊗A]

(
N

∑
i=1

M

∑
j=1

ηi jϕ j ⊗�vi

))

= ε

(
N

∑
i=1

M

∑
j=1

ηi jϕ j ⊗
(

n

∑
i′=1

Ai′i�vi′

))

=
N

∑
i=1

M

∑
j=1

N

∑
i′=1

ηi jAi′iε ji′

=
N

∑
i=1

N

∑
i′=1

δii′Ai′i =
N

∑
i=1

Aii,

which is the trace of A : V → V , denoted TrV (A) , and, as mentioned previously, does
not depend on the choice of basis for V . �

The above formula (2.2) for the trace, and the following formula (2.4) for the gen-
eralized trace, are well-known, although different authors ([9], [13]) may use different
orderings for the products of spaces or composites of maps.

PROPOSITION 2.12. If V is finite dimensional, then for any vector spaces U and
W , and any map A :V ⊗U →V ⊗W , and any duality data (D,ε,η) for V , the follow-
ing composite map from U to W :

V ⊗D⊗U
[s⊗IdU ] �� D⊗V ⊗U

[IdD⊗A] �� D⊗V ⊗W

[ε⊗IdW ]
��

K⊗U

[η⊗IdU ]

��

K⊗W

�

��
U

�−1

��

W

(2.4)

is an element of Hom(U,W ) that depends only on A and not on the choice of (D,ε,η) .

Proof. Using the same notation and basis as in the previous Proof for V and D ,
let {�ul : l ∈ L} be a basis for U and let {�wk : k ∈ K} be a basis for W . For each basis
element �vi ⊗�ul of V ⊗U , there are coefficients Ai′kil (finitely many non-zero for each
l ) so that

A(�vi⊗�ul) = ∑
k∈K

N

∑
i′=1

Ai′kil�vi′ ⊗�wk. (2.5)



530 A. COFFMAN

The above composite map (2.4) then maps basis element �ul to:

�◦ [ε ⊗ IdW ]◦ [IdD⊗A]◦ [s⊗ IdU]◦ [η ⊗ IdU ]◦ �−1 :

�ul �→ �([ε ⊗ IdW ]([IdD ⊗A]([(s◦η)⊗ IdU](1⊗�ul))))

= �

(
[ε ⊗ IdW ]

(
[IdD⊗A]

((
N

∑
i=1

M

∑
j=1

ηi jϕ j ⊗�vi

)
⊗�ul

)))

= �

(
[ε ⊗ IdW ]

(
N

∑
i=1

M

∑
j=1

ηi jϕ j ⊗
(

∑
k∈K

N

∑
i′=1

Ai′kil�vi′ ⊗�wk

)))

= �

(
N

∑
i=1

M

∑
j=1

∑
k∈K

N

∑
i′=1

ηi jAi′kil
(
ε ji′ ⊗�wk

))

=
N

∑
i=1

M

∑
j=1

∑
k∈K

N

∑
i′=1

ηi jAi′kilε ji′�wk =
N

∑
i=1

∑
k∈K

N

∑
i′=1

δii′Ai′kil�wk

= ∑
k∈K

N

∑
i=1

Aikil�wk. (2.6)

The last sum (2.6) is an element of W depending on A and the input �ul from U but
not on (D,ε,η) . The map (2.4) is denoted TrV ;U,W (A) : U →W , the generalized trace
of A . �

Neither of the above formulas (2.4) nor (2.6) for the generalized trace requires U
or W to have finite dimension. This generalized trace TrV ;U,W is, in some applica-
tions, also called a partial trace ([5], [8]) or twisted trace ([13]). As mentioned in the
Introduction, both the abstract formulation of the trace TrV ;U,W from the statement of
Proposition 2.12, and multi-indexed summations such as those in its Proof, appear in
calculations in local differential geometry and other applications of tensor analysis.

EXAMPLE 2.13. The scalar valued trace of a map A : V →V is related to a gen-
eralized trace by the following formula, using � : V ⊗K →V :

TrV ;K,K(�−1 ◦A◦ �) = TrV (A) · IdK : 1 �→ TrV (A). (2.7)

It is easy to check, without choosing any basis, that the map (2.2) from Proposition
2.11 is the same as the special case U =W = K of the map (2.4) from Proposition 2.12
applied to �−1 ◦A◦ � .

3. A new formula for the generalized trace

Our main goal is to state an expression equal to the generalized trace, (2.6), in a
basis-free way analogous to the expression (2.4), but which uses an abstract notion of
dualizability that does not refer to the space of scalars K .

One approach might be to just replace each column of vertical arrows in the dia-
gram (2.4) by the corresponding composite to get abstract maps U → V ⊗D⊗U and
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D⊗V ⊗W →W ; this bypasses the steps where K appears, but the notion of dualizabil-
ity in Definition 2.8 would then need to be adjusted to take into account U and W , in
addition to V and D . In fact, this is the general idea, but the construction in Theorem
3.7 will be organized differently, motivated in part by the existence and convenience of
the following canonical map.

NOTATION 3.1. For any vector spaces V and W , there is a distinguished map

EvVW : Hom(V,W )⊗V →W,

defined on elements of the form A⊗�v by evaluation:

EvVW : A⊗�v �→ A(�v).

This generalizes the construction from Notation 2.7: in the W = K case, EvVK is
the distinguished element EvV ∈ (V ∗ ⊗V )∗ . We want to generalize further, from the
canonical map EvVW to a more abstract evaluation map ε : Hom(X ,W )⊗V → W ,
where Hom(X ,−) plays the role of D⊗− appearing in Definition 2.8 and Proposition
2.12. The canonical evaluation maps have some elementary properties as in the follow-
ing Lemmas, one of which (Lemma 3.6) we will also want to generalize to the abstract
evaluation maps.

LEMMA 3.2. For any vector spaces U , V , W , and any map B : U → W , the
following diagram is commutative.

U
B �� W

Hom(V,U)⊗V

EvVU

��

[Hom(IdV ,B)⊗IdV ]
�� Hom(V,W )⊗V

EvVW

��

Proof. Both paths take A⊗�v ∈ Hom(V,U)⊗V to B(A(�v)) . �
One more bit of notation will be needed for Theorem 3.7.

NOTATION 3.3. For any vector spaces U , V , X , there is a canonical map

nU : V ⊗Hom(X ,U) → Hom(X ,V ⊗U) (3.1)

defined on elements of the form �v⊗A ∈V ⊗Hom(X ,U) and �x ∈ X by:

nU(�v⊗A) :�x �→�v⊗ (A(�x)).

Analogously (and equally canonically except the ordering of spaces is different), define
for any W ,

nW : Hom(X ,W )⊗V → Hom(X ,V ⊗W) (3.2)

so that
nW (B⊗�v) :�x �→�v⊗ (B(�x)).
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LEMMA 3.4. If X or V is finite dimensional, then nU and nW are invertible.

Proof. We refer to [1] §20, or [4] §II.7.7. �

LEMMA 3.5. For any U , V , W , the following diagram is commutative.

U ⊗Hom(V,W )⊗V

[n1⊗IdV ]
��

[IdU⊗EvVW ] �� U ⊗W

Hom(V,U ⊗W)⊗V

EvV,U⊗W

�����������������������

Proof. The n1 map is a version of (3.1) from Notation 3.3. Both paths in the
diagram take an element of the form �u⊗A⊗�v ∈U ⊗Hom(V,W )⊗V to �u⊗ (A(�v)) ∈
U ⊗W . �

LEMMA 3.6. For any vector spaces V , U , W , and any map F :V ⊗U →V ⊗W ,
if V is finite dimensional then the n maps in the following diagram are invertible:

V ⊗U
F �� V ⊗W

V ⊗Hom(V,U)⊗V

[n2⊗IdV ]
��

[IdV⊗EvVU ]

��

V ⊗Hom(V,W )⊗V

[n3⊗IdV ]
��

[IdV⊗EvVW ]

��

Hom(V,V ⊗U)⊗V
[Hom(IdV ,F)⊗IdV ]

�� Hom(V,V ⊗W)⊗V

and the diagram is commutative, in the sense that

F ◦ [IdV ⊗EvVU ]◦ [n2⊗ IdV ]−1

= [IdV ⊗EvVW ]◦ [n3⊗ IdV ]−1 ◦ [Hom(IdV ,F)⊗ IdV ].

Proof. The n2 , n3 maps are versions of (3.1) from Notation 3.3; they are invertible
by Lemma 3.4, and of course the inverse of [n2 ⊗ IdV ] is [(n2)−1 ⊗ IdV ] . By Lemma
3.5, the upward composite on the left, [IdV ⊗EvVU ]◦ [n2⊗ IdV ]−1 , is equal to EvV,V⊗U ,
and similarly the upward composite on the right is equal to EvV,V⊗W . The claim then
follows from Lemma 3.2. �

The following Theorem is the main result of this Section. It gives a formula for
the generalized trace, in terms of abstractly defined evaluation and coevaluation maps.
There is no reference to the scalar field K , but the trade-off is that instead of one evalu-
ation map ε for a given space V as in Definition 2.8, there are different evaluation maps
εU and εW corresponding to pairs (V,U) and (V,W ) , and that satisfy a certain com-
patibility condition (3.4) analogous to the property of EvVU and EvVW from Lemma
3.6. There is also a twisted coevaluation map ηU which is a generalization of the η
from Definition 2.8.
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THEOREM 3.7. Given vector spaces U , V , W , suppose there exist a vector space
X and maps

ηU : U →V ⊗Hom(X ,U)
εU : Hom(X ,U)⊗V →U

εW : Hom(X ,W )⊗V →W

such that the following diagram is commutative:

U ⊗V
[ηU⊗IdV ] ��

s
�������������������� V ⊗Hom(X ,U)⊗V

[IdV⊗εU ]
��

V ⊗U

(3.3)

meaning that the composite is equal to a switching map:

[IdV ⊗ εU ]◦ [ηU ⊗ IdV ] = s : U ⊗V →V ⊗U.

Suppose further that V and X are both finite dimensional, so that the n maps in the
following diagram are invertible, and that the diagram is commutative for any F :
V ⊗U →V ⊗W ,

V ⊗U
F �� V ⊗W

V ⊗Hom(X ,U)⊗V

[nU⊗IdV ]
��

[IdV⊗εU ]

��

V ⊗Hom(X ,W )⊗V

[n4⊗IdV ]
��

[IdV⊗εW ]

��

Hom(X ,V ⊗U)⊗V
[Hom(IdX ,F)⊗IdV ]

�� Hom(X ,V ⊗W )⊗V

(3.4)

in the sense that

F ◦ [IdV ⊗ εU ]◦ [nU ⊗ IdV ]−1 = [IdV ⊗ εW ]◦ [n4⊗ IdV ]−1 ◦ [Hom(IdX ,F)⊗ IdV ].

Then the canonical map

nW : Hom(X ,W )⊗V → Hom(X ,V ⊗W)

is also invertible, and for any A : V ⊗U → V ⊗W , the composite map clockwise from
U to W in the following diagram depends only on A and not on (X ,ηU ,εU ,εW ) .

Hom(X ,V ⊗U)
Hom(IdX ,A) �� Hom(X ,V ⊗W)

n−1
W

��
V ⊗Hom(X ,U)

nU

��

Hom(X ,W )⊗V

εW

��
U

ηU

��

TrV ;U,W (A)
�� W

(3.5)
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The diagram is commutative, so the composite map is equal to the generalized trace:

TrV ;U,W (A) = εW ◦ n−1
W ◦Hom(IdX ,A)◦ nU ◦ηU : U →W. (3.6)

Proof. We start with some remarks before the calculation proving the claims. The
diagram (3.3) with the abstract evaluation εU and abstract coevaluation ηU is analo-
gous to the first diagram from Definition 2.8, and like the Proof of Proposition 2.11,
this Theorem does not need an analogue of the second diagram from Definition 2.8.
The diagram (3.4) is a generalization of the property of the canonical evaluation maps
from Lemma 3.6, so that the two abstract evaluations are suitably compatible. All the
n maps are invertible by Lemma 3.4.

The following steps use the same notation for the basis sets of V , U , and W
as in Proposition 2.11 and Proposition 2.12, which assumed only that V has finite
dimension. Now assume X has finite dimension, with basis {�xq,q = 1, . . . ,Q} ; the
finite dimension also allows the existence of a basis set for Hom(X ,U) of the form
{Φql : q = 1, . . . ,Q, l ∈ L} where each basis element is defined by

Φql :�xq′ �→ δq′q�ul. (3.7)

Then, for each basis element �ul′ of U , there are coefficients ηU
iqll′ (finitely many non-

zero for each l′ ) so that

ηU :�ul′ �→
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′�vi ⊗Φql.

For each basis element Φql ⊗�vi ∈ Hom(X ,U)⊗V , there are coefficients εU
l′qli (finitely

many non-zero for each l ) so that

εU : Φql ⊗�vi �→ ∑
l′∈L

εU
l′qli�ul′ .

The hypothesis (3.3) then gives this equality for any basis element �ul′ ⊗�vi′ of U ⊗V :

s(�ul′ ⊗�vi′) = ([IdV ⊗ εU ]◦ [ηU ⊗ IdV ])(�ul′ ⊗�vi′)

�vi′ ⊗�ul′ = [IdV ⊗ εU ]

((
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′�vi⊗Φql

)
⊗�vi′

)

=
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′�vi ⊗

(
∑

l′′∈L

εU
l′′qli′�ul′′

)
,

so for any i′ = 1, . . . ,N , l′ ∈ L , this sum has finitely many non-zero terms:

Q

∑
q=1

∑
l∈L

ηU
iqll′ε

U
l′′qli′ = δii′δl′l′′ . (3.8)

This is analogous to Equation (2.3).
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Similarly for hypothesis (3.4), let Hom(X ,W ) have basis set

{Ψqk : q = 1, . . . ,Q,k ∈ K},
with Ψqk :�xq′ = δqq′�wk . Then for each basis element Ψqk⊗�vi ∈Hom(X ,W )⊗V , there
are coefficients εW

k′qki (finitely many non-zero for each k ) so that

εW : Ψqk ⊗�vi �→ ∑
k′∈K

εW
k′qki�wk′ .

For F : V ⊗U → V ⊗W , and each basis element �vi ⊗�ul , there are coefficients Fi′kil
(finitely many non-zero for each l ) so that

F :�vi⊗�ul �→
N

∑
i′=1

∑
k∈K

Fi′kil�vi′ ⊗�wk.

A basis for Hom(X ,V ⊗U) can be chosen in the same way as (3.7), with maps �xq′ �→
δqq′�vi ⊗�ul , but this map is exactly the same as nU(�vi ⊗Φql) . Similarly, the maps
n4(�vi ⊗Ψqk) :�xq′ �→ δqq′�vi ⊗�wk form a basis for Hom(X ,V ⊗W) .

To calculate the composites in the diagram (3.4), start with:

(Hom(IdX ,F)◦ nU)(�vi ⊗Φql) :

�xq′ �→ (F ◦ (nU(�vi ⊗Φql)))(�xq′) = F(�vi ⊗ (Φql(�xq′))) = F(�vi ⊗ (δqq′�ul))

= δqq′
N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗�wk

=
N

∑
i′′=1

∑
k∈K

Fi′′kil(n4(�vi′′ ⊗Ψqk))(�xq′).

It follows that

n−1
4 ◦Hom(IdX ,F)◦ nU :�vi ⊗Φql �→

N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψqk, (3.9)

and

[IdV ⊗ εW ]◦ [(n−1
4 ◦Hom(IdX ,F)◦ nU)⊗ IdV ] :

�vi⊗Φql ⊗�vi′ �→ [IdV ⊗ εW ]

((
N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψqk

)
⊗�vi′

)

=
N

∑
i′′=1

∑
k∈K

∑
k′∈K

Fi′′kilεW
k′qki′�vi′′ ⊗�wk′ . (3.10)

The hypothesis (3.4) is that for any F , the expressions (3.10) and (3.11) are equal:

F ◦ [IdV ⊗ εU ] :�vi ⊗Φql ⊗�vi′ �→ F

(
�vi ⊗ ∑

l′∈L

εU
l′qli′�ul′

)

= ∑
l′∈L

N

∑
i′′=1

∑
k′∈K

εU
l′qli′Fi′′k′il′�vi′′ ⊗�wk′ , (3.11)
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so for any i , q , l , i′ , i′′ , k′ , these finite sums are equal:

∑
k∈K

Fi′′kilεW
k′qki′ = ∑

l′∈L

εU
l′qli′Fi′′k′il′ . (3.12)

For the RHS composite from (3.6) in the conclusion of the Theorem, a calculation
analogous to (3.9) gives, for any A as in (2.5):

n−1
W ◦Hom(IdX ,A)◦ nU :�vi ⊗Φql �→

N

∑
i′=1

∑
k∈K

Ai′kilΨqk ⊗�vi′ . (3.13)

The next steps use (3.8), (3.12), and (3.13).

εW ◦ n−1
W ◦Hom(IdX ,A)◦ nU ◦ηU :

�ul �→ εW

(
(n−1

W ◦Hom(IdX ,A)◦ nU)

(
N

∑
i=1

Q

∑
q=1

∑
l′∈L

ηU
iql′l�vi ⊗Φql′

))

= εW

(
N

∑
i=1

Q

∑
q=1

∑
l′∈L

ηU
iql′l

N

∑
i′=1

∑
k∈K

Ai′kil′Ψqk ⊗�vi′

)

=
N

∑
i=1

Q

∑
q=1

∑
l′∈L

N

∑
i′=1

∑
k∈K

∑
k′∈K

ηU
iql′lAi′kil′εW

k′qki′�wk′

=
N

∑
i=1

Q

∑
q=1

∑
l′∈L

N

∑
i′=1

∑
k′∈K

∑
l′′∈L

ηU
iql′lε

U
l′′ql′i′Ai′k′il′′�wk′ (3.14)

=
N

∑
i=1

N

∑
i′=1

∑
k′∈K

∑
l′′∈L

δii′δll′′Ai′k′il′′�wk′

=
N

∑
i=1

∑
k′∈K

Aik′il�wk′ . (3.15)

The last sum (3.15) is the same as (2.6), the generalized trace. �

Theorem 3.7 is still true even without the assumption that X has finite dimension,
and can be given a proof without choosing a basis for everything, although this turns
out to be more complicated than the above proof. Also, the property (3.4) of εU and
εW is only used in step (3.14), so to compute the trace of a particular map A , one could
assume the commutativity of (3.4) only for F = A , instead of for all F . However, our
goal is to find a formula (3.6) for the operator TrV ;U,W that works for any input.

The following result on the generalized trace has a conclusion analogous to that of
Theorem 3.7 (Equations (3.6) and (3.17) are the same), but replaces its assumption (3.4)
about two evaluation maps with a dual statement about two compatible coevaluation
maps. The proof is omitted but would be very similar to the previous proof.



A NON-UNITAL TRACE AND LINEAR COMPLEX STRUCTURES 537

PROPOSITION 3.8. Given vector spaces U , V , W , suppose there exist a vector
space X and maps

ηU : U →V ⊗Hom(X ,U)
ηW : W →V ⊗Hom(X ,W )
εW : Hom(X ,W )⊗V →W

such that this composite is a switching map:

[IdV ⊗ εW ]◦ [ηW ⊗ IdV ] = s : W ⊗V →V ⊗W,

and the following diagram is commutative for any F : U ⊗V →U ⊗W .

V ⊗U
F ��

[IdV⊗ηU ]
��

V ⊗W

[IdV⊗ηW ]
��

V ⊗V ⊗Hom(X ,U)

[IdV⊗s1]
��

V ⊗V ⊗Hom(X ,W )

[IdV⊗s2]
��

V ⊗Hom(X ,U)⊗V

[nU⊗IdV ]
��

V ⊗Hom(X ,W )⊗V

[n4⊗IdV ]
��

Hom(X ,V ⊗U)⊗V
[Hom(IdX ,F)⊗IdV ]

�� Hom(X ,V ⊗W)⊗V

(3.16)

If V and X are finite dimensional, then for any A : V ⊗U →V ⊗W ,

TrV ;U,W (A) = εW ◦ n−1
W ◦Hom(IdX ,A)◦ nU ◦ηU : U →W, (3.17)

so the RHS composite does not depend on (X ,ηU ,ηW ,εW ) .

The following Corollary is another scalar-free formula for the generalized trace of
A : V ⊗U →V ⊗W , in the special case where A can be factored into the form [B⊗C] .

COROLLARY 3.9. If V , U , W , X , ηU , and εW satisfy the hypothesis of either
Theorem 3.7 or Proposition 3.8, and s :V ⊗Hom(X ,U)→Hom(X ,U)⊗V is a switch-
ing map, then for any B : V →V and C : U →W ,

TrV ;U,W ([B⊗C]) = εW ◦ [Hom(IdX ,C)⊗B]◦ s◦ηU.

Proof. The following diagram is copied from (3.5) with A = [B⊗C] , and the
arrows added in the middle correspond to the maps in the claimed formula, so the lower
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block with the switching map is analogous to the diagram (2.4), but without the scalars.

Hom(X ,V ⊗U)
Hom(IdX ,[B⊗C]) �� Hom(X ,V ⊗W)

V ⊗Hom(X ,U)

nU

��

s �� Hom(X ,U)⊗V
[Hom(IdX ,C)⊗B] �� Hom(X ,W )⊗V

εW

��

nW

��

U

ηU

��

TrV ;U,W ([B⊗C])
�� W

The upper block is easily checked to be commutative for any B and C : both paths
from V ⊗Hom(X ,U) to Hom(X ,V ⊗W ) take an element of the form �v⊗D to a map
�x �→ (B(�v))⊗ (C(D(�x))) . The commutativity around the outside of the diagram is the
conclusion from either Theorem 3.7 or Proposition 3.8, so the commutativity of the
lower block follows, and this is the claim of the Corollary.

We remark that the assumption about the finite dimension of V is sufficient for the
invertibility of the canonical map from Notation 2.5:

Hom(V,V )⊗Hom(U,W ) → Hom(V ⊗U,V ⊗W) : B⊗C �→ [B⊗C]

([4] §II.7.7.), so any map A : V ⊗U →V ⊗W can be written as a finite sum of maps of
the form [B⊗C] . �

Calculations similar to the commutativity of the upper block from the above dia-
gram will appear again in the next Sections, so we state a general result as the following
Lemma. The canonical maps n and n′ are of the form (3.1), but there are analogous re-
sults for other versions of n maps such as (3.2), or for composites with switching maps
as in Corollary 3.9. (The Lemma can be interpreted as a statement about the naturality
of the n maps, in a technical sense of category theory.)

LEMMA 3.10. For any vector spaces X , X ′ , V , V ′ , U , U ′ , and maps F : X ′ →
X , B : V →V ′ , C : U →U ′ , this diagram is commutative.

V ⊗Hom(X ,U) n ��

[B⊗Hom(F,C)]
��

Hom(X ,V ⊗U)

Hom(F,[B⊗C])
��

V ′ ⊗Hom(X ′,U ′) n′ �� Hom(X ′,V ′ ⊗U ′)

Proof. For elements in the domain of the form �v⊗A with A ∈ Hom(X ,U) and
�v ∈V , and for �x ∈ X ′ ,

�v⊗A �→ (Hom(F, [B⊗C])◦ n)(�v⊗A) = [B⊗C]◦ (n(�v⊗A))◦F :

�x �→ [B⊗C](�v⊗ (A(F(�x)))) = (B(�v))⊗ ((C ◦A◦F)(�x)),
�v⊗A �→ (n′ ◦ [B⊗Hom(F,C)])(�v⊗A) = n′((B(�v))⊗ (C ◦A◦F)) :

�x �→ (B(�v))⊗ ((C ◦A◦F)(�x)). �
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EXAMPLE 3.11. Let V be finite dimensional. A specific example of a coeval-
uation ηU corresponding to X = V and the canonical evaluation map εU = EvVU :
Hom(V,U)⊗V → U is the following map ηVU : U → V ⊗Hom(V,U) , defined on
basis elements of U by:

ηVU :�ul �→
N

∑
i=1

�vi ⊗Φil, (3.18)

where Φil ∈ Hom(V,U) is as in (3.7) with basis elements �xq replaced by �vi . (This is
analogous to the example (2.1) from Proposition 2.10.) Property (3.3) is satisfied with
ηU = ηVU and εU = EvVU :

�ul ⊗�vi �→ ([IdV ⊗EvVU ]◦ [ηVU ⊗ IdV ])(�ul ⊗�vi)

= [IdV ⊗EvVU ]

((
N

∑
i′=1

�vi′ ⊗Φi′l

)
⊗�vi

)
=

N

∑
i′=1

�vi′ ⊗ (EvVU (Φi′l ⊗�vi))

=
N

∑
i′=1

�vi′ ⊗ (Φi′l(�vi)) =
N

∑
i′=1

�vi′ ⊗ (δi′i�ul) =�vi⊗�ul.

The coevaluations ηU = ηVU and ηW = ηVW also satisfy the compatibility condition
(3.16). Using (3.9),

[(n−1
4 ◦Hom(IdX ,F)◦ nU)⊗ IdV ]◦ [IdV ⊗ (s1 ◦ηVU)] :

�vi ⊗�ul �→ [(n−1
4 ◦Hom(IdX ,F)◦ nU)⊗ IdV ]

(
�vi⊗

(
N

∑
i′=1

Φi′l ⊗�vi′

))

=
N

∑
i′=1

(
N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗Ψi′k

)
⊗�vi′ ,

[IdV ⊗ (s2 ◦ηVW )]◦F :

�vi ⊗�ul �→ [IdV ⊗ (s2 ◦ηVW )]

(
N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗�wk

)

=
N

∑
i′′=1

∑
k∈K

Fi′′kil�vi′′ ⊗
(

N

∑
i′=1

Ψi′k ⊗�vi′

)
.

The following Lemma, which will be used in Section 4, states an identity for the above
coevaluation map which does not depend on choices of basis, but which does need one
more canonical n map,

n5 : Hom(V,V )⊗U → Hom(V,V ⊗U),

defined as in Notation 3.3 by n5(A⊗�u) :�v �→ (A(�v))⊗�u .

LEMMA 3.12. For any �u ∈U , ηVU(�u) = n−1
U (n5(IdV ⊗�u)) .
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Proof. The map nU is as in (3.1) with X =V , so it is the same as n2 from Lemma
3.5. It is enough to check that for basis elements �ul , nU(ηVU(�ul)) = n5(IdV ⊗�ul) .

nU(ηVU(�ul)) :�vi′ �→
(

nU

(
N

∑
i=1

�vi⊗Φil

))
(�vi′)

=
N

∑
i=1

�vi ⊗ (Φil(�vi′)) =
N

∑
i=1

�vi⊗ (δii′�ul) =�vi′ ⊗�ul

= (n5(IdV ⊗�ul))(�vi′). �

The following Lemma is a coevaluation version of Lemma 3.2.

LEMMA 3.13. For V with finite dimension and any map B : U →W ,

ηVW ◦B = [IdV ⊗Hom(IdV ,B)]◦ηVU : U →V ⊗Hom(V,W ).

Proof. The claim is that the upper block in the following diagram is commuta-
tive. Three of the n maps have appeared previously, the map n6 is analogous to n5 as
indicated in the diagram, and all the n maps are invertible.

U
B ��

ηVU

��

W

ηVW

��
V ⊗Hom(V,U)

nU

��

[IdV⊗Hom(IdV ,B)] �� V ⊗Hom(V,W )

n3

��
Hom(V,V ⊗U)

Hom(IdV ,[IdV⊗B]) �� Hom(V,V ⊗W)

Hom(V,V )⊗U

n5

��

[Hom(IdV ,IdV )⊗B] �� Hom(V,V )⊗W

n6

��

The lower two blocks are commutative by Lemma 3.10. Using Lemma 3.12, for �u∈U ,

�u �→ ([Hom(IdV , IdV )⊗B]◦ n−1
5 ◦ nU ◦ηVU)(�u)

= IdV ⊗ (B(�u))
= (n−1

6 ◦ n3 ◦ηVW ◦B)(�u).

So, the two paths from U to Hom(V,V )⊗W are equal composites, which is enough to
show that the upper block is commutative as claimed. �

The formula (3.6) from Theorem 3.7 can be used to prove some well-known ele-
mentary properties of the generalized trace (as in [8], [9]). We will state just one such
result, which will be used later.
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THEOREM 3.14. For V with finite dimension, and maps A : V ⊗U → V ⊗W ,
B :U ′ →U and G :W →W ′ , the composite [IdV ⊗G]◦A◦ [IdV ⊗B] :V ⊗U ′ →V ⊗W ′
has trace

TrV ;U ′ ,W ′([IdV ⊗G]◦A◦ [IdV ⊗B]) = G◦ (TrV ;U,W (A))◦B.

Proof. Theorem 3.7 showed that any evaluation and coevaluation maps satisfying
its hypotheses can be used to calculate the trace, so we use the canonical evaluation and
the coevaluation from Example 3.11 with X = V .

LHS = EvVW ′ ◦ n−1
W ′ ◦Hom(IdV , [IdV ⊗G]◦A◦ [IdV ⊗B])◦ nU ′ ◦ηVU ′

= EvVW ′ ◦ n−1
W ′ ◦Hom(IdV , [IdV ⊗G])◦Hom(IdV ,A)◦

Hom(IdV , [IdV ⊗B])◦ nU ′ ◦ηVU ′

= EvVW ′ ◦ [Hom(IdV ,G)⊗ IdV ]◦ n−1
W ◦Hom(IdV ,A)◦

nU ◦ [IdV ⊗Hom(IdV ,B)]◦ηVU ′ (3.19)

= G◦EvVW ◦ n−1
W ◦Hom(IdV ,A)◦ nU ◦ηVU ◦B = RHS. (3.20)

Line (3.19) follows from the previous by Lemma 3.10, and line (3.20) uses Lemma 3.2
and Lemma 3.13. �

4. Complex linear algebra without complex numbers

Formula (3.6) could be taken as a definition of the trace TrV ;U,W in categories of
vector spaces that do not include K as an object, but otherwise have enough structure
(including some natural transformations n ), to support the hypotheses of either Theo-
rem 3.7 or Proposition 3.8. Examples of such categories include some subcategories
of the category of finite dimensional vector spaces which are closed under −⊗− and
Hom(−,−) , e.g., where the objects are just the vector spaces with dimensions N sat-
isfying N > 1, or N = 2K > 1, or N = 2K > 1, etc.

In categories where there is a unit object for ⊗ but it is not unique, then using (3.6)
to define the trace shows that the trace does not depend on any choice of unit object or
scalar multiplication morphisms.

An example of such a category, and the original motivation for this approach, is
the category C of real vector spaces with linear complex structures. Each object of C
is a pair (V,J) , where V is a real vector space, and J is a real linear map V →V such
that J ◦ J = −IdV , called a complex structure operator (CSO). The morphisms from
(U,JU) to (V,JV ) are real linear maps A : U → V such that A ◦ JU = JV ◦A . Clearly,
IdV is the identity morphism for any object (V,J) , and the composite of morphisms
is a morphism. We call such maps c-linear, and it may be useful to think of them as
“complex linear,” commuting with some choice of complex scalar multiplication such
as (α · IdU ±β · JU)(�u) = α ·�u±β · JU(�u) , but we are intentionally avoiding the intro-
duction of the field of complex numbers as scalars or for any other use. In particular, we
will not attempt to consider any scalar valued trace for morphisms (V,JV ) → (V,JV ) ;
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this without-complex-numbers approach will only apply to the generalized trace, where
the output is another morphism.

In this Section, we will review just enough of the ideas and notation for linear
complex structures to propose a definition of the generalized trace for the category C .
See [6] for notes giving a more detailed development of complex structure operators.

When the vector space V has a CSO JV , it is sometimes convenient to abbreviate
the pair (V,JV ) by one letter, V . However, a real vector space V may have several
complex structures (and this itself is a situation where doing linear algebra with CSOs
can be more clear than with complex scalars). Two CSOs can (but do not necessarily)
commute, as in the following Lemma (left as an exercise).

LEMMA 4.1. Given V and two CSOs J1 , J2 , the following are equivalent:

1. J1 and J2 commute, i.e., J1 ◦ J2 = J2 ◦ J1 ;

2. The composite J1 ◦ J2 is an involution, i.e., (J1 ◦ J2)◦ (J1 ◦ J2) = IdV .

Any involution B on a real vector space produces a direct sum V =V1⊕V2 , where
V1 is the +1 eigenspace (the fixed point set) and V2 is the −1 eigenspace. The projec-
tion onto V2 with kernel V1 is P = 1

2 · (IdV −B) .

NOTATION 4.2. In the case of commuting CSOs on V , and the involution J1 ◦ J2

as in Lemma 4.1, let Vc denote the −1 eigenspace, so that �v ∈ Vc ⇐⇒ J1(J2(�v)) =
−�v ⇐⇒ J1(�v) = J2(�v) . So, Vc is exactly the real subspace of V where J1 = J2 ,
and J1|Vc = J2|Vc is a canonically induced CSO on Vc . The projection from V to Vc ,
where the kernel is the +1 eigenspace, is Pc = 1

2 · (IdV − J1 ◦ J2) . Pc is c-linear from
both (V,J1) and (V,J2) to (Vc,J1|Vc) . If Va denotes the +1 eigenspace of J1 ◦ J2 ,
then V = Vc ⊕Va and Va is the subspace of V where the two CSOs are opposite,
J1|Va = −J2|Va .

EXAMPLE 4.3. Given U = (U,JU) and V = (V,JV ) , the maps Hom(IdU ,JV ) and
Hom(JU , IdV ) are commuting CSOs on Hom(U,V ) , so Lemma 4.1 applies. The real
subspace of Hom(U,V ) where the two CSOs agree, as in Notation 4.2, is the vector
space of c-linear maps, and also the set of morphisms in C from U to V :

Homc((U,JU),(V,JV )) = {A ∈ Hom(U,V ) : A◦ JU = JV ◦A}.

The projection onto the subspace is

Pc =
1
2
· (IdHom(U,V )−Hom(IdU ,JV )◦Hom(JU , IdV ))

=
1
2
· (IdHom(U,V )−Hom(JU ,JV )) : A �→ 1

2
· (A− JV ◦A◦ JU).

The subspace has a canonical CSO, so as an object in C , the pair can be denoted

Homc(U,V) = (Homc((U,JU),(V,JV )),Hom(IdU ,JV )|Homc((U,JU ),(V,JV ))).
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EXAMPLE 4.4. Given U = (U,JU) and V = (V,JV ) , the two maps [IdU ⊗ JV ] ,
[JU ⊗ IdV ] ∈ Hom(U ⊗V,U ⊗V) are commuting CSOs on U ⊗V , so Lemma 4.1 ap-
plies. The direct sum from Notation 4.2 is denoted:

U ⊗V = (U ⊗cV )⊕ (U ⊗aV ), (4.1)

so that the subspace of U ⊗V where the two CSOs agree is

U ⊗cV = {�w ∈U ⊗V : [IdU ⊗ JV ](�w) = [JU ⊗ IdV ](�w)}, (4.2)

and it has a canonical CSO, JU⊗cV = [IdU ⊗ JV ]|U⊗cV = [JU ⊗ IdV ]|U⊗cV . The symbol
U⊗c V will be used to denote the object in C given by this subspace paired with the
CSO.

So, the category C has a tensor product ⊗c ; it is associative as described in the Proof of
Lemma 4.12. (In terms of complex linear algebra, the idea is that the real subspace U⊗c

V corresponds to the tensor product “over C” where complex scalars can move from
U to V . The elements of the complementary subspace U ⊗aV , corresponding to Va in
Notation 4.2, are the “antilinear” tensors where moving a complex scalar introduces a
conjugation.)

EXAMPLE 4.5. The vector space R2 =
{[

x
y

]}
admits distinct CSOs; for exam-

ple, the following matrices all satisfy the definition:

J1 =
[

0 −1
1 0

]
, J2 =

[
0 1
−1 0

]
, J3 =

[
47 −34
65 −47

]
, J4 =

[−5 26
−1 5

]
, . . .

None of these is any more canonical than the others, although the first one could be
called the “standard” CSO for R2 with the (x,y) coordinate system, due to its resem-
blance to a +90◦ rotation matrix. For any object V in C , there exists some (not
necessarily unique or canonical) invertible c-linear map from V⊗c (R2,J1) to V (more
details appear in Example 5.12). So the tensor product ⊗c does have at least one unit
object in C , and it is unique only up to isomorphism. The interesting difference be-
tween C and the category of all vector spaces is not whether there exists a tensor unit,
but that C does not have a distinguished unit object and scalar multiplication isomor-
phisms in the same way that the category of all vector spaces has the canonical object
K and the canonical � maps.

LEMMA 4.6. For V with commuting CSOs J1 , J2 , and another space V ′ with
commuting CSOs J′1 , J′2 , if a map H : V → V ′ satisfies H ◦ J1 = J′1 ◦H and H ◦ J2 =
J′2◦H , then H respects the direct sums of ±1 eigenspaces, and H restricts to a c-linear
map Vc →V ′

c , which is invertible if H is.

Proof. The statement about respecting the direct sum means that if �v is a −1
eigenvector of J1 ◦ J2 (so (J1 ◦ J2)(�v) = −�v ⇐⇒ J1(�v) = J2(�v) ⇐⇒ �v ∈ Vc ), then
H(�v) is a −1 eigenvector of J′1 ◦ J′2 . This is easily checked (using only the weaker
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property H ◦ J1 ◦ J2 = J′1 ◦ J′2 ◦H ), and also holds for the +1 eigenspace. The c-linear
property refers to the canonical CSOs on Vc and V ′

c : if �v ∈Vc , then J1|Vc(�v) ∈Vc , and

H|Vc(J1|Vc(�v)) = H(J1(�v)) = H(J2(�v))
= J′2(H(�v)) = J′1(H(�v)) = J′1|V ′

c
(H|Vc(�v)).

If H has an inverse, then it also respects the direct sum and the restriction of the inverse
to V ′

c is the inverse of H|Vc : Vc →V ′
c . �

EXAMPLE 4.7. If U = (U,JU) and V = (V,JV ) , then U⊗V and V ⊗U both have
commuting pairs of CSOs as in Example 4.4. The switching map s :U⊗V →V ⊗U (as
in Notation 2.4) satisfies s◦ [JU ⊗IdV ] = [IdV ⊗JU ]◦s and s◦ [IdV ⊗JV ] = [JV ⊗IdV ]◦s ,
so Lemma 4.6 applies and s restricts to a c-linear map s : U⊗c V → V⊗c U .

EXAMPLE 4.8. For c-linear maps A : U → U′ and B : V → V′ , the map

[A⊗B] : U ⊗V →U ′ ⊗V ′

satisfies both [A⊗B] ◦ [JU ⊗ IdV ] = [JU ′ ⊗ IdV ′ ] ◦ [A⊗B] and [A⊗B] ◦ [IdU ⊗ JV ] =
[IdU ′ ⊗ JV ′ ] ◦ [A⊗B] , so Lemma 4.6 applies and [A⊗B] restricts to a c-linear map,
denoted [A⊗c B] : U⊗c V → U′ ⊗c V′ .

EXAMPLE 4.9. For c-linear maps A : U′ →U and B : V→V′ , Lemma 4.6 applies
to the map

Hom(A,B) : Hom(U,V ) → Hom(U ′,V ′)

and the corresponding pairs of CSOs from Example 4.3. The restricted c-linear map
can be denoted

Homc(A,B) : Homc(U,V) → Homc(U′,V′) : F �→ B◦F ◦A.

We will need to work with some spaces with three mutually commuting CSOs, as in the
following Example 4.10. Lemma 4.6 can be generalized for maps between such spaces,
but we will just sketch the following special case that will be needed later.

EXAMPLE 4.10. For any objects U = (U,JU) , V = (V,JV ) , X = (X ,JX) , a canon-
ical map from Notation 3.3, such as (3.1),

n : V ⊗Hom(X ,U) → Hom(X ,V ⊗U),

is c-linear with respect to each of the three corresponding pairs of CSOs on the domain
and target:

n ◦ [JV ⊗ IdHom(X ,U)] = Hom(IdX , [JV ⊗ IdU ])◦ n,

n ◦ [IdV ⊗Hom(JX , IdU)] = Hom(JX , IdV⊗U)◦ n,

n ◦ [IdV ⊗Hom(IdX ,JU)] = Hom(IdX , [IdV ⊗ JU ])◦ n.
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Each of these three equations follows from Lemma 3.10. The three CSOs on the domain
commute pairwise, and similarly for the target. Lemma 4.6 applies to any two out of
the three CSO pairs; an example we will need later is these two CSOs on the domain:
[JV ⊗ IdHom(X ,U)] and [IdV ⊗Hom(JX , IdU)] . The subspace of V ⊗Hom(X ,U) where
these two complex structures agree can be denoted V⊗c Hom(X,U) , as in Example
4.4, where the bold letters indicate the tensor product in C of the objects V and

Hom(X,U) = (Hom(X ,U),Hom(JX , IdU)).

Similarly in the target, the subspace of Hom(X ,V ⊗U) where the two CSOs Hom(IdX ,
[JV ⊗ IdU ]) and Hom(JX , IdV⊗U) agree can be denoted Homc(X,V⊗U) as in Example
4.3. The map n respects these direct sums and restricts to a c-linear map n : V⊗c

Hom(X,U)→Homc(X,V⊗U) . The third CSO in the domain, [IdV ⊗Hom(IdX ,JU)] ,
also respects the direct sum and restricts to a CSO on the subspace V⊗c Hom(X,U)
that commutes with the CSO induced by the first two. The subspace of V⊗cHom(X,U)
where these two restricted CSOs agree is exactly the subspace of V ⊗Hom(X ,U) where
all three CSOs agree, and can be denoted V⊗c Homc(X,U) . (This subspace does not
depend on which two out of three CSOs start the construction.) The projection from
Notation 4.2 will be denoted

Pc : V⊗c Hom(X,U) → V⊗c Hom(X,U). (4.3)

Similarly in the target, the third CSO [IdV ⊗Hom(JX , IdU)] restricts to the subspace
Homc(X,V⊗U) and commutes with the induced CSO, so the subspace where all three
CSOs agree is Homc(X,V⊗c U) . If we denote Pc : V ⊗U → V⊗c U , then this projec-
tion map can be denoted:

Homc(IdX ,Pc) : Homc(X,V⊗U)→ Homc(X,V⊗c U).

The map n restricts to a c-linear map between the subspaces where all three commuting
CSOs agree, denoted n , as in the following commutative diagram.

V⊗c Hom(X,U)

n

��

Pc �� V⊗c Homc(X,U)

n
��

Homc(X,V⊗U)
Homc(IdX ,Pc)

�� Homc(X,V⊗c U)

If n :V ⊗Hom(X ,U)→Hom(X ,V ⊗U) is invertible, then so are the restrictions n and
n in the diagram. There is a similar construction for other versions of n maps such as
(3.2).

LEMMA 4.11. If V is finite dimensional with CSO JV , then there exists an or-
dered basis for V of the form

(�v1,JV (�v1),�v2,JV (�v2), . . . ,�vN ,JV (�vN)). (4.4)
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For any U with CSO JU and basis {�ul} , the set

{�vi ⊗�ul − (JV (�vi))⊗ (JU(�ul)) : i = 1, . . . ,N, l ∈ L} (4.5)

is a basis of V⊗c U .

Proof. The existence of such a basis for V is elementary (although it uses K = R

and may not work for other fields of scalars; we refer to [6]), but note that in this
Section, V has real dimension 2N , which is a change from the notation in Sections 2
and 3.

Every element in U ⊗V is a finite sum of the form(
N

∑
i=1

∑
l∈L

ail�vi⊗�ul

)
+

(
N

∑
i′=1

∑
l′∈L

bi′l′(JV (�vi′))⊗�ul′

)
. (4.6)

If this element is in U⊗c V , then(
N

∑
i=1

∑
l∈L

ail(JV (�vi))⊗�ul

)
−
(

N

∑
i′=1

∑
l′∈L

bi′l′�vi′ ⊗�ul′

)

=

(
N

∑
i=1

∑
l∈L

ail�vi⊗ (JU(�ul))

)
+

(
N

∑
i′=1

∑
l′∈L

bi′l′(JV (�vi′))⊗ (JU(�ul′))

)
.

By the independence (over R) of the set {�vi⊗�ul}∪{(JV(�vi′))⊗�ul′} in U ⊗V ,

−
N

∑
i′=1

∑
l′∈L

bi′l′�vi′ ⊗�ul′ =
N

∑
i=1

∑
l∈L

ail�vi ⊗ (JU(�ul)),

and applying [JV ⊗ IdU ] to both sides gives

−
N

∑
i′=1

∑
l′∈L

bi′l′(JV (�vi′))⊗�ul′ =
N

∑
i=1

∑
l∈L

ail(JV (�vi))⊗ (JU(�ul));

we can conclude that if any element (4.6) is in U⊗c V , then it is of the form

N

∑
i=1

∑
l∈L

ail (�vi⊗�ul − (JV (�vi))⊗ (JV (�ul))) ,

so the set (4.5) spans U⊗c V . The independence of (4.5) also follows from the inde-
pendence of the set {�vi ⊗�ul}∪{(JV (�vi′))⊗�ul′} in U ⊗V . �

LEMMA 4.12. Given vector spaces U , V , X , if V is finite dimensional with CSO
JV and basis

(�v1,JV (�v1), . . . ,�vN ,JV (�vN)),

and X is finite dimensional with CSO JX and basis

(�x1,JX(�x1), . . . ,�xQ,JX(�xQ)),
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then for any CSO JU and basis {�ul} for U , the set{
�vi ⊗�ul ⊗�xq− (JV (�vi))⊗ (JU(�ul))⊗�xq

−(JV (�vi))⊗�ul ⊗ (JX(�xq))−�vi⊗ (JU(�ul))⊗ (JX(�xq))
}

(4.7)

is a basis of V⊗c U⊗c X .

Proof. Recall from Example 4.4 that V⊗c U is the subspace of V ⊗U where the
CSOs [IdV ⊗ JU ] and [JV ⊗ IdU ] agree, and that the CSO on V⊗c U is their common
restriction [IdV ⊗ JU ]|V⊗cU = [JV ⊗ IdU ]|V⊗cU . In the same way, (V⊗c U)⊗c X is the
subspace of (V⊗c U)⊗X where the CSOs [[JV ⊗ IdU ]|V⊗cU⊗ IdX ] and [IdV⊗cU ⊗ JX ]
agree. By Lemma 4.11, (V⊗c U)⊗c X is spanned by basis elements of the form

(�vi ⊗�ul − (JV (�vi))⊗ (JU(�ul)))⊗�xq

−([JV ⊗ IdU ]|V⊗cU (�vi⊗�ul − (JV (�vi))⊗ (JU(�ul))))⊗ (JX(�xq))
= (�vi ⊗�ul − (JV (�vi))⊗ (JU(�ul)))⊗�xq

−((JV (�vi))⊗�ul +�vi⊗ (JU(�ul)))⊗ (JX(�xq)). (4.8)

Similarly using Lemma 4.11 again, V⊗c (U⊗c X) is spanned by basis elements of the
form

�vi ⊗ (�ul ⊗�xq− (JU(�ul))⊗ (JX(�xq)))
−(JV (�vi))⊗ ((JU(�ul))⊗�xq +�ul ⊗ (JX(�xq))) . (4.9)

Under the identification of the real tensor products (V ⊗U)⊗X and V ⊗ (U ⊗X) with
the triple product V ⊗U ⊗X as mentioned in Notation 2.2, both (4.8) and (4.9) can
be expanded out and parentheses removed, so that they are equal to each other and to
the expression in (4.7). The subspace of V ⊗U ⊗X spanned by these elements can
be unambiguously denoted V⊗c U⊗c X ; it is the subspace where all three of these
commuting CSOs on V ⊗U ⊗X are equal:

[[JV ⊗ IdU ]⊗ IdX ] = [JV ⊗ IdU⊗X ]
[[IdV ⊗ JU ]⊗ IdX ] = [IdV ⊗ [JU ⊗ IdX ]]
[IdV ⊗ [IdU ⊗ JX ]] = [IdV⊗U ⊗ JX ] .

As in Example 4.4, the notation V⊗c U⊗c X will also be used to denote the object in
C given by pairing this real subspace with the CSO equal to the restriction of any of
the above three. �

LEMMA 4.13. If X is finite dimensional with CSO JX and ordered basis of the
form

(�x1,JX(�x1), . . . ,�xQ,JX(�xQ)),

then for any U with CSO JU and basis {�ul} , the set of maps

{Φc
ql : q = 1, . . . ,Q, l ∈ L}, (4.10)
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with each Φc
ql defined on basis elements of X by the formula:

�xq′ �→ δqq′�ul

JX(�xq′) �→ δqq′JU(�ul)

is a basis of Homc(X,U) .

Proof. It is straightforward to check that each Φc
ql ∈ Homc(X,U) . Any element

A ∈ Homc(X,U) is determined by its values on the �x1, . . . ,�xQ basis elements of X :

A(�xq) = ∑
l∈L

Alq�ul =⇒ A(JX(�xq)) = JU(A(�xq)) = ∑
l∈L

AlqJU(�ul). (4.11)

Homc(X,U) is spanned by the set (4.10): corresponding to the finite list of coefficients
from (4.11) for any A ∈ Homc(X,U) ,

Q

∑
q=1

∑
l∈L

AlqΦc
ql :�xq′ �→

Q

∑
q=1

∑
l∈L

Alqδqq′�ul = ∑
l∈L

Alq′�ul = A(�xq′).

To show that (4.10) is an independent set, suppose
Q

∑
q=1

∑
l∈L

bqlΦc
ql = 0Homc(U,V ) . Then,

for any q′ ,

�0U =
Q

∑
q=1

∑
l∈L

bqlΦc
ql(�xq′) =

Q

∑
q=1

∑
l∈L

bqlδqq′�ul = ∑
l∈L

bq′l�ul,

so every coefficient is zero by the independence of the basis for U . �

The next Theorem is the main result of this Section; there is enough structure in
the category C to use an analogue of formula (3.6) to define a c-linear trace. However,
C is different enough from the category of all vector spaces, so that there is a need to
give another Proof showing that the formula is independent of the choices of evaluation
and coevaluation.

THEOREM 4.14. Given objects in C , U = (U,JU) , V = (V,JV ) , W = (W,JW ) ,
suppose there exist an object X = (X ,JX) and morphisms

ηU : U → V⊗c Homc(X,U)
εU : Homc(X,U)⊗c V → U

εW : Homc(X,W)⊗c V → W

such that this composite is equal to a switching morphism:

[IdV ⊗c εU]◦ [ηU⊗c IdV ] = s : U⊗c V → V⊗c U. (4.12)



A NON-UNITAL TRACE AND LINEAR COMPLEX STRUCTURES 549

Suppose further that V and X are both finite dimensional, so that the n morphisms
in the following diagram are invertible, and that the diagram is commutative for any
morphism F : V⊗c U → V⊗c W ,

V⊗c U F �� V⊗c W

V⊗c Homc(X,U)⊗c V

[nU⊗cIdV ]
��

[IdV⊗cεU]

��

V⊗c Homc(X,W)⊗c V

[n4⊗cIdV ]
��

[IdV⊗cεW]

��

Homc(X,V⊗c U)⊗c V
[Homc(IdX ,F)⊗cIdV ]

�� Homc(X,V⊗c W)⊗c V

(4.13)

in the sense that

F ◦ [IdV ⊗c εU]◦ [nU⊗c IdV ]−1

= [IdV ⊗c εW]◦ [n4⊗c IdV ]−1 ◦ [Homc(IdX ,F)⊗c IdV ].

Then the canonical map

nW : Homc(X,W)⊗c V → Homc(X,V⊗c W)

is also invertible, and for any morphism A : V⊗cU→V⊗cW , the composite map from
U to W in the following diagram depends only on A and not on (X ,JX ,ηU,εU,εW) .

Homc(X,V⊗c U)
Homc(IdX ,A) �� Homc(X,V⊗c W)

n−1
W

��
V⊗c Homc(X,U)

nU

��

Homc(X,W)⊗c V

εW

��
U

ηU

��

W

(4.14)

Proof. The proof proceeds in the same way as the Proof of Theorem 3.7; the
difference is in choosing basis sets, using Lemma 4.11, Lemma 4.12, and Lemma 4.13.

Using the basis (4.10) for Homc(X,U) , the basis (4.4) for V , and the basis (4.5)
for the tensor product, the set

{�vi⊗Φc
ql − (JV (�vi))⊗ (JU ◦Φc

ql)}
is a basis for V⊗c Homc(X,U) . For each basis element �ul′ of U , there are real coeffi-
cients ηU

iqll′ (finitely many non-zero for each l′ ) so that

ηU :�ul′ �→
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′
(
�vi⊗Φc

ql − (JV (�vi))⊗ (JU ◦Φc
ql)
)

.
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Similarly, there are real coefficients εU
l′qli (finitely many non-zero for each l ) so that

εU : Φc
ql ⊗�vi− (JU ◦Φc

ql)⊗ (JV (�vi)) �→ ∑
l′∈L

εU
l′qli�ul′ . (4.15)

By the c-linearity of εU ,

εU : (JU ◦Φc
ql)⊗�vi + Φc

ql ⊗ (JV (�vi)) �→ ∑
l′∈L

εU
l′qliJU(�ul′).

The switching morphism from (4.12) acts on basis elements of U⊗c V by:

s :�ul′ ⊗�vi′ − (JU(�ul′))⊗ (JV (�vi′)) �→�vi′ ⊗�ul′ − (JV (�vi′))⊗ (JU(�ul′)).

The first hypothesis on ηU and εU is that this gives the same output:

[IdV ⊗c εU]◦ [ηU⊗c IdV ] :�ul′ ⊗�vi′ − (JU(�ul′))⊗ (JV (�vi′))
�→ [IdV ⊗c εU]((ηU(�ul′))⊗�vi′ − ([JV⊗IdHomc(X,U)](η

U(�ul′)))⊗(JV (�vi′)))

= [IdV ⊗c εU]

((
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′(�vi ⊗Φc

ql − (JV (�vi))⊗ (JU ◦Φc
ql))

)
⊗�vi′

−
(

N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′((JV (�vi))⊗Φc

ql +�vi⊗ (JU ◦Φc
ql))

)
⊗ (JV (�vi′))

)

=
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′
(
�vi ⊗ (εU(Φc

ql ⊗�vi′ − (JU ◦Φc
ql)⊗ (JV (�vi′))))

− (JV (�vi))⊗ (εU((JU ◦Φc
ql)⊗�vi′ + Φc

ql ⊗ (JV (�vi′))))
)

=
N

∑
i=1

Q

∑
q=1

∑
l∈L

ηU
iqll′

(
�vi⊗

(
∑

l′′∈L

εU
l′′qli′�ul′′

)
− (JV (�vi))⊗

(
∑

l′′∈L

εU
l′′qli′JU(�ul′′)

))

=
N

∑
i=1

Q

∑
q=1

∑
l∈L

∑
l′′∈L

ηU
iqll′ε

U
l′′qli′(�vi ⊗�ul′′ − (JV (�vi))⊗ (JU(�ul′′))).

The step from the above first line to the second uses the c-linearity of ηU . The last sum
matches the output of the switching map when:

Q

∑
q=1

∑
l∈L

ηU
iqll′ε

U
l′′qli′ = δii′δl′l′′ , (4.16)

which is analogous to (3.8).
As in (4.10), choose the basis set for Homc(X,W) :

{Ψc
qk : q = 1, . . . ,n,k ∈ K},

with each Ψc
qk defined on basis elements of X by the formula:

�xq′ �→ δqq′�wk

JX(�xq′) �→ δqq′JW (�wk).
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Then as in (4.15), there are real coefficients εW
k′qki (finitely many non-zero for each k )

so that
εW : Ψc

qk ⊗�vi− (JW ◦Ψc
qk)⊗ (JV (�vi)) �→ ∑

k′∈K

εW
k′qki�wk′ .

For F : V⊗c U → V⊗c W , and each basis element �vi ⊗�ul − (JV (�vi))⊗ (JU(�ul)) ,
there are real coefficients Fi′kil (finitely many non-zero for each l ) so that

F : �vi ⊗�ul − (JV (�vi))⊗ (JU(�ul))

�→
N

∑
i′=1

∑
k∈K

Fi′kil (�vi′ ⊗�wk − (JV (�vi′))⊗ (JW (�wk))) . (4.17)

A basis for Homc(X,V⊗c U) can be chosen in the same way as (4.10), with

�xq′ �→ δqq′(�vi⊗�ul − (JV (�vi))⊗ (JU(�ul))),
JX(�xq′) �→ δqq′ [IdV ⊗ JU ]|V⊗cU(�vi ⊗�ul − (JV (�vi))⊗ (JU(�ul))),

but this map is exactly the same as

nU(�vi ⊗Φc
ql − (JV (�vi))⊗ (JU ◦Φc

ql)) :

�xq′ �→ �vi ⊗ (Φc
ql(�xq′))− (JV (�vi))⊗ (JU(Φc

ql(�xq′)))
= �vi ⊗ (δqq′�ul)− (JV (�vi))⊗ (δqq′JU(�ul)),

JX(�xq′) �→ �vi ⊗ (Φc
ql(JX(�xq′)))− (JV (�vi))⊗ (JU(Φc

ql(JX(�xq′))))
= �vi ⊗ (δqq′JU(�ul))+ (JV (�vi))⊗ (δqq′�ul).

Similarly, the maps

n4(�vi⊗Ψc
qk − (JV (�vi))⊗ (JW ◦Ψc

qk)) :

�xq′ �→ δqq′(�vi ⊗�wk − (JV (�vi))⊗ (JW (�wk))),
JX (�xq′) �→ δqq′ [IdV ⊗ JW ]|V⊗cW(�vi ⊗�wk − (JV (�vi))⊗ (JW (�wk)))

form a basis for Homc(X,V⊗c W) .
To calculate the composites in the diagram (4.13), start with:

(Homc(IdX ,F)◦nU)(�vi ⊗Φc
ql − (JV (�vi))⊗ (JU ◦Φc

ql)) :

�xq′ �→ (F ◦ (nU(�vi ⊗Φc
ql − (JV (�vi))⊗ (JU ◦Φc

ql))))(�xq′)
= F(�vi ⊗ (δqq′�ul)− (JV (�vi))⊗ (δqq′JU(�ul)))

= δqq′
N

∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗�wk − (JV (�vi′′))⊗ (JW (�wk)))

=
N

∑
i′′=1

∑
k∈K

Fi′′kil(n4(�vi′′ ⊗Ψc
qk − (JV (�vi′′))⊗ (JW ◦Ψc

qk)))(�xq′).

Since c-linear maps from X are determined by their values on �xq′ , it follows that

n−1
4 ◦Homc(IdX ,F)◦nU :�vi⊗Φc

ql − (JV (�vi))⊗ (JU ◦Φc
ql)

�→
N

∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk − (JV (�vi′′))⊗ (JW ◦Ψc

qk)), (4.18)
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which is analogous to (3.9).
For basis elements of V⊗c Homc(X,U)⊗c V as in Lemma 4.12,

[(n−1
4 ◦Homc(IdX ,F)◦nU)⊗c IdV ] :

�vi ⊗Φql ⊗�vi′ − (JV (�vi))⊗ (JU ◦Φc
ql)⊗�vi′

−(JV (�vi))⊗Φc
ql ⊗ (JV (�vi′))−�vi⊗ (JU ◦Φc

ql)⊗ (JV (�vi′))

�→ ((n−1
4 ◦Homc(IdX ,F)◦nU)(�vi ⊗Φc

ql − (JV (�vi))⊗ (JU ◦Φc
ql)))⊗�vi′

−((n−1
4 ◦Homc(IdX ,F)◦nU ◦ [JV ⊗ IdHomc(X ,U)])(�vi ⊗Φc

ql

−(JV (�vi))⊗ (JU ◦Φc
ql)))⊗ (JV (�vi′))

=

(
N

∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk − (JV (�vi′′))⊗ (JW ◦Ψc

qk))

)
⊗�vi′

−
(

[JV ⊗ IdHomc(X ,W )]

(
N

∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗Ψc
qk

− (JV (�vi′′))⊗ (JW ◦Ψc
qk))
))

⊗ (JV (�vi′))

=
N

∑
i′′=1

∑
k∈K

Fi′′kil(�vi′′ ⊗ (Ψc
qk ⊗�vi′ − (JW ◦Ψc

qk)⊗ (JV (�vi′)))

−(JV (�vi′′))⊗ ((JW ◦Ψc
qk)⊗�vi′ + Ψc

qk ⊗ (JV (�vi′)))).

The c-linear map [IdV ⊗c εW] takes the above output to:

N

∑
i′′=1

∑
k∈K

∑
k′∈K

Fi′′kilεW
k′qki′(�vi′′ ⊗�wk′ − (JV (�vi′′))⊗ (JW (�wk′))), (4.19)

which is analogous to (3.10).
The hypothesis (4.13) is that for any c-linear F , the expressions (4.19) and (4.20)

are equal:

F ◦ [IdV ⊗ εU] :

�vi ⊗Φql ⊗�vi′ −�vi⊗ (JU ◦Φc
ql)⊗ (JV (�vi′))

−(JV (�vi))⊗ (JU ◦Φc
ql)⊗�vi′ − (JV (�vi))⊗Φc

ql ⊗ (JV (�vi′))

�→ F

(
�vi⊗

(
∑
l′∈L

εU
l′qli′�ul′

)
− (JV (�vi))⊗

(
∑
l′∈L

εU
l′qli′JU(�ul′)

))

= ∑
l′∈L

εU
l′qli′

N

∑
i′′=1

∑
k′∈K

Fi′′k′il′(�vi′′⊗�wk′ − (JV (�vi′′))⊗ (JW (�wk′))), (4.20)

so, in analogy with (3.11), for any i , q , l , i′ , i′′ , k′ , these finite sums are equal:

∑
k∈K

Fi′′kilεW
k′qki′ = ∑

l′∈L

εU
l′qli′Fi′′k′il′ , (4.21)
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which is the same relation as (3.12).
For the composite from the diagram (4.14) in the conclusion of the Theorem, a

calculation analogous to (4.18) gives, for any A as in (4.17):

n−1
W ◦Homc(IdX ,A)◦nU :�vi ⊗Φc

ql − (JV (�vi))⊗ (JU ◦Φc
ql)

�→
N

∑
i′=1

∑
k∈K

Ai′kil(Ψc
qk ⊗�vi′ − (JW ◦Ψc

qk)⊗ (JV (�vi′))). (4.22)

The next steps use (4.16), (4.21), and (4.22).

εW ◦n−1
W ◦Homc(IdX ,A)◦nU ◦ηU :

�ul �→ εW

(
(n−1

W ◦Homc(IdX ,A)◦nU)

(
N

∑
i=1

Q

∑
q=1

∑
l′∈L

ηU
iql′l(�vi ⊗Φql′

− (JV (�vi))⊗ (JU ◦Φc
ql′))

))

= εW

(
N

∑
i=1

Q

∑
q=1

∑
l′∈L

ηU
iql′l

N

∑
i′=1

∑
k∈K

Ai′kil′(Ψc
qk ⊗�vi′ − (JW ◦Ψc

qk)⊗ (JV (�vi′)))

)

=
N

∑
i=1

Q

∑
q=1

∑
l′∈L

N

∑
i′=1

∑
k∈K

∑
k′∈K

ηU
iql′lAi′kil′εW

k′qki′�wk′

=
N

∑
i=1

Q

∑
q=1

∑
l′∈L

N

∑
i′=1

∑
k′∈K

∑
l′′∈L

ηU
iql′lε

U
l′′ql′i′Ai′k′il′′�wk′

=
N

∑
i=1

N

∑
i′=1

∑
k′∈K

∑
l′′∈L

δii′δll′′Ai′k′il′′�wk′

=
N

∑
i=1

∑
k′∈K

Aik′il�wk′ . (4.23)

The conclusion is that (4.23) does not depend on the choices of X , JX , ηU, εU, or
εW. �

The output of the composite (4.14), the last sum (4.23), ends up looking a lot like
(2.6) and (3.15), as a result of the choices made for a basis. One difference is that in
(4.23), the sum from 1 to N is only over half the real dimension of V . The composite
map (4.14) from the conclusion of Theorem 4.14 can be used as a definition of the
generalized trace for morphisms A : V⊗c U → V⊗c W in the category C :

TrV;U,W(A) = εW ◦n−1
W ◦Homc(IdX ,A)◦nU ◦ηU : U → W. (4.24)

Another conclusion from Theorem 4.14 is that the generalized trace does not depend on
any choice of unit object for ⊗c in C as discussed in Example 4.4, and formula (4.24)
does not even require that such a choice be made.
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Theorem 4.14 can only be used to find the generalized trace of a map between
tensor products in C defined as in Example 4.4; if you have N2 complex numbers ar-
ranged into a square and you want a complex number for the trace of the corresponding
linear transformation as in (1.1), this approach won’t help and you should add up the
diagonal entries. However, in the interest of giving a concrete, real matrix calculation
to illustrate formulas (4.23) and (4.24), Example 4.17 makes some simple choices for
objects (V,JV ) and (U,JU) in C . We first need to find some specific evaluation and co-
evaluation morphisms in C — so that the hypothesis of Theorem 4.14 is non-vacuous.

EXAMPLE 4.15. Recall, for any real vector spaces V , U , the canonical evalua-
tion map from Notation 3.1:

EvVU : Hom(V,U)⊗V →U : A⊗�v �→ A(�v).

If V and U have CSOs JV and JU , the subspace of Hom(V,U)⊗V where all three
induced CSOs agree,

[Hom(JV , IdU)⊗ IdV ] = [Hom(IdV ,JU)⊗ IdV ] = [IdHom(V,U) ⊗ JV ],

is spanned by elements of the form

A⊗�v− (JU ◦A)⊗ (JV(�v)),

for c-linear maps A . The restriction of EvVU to this subspace, denoted

Evc
VU : Homc(V,U)⊗c V → U,

acts on such elements:

Evc
VU : A⊗�v− (JU ◦A)⊗ (JV(�v)) �→ A(�v)− (JU ◦A)(JV (�v)) = 2A(�v),

the last step using the c-linearity of A . Evc
VU is itself c-linear:

Evc
VU ◦ [Hom(IdV ,JU)⊗ IdV ] :

A⊗�v− (JU ◦A)⊗ (JV(�v)) �→ Evc
VU((JU ◦A)⊗�v+A⊗ (JV(�v)))

= JU(A(�v))+A(JV (�v)) = 2JU(A(�v))
= (JU ◦Evc

VU)(A⊗�v− (JU ◦A)⊗ (JV(�v))).

For W = (W,JW ) , Evc
VU and Evc

VW satisfy c-linear versions of Lemma 3.2, Lemma
3.5, and Lemma 3.6 (the details are omitted here), so the compatibility condition (4.13)
is satisfied for X = V , εU = Evc

VU , εW = Evc
VW , and any c-linear F .

EXAMPLE 4.16. To find a coevaluation in C corresponding to the evaluation
from Example 4.15, recall the result of Lemma 3.12,

ηVU : U →V ⊗Hom(V,U) :�u �→ n−1
U (n5(IdV ⊗�u)).
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This gives a formula for this real coevaluation that does not depend on a choice of basis.
Both nU and n5 are c-linear on corresponding pairs of the three commuting CSOs on
each domain and target, as in Example 4.10. ηVU is c-linear with respect to JU and
[IdV ⊗Hom(IdV ,JU)] :

ηVU : JU(�u) �→ n−1
U (n5(IdV ⊗ (JU(�u))))

= n−1
U (n5([IdHom(V,V )⊗ JU ](IdV ⊗�u)))

= [IdV ⊗Hom(IdV ,JU)](n−1
U (n5(IdV ⊗�u)))

= [IdV ⊗Hom(IdV ,JU)](ηVU(�u)).

Also by the c-linearity of the n maps, because IdV is c-linear, the image of ηVU is
contained in the subspace of V ⊗Hom(V,U) where two of the three CSOs agree, [JV ⊗
IdHom(V,U)] and [IdV ⊗Hom(JV , IdU)] — this is the subspace V⊗c Hom(V,U) from
Example 4.10 with X = V . So, to get a c-linear map from U to the subspace of V ⊗
Hom(V,U) where all three CSOs agree, compose ηVU with the c-linear projection
map Pc from (4.3), which equals the restriction of the following map to the subspace
V⊗c Hom(V,U) :

1
2

(
IdV⊗Hom(V,U)− [JV ⊗ IdHom(V,U)]◦ [IdV ⊗Hom(IdV ,JU)]

)
. (4.25)

Define the c-linear map

ηc
VU = Pc ◦ηVU : U → V⊗c Homc(V,U). (4.26)

To get an expression for ηVU in terms of the basis {�ul} for U , we need to adapt the
expression (3.18) to the 2N -element basis (4.4) for V :

ηVU :�ul �→
N

∑
i=1

(
�vi⊗Φil +(JV (�vi))⊗Φ′

il

)
,

where

Φil :�vi′ �→ δii′�ul,

Φil : JV (�vi′) �→�0U ,

Φ′
il :�vi′ �→�0U ,

Φ′
il : JV (�vi′) �→ δii′�ul.

With this notation, the maps (4.10) from Lemma 4.13 in the case X = V satisfy:

Φc
il = Φil + JU ◦Φ′

il.
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Then the composite ηc
VU is given by the formula

Pc ◦ηVU :�ul �→ 1
2

N

∑
i=1

(
�vi⊗Φil +(JV (�vi))⊗Φ′

il

)

−1
2

N

∑
i=1

(
(JV (�vi))⊗ (JU ◦Φil)−�vi⊗ (JU ◦Φ′

il)
)

=
1
2

N

∑
i=1

(�vi⊗Φc
il − (JV (�vi))⊗ (JU ◦Φc

il)) .

This choice for ηU = ηc
VU , together with εU = Evc

VU from Example 4.15, satisfies
the hypothesis (4.12) from Theorem 4.14. The following composite is equal to the
switching map on U⊗c V .

�ul ⊗�vi− (JU(�ul))⊗ (JV (�vi))
�→ ([IdV ⊗c Evc

VU]◦ [ηc
VU⊗c IdV ])(�ul ⊗�vi− (JU(�ul))⊗ (JV (�vi)))

= [IdV ⊗c Evc
VU]((ηc

VU(�ul))⊗�vi

−([IdV ⊗Hom(IdV ,JU)](ηc
VU(�ul)))⊗ (JV (�vi)))

= [IdV ⊗c Evc
VU]

(
1
2

(
N

∑
i′=1

(�vi′ ⊗Φc
i′l ⊗�vi− (JV (�vi′))⊗ (JU ◦Φc

i′l)⊗�vi)

)

−1
2

(
N

∑
i′=1

(�vi′ ⊗ (JU ◦Φc
i′l)⊗ (JV (�vi))+ (JV (�vi′))⊗Φc

i′l ⊗ (JV (�vi)))

))

=
1
2

N

∑
i′=1

(�vi′ ⊗ (Evc
VU(Φc

i′ l ⊗�vi− (JU ◦Φc
i′l)⊗ (JV (�vi))))

− (JV (�vi′))⊗ (JU ◦Evc
VU)(Φc

i′ l ⊗�vi− (JU ◦Φc
i′l)⊗ (JV (�vi))))

=
1
2

N

∑
i′=1

(�vi′ ⊗ (2Φc
i′l(�vi))− (JV (�vi′))⊗ (JU(2Φc

i′l(�vi))))

=
1
2

N

∑
i′=1

(�vi′ ⊗ (2δii′�ul)− (JV (�vi′))⊗ (JU(2δii′�ul)))

= �vi⊗�ul − (JV (�vi))⊗ (JU(�ul)).

EXAMPLE 4.17. Let V = R4 , with a CSO given by the matrix

JV =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ ,



A NON-UNITAL TRACE AND LINEAR COMPLEX STRUCTURES 557

so that this list is an ordered basis for V as in (4.4):

(�v1,JV (�v1),�v2,JV (�v2)) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

Let U = W = R
2 , with CSO JU =

[
0 −1
1 0

]
, and the ordered basis

(�u1,�u2) =
([

1
0

]
,

[
0
1

])
.

A basis for V⊗c U , as in Lemma 4.11, has four elements:

{�v1 ⊗�u1− (JV (�v1))⊗ (JU(�u1)), . . . ,�v2 ⊗�u2− (JV (�v2))⊗ (JU(�u2))} .

For real constants a, . . . ,h , the following matrix defines a c-linear transformation
(V,JV ) → (V,JV ) :

B =

⎡
⎢⎢⎣

a b c d
−b a −d c
e f g h
− f e −h g

⎤
⎥⎥⎦ .

The c-linear map
A = [B⊗c IdU ] : V⊗c U → V⊗c U

has trace as in (4.24):

TrV;U,U(A) = εU ◦n−1
U ◦Homc(IdX , [B⊗c IdU ])◦nU ◦ηU : U → U.

To get a 2×2 matrix representation for this c-linear map, we need the coefficients Aili′l′
as in (4.17). For example,

A(�v1⊗�u1− (JV (�v1))⊗ (JU(�u1)))

= [B⊗c IdU ]

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦⊗

[
1
0

]
−

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦⊗

[
0
1

]⎞⎟⎟⎠

=

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a
−b
e
− f

⎤
⎥⎥⎦⊗

[
1
0

]
−

⎡
⎢⎢⎣

b
a
f
e

⎤
⎥⎥⎦⊗

[
0
1

]⎞⎟⎟⎠

=
2

∑
i=1

2

∑
l=1

Ail11(�vi ⊗�ul − (JV (�vi))⊗ (JU(�ul))),
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with
A1111 = a, A1211 = −b, A2111 = e, A2211 = − f .

Similarly,

A1112 = b, A1212 = a, A2112 = f , A2212 = e,

A1121 = c, A1221 = −d, A2121 = g, A2221 = −h,

A1122 = d, A1222 = c, A2122 = h, A2222 = g.

Then, formula (4.23) gives:

�u1 �→
2

∑
i=1

2

∑
l=1

Aili1�ul

= (A1111 +A2121)�u1 +(A1211 +A2221)�u2 =
[

a+g
−b−h

]
,

�u2 �→
2

∑
i=1

2

∑
l=1

Aili2�ul

= (A1112 +A2122)�u1 +(A1212 +A2222)�u2 =
[

b+h
a+g

]

=⇒ TrV;U,U(A) =
[

a+g b+h
−(b+h) a+g

]
. (4.27)

5. Relating the complex trace to the real trace

Given V with finite dimension and a CSO J , a c-linear map (V,J) → (V,J) has a
real matrix representation A2N×2N with respect to some real basis. In this Section, we
continue the without-complex-numbers approach in order to find an analogue of (1.1)
for such matrices A2N×2N , and to see how (1.1) and the generalized trace expression
(4.27) from Example 4.17 are related.

When comparing the trace in the category C to the trace in the category of real
vector spaces, there is some risk of confusing them, and as seen in Example 4.15 and
Example 4.16, there are some factors of 2 and 1

2 that merit close attention. Our first
step is to be more precise about direct sums (which have already appeared in Section
4) by introducing some notation. The following Definition is an “external direct sum”
construction (as in [1] §6).

DEFINITION 5.1. Given real vector spaces U , U1 , U2 , and ordered pairs of maps
(P1,P2) and (Q1,Q2) , where Pi : U →Ui , Qi : Ui →U for i = 1,2, U is a direct sum
of U1 and U2 means:

Q1 ◦P1 +Q2 ◦P2 = IdU

P1 ◦Q1 = IdU1

P2 ◦Q2 = IdU2 .
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NOTATION 5.2. The data from Definition 5.1 will be abbreviated U = U1 ⊕U2 ,
when the maps Pi (called projections) and Qi (inclusions) are understood.

It follows from Definition 5.1 that Pi ◦QI = 0Hom(UI ,Ui) for i �= I .

EXAMPLE 5.3. For an involution K :U →U , consider the ±1 eigenspaces, U1 =
{�u ∈U : K(�u) =�u} , and U2 = {�u ∈U : K(�u) = −�u} . Then U = U1 ⊕U2 , where Qi

are the subspace inclusion maps, and the projections are:

P1 =
1
2
· (IdU +K), P2 =

1
2
· (IdU −K).

A special case of Example 5.3 already appeared in Notation 4.2.

LEMMA 5.4. Given U , the following are equivalent:

1. U = U1⊕U2 and there exists an invertible map R : U1 →U2 ;

2. U admits a CSO J and an involution C which anticommutes with J (i.e., C◦C =
IdU and C ◦ J = −J ◦C).

Proof. The significance of the Lemma is not whether there exist such structures,
but how one can be constructed from the other.

To show 1. =⇒ 2. , let U1 , U2 , Q1 , Q2 , P1 , P2 be as in Definition 5.1. Then for
R as in 1.,

J = Q2 ◦R◦P1−Q1 ◦R−1 ◦P2 (5.1)

is a CSO (easily checked), and

C = Q1 ◦P1−Q2 ◦P2 (5.2)

is an involution anticommuting with J .
Conversely, to show 2. =⇒ 1. , the involution C produces, as in Example 5.3, a

direct sum U = U1⊕U2 with projections

P′
1 =

1
2
(IdU +C), P′

2 =
1
2
(IdU −C) (5.3)

and corresponding subspace inclusions Q′
1 , Q′

2 . In particular, Q′
1 ◦P′

1 : U →U is also
given by the formula 1

2(IdU +C) , and similarly for Q′
2 ◦P′

2 . The composite

P′
2 ◦ J ◦Q′

1 : U1 →U2 (5.4)

is invertible, with inverse
−P′

1 ◦ J ◦Q′
2 : U2 →U1, (5.5)

so 1. holds. �
In the above Proof, neither implication is given by a canonical construction; some

signs in (5.1), (5.2), (5.4), (5.5) could have been chosen differently. The above choices
are, however, consistent with each other, in the sense that 2. =⇒ 1. =⇒ 2. returns the
same data J , C .
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DEFINITION 5.5. Given a real vector space U with a CSO J , a real linear map
C : U →U is a real structure operator means: C is an involution that anticommutes
with J .

NOTATION 5.6. More briefly, a real structure operator is called a RSO with re-
spect to the given J , and (U,J) is said to have a real structure. There is a canonical
(unordered) pair of subspaces, where U1 is the fixed point set of C and U2 is the −1
eigenspace, so the notational convention will be to order them with U1 first, and to refer
to the direct sum produced by C as in Lemma 5.4 as U1 ⊕U2 . (Having chosen C and
this ordering, the maps P′

1 , P′
2 , Q′

1 , Q′
2 are canonical even if the map R from (5.4) in

Lemma 5.4 is not.)

LEMMA 5.7. Given U with CSO JU and RSO CU , and another space W with
CSO JW , any c-linear map A : (U,JU) → (W,JW ) is determined by its values on the
fixed point subspace U1 .

Proof. The meaning of the Lemma is that if B : U → W is another c-linear map,
and A ◦Q′

1 = B ◦Q′
1 : U1 →W , then A = B . An analogous idea, but depending on a

choice of basis, was used in Section 4. Here, the result follows from only the properties
of the direct sum from Lemma 5.4.

A = A◦ (Q′
1 ◦P′

1 +Q′
2 ◦P′

2)

= A◦Q′
1 ◦P′

1−A◦ JU ◦ JU ◦
(

1
2
· (IdU −C)

)

= A◦Q′
1 ◦P′

1− JW ◦A◦
(

1
2
· (IdU +C)

)
◦ JU

= (A◦Q′
1)◦P′

1− JW ◦ (A◦Q′
1)◦P′

1 ◦ JU . � (5.6)

EXAMPLE 5.8. Given U with any CSO JU and RSO CU , and the direct sum
structure U = U1 ⊕U2 produced by CU as in Notation 5.6, and another space V with
CSO JV , there are two commuting CSOs on V ⊗U . An involution on V ⊗U is [IdV ⊗
CU ] , which commutes with the CSO [JV ⊗ IdU ] and anticommutes with the other CSO
[IdV ⊗ JU ] . The involution [IdV ⊗CU ] produces a direct sum (V ⊗U1)⊕ (V ⊗U2) , as
in Example 5.3. This notation is justified by the equality of the projection maps

P1 =
1
2
(IdV⊗U +[IdV ⊗CU ]) = [IdV ⊗P′

1] = [IdV ⊗ (
1
2
(IdU +CU))]

and similarly for P2 = [IdV ⊗P′
2] , so Q1 = [IdV ⊗Q′

1] and Q2 = [IdV ⊗Q′
2] are the sub-

space inclusion maps for the images of the projections. Because [JV ⊗ IdU ] commutes
with the involution [IdV ⊗CU ] , it respects the direct sum and restricts to a CSO on each
subspace, V ⊗U1 and V ⊗U2 . Another involution on V ⊗U is [JV ⊗ IdU ]◦ [IdV ⊗JU ] ,
as in Example 4.4; this produces a different direct sum structure for V ⊗U . Let

Pc =
1
2
(IdV⊗U − [JV ⊗ JU ]) : V ⊗U → V⊗c U (5.7)



A NON-UNITAL TRACE AND LINEAR COMPLEX STRUCTURES 561

denote the projection onto the −1 eigenspace as in Notation 4.2. Let Pa = 1
2 (IdV⊗U +

[JV ⊗ JU ]) denote the projection on the +1 eigenspace V ⊗a U , with corresponding
subspace inclusions Qc and Qa . The composite Qc ◦Pc is also given by the formula
(5.7). The composite

Pc ◦Q1 : (V ⊗U1, [JV ⊗ IdU ]|V⊗U1) → V⊗c U (5.8)

is c-linear:

Pc ◦Q1 ◦ [JV ⊗ IdU ]|V⊗U1 = Pc ◦ [JV ⊗ IdU ]◦Q1 = [JV ⊗ IdU ]|V⊗cU ◦Pc ◦Q1,

and similarly for Pc ◦Q2 . The map Pc ◦Q1 is also invertible; an inverse is given by

(Pc ◦Q1)−1 = 2P1 ◦Qc : V⊗c U →V ⊗U1. (5.9)

First, note that the involution [IdV ⊗CU ] satisfies:

Qc ◦Pc ◦ [IdV ⊗CU ] =
1
2
(IdV⊗U − [JV ⊗ JU ])◦ [IdV ⊗CU ]

= [IdV ⊗CU ]◦ 1
2
(IdV⊗U +[JV ⊗ JU ])

= [IdV ⊗CU ]◦Qa ◦Pa.

Then

Pc ◦Q1 ◦ (2P1 ◦Qc) = 2Pc ◦Qc ◦Pc ◦ (
1
2
(IdV⊗U +[IdV ⊗CU ]))◦Qc

= Pc ◦Qc ◦Pc ◦Qc +Pc ◦ [IdV ⊗CU ]◦Qa ◦Pa ◦Qc

= IdV⊗cU +0Hom(V⊗cU,V⊗cU).

Similarly, the composite in the other order is (2P1 ◦Qc)◦ (Pc ◦Q1) = IdV⊗U1 .

REMARK 5.9. The two maps in (5.9) could be re-scaled to (
√

2Pc ◦Q1)−1 =√
2P1 ◦Qc to have a more symmetric appearance, and such a re-scaling would not

affect the results in the rest of this Section.

The following Theorem 5.10 is the main result of this Section; it finds an expres-
sion for the trace in C in terms of real traces. The maps A1 and A2 are analogous to,
respectively, A and A from (1.1). The object V = (V,JV ) and the object U = (U,JU)
with RSO CU and direct sum structure U = U1 ⊕U2 are as in Example 5.8. The map
from (5.7) is re-labeled PU

c , with corresponding inclusion QU
c = Qc . The inclusion

Q1 : V ⊗U1 → V ⊗U is re-labeled QU
1 . The object W = (W,JW ) has RSO CW and

direct sum structure W = W1 ⊕W2 as in Notation 5.6, with projections P′′
1 : W →W1 ,

P′′
2 : W →W2 and corresponding inclusions Q′′

1 , Q′′
2 . Denote the map corresponding

to (5.7) by PW
c : V ⊗W → V⊗c W , and denote the inclusion QW

1 : V ⊗W1 → V ⊗W .
The hypothesis (5.10) with the invertible composites PU

c ◦QU
1 and PW

c ◦QW
1 states the

commutativity of the following diagram,
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V ⊗U1
A1 ��

PU
c ◦QU

1
��

V ⊗W1

PW
c ◦QW

1
��

V⊗c U
A2 �� V⊗c W

which can be thought of as showing that A1 and A2 are real and complex versions of
each other.

THEOREM 5.10. Given V = (V,JV ) with finite dimension, U = (U,JU) with RSO
CU , and W = (W,JW ) with RSO CW , if A1 : V ⊗U1 →V ⊗W1 is c-linear with respect
to [JV ⊗ IdU1 ] and [JV ⊗ IdW1 ] , and A2 : V⊗c U → V⊗c W is c-linear with respect to
the induced CSOs, and

A2 ◦PU
c ◦QU

1 = PW
c ◦QW

1 ◦A1 : V ⊗U1 → V⊗c W, (5.10)

then

TrV;U,W(A2) =
1
2
Q′′

1 ◦ (TrV ;U1,W1(A1))◦P′
1

−1
2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ]◦A1))◦P′
1

−1
2
JW ◦Q′′

1 ◦ (TrV ;U1,W1(A1))◦P′
1 ◦ JU

−1
2
Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1]◦A1))◦P′
1 ◦ JU .

Proof. The following diagram shows composites that define a real trace on the left
and a trace in C on the right. The notation will be explained below.

U1
Q′

1 ��

ηVU1
��

U

ηVU

��

ηc
VU

������������������

V⊗c Hom(V,U1)
[IdV⊗cHom(IdV ,Q′

1)]
��

nU1

��

V⊗c Hom(V,U)

nU

��

PU
c �� V⊗c Homc(V,U)

nU

��
Homc(V,V⊗U1)

Homc(IdV ,QU
1 )

��

Homc(IdV ,A1)
��

Homc(V,V⊗U)
Homc(IdV ,PU

c )
�� Homc(V,V⊗c U)

Homc(IdV ,A2)
��

Homc(V,V⊗W1)
Homc(IdV ,QW

1 )
�� Homc(V,V⊗W)

Homc(IdV ,PW
c )

�� Homc(V,V⊗c W)

Hom(V,W1)⊗c V
[Hom(IdV ,Q′′

1)⊗cIdV ]
��

nW1

��

EvVW1

��

Hom(V,W )⊗c V

nW

��

PW
c ��

EvVW

��

Homc(V,W)⊗c V

nW

��

Evc
VW

		����������������

W1
Q′′

1 �� W
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By the main results from the previous Sections, Theorem 3.7 and Theorem 4.14, we
can choose any evaluation and coevaluation maps to compute the traces. On the right
side, the downward composite from U to W is TrV;U,W(A2) as in (4.24), using the
canonical evaluation from Example 4.15, and the coevaluation constructed in Example
4.16. In particular, the upper right triangle in the diagram is commutative by the defini-
tion (4.26), where the map Pc from Example 4.16 has been re-labeled PU

c . The square
below that triangle, with nU and nU is commutative, as in Example 4.10. The lower
square with nW , nW is also commutative as in Example 4.10, with PW

c analogous to
(4.3), but with some re-ordering of spaces and X = V , so that, in analogy with (4.25),
the projection PW

c is a restriction of this projection:

1
2

(
IdHom(V,W)⊗V − [IdHom(V,W) ⊗ JV ]◦ [Hom(IdV ,JW )⊗ IdV ]

)
. (5.11)

The center block with A1 and A2 is commutative by the hypothesis (5.10).
The left column starts with the coevaluation map ηVU1 from Example 3.11, and

takes advantage of the observation from Example 4.16 that its image is contained in the
subspace V⊗cHom(V,U1) , as in Example 4.10 (but without a CSO on U1 ). Every step
in the composite stays in the subspaces where the two CSOs induced by JV are equal,
using the c-linearity of nU1 and nW1 (as in Example 4.10), and A1 (by hypothesis). The
last map is the restriction of the canonical evaluation EvVW1 from Notation 3.1 to the
subspace Hom(V,W1)⊗c V .

The commutativity of the block on the left with nU1 and nU follows from Lemma
3.10, and so does the commutativity of the block with nW1 and nW . The upper left
block with the coevaluations is then easily seen to be commutative using Lemma 3.12.
The lower left block with the evaluations is commutative by Lemma 3.2.

The only block in the diagram that is not commutative, and this is the key step for
the Theorem, is the lower right triangle. An element of Hom(V,W )⊗c V of the form

B⊗�v− (B◦ JV)⊗ (JV (�v)), (5.12)

for a (real linear) B ∈ Hom(V,W ) as in Lemma 4.11, is mapped by EvVW to

B(�v)−B(JV (JV (�v))) = 2B(�v).

The quantity (5.12) is mapped by PW
c , as in (5.11), to:

1
2
(B⊗�v− (B◦ JV)⊗ (JV (�v))− (JW ◦B)⊗ (JV(�v))− (JW ◦B◦ JV)⊗�v),

which is then mapped by Evc
VW to

B(�v)− JW (B(JV (�v))).

The conclusion is that

Evc
VW ◦PW

c =
1
2
EvVW − 1

2
JW ◦EvVW ◦ [IdHom(V,W) ⊗c JV ].
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The composite in the lowest two blocks of the diagram is then:

Evc
VW ◦PW

c ◦ [Hom(IdV ,Q′′
1)⊗c IdV ]

=
1
2
EvVW ◦ [Hom(IdV ,Q′′

1)⊗c IdV ]

−1
2
JW ◦EvVW ◦ [IdHom(V,W) ⊗c JV ]◦ [Hom(IdV ,Q′′

1)⊗c IdV ]

=
1
2
EvVW ◦ [Hom(IdV ,Q′′

1)⊗c IdV ]

−1
2
JW ◦EvVW ◦ [Hom(IdV ,Q′′

1)⊗c IdV ]◦ [IdHom(V,W1) ⊗c JV ]

=
1
2
Q′′

1 ◦EvVW1 −
1
2
JW ◦Q′′

1 ◦EvVW1 ◦ [IdHom(V,W1)⊗c JV ]. (5.13)

Starting with the clockwise composite around the outside of the diagram from U1 to
W , and then using the commutativity of the upper part of the diagram, step (5.13), and
the c-linearity of nW1 , gives:

TrV;U,W(A2)◦Q′
1

= Evc
VW ◦n−1

W ◦Homc(IdV ,A2)◦nU ◦ηc
VW ◦Q′

1

= Evc
VW ◦PW

c ◦ [Hom(IdV ,Q′′
1)⊗c IdV ]◦

n−1
W1

◦Homc(IdV ,A1)◦ nU1 ◦ηVU1

=
(

1
2
Q′′

1 ◦EvVW1 −
1
2
JW ◦Q′′

1 ◦EvVW1 ◦ [IdHom(V,W1) ⊗c JV ]
)
◦

n−1
W1

◦Homc(IdV ,A1)◦ nU1 ◦ηVU1

=
1
2
Q′′

1 ◦EvVW1 ◦ n−1
W1

◦Homc(IdV ,A1)◦ nU1 ◦ηVU1

−1
2
JW ◦Q′′

1 ◦EvVW1◦ n−1
W1

◦Homc(IdV , [JV ⊗ IdW1]◦A1)◦nU1◦ηVU1

=
1
2
Q′′

1 ◦ (TrV ;U1,W1(A1))− 1
2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ]◦A1)).

Because TrV;U,W(A2) is c-linear, by Lemma 5.7 it is uniquely determined on U by the
above formula showing its restriction to U1 , and the claimed result follows from (5.6):

TrV;U,W(A2) (5.14)

= ((TrV;U,W(A2))◦Q′
1)◦P′

1− JW ◦ ((TrV;U,W(A2))◦Q′
1)◦P′

1 ◦ JU

=
1
2
Q′′

1 ◦ (TrV ;U1,W1(A1))◦P′
1

−1
2
JW ◦Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1 ]◦A1))◦P′
1
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−1
2
JW ◦Q′′

1 ◦ (TrV ;U1,W1(A1))◦P′
1 ◦ JU

−1
2
Q′′

1 ◦ (TrV ;U1,W1([JV ⊗ IdW1]◦A1))◦P′
1 ◦ JU . � (5.15)

REMARK 5.11. Both quantities, (5.14), and the sum of four terms (5.15), depend
on the CSOs JV , JU , JW . The first term out of the four depends only on the direct
sum structures U =U1⊕U2 and W =W1⊕W2 , but not on either complex structure JW

or JU , nor on JV except for the hypothesis that A1 is c-linear. Because the Proof of
Theorem 5.10 used formula (4.24) to define the trace in C , (5.14) does not depend on
any choice of unit object for ⊗c in C . We remark further that the Proof of Theorem
5.10 is not entirely basis-free; the properties of the coevaluation ηc

VU from Example
4.16 were developed using a choice of basis.

EXAMPLE 5.12. Our goal in this example is to construct an object U in C and
an invertible morphism (5.18) from any object V = (V,JV ) in C to V⊗c U , in terms of
the construction of Example 5.8, and to elaborate on the statement from Example 4.5
that such an object is not unique by showing what sort of choices are involved in the
construction. The objects U = Uλ chosen for this Example depend on a real parameter
λ �= 0 and have a real structure, so that Theorem 5.10 can be applied in Example 5.14.

We make the initial assumption that there exists a real vector space U that admits
a direct sum structure of the form U = R⊕R , and fix a choice of such a direct sum,
with projections (P1,P2) and inclusions (Q1,Q2) as in Definition 5.1.

The involution CU = Q1◦P1−Q2◦P2 from (5.2) in Lemma 5.4 respects this direct
sum (in the sense that it commutes with Q1 ◦P1 and Q2 ◦P2 ; the involution −CU also
does this). The 2. =⇒ 1. construction from Lemma 5.4 applied to the involution CU

defines another direct sum U =U1⊕U2 , which is distinct from the initial direct sum; it
is an internal direct sum where U1 and U2 are both subspaces of U with inclusions Q′

i
and projections P′

i depending on CU as in (5.3). For i = 1,2, the composite P′
i ◦Qi :

R →Ui is invertible, with inverse Pi ◦Q′
i .

The construction from Example 5.8 (and the notation from Theorem 5.10) applies
to any V = (V,JV ) and any vector space U with an involution producing a direct sum
U =U1⊕U2 to define the direct sum V ⊗U =V ⊗U1⊕V ⊗U2 , with an inclusion map
QU

1 = [IdV ⊗Q′
1] : V ⊗U1 → V ⊗U . This direct sum depends only on the involution

CU , and the CSO [JV ⊗ IdU ]|V⊗U1 on V ⊗U1 depends only on JV , it does not assume
U has a complex structure.

From the 1. =⇒ 2. step of Lemma 5.4, any linear isomorphism R : R → R is of
the form R = λ · IdR for some λ �= 0, and a CSO for U from (5.1) is:

JU,λ = λ ·Q2 ◦P1−λ−1 ·Q1 ◦P2. (5.16)

Recall that in general, even after choosing R , the choices made in Lemma 5.4 are not
the only choices for a CSO and RSO, but in this case, any CSO anticommuting with
CU = Q1 ◦P1−Q2 ◦P2 must be of the form (5.16). Denote this object Uλ = (U,JU,λ ) .
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Example 5.8 also considered the other internal direct sum

V ⊗U = (V ⊗cU)⊕ (V ⊗aU) (5.17)

defined in terms of both complex structures JV and JU,λ , as in (4.1) from Example

4.4; denote the object from (4.2) by V⊗c Uλ = (V ⊗c U,JV⊗cU) . Denote by PU,λ
c :

V ⊗U → V⊗c Uλ the projection from (5.7), and similarly denote the inclusion QU,λ
c :

V⊗c Uλ →V ⊗U . From (5.8), there is an invertible, c-linear map

PU,λ
c ◦QU

1 : V ⊗U1 → V⊗c Uλ .

Using the above choices for CU and JU,λ , and the scalar multiplication map � :V ⊗R→
V , gives the following sequence of maps,

V
�−1

�� V ⊗R
[IdV⊗(P′

1◦Q1)] �� V ⊗U1
[IdV⊗Q′

1] �� V ⊗U
PU,λ
c �� V⊗c Uλ . (5.18)

The first three steps are c-linear with respect to the CSOs induced by JV , the last step
is c-linear with respect to the CSOs induced by JV and JU,λ , and the overall composite
is invertible and c-linear. Only the last step depends on the choice made for JU,λ .
Simplifying the middle steps using Q′

1 ◦P′
1◦Q1 = Q1 gives the invertible, c-linear map:

PU,λ
c ◦ [IdV ⊗Q1]◦ �−1 : V → V⊗c Uλ .

REMARK 5.13. There is still some choice of scalar multiple for PU,λ
c ◦QU

1 as in
Remark 5.9. For λ = 1, the direct sum (5.17) corresponds to the construction usually
denoted V 1,0⊕V 0,1 in complex geometry, so (5.18) is a c-linear invertible map V →
V 1,0 . In situations involving a metric or symplectic form on V , the scale factor

√
2

from Remark 5.9 is sometimes preferred.

It was remarked after formula (4.24) for the trace in C that the trace TrV;U,W(A)
does not depend on any choice of unit object for ⊗c in C . An exception to this remark
occurs when such a choice has been made and it appears in (4.24) as either V , U , or
W . In the following Example 5.14, the unit object for ⊗c constructed in Example 5.12
is used for both U and W in (4.24).

EXAMPLE 5.14. In this example, we show how an analogue of (1.1) can be ex-
pressed in terms of the above development of the generalized trace in C .

Let V = (V,JV ) be finite dimensional and let Uλ = (U,JU,λ ) be the unit object
for ⊗c constructed in Example 5.12, with the same notation for the internal direct sum
U = U1⊕U2 and the external direct sum U = R⊕R . Let A : V → V be c-linear.

The following diagram is commutative. The downward composite on the left side
is the invertible c-linear map from (5.18), and is equal to the right side. The commu-
tativity of every block in the diagram is easily checked. For the lowest block, recall
that lowest arrow [A⊗c IdU ] is defined as the restriction of [A⊗ IdU ] to the subspace
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V⊗c Uλ of V ⊗U , so [A⊗c IdU ] = PU,λ
c ◦ [A⊗ IdU ] ◦QU,λ

c . Using (5.7) and the c-
linearity of A and IdU (for any JU,λ ), [A⊗c IdU ] ◦PU,λ

c = PU,λ
c ◦ [A⊗ IdU ] ◦QU,λ

c ◦
PU,λ

c = PU,λ
c ◦QU,λ

c ◦PU,λ
c ◦ [A⊗ IdU] = PU,λ

c ◦ [A⊗ IdU] .

V
A �� V

V ⊗R

�

��

[A⊗IdR] ��

[IdV⊗(P′
1◦Q1)]

��
[IdV⊗Q1]

��
��

��
��



�
��

��
��

�

V ⊗R

�

��

[IdV⊗(P′
1◦Q1)]

��
[IdV⊗Q1]

��
��

��
��

����
��

��
��

V ⊗U1 [A⊗IdU1 ]
��

PU,λ
c ◦QU

1

��

QU
1 ����������� V ⊗U1

QU
1

									

PU,λ
c ◦QU

1

��

V ⊗U
PU,λ
c



									 [A⊗IdU ]
�� V ⊗U

PU,λ
c

�����������

V⊗c Uλ [A⊗cIdU ]
�� V⊗c Uλ

Theorem 5.10 applies, with W = U = Uλ , A1 = [A⊗ IdU1 ] , and A2 = [A⊗c IdU ] .
The hypothesis (5.10) is satisfied by the commutativity of the above diagram. The
conclusion from Theorem 5.10 is this equality of maps U →U :

TrV;Uλ ,Uλ ([A⊗c IdU ])

=
1
2
Q′

1 ◦ (TrV ;U1,U1([A⊗ IdU1 ]))◦P′
1

−1
2
JU,λ ◦Q′

1 ◦ (TrV ;U1,U1([JV ⊗ IdU1 ]◦ [A⊗ IdU1]))◦P′
1

−1
2
JU,λ ◦Q′

1 ◦ (TrV ;U1,U1([A⊗ IdU1 ]))◦P′
1 ◦ JU,λ

−1
2
Q′

1 ◦ (TrV ;U1,U1([JV ⊗ IdU1 ]◦ [A⊗ IdU1]))◦P′
1 ◦ JU,λ . (5.19)

From the diagram,

[A⊗ IdU1 ] = [IdV ⊗ (P′
1 ◦Q1)]◦ [A⊗ IdR]◦ [IdV ⊗ (P1 ◦Q′

1)],

and similarly for [JV ⊗IdU1 ]◦ [A⊗IdU1 ] = [(JV ◦A)⊗IdU1 ]. Then Theorem 3.14 applies,
so that (5.19) is equal to:

=
1
2
Q′

1 ◦P′
1 ◦Q1 ◦ (TrV ;R,R([A⊗ IdR]))◦P1 ◦Q′

1 ◦P′
1

−1
2
JU,λ ◦Q′

1 ◦P′
1 ◦Q1 ◦ (TrV ;R,R([(JV ◦A)⊗ IdR]))◦P1 ◦Q′

1 ◦P′
1

−1
2
JU,λ ◦Q′

1 ◦P′
1 ◦Q1 ◦ (TrV ;R,R([A⊗ IdR]))◦P1 ◦Q′

1 ◦P′
1 ◦ JU,λ
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−1
2
Q′

1 ◦P′
1 ◦Q1 ◦ (TrV ;R,R([(JV ◦A)⊗ IdR]))◦P1 ◦Q′

1 ◦P′
1 ◦ JU,λ

=
1
2
Q1 ◦ (TrV ;R,R(�−1 ◦A◦ �))◦P1

−1
2
JU,λ ◦Q1 ◦ (TrV ;R,R(�−1 ◦ JV ◦A◦ �))◦P1

−1
2
JU,λ ◦Q1 ◦ (TrV ;R,R(�−1 ◦A◦ �))◦P1◦ JU,λ

−1
2
Q1 ◦ (TrV ;R,R(�−1 ◦ JV ◦A◦ �))◦P1◦ JU,λ . (5.20)

As previously remarked, the first of the four terms in (5.20) depends only on the direct
sum U = R⊕R from the beginning of Example 5.12, and not on the subsequent choices
for CU and JU,λ .

The next step uses the formula (2.7) from Example 2.13, so that (5.20) is equal to
this expression involving the real scalar trace TrV (A) :

=
1
2
Q1 ◦ (TrV (A) · IdR)◦P1 (5.21)

−1
2
JU,λ ◦Q1 ◦ (TrV (JV ◦A) · IdR)◦P1

−1
2
JU,λ ◦Q1 ◦ (TrV (A) · IdR)◦P1 ◦ JU,λ

−1
2
Q1 ◦ (TrV (JV ◦A) · IdR)◦P1 ◦ JU,λ

=
1
2
TrV (A) · (Q1 ◦P1− JU,λ ◦Q1 ◦P1 ◦ JU,λ )

−1
2
TrV (JV ◦A) · (JU,λ ◦Q1 ◦P1 +Q1 ◦P1 ◦ JU,λ ). (5.22)

Finally, using the formula (5.16), JU,λ = λ ·Q2 ◦P1−λ−1 ·Q1 ◦P2 , (5.22) simplifies to:

TrV;Uλ ,Uλ ([A⊗c IdU ]) =
1
2
TrV (A) · IdU − 1

2
TrV (JV ◦A) · JU,λ . (5.23)

The concluding observations are that (5.23) is the claimed generalization of (1.1), and
that the first term 1

2TrV (A) · IdU does not depend on any of the extra structure on U
(the direct sum, RSO, or CSO from Example 5.12). The 2×2 matrix representation of
(5.23) in the case λ = 1 is consistent with the calculation (4.27) from Example 4.17.

6. Conclusion

The construction of Sections 3–5 could be adapted to other categories of vector
spaces with supplemental structures, for example, the category of vector spaces with
real structures (V,J,C) and morphisms that respect both operators. The category C ,
where only some of the objects have a real structure, would also be a natural framework
for a basis-free approach to vector valued Hermitian forms on vector spaces (or vector
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bundles) and using the generalized trace to compute tensor contraction with respect to
a Hermitian metric.
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http://people.math.ethz.ch/~salamon/PREPRINTS/witsei.pdf.
[16] S. STOLZ AND P. TEICHNER,Traces in monoidal categories, Trans. Amer. Math. Soc. (8) 364 (2012),

4425–4464. MR2912459
[17] C. VAFA, E. ZASLOW, et al, eds., Mirror Symmetry, Clay Math. Monog. 1, AMS, 2003. MR2003030

(2004g:14042)

(Received November 26, 2019) Adam Coffman
Department of Mathematical Sciences

Purdue University Fort Wayne
2101 E. Coliseum Blvd., Fort Wayne, IN, USA 46805-1499

http: // users. pfw. edu/ CoffmanA/

orcid.org/0000-0002-1437-7525

Operators and Matrices
www.ele-math.com
oam@ele-math.com

http://users.pfw.edu/CoffmanA/

