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Abstract. We present some inequalities related to the recently defined geometric mean of two

accretive matrices. Firstly, we show that if the block matrix

(
A X
Y ∗ B

)
is accretive, then the

singular values of (X +Y )/2 are weakly log majorized by the singular values of the geometric
mean of A and B . This extends a result of M. Lin.

1. Introduction

The set of all n×n complex matrices is denoted by Mn . We say that A ∈ Mn is
accretive if its real (or Hermitian) part ℜA := (A + A∗)/2 is positive definite, where
A∗ means the conjugate transpose of A . For two positive definite matrices A,B ∈ Mn ,
their geometric mean is defined by

A�B := B1/2(B−1/2AB−1/2)1/2B1/2.

It is easy to prove that the geometric mean A�B is the unique positive definite solution
to the Ricatti equation XB−1X = A . This observation enables one to see that the role
of A,B in the geometric mean is symmetric, that is A�B = B�A . By a limit process, the
definition could be extended for positive semidefinite matrices. For more information
about matrix geometric mean, we refer to [4, Chapter 4].

Extending the geometric mean of two positive definite matrices, Drury [5] recently
defined the geometric mean for two accretive matrices A,B ∈ Mn via the formula

A�B :=
(

2
π

∫ ∞

0
(tA+ t−1B)−1 dt

t

)−1

,

in which we continue to use the standard notation A�B for the geometric mean. The
geometric mean for accretive matrices enjoys several appealing properties; see [5]. A
weighted version was subsequently proposed by Raissouli, Moslehian and Furuichi
[12]. It is clear from the formula that if A,B are accretive, then so is A�B .
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For two Hermitian A,B ∈ Mn , we write A � B (resp. A > B) if A−B is positive
semidefinite (resp. positive definite). It is well known that if A,B ∈ Mn are positive
semidefinite, then we have the noncommutative AM-GM inequality

A+B
2

� A�B. (1)

It was pointed out in [10, Eq. (9)] that a direct analogue of (1)

ℜ
A+B

2
� ℜ(A�B)

for accretive A,B ∈ Mn fails.
A remarkable property about the geometric mean is the following inequality due

to Lin and Sun [9]: Let A,B ∈ Mn be accretive. Then

ℜ(A�B) � (ℜA)�(ℜB). (2)

This inequality would play an important role in our derivations. Again, we mention that
the corresponding weighted version was given in [12].

In this paper, we consider several results related to the geometric mean of accretive
matrices. The remaining of this section is some notation used in the article. The eigen-
values, singular values of A ∈ Mn are denoted by λ j(A),σ j(A) , j = 1, . . . ,n , respec-
tively such that λ1(A) � · · · � λn(A) , σ1(A) � · · · � σn(A) (whenever the eigenvalues
are all real). For A,B ∈ Mn , if

k

∏
j=1

σ j(A) �
k

∏
j=1

σ j(B)

for all k = 1, . . . ,n , then we say that the singular values of A are weakly log majorized
by the singular values of B and we denote the relation by

σ(A) ≺wlog σ(B).

For more information about majorization, we refer to [13, Chapter 3] or [14, Chapter
10].

2. A weak log majorization

Let A,B,X ,Y ∈ Mn . If

M =
(

A X
X∗ B

)
and Mτ =

(
A X∗
X B

)

are both positive semidefinite, then we say that M is PPT (i.e., positive partial trans-
pose). In [11], Lin proved that if M is PPT, then

σ(X) ≺wlog σ(A�B). (3)
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For an alternative proof of (3), see [7]. We could extend the notion to accretive matrices.
If

M =
(

A X
Y ∗ B

)
and Mτ =

(
A Y ∗
X B

)

are both accretive, then we say that M is APT (i.e., accretive partial transpose). Clearly,
the class of APT matrices include the class of PPT matrices. A relevant notion SPT (i.e.,
sectorial partial transpose) has appeared in [6].

We extend Lin’s result to the case of APT matrices as follows.

THEOREM 2.1. Let A,B,X ,Y ∈ Mn . If M =
(

A X
Y ∗ B

)
is APT, then

σ
(

X +Y
2

)
≺wlog σ(A�B). (4)

Proof. By the Fan-Hoffman inqeuality [3, p. 73],

λ j(ℜ(A�B) � σ j(A�B)

for all j = 1, . . . ,n . Moreover, since

ℜ(A�B) � (ℜA)�(ℜB)

and by the Weyl’s monontonicity theorem for the eigenvalues [3, p. 63], we have

λ j((ℜA)�(ℜB)) � λ j(ℜ(A�B))

for all j = 1, . . . ,n . These enable us to conclude

σ((ℜA)�(ℜB)) ≺wlog σ(A�B). (5)

As M is APT, we see that

ℜM =
(

ℜA (X +Y)/2
(X +Y)∗/2 ℜB

)
and ℜ(Mτ )=

(
ℜA (X +Y )∗/2

(X +Y )/2 ℜB

)
= (ℜM)τ

are both positive definite. In other words, ℜM is PPT. Therefore, applying (3) to ℜM
gives

σ
(

X +Y
2

)
≺wlog σ((ℜA)�(ℜB)). (6)

The desired result now follows from (5) and (6). �
It is apparent that if M is PPT (in this case, X =Y ), then (4) becomes Lin’s result

(3). An immediate corollary of the previous theorem is the following.

COROLLARY 2.2. Let A,B,X ∈ Mn . If M =
(

A X
X B

)
is accretive, then

σ(ℜX) ≺wlog σ(A�B).
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3. A matrix inequality

In [1], Ando proved the following interesting result.

PROPOSITION 3.1. Let A j,Bj,X ,Y ∈ Mn . If

(
Aj X
X∗ Bj

)
, j = 1,2 , are positive

semidefinite, then so is

(
A1�A2 X

X∗ B1�B2

)
.

The next result is an extention of this.

PROPOSITION 3.2. Let A j,Bj,X ,Y ∈ Mn . If

(
Aj X
Y ∗ Bj

)
, j = 1,2 , are accretive,

then so is

(
A1�A2 X
Y ∗ B1�B2

)
.

Proof. The condition says ℜ
(

Aj X
Y Bj

)
=

(
ℜAj (X +Y)/2

(X +Y)∗/2 ℜBj

)
, j = 1,2, are

positive definite. Then by the positivity of the Schur complement,

ℜAj >

(
X +Y

2

)
(ℜBj)−1

(
X +Y

2

)∗
, j = 1,2.

On the other hand, the key inequality (2) implies

(
ℜ(B1�B2)

)−1
�

(
(ℜB1)�(ℜB2)

)−1
.

Therefore,
(

X +Y
2

)(
ℜ(B1�B2)

)−1
(

X +Y
2

)∗

�
(

X +Y
2

)(
(ℜB1)�(ℜB2)

)−1
(

X +Y
2

)∗

=
(

X +Y
2

)(
(ℜB1)−1�(ℜB2)−1

)(
X +Y

2

)∗

�
((

X +Y
2

)
(ℜB1)−1

(
X +Y

2

)∗)
�

((
X +Y

2

)
(ℜB2)−1

(
X +Y

2

)∗)

< (ℜA1)�(ℜA2) � ℜ(A1�A2),

in which the second inequality is due to [4, Theorem 4.1.5 (ii)]. This implies the block

matrix

(
ℜ(A1�A2) (X +Y )/2
(X +Y)∗/2 ℜ(B1�B2)

)
is positive definite. In other words,

(
A1�A2 X
Y ∗ B1�B2

)

is accretive. �
In [7], Lee proved the following matrix inequality.
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THEOREM 3.3. Let A,B,X ∈ Mn . If M =
(

A X
X∗ B

)
is PPT, then for some unitary

matrix V ∈ Mn

2|X |� A�B+V ∗(A�B)V.

We make use of Proposition 3.2 to extend Theorem 3.3.

THEOREM 3.4. Let A,B,X ,Y ∈ Mn . If

(
A X
Y ∗ B

)
is APT, then for some unitary

matrix V ∈ Mn

|X +Y | � ℜ
(
A�B+V ∗(A�B)V

)
.

Proof. Since

(
A Y ∗
X B

)
is accretive, so is

(
B X
Y ∗ A

)
by a congruence with

(
0 I
I 0

)
.

It follows from Proposition 3.2 that

(
A�B X
Y ∗ A�B

)
is accretive, that is,

(
ℜ(A�B) (X +Y )/2

(X +Y )∗/2 ℜ(A�B)

)

is positive definite. Consider the polar decomposition X +Y =V |X +Y | , where V ∈Mn

is unitary. Then
(

V 0
0 I

)∗(
ℜ(A�B) (X +Y)/2

(X +Y)∗/2 ℜ(A�B)

)(
V 0
0 I

)
=

(
V ∗(ℜ(A�B))V |X +Y |/2
|X +Y |/2 ℜ(A�B)

)

is positive definite. Therefore by a simple congruence with
(
I −I

)
, we have the desired

inequality. �

4. The geometric mean of A and A∗

In this section, we present some inequalities about A�A∗ .

PROPOSITION 4.1. If A ∈ Mn is accretive, then A�A∗ � ℜA.

Proof. Clearly A�A∗ is Hermitian and accretive, so A�A∗ is positive definite. Then

we observe that the block matrix

(
A�A∗ A
A∗ A�A∗

)
is positive semidefinite by using the

Schur complement, for

A�A∗ −A(A�A∗)−1A∗ = A�A∗ −A
(
A−1�(A∗)−1

)
A∗ = 0.

Therefore, 〈
v⊕−v,

(
A�A∗ A
A∗ A�A∗

)
(v⊕−v)

〉
� 0, ∀v ∈ C

n.
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Expanding this gives

2〈v,(A�A∗)v〉 � 〈v,(A+A∗)v〉, ∀v ∈ C
n,

as desired. �
We say that A ∈ Mn is a contraction if I � A∗A . Using the obvious fact that

detA�B = detA1/2 detB1/2 , we see that the following corollary is stronger than the
Hua’s determinantal inequality [14, p. 231]: For A,B ∈ Mn contractive,

|det(I−A∗B)|2 � det(I−A∗A)det(I−B∗B).

For other strengthenings of the Hua’s determinantal inequality in the level of eigenval-
ues or singular values, we refer to [8].

COROLLARY 4.2. If A,B ∈ Mn are contractions, then

(I−A∗B)�(I−B∗A) � (I−A∗A)�(I−B∗B).

Proof. We need the following observation of Ando [2]: (A−B)∗(A−B)� 0 gives
A∗A+B∗B � A∗B+B∗A , and so

ℜ(I−A∗B) � (I−A∗A)+ (I−B∗B)
2

Now by Proposition 4.1,

(I−A∗B)�(I−B∗A) � ℜ(I−A∗B).

And the easy fact

(I−A∗A)+ (I−B∗B)
2

� (I−A∗A)�(I−B∗B).

Hence the conclusion. �
The positivity of the block matrix in the proof of previous proposition also implies

the following inequality about the usual operator norm.

COROLLARY 4.3. If A ∈ Mn is accretive, then

‖A�A∗‖ � ‖A‖.
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