
Operators
and

Matrices

Volume 15, Number 2 (2021), 589–614 doi:10.7153/oam-2021-15-40

GRAPH COMPLEMENT CONJECTURE

FOR CLASSES OF SHADOW GRAPHS

MONSIKARN JANSRANG ∗ AND SIVARAM K. NARAYAN

(Communicated by H. J. Woerdeman)

Abstract. The real minimum semidefinite rank of a graph G , denoted mrR+(G) , is defined to be
the minimum rank among all real symmetric positive semidefinite matrices whose zero/nonzero
pattern corresponds to the graph G . The inequality mrR+(G)+mrR+(G) � |G|+ 2 is called the
graph complement conjecture, denoted GCC+ , where G is the complement of G and |G| is
the number of vertices in G . A known definition of shadow graph S(G) and a variant of this
definition denoted Shad(G) are given. It is shown that S(G) satisfies GCC+ when G is a tree
or a unicyclic graph or a complete graph. Under additional conditions on G , it is shown that
S(G) satisfies GCC+ when G is a k -tree or a chordal graph. Moreover, whenever G satisfies
GCC+ and G does not contain any isolated vertices, it is shown that Shad(G) satisfies GCC+ .

1. Introduction

A graph G consists of a set of vertices V (G) = {v1,v2, . . . ,vn} and a set of edges
E(G) , where an edge is defined to be an unordered pair of vertices. The order of G ,
denoted |G| , is the cardinality of V (G) . A graph is said to be simple if it has no multiple
edges or loops. A multigraph G consists of possible multiple edges but has no loops.
The complement of a graph G(V,E) is the graph G(V,E) , where E consists of all the
unordered pairs of vertices that are not in E(G) .

An n× n matrix A = [ai j] is said to be combinatorially symmetric when ai j = 0
if and only if a ji = 0. We say that G(A) is the graph of an n× n combinatorially
symmetric matrix A = [ai j] if V = {v1,v2, . . . ,vn} and E = {{vi,v j} : ai j �= 0, i �= j} .
The main diagonal entries of A play no role in determining G(A) . Define S(G,F)
to be the set of all n× n matrices A that are real symmetric if F = R and complex
Hermitian if F = C whose graph is G . The sets S+(G,F) are the corresponding subsets
of positive semidefinite (psd) matrices. The smallest possible rank of any matrix A
in S(G,F) is called the minimum rank of G , denoted by mr(G,F) , and the smallest
possible rank of any matrix A in S+(G,F) is called the minimum semidefinite rank of
G , denoted either mrR+(G) or mrC+(G) . Many results on this topic are mentioned in
([16], Topics in Combinatorial Matrix Theory 46).

An interesting conjecture was presented at the 2006 AIM workshop at Palo Alto,
CA, called the graph complement conjecture or GCC for short [13]. The conjecture
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is the following inequality mr(G) + mr(G) � |G|+ 2. A variant of GCC known as
GCC+ , is the following inequality:

mrR+(G)+mrR+(G) � |G|+2.

Since S+(G,R) ⊆ S(G,R) , it follows that mr(G) � mrR+(G) and whenever GCC+
holds so does GCC .

The study of GCC and GCC+ are part of the questions in graph theory called
the Nordhaus–Gaddum type problems, which involve bounding the sum of a graph
parameter evaluated at G and its complement G . This question has been considered
for graph parameters such as the chromatic number, the independence number and the
domination number ([16], section 46.7).

The graph complement conjecture GCC+ has been shown to hold true for some
graph classes. In [13] it was shown that trees satisfy GCC+ . Later, GCC+ was shown
to hold for unicyclic graphs [15], chordal graphs [19], graphs with δ (G) � |G|−3 [2],
partial 3-trees [21] and k -connected partial k -trees [21]. In this paper we prove that
certain new classes of graphs satisfy GCC+ .

The paper is organized as follows: In section 2 we present graph theory prelimi-
naries and some known results on mrR+(G) that will be used in the paper. In section 3
we define the shadow graph S(G) and give upper bounds for the minimum semidefinite
rank of S(G) and the minimum semidefinite rank of its complement S(G) . We also
show that when G is either a tree or a unicyclic graph mrR+(S(G)) = mrR+(G)+ 1. In
section 4 we prove that S(G) satisfies GCC+ when G belongs to certain graph classes.
The complete result is stated in Theorem 1.

THEOREM 1. If G belongs to any of the following graph classes, then S(G) sat-
isfies GCC+ . The graph classes are

1. G is a tree.

2. G is a unicyclic graph.

3. G is a complete graph.

4. G is a k -tree such that G does not contain any isolated vertices.

5. G is a partial k -tree with k � 2 where G has a complete subgraph Kk+1 and G
does not contain any isolated vertices.

6. G is a chordal graph such that G does not contain any isolated vertices.

In section 5, we give a different definition of a shadow graph and denote it Shad(G) .
The result we obtained for Shad(G) is as follows:

THEOREM 2. If G satisfies GCC+ and G does not contain any isolated vertices,
then Shad(G) satisfies GCC+ .

Moreover, in section 6 we show that the shadow graphs S(G) discussed in section
4 also satisfy the “delta conjecture” which states mrR+(G) � |G|−δ (G) where δ (G) is
the minimum degree of the vertices in G .
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2. Preliminaries

In this section, we present some graph theory preliminaries and some known re-
sults concerning the minimum semidefinite rank.

2.1. Graph theory preliminaries

Given a simple graph G , let V (G) be the set of vertices and E(G) be the set of
edges, where the elements of E(G) are unordered pairs of vertices. An edge joining
vertices x and y will be written either as xy or {x,y} . If e = xy , then we say vertices
x and y are adjacent vertices. Moreover, e = xy is said to be incident to both x and y
or x (or y) is incident with the edge e .

Given a vertex v∈V (G) , the neighborhood N(v) of v is the set of vertices that are
adjacent to v and the closed neighborhood N[v] is N(v)∪{v} . The degree of a vertex v
in G , denoted by dG(v) , is the cardinality of N(v) . We will use d(v) instead of dG(v)
when G is clear in the context. If dG(v) = 1, then v is called a pendant vertex of G .
We denote δ (G) to be the minimum degree of the vertices in G . Two vertices u and v
in a graph G are said to be duplicate vertices if u is adjacent to v and N(u) = N(v) , or
equivalently N[u] = N[v] .

A path is a simple graph whose vertices {v1,v2, . . . ,vn} can be ordered so that two
vertices are adjacent if and only if they are consecutive in the list ([23], p. 5). A path
on n vertices is denoted by Pn . A cycle is a graph with an equal number of vertices and
edges whose vertices can be placed around a circle so that two vertices are adjacent if
and only if they appear consecutively along the circle ([23], p. 5). A cycle on n vertices
is denoted by Cn . A graph G is said to be connected if there is a path between any two
vertices of G . A tree is a connected graph without any cycles.

A subgraph H = (V (H),E(H)) of G = (V (G),E(G)) is a graph with V (H) ⊆
V (G) and E(H)⊆ E(G) , and we say G is a supergraph of H . An induced subgraph H
of G is a subgraph with V (H) ⊆V (G) and E(H) = {{vi,v j} ∈ E(G) : vi,v j ∈V (H)} .
We use G[R] to denote the subgraph of G induced by the set of vertices R ⊆V (G) . A
spanning subgraph of a graph G is a subgraph whose vertex set is V (G) .

An independent set in a graph G is a set of pairwise non-adjacent vertices in G .
The cardinality of a largest independent set in G is called the independence number of
G , denoted by α(G) . A star graph Sn on n vertices is a tree with an independent set
of n−1 pendant vertices and a center vertex x , such that x is adjacent to all the n−1
vertices.

A complete graph is a simple graph in which the vertices are pairwise adjacent. A
clique is a subgraph of pairwise adjacent vertices. A vertex v is said to be a simplicial
vertex in a graph G if the induced subgraph G[N[v]] is a clique. The size of a maximum
clique in a graph G is called the clique number of G , denoted by ω(G) . A chordal
graph is a graph in which there are no induced cycles on four or more vertices.

Let G1,G2, . . . ,Gk be simple subgraphs of a connected graph G on two or more
vertices. We say that G1,G2, . . . ,Gk cover a graph G if each vertex of G is a vertex of
at least one Gi , and for every pair of vertices u and v that are adjacent in G , there is
at least one Gi in which u and v are adjacent. If each Gi is a clique, then it is a clique



592 M. JANSRANG AND S. K. NARAYAN

cover of G . The minimum number of cliques needed to cover all the edges of G is
called the clique cover number of G , denoted by cc(G) .

The join of two graphs G and H , denoted G∨H , is the graph with the vertex
set V (G∨H) = V (G)∪V (H) and edge set E(G∨H) = E(G)∪E(H)∪{{u,v} : u ∈
V (G),v ∈V (H)} .

Suppose G is decomposable into two graphs, G1 and G2 , sharing only one vertex
v such that if u ∈V (G1) and w ∈V (G2) , then {u,w} ∈ E(G) only if u = v or w = v .
Then G1 and G2 are joined at a cut vertex v , and we write G = G1 ◦G2 and call it a
vertex sum of G1 and G2 .

The contraction of an edge e = {u,v} ∈ E(G) involves the deletion of e and
merging the vertices u and v into a new vertex w and keeping all the edges in G
incident to either u or v . A minor of a graph G is any graph obtainable from G by
means of a sequence of vertex and edge deletions and edge contractions ([4], p. 268).
Alternatively, consider a partition (V0,V1, . . . ,Vk) of V such that G[Vi] is connected,
1 � i � k , and let H be the graph obtained from G by deleting V0 and contracting each
induced subgraph G[Vi] , 1 � i � k , to a single vertex. Then any spanning subgraph F
of H is a minor of G . Note that in the definition of a minor any multiple edge can be
replaced by a single edge.

2.2. The minimum semidefinite rank of graphs

Let Mn(C) be the set of complex square matrices. A matrix A ∈ Mn(C) is said to
be Hermitian if A = A∗ where A∗ is the conjugate transpose of A . A Hermitian matrix
A ∈ Mn(C) is said to be positive semidefinite (psd) if x∗Ax � 0 for all nonzero x ∈ Cn .
Since a principal submatrix of a psd matrix is psd ([17], p. 430), it follows that the main
diagonal entries aii � 0. Moreover, a positive semidefinite matrix has a zero entry on
its main diagonal if and only if the entire row and column to which that entry belongs
is zero ([17], p. 432, Observation 7.1.10). As a consequence, if A ∈ S+(G,F) where
G is connected and |G| � 2, the main diagonal entries of A are strictly positive. For a
given graph G , the complex minimum semidefinite rank of G is defined to be

mrC+(G) = min{rank(A) : A ∈ S+(G,C)}
and the real minimum semidefinite rank of G is defined to be

mrR+(G) = min{rank(A) : A ∈ S+(G,R)}.

Since S+(G,R) ⊆ S+(G,C) , we have mrC+(G) � mrR+(G) . An example of a graph G
where mrC+(G) < mrR+(G) is given in [1]. It is clear that if GCC+ holds for mrR+(G) ,
then it also holds for mrC+(G) .

We denote M(G) to be the maximum nullity among matrices in S(G,R) , MR
+(G)

to be the maximum nullity among matrices in S+(G,R) and MC
+(G) to be the max-

imum nullity among matrices in S+(G,C) . Using the rank-nullity theorem, we have
mr(G)+M(G) = mrR+(G)+MR

+(G) = mrC+(G)+MC
+(G) = |G| .

When the result does not depend on the real or complex entries of the psd matrices
corresponding to a given graph G we will denote the minimum semidefinite rank and
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the maximum nullity as mr+(G) and M+(G) , respectively. When discussing GCC+
we will only consider real minimum semidefinite rank mrR+(G) .

If a graph G is disconnected, then the direct sum of psd matrices for the connected
components Gi , i = 1,2, . . . ,k of G yields a psd matrix for the graph G . In this case,
mr+(G) = ∑k

i=1 mr+(Gi) . Therefore, it suffices to find mr+(G) for a connected graph
G .

The adjacency matrix A = [ai j] of a simple graph G on n vertices {v1,v2, . . . ,vn}
consists of entries ai j = 1 when vi and v j are adjacent and ai j = 0 otherwise. Let the
matrix D = diag{d(v1), . . . ,d(vn)} . Then, L(G) = D(G)−A(G) is called the (classi-
cal) Laplacian matrix of G .

Let −→u = (u1,u2, . . . ,un) and −→v = (v1,v2, . . . ,vn) be two vectors in C
n . The

Euclidean inner product of −→u and −→v is defined as 〈−→u ,−→v 〉 = ∑n
i=1 uivi . Any two

vectors −→u and −→v in Cn are said to be orthogonal if 〈−→u ,−→v 〉 = 0.
Suppose v1,v2, . . . ,vn are the vertices of a simple graph G . We associate the vec-

tors −→v1 ,−→v2 , . . . ,−→vn in Cm to the vertices v1,v2, . . . ,vn , such that, for i �= j , 〈−→vi ,
−→v j 〉 �= 0

if and only if {vi,v j} ∈ E(G) for 1 � i, j � n . We say that
−→
V = {−→v1 ,

−→v2 , . . . ,−→vn} is a
vector representation of G . Let X be a matrix given by X = [−→v1 · · ·−→vn ] . Then X∗X is
a psd matrix called the Gram matrix of

−→
V with respect to the Euclidean inner prod-

uct where rank(
−→
V ) := dim(Span(

−→
V )) = rank(X∗X) . Since any psd matrix A can be

written as X∗X for some X ∈ Mm,n(C) with rank(A) = rank(X) ([17], p. 440), each

psd matrix is the Gram matrix of a set of vectors
−→
V . Thus, finding a psd matrix rep-

resenting G with rank k and finding a vector representation of G in Rk are equivalent
problems.

A real symmetric matrix A is said to satisfy the Strong Arnold Property if there
does not exist an n×n symmetric matrix X �= 0 such that

• AX = 0

• A◦X = 0

• I ◦X = 0,

where ◦ denotes the entrywise (Hadamard) product and I is the identity matrix. The
parameter ν(G) is defined to be the maximum nullity among matrices A ∈ S+(G,R)
that satisfy the Strong Arnold Property [17].

2.3. Some prior results on the minimum semidefinite rank

For any connected graph G on n vertices, the Laplacian matrix L(G) of G is a psd
matrix with rank n− 1 [18] and it follows that mr+(G) � n− 1. Further, mr+(G) =
n− 1 if and only if G is a tree on n vertices ([22], Theorem 4.1). For a complete
graph Kn where n � 2, the n× n matrix J of all ones is in S+(Kn,C) and it follows
that mr+(Kn) = 1. Further, mr+(G) = 1 if and only if G = Kn for n � 2. Thus, for
any connected graph G with |G| � 2, if G is neither a tree nor a complete graph, then
2 � mr+(G) � |G|−2. Note that mr+(K1) = 0.
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Since a principal submatrix of a psd matrix is psd ([17], p. 430) and the rank of a
submatrix can never be greater than that of the matrix ([17], p. 430, Observation 7.1.2),
the minimum semidefinite rank of any induced subgraph H of a given graph G gives a
lower bound for the minimum semidefinite rank of G . For a cycle Cn , since a path P on
n−1 vertices is an induced subgraph of Cn , we have mr+(Cn) � mr+(Pn−1) = n−2.
Since Cn is not a tree, it follows that mr+(Cn) = n−2.

DEFINITION 1. [20] Let G be a multigraph. If v ∈ V (G) , the orthogonal vertex
removal of v from G , denoted G�v , is a multigraph modified from G[V (G)−{v}] by
adding P(u,w) additional edges between each pair u,w ∈ N(v) , where P(u,w) is the
product of the number of edges from v to u and from v to w .

DEFINITION 2. Let G be a connected multigraph with |G| = n . Define an n×n
symmetric or Hermitian psd matrix A = [ai j] corresponding to G as follows:

• ai j �= 0 if vi and v j are joined by exactly one edge.

• ai j = 0 if vi �= v j and vi and v j are not adjacent.

• ai j is any real number if vi and v j are joined by multiple edges.

Let S+(G,F) denote the set of all n×n psd matrices which satisfy the above properties
where F = R or C . Then mrF+(G) = min{rank(A)|A ∈ S+(G,F)} .

RESULT 1. ([6], Corollary 3.5) If G is a simple connected graph and v is a pen-
dant vertex, then mr+(G) = mr+(G− v)+1 = mr+(G� v)+1.

RESULT 2. ([3], Lemma 2.5) If G is a connected graph and v is a vertex of degree
two, then mr+(G) = mr+(G� v)+1.

DEFINITION 3. [6] A simplicial vertex of a multigraph G is a vertex v such that
the induced subgraph G[N[v]] is a clique in G .

RESULT 3. ([6], Lemma 3.4) If v is a simplicial vertex of a connected multigraph
G that is joined to at least one neighbor by exactly one edge, then mr+(G) = mr+(G�
v)+1.

RESULT 4. ([6], Proposition 3.1 and Theorem 3.6) For a connected graph G ,
mr+(G) � cc(G) . In particular, mr+(G) = cc(G) if G is a chordal graph.

RESULT 5. [5] For a connected graph G , we have mrR+(G) � α(G) .
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3. Shadow graph S(G) and its complement S(G)

In this section we give the definition of shadow graph S(G) found in [9]. We give
upper bounds for the minimum semidefinite rank of S(G) and the minimum semidef-
inite rank of its complement S(G) . We show that when G is a tree or when G is a
unicyclic graph mrR+(S(G)) = mrR+(G)+1.

DEFINITION 4. ([9], p. 276) Given a graph G , the shadow graph S(G) is ob-
tained from G by adding for each vertex u of G , a new vertex v , called the shadow
vertex of u , and joining v to the neighbors of u in G .

EXAMPLE 1. The following are the shadow graphs S(G) of the path P5 and the
cycle C4 . The shadow vertices are represented as black vertices.

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 1: S(P5)

u4 u3

u2u1

v1 v2

v4 v3

Figure 2: S(C4)

OBSERVATION 1. In the definition of S(G) note that the vertex u of G and its
shadow vertex v are not adjacent in S(G) and the shadow vertices are pairwise nonad-
jacent in S(G) .

THEOREM 3. If G is a connected graph with |G| � 3 , then |G| � mrR+(S(G)) �
|S(G)|−2 .

Proof. Since G is connected and |G| � 3, there is a vertex u in G such that
dG(u) � 2. Let u1,u2 be the neighbors of u and v be the shadow vertex of u . Then
the set of vertices {u,v,u1,u2} induces a cycle in S(G) . Hence S(G) is not a tree and
mrR+(S(G)) � |S(G)|−2 when |G|� 3. It is clear from Observation 1 and the definition
of S(G) that the shadow vertices of S(G) form a largest independent set of size |G| .
Since the independence number is a lower bound for the minimum semidefinite rank
([6], Corollary 2.7), we have |G| � mrR+(S(G)) . �

Next, we give an example of a class of G such that mrR+(S(G)) = |S(G)|−2.
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PROPOSITION 1. Let Pn be a path on n � 3 vertices. Then mrR+(S(Pn))= |S(Pn)|−
2 .

Proof. For n= 3 or n= 4, it is easy to verify that mrR+(S(Pn)) is equal to |S(Pn)|−
2. Assume n � 5. Let V (S(Pn)) = {u1, . . . ,un,v1, . . . ,vn} where vi is the shadow
vertex of ui , 1 � i � n . Note that dS(G)(v1) = dS(G)(vn) = 1 and dS(G)(vi) = 2 for
2 � i � n−1. By orthogonally removing the vertices vi (1 � i � n) and using Results
1 and 2 we have mrR+(S(Pn)) = |Pn|+mrR+(H) where H is the graph such that N(u1) =
{u2,u3} , N(un) = {un−2,un−1} , N(u2) = {u1,u3,u4} , N(un−1) = {un−3,un−2,un} and
N(ui) = {ui−2,ui−1,ui+1,ui+2} for 3 � i � n− 2. Since H is a chordal graph with
cc(H) = |Pn| − 2, by Result 4 mrR+(H) = |Pn| − 2. Therefore, mrR+(S(Pn)) = |Pn|+
mrR+(H) = |Pn|+ |Pn|−2 = |S(Pn)|−2. �

REMARK 1. There are other classes of graphs such as the star graph Sn (in Ex-
ample 2) that show the upper bound in Theorem 3 is sharp. We also know a class of
circulant graphs (in Example 3) for which the lower bound in Theorem 3 is attained.

EXAMPLE 2. Let S(Sn+1) be the shadow graph of a star on n+1 vertices where
n � 2. Then mrR+(S(Sn+1)) = |S(Sn+1)|−2.

Proof. Let V (S(Sn+1)) = {u1, . . . ,un,x,v1, . . . ,vn, x̃} where vi is the shadow ver-
tex of ui , x is the center vertex of Sn+1 and x̃ is the shadow vertex of x . Since ui is
a pendant vertex in Sn+1 , vi is a pendant vertex in S(Sn+1) . Applying Result 1 induc-
tively to vertices vi , we have mrR+(S(Sn+1)) = mrR+(K2,n)+ n . So, mrR+(S(Sn+1)) =
n+n = 2n = (2n+2)−2 = |S(Sn+1)|−2. �

1 2

3

45

6

1 2

3

45

6

7 8

9

1011

12

(a) Circ(6,{1,2}) (b) S(Circ(6,{1,2}))

Figure 3: The circulant graph Circ(6,{1,2}) and its shadow graph
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DEFINITION 5. A circulant graph Circ(n,S) is a graph with n vertices in which
every vertex i (where i ∈ {1,2, . . . ,n} ) is adjacent to vertices i+ j (mod n ) and i− j
(mod n ) for each j in S where S ⊆ {1,2, . . . ,n} .

The example of the circulant graph Circ(6,{1,2}) and its shadow graph is shown
in Figure 3.

EXAMPLE 3. Consider G = Circ(6,{1,2}) in Figure 3. We give a matrix M ∈
S+(S(G)) with rank(M) = 6 = |G| .

Proof. Let M =
[

A B
BT I6×6

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 2 0 −2 −2 0 1 1 0 1 1
2 4 2 −2 0 2 1 0 1 1 0 1
2 2 4 2 2 0 1 1 0 1 1 0
0 −2 2 4 2 −2 0 1 −1 0 1 −1
−2 0 2 2 4 2 1 0 −1 1 0 −1
−2 2 0 −2 2 4 1 −1 0 1 −1 0
0 1 1 0 1 1 1 0 0 0 0 0
1 0 1 1 0 −1 0 1 0 0 0 0
1 1 0 −1 −1 0 0 0 1 0 0 0
0 1 1 0 1 1 0 0 0 1 0 0
1 0 1 1 0 −1 0 0 0 0 1 0
1 1 0 −1 −1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where A is a matrix corresponding to G . Since the set of shadow vertices {7,8,9,10,11,
12} is an independent set, we choose the matrix corresponding to the shadow vertices

to be a I6×6 . For the matrix B , we have that B =
[
J− I3×3 J− I3×3

D D

]
where J is the

3×3 matrix of all ones and D =

⎡
⎣0 1 −1

1 0 −1
1 −1 0

⎤
⎦ . Notice that A = BBT . Since I6×6 is a

positive definite and A−BI−1BT = A−BBT = A−A = 0, by Schur complement for
positive semidefiniteness we have that M is psd and

rank(M) = rank(I6×6)+ rank(A−BI−1
6×6B

T ) = 6+ rank(0) = 6. �

We use the same idea as above to generalize as below.

COROLLARY 1. Let

G = Circ

(
n,{1,2, . . . ,

n−2
2

}
)

where n is even and n � 6 . Then mrR+(S(G)) = |G| = n.

Proof. Denote V (G) = {1,2, . . . ,n} and the set of shadow vertices by

{n+1,n+2, . . .,2n}



598 M. JANSRANG AND S. K. NARAYAN

where ∀ j ∈ {n+ 1,n+ 2, . . . ,2n} , j is the shadow vertex of j− n . By the definition
of G , every vertex i ∈ {1,2, . . . ,n} , i is adjacent to all vertices except the vertex n

2 + i
(mod n) . Note that every vertex i in G , i is not adjacent to its shadow vertex in S(G) .
Moreover, the set of shadow vertices forms an independent set in S(G) . Define M to
be a 2×2 block matrix where

M =
[

A B
BT In×n

]
,

where each entry ai j in A corresponds to the adjacency between vertices in G , each
entry bi j in B corresponds to the adjacency between the vertices in G and their shadow
vertices and the identity matrix In×n corresponds to the adjacency between vertices in
{n+1,n+2, . . .,2n} . Define the 2×2 block matrix B as

B =
[
J− I n

2× n
2

J− I n
2× n

2

D D

]

where J is the n
2 × n

2 matrix of all ones and D is the n
2 × n

2 matrix such that

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 . . . 1 −( n−4
2 )

1 0 1 1 1 . . . 1 −( n−4
2 )

1 1 0 1 1 . . . 1 −( n−4
2 )

...
. . .

...
...

1 1 1 1 1 . . . 0 −( n−4
2 )

1 1 1 1 1 . . . −( n−4
2 ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, we define A = BBT . It can be checked that M is a matrix representation of S(G) .
Since A = BBT , we have

A = BBT =
[
J− I J− I
D D

][
J− I DT

J− I DT

]
=
[

2(J− I)2 2(J− I)DT

2D(J− I) 2DDT

]

where 2(J− I)2 has no zero entry, (J− I)DT has zero entries on the diagonal, D(J− I)
has zero entries on the diagonal, DDT has no zero entries on the diagonal and the entry
ai j of A is zero if |i− j|= n

2 . Since I is positive definite and A−BI−1BT = A−BBT =
A−A = 0, by Schur complement for positive semidefiniteness we have that M is psd
and

rank(M) = rank(In×n)+ rank(A−BI−1
n×nB

T ) = n+ rank(0) = n.

Thus, mrR+(S(G)) � n . By Result 5 we have n � α(S(G)) � mrR+(S(G)) . Thus, n �
mrR+(S(G)) � n . Therefore, mrR+(S(G)) = n = |G| . �

In the next two theorems we find the minimum semidefinite rank of the comple-
ment of the shadow graph S(G) .

THEOREM 4. Suppose G is a simple connected graph such that G is connected.
Then, either

mrR+(S(G)) = mrR+(G) or mrR+(S(G)) = mrR+(G)+1.
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Proof. Let V (S(G))= {u1, . . . ,un,v1, . . . ,vn} where ui (1 � i � n) are the vertices
of G that are labeled first followed by the corresponding shadow vertices vi (1 � i �
n) . Since G is an induced subgraph of S(G) , we have mrR+(G) � mrR+(S(G)) . Next,
it suffices to show that mrR+(S(G)) � mrR+(G) + 1. Let A = [ai j] be an n× n real
symmetric positive semidefinite matrix corresponding to G with rank(A) = mrR+(G) .
Let x be a real number such that x > max{|ai j| : 1 � i, j � n} and J be the n×n matrix
of all ones. Then we define a 2×2 block matrix M as

M =
[
A A
A A+ xJ

]
.

Next, we claim that M is a matrix corresponding to S(G) . Recall that all the diagonal
entries of A are positive because G is connected by assumption. The block M1,1 = A
corresponds to G . In the block M1,2 = A = [ai j] for 1 � i, j � n , ai j is nonzero if and
only if ui is adjacent to v j in S(G) . Since ui is adjacent to vi in S(G) , the diagonal
entries of A are nonzero. Moreover, ui is adjacent to v j in S(G) for i �= j if and only
if ui is adjacent to u j in G for i �= j . In the block M2,2 each entry corresponds to
the adjacency between vi and v j . Since {v1, . . . ,vn} form an independent set in S(G) ,
they induce a complete subgraph in S(G) . Therefore, each off-diagonal entry in A+xJ
must be nonzero. By the choice of x , every entry in A+ xJ is nonzero. Next, we show

that M is psd. For −→v =
[−→p−→q
]

in R2n where −→p ,−→q ∈ Rn , we have

−→v T M−→v =
[−→p T −→q T

][A A
A A+ xJ

][−→p−→q
]

= −→p T A−→p +−→q T A−→p +−→p T A−→q +−→q T Aq+−→q T (xJ)−→q .

= (−→p T +−→q T )A(−→p +−→q )+−→q T (xJ)−→q .

Since A and xJ are psd matrices and −→v is any vector in R2n , we conclude that−→v T M−→v � 0 and hence M is a psd matrix. Moreover,

rank(M) = rank

([
A A
A A

]
+
[
0 0
0 xJ

])
� rank(A)+ rank(xJ) = mrR+(G)+1.

Therefore, mrR+(S(G)) � rank(M) � mrR+(G)+1. �
We now extend the proof of Theorem 4 to the case where G is disconnected or G

contains isolated vertices.

THEOREM 5. Let G be a simple connected graph such that G is disconnected. If
G1,G2, . . . ,Gk are the connected components of G with each component having two or
more vertices and if there are r isolated vertices in G, then

mrR+(S(G)) �
(

k

∑
i=1

mrR+(Gi)

)
+ r+1.
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Proof. For 1 � i � k , let Ai be a real symmetric psd matrix corresponding to Gi

with rank(Ai) = mrR+(Gi) . We define A = [ai j] =
(⊕k

i=1 Ai

)⊕
Ir where Ir is the r× r

identity matrix. Let x be a real number such that x > max{|ai j| : 1 � i, j � n} . Then
we define a 2×2 block matrix M as

M =
[
A A
A A+ xJ

]

where J is the matrix of all ones. It can be verified that M is a matrix corresponding to
S(G) . Since the direct sum of psd matrices is psd, A is psd. From the previous proof
we know that M is psd. Moreover,

rank(M) = rank

([
A A
A A

]
+
[
0 0
0 xJ

])
� rank(A)+ rank(xJ)

= rank

[(
k⊕

i=1

Ai

)⊕
Ir

]
+1

=

(
k

∑
i=1

mrR+(Gi)

)
+ r+1.

Therefore, mrR+(S(G)) �
(
∑k

i=1 mrR+(Gi)
)
+ r+1. �

REMARK 2. Since G is an induced subgraph of S(G) , we get
k
∑
i=1

mrR+(Gi) �

mrR+(S(G)) in Theorem 5. Moreover, if there are no isolated vertices in G , then the
conclusion of Theorem 5 is same as that of Theorem 4.

Next, we give an example of a graph G for which the upper bound in Theorem 5
is achieved.

EXAMPLE 4. Let G = P4∨K3 . Then G = P4∪3K1 . Let

V (S(G)) = {u1, . . . ,u7,v1, . . . ,v7}

where for 1 � i � 7, ui are the vertices in G and vi are the shadow vertices of ui .
The set of vertices {u1,u2,u3,u4} forms an induced path P4 in G and u5,u6,u7 are
isolated vertices in G . In S(G) , the set of vertices {u1,u2,v1,v2} , {u2,u3,v2,v3} ,
{u3,u4,v3,v4} and {v1, . . . ,v7} form complete subgraphs and u5,u6,u7 are pendant
vertices. It can be verified that the clique cover number cc(S(G)) = 7. Since S(G) is a
chordal graph, using Result 4, we have mrR+(S(G)) = 7 = mrR+(P4)+3+1.

DEFINITION 6. A graph G is said to be unicyclic if it has exactly one induced
subgraph that is a cycle.
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The following two propositions show that the upper bound in Theorem4 is attained
when G is either a tree or a unicyclic graph.

PROPOSITION 2. Suppose G is a simple graph with |G|� 3 such that G is a tree.
Then mrR+(S(G)) = mrR+(G)+1 .

Proof. Let u,v be two of the pendant vertices in G with shadow vertices u′ and
v′ , respectively. Let K be the graph induced in S(G) by V (G)∪{u′,v′} .

Case 1. Let us assume that the pendant vertices u and v satisfy N(u) = N(v) =
{w} in G and Pu,v is a path from u to v in G . Let P′ =V (G)\V (Pu,v) . Since the graph
induced by P′ in K is a forest, by sequentially removing the pendant vertices of P′ or-
thogonally in K we obtain the subgraph J of K induced by V (Pu,v)∪{u′,v′} . The sub-
graph J is isomorphic to the graph in Figure 4. Since J is a chordal graph from Result 4,
mrR+(J) = 3 and hence mrR+(K) = |G|−3+mrR+(J) = |G|= mrR+(G)+1. Since K is an
induced subgraph of S(G) we have mrR+(G)+1 = mrR+(K)� mrR+(S(G)) � mrR+(G)+1
where the last inequality is from Theorem 4.

Case 2. Suppose N(u) �= N(v) . Then, as in case 1, if we orthogonally remove the
vertices of the forest induced by P′ in K we get a graph induced by V (Pu,v)∪{u′,v′} .
By orthogonally removing the degree 2 vertices in V (Pu,v) we obtain the subgraph H in
the Figure 5. Using orthogonal removal of u and v in H we get mrR+(H) = 4. Hence
mrR+(K) = |G| − 4 + mrR+(H) = |G| = mrR+(G)+ 1. As before we get mrR+(S(G)) =
mrR+(G)+1.

w

v

v
′

u
′

u

Figure 4:

w1 w2

u
′

v
′

u v

Figure 5:

�

PROPOSITION 3. Suppose G is a simple graph with |G| � 3 such that G is a
unicyclic graph. Then mrR+(S(G)) = mrR+(G)+1 .

Proof. Let u1u2 . . .un−1unu1 be the cycle C induced in G , which is an induced
subgraph of S(G) .

Case 1. Suppose u1 is a vertex of degree 2 in G . Then V (G)\{u1} is a tree. From
Proposition 2 we get an induced subgraph L of S(G) such that mrR+(L) = |G|−1. Since
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G is unicyclic, by [15] we have mrR+(G) = |G| − 2. Hence mrR+(G)+ 1 = |G| − 1 =
mrR+(L) � mrR+(S(G)) � mrR+(G)+1 using Theorem 4.

Case 2. Suppose there are no vertices on C of degree 2 in G . Then there is a tree
joined to every vertex of C in G . Suppose T1 and T2 are trees joined to u1 and u2 of
C , respectively.

Case 2.1 When T1 and T2 are not single vertices. Let v and w be pendant vertices
in T1 and T2 , respectively and v′ and w′ be the corresponding shadow vertices. Let K
be the graph induced in S(G) by V (G)∪{v′,w′} . Let Pv,w be the path in G containing
the edge u1u2 that is a part of the cycle C . Then V (Pv,w)∪ {v′,w′} induces a cycle
along with two triangles obtained by the edges joining the shadow vertices v′ and w′
to the unique neighbors of the pendant vertices v and w , respectively. By orthogonally
removing the pendant vertices of the forest in V (K) \ {V(C)∪V (Pv,w)∪{v′,w′}} and
then orthogonally removing the degree two vertices {u3, . . . ,un−1} of C we obtain
a graph H that is isomorphic to the graph in Figure 6. By orthogonally removing the
degree two vertices v,w and un and deleting the resulting multiple edges on the cycle in
Figure 7 we get three paths. Thus, mrR+(H) = |Pv,w| . Recall that the number of vertices
deleted orthogonally from the forest is |G|−|C|−|Pv,w|+2 where u1,u2 are counted in
both C and Pv,w . Therefore, mrR+(K) = (|G|− |C|− |Pv,w|+2)+(|C|−3)+mrR+(H) =
(|G|− |C|− |Pv,w|+2)+ (|C|−3)+ |Pv,w| = |G|−1. Since G is unicyclic, mrR+(G) =
|G|− 2. Hence mrR+(G)+ 1 = |G|− 1 = mrR+(K) � mrR+(S(G)) � mrR+(G)+ 1 using
Theorem 4.

Case 2.2 When T1 and T2 are single vertices. Let v and w be vertices in T1 and
T2 , respectively and v′ and w′ be the corresponding shadow vertices. Proceeding as
above, we have V (Pv,w)∪{v′,w′} induces a cycle along with two triangles obtained by
the edges joining the shadow vertices v′ and w′ to the unique neighbors of the vertices
v and w , respectively. By orthogonally removing the pendant vertices of the forest
in V (K)\ {V (C)∪V (Pv,w)∪{v′,w′}} and then orthogonally removing the degree two
vertices {u3, . . . ,un−1} of C we obtain a graph H that is isomorphic to the graph in
Figure 8. Recall that |Pv,w| = 4. By orthogonally removing the degree 2 vertices v,w
and un and deleting the resulting multiple edges on the cycle in Figure 8 we get a path
P2 and two isolated vertices. Thus, mrR+(H) = mrR+(P2)+3 = 4 = |Pv,w| . Recall that the
number of vertices deleted orthogonally from the forest is |G|− |C|− |Pv,w|+2 where
u1,u2 are counted in both C and Pv,w . Therefore, mrR+(K) = (|G|− |C|− |Pv,w|+2)+
(|C|−3)+mrR+(H) = (|G|− |C|− |Pv,w|+2)+(|C|−3)+ |Pv,w| = |G|−1. Since G is
unicyclic, mrR+(G) = |G|−2. Hence mrR+(G)+1 = |G|−1 = mrR+(K) � mrR+(S(G)) �
mrR+(G)+1 using Theorem 4.

Case 2.3 When T1 and T2 are trees such that T2 is a single vertex. Let v and
w be vertices in T1 and T2 , respectively and v′ and w′ be the corresponding shadow
vertices. By orthogonally removing the pendant vertices of the forest in V (K)\{V(C)∪
V (Pv,w)∪{v′,w′}} and then orthogonally removing the degree two vertices {u3, . . . ,un−1}
of C we obtain a graph H that is isomorphic to the graph in Figure 9. By orthog-
onally removing the degree 2 vertices v,w and un in H and deleting the resulting
multiple edges on the cycle in H we get 2 paths and one isolated vertex. The number
of vertices on those two paths are 2 and |Pv,w|− 3. Thus, mrR+(H) = 3 +mrR+(P2) +
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(|Pv,w|− 4) = |Pv,w| . Recall that the number of vertices deleted orthogonally from the
forest is |G| − |C| − |Pv,w|+ 2 where u1,u2 are counted in both C and Pv,w . There-
fore, mrR+(K) = (|G| − |C| − |Pv,w|+ 2) + (|C| − 3)+ mrR+(H) = (|G| − |C| − |Pv,w|+
2) + (|C| − 3) + |Pv,w| = |G| − 1. Since G is unicyclic, mrR+(G) = |G| − 2. Hence
mrR+(G)+1 = |G|−1 = mrR+(K) � mrR+(S(G)) � mrR+(G)+1 using Theorem 4. �

un

u1 u2

v
′

w
′

v w

Figure 6:
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′

w
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v
′

w
′

v w
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u1 u2

v
′

w
′

v

w

Figure 9:

4. Shadow graph S(G) and GCC+

In this section we show that S(G) satisfies GCC+ when G is a tree or a unicyclic
graph or a complete graph. Whenever G is a k -tree or a chordal graph whose com-
plement has no isolated vertices, we show that S(G) satisfies GCC+ . Also, we show
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that when G is a partial k -tree (k � 2) where G has a subgraph Kk+1 and G has no
isolated vertices, then S(G) satisfies GCC+ .

THEOREM 6. The shadow graph S(T ) of a tree T satisfies GCC+ .

Proof. Let T be a tree. If |T | = 2 then S(T ) = P4 and S(T ) = P4 . Since P4 is a
tree, we have mrR+(P4) = 3 and

mrR+(S(T ))+mrR+(S(T )) = 6 = |S(T )|+2.

If |T | = 3 then T = P3 . The graphs of S(P3) and S(P3) are shown in Figures 10 and
11, respectively.

u1 u2 u3

v1 v2 v3

Figure 10: S(P3)

u1 u3

v3v1

v2

u2

Figure 11: S(P3)

In S(P3) , since v1 and v3 are pendant vertices, using Result 1, we have mrR+(S(P3))
= 4. Since S(P3) is chordal, using Result 4, we have mrR+(S(P3)) = cc(S(P3)) = 3.
Thus,

mrR+(S(P3))+mrR+(S(P3)) = 7 = |S(P3)|+1.

Suppose |T | � 4. First, we consider the case when T is a star with |T | = n . Let
V (S(T )) = {u1, . . . ,un−1,x,v1, . . . ,vn−1,x′} where u1, . . . ,un−1,x are vertices of T and
x is the center vertex of T . For 1 � i � n−1, vi is the shadow vertex of ui and x′ is
the shadow vertex of x . Since for 1 � i � n−1, vi is a vertex of degree one in S(T ) ,
after deleting the vertices vi of degree one in S(T ) the resulting graph is a complete
bipartite graph K2,n−1 . By Result 1 and ([5], Theorem 2.1) we have

mrR+(S(T )) = mrR+(K2,n−1)+n−1 = (n−1)+ (n−1)= 2n−2. (1)

In S(T ) , x is a pendant vertex joined to its shadow vertex x′ . The subgraph induced
by the set of vertices {u1, . . . ,un−1,v1, . . . ,vn−1} is Kn−1∨Kn−1 = K2(n−1) and the sub-

graph induced by the set of vertices {v1,v2, . . . ,vn−1,x′} is Kn . Since S(T ) is chordal,
using Result 4 we have mrR+(S(T )) = cc(S(T )) = 3. Therefore, from (1) we have

mrR+(S(T ))+mrR+(S(T )) = (2n−2)+3 = 2n+1 = |S(T )|+1.
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Next, assume T is not a star and |T | � 4. By Theorem 3.,

mrR+(S(T )) � |S(T )|−2. (2)

By ([13], Theorem 3.16) we have mrR+(T ) � 3. Since T is connected, using Theorem
4 we get

mrR+(S(T )) � mrR+(T )+1 � 4. (3)

By Equations (2) and (3) we have

mrR+(S(T ))+mrR+(S(T )) � (|S(T )|−2)+4 = |S(T )|+2. �

In Theorem 8 we show that the shadow graph S(G) of a unicyclic graph satisfies
GCC+ . We first show that K4 is a minor of S(G) when G is unicyclic. We then use
the minor monotone property of the Colin de Verdière type parameter ν of a graph G
to get bounds on mrR+(S(G)) (Refer to Section 2.2).

OBSERVATION 2. For every graph G , ν(G) � MR
+(G) .

LEMMA 1. ([11], Theorem 3) If H is a minor of G, then ν(H) � ν(G) .

We now recall the following well known result.

LEMMA 2. Let Ks be a complete graph on s vertices. If s � 2 then ν(Ks) = s−1
and ν(K1) = 1 .

Proof. For s � 2, consider the s× s matrix J of all ones. Since J is symmetric
and the eigenvalues are s (with multiplicity one) and zero (with multiplicity s−1), the
matrix J is a psd matrix with nullity s−1. To satisfy the Hadamard product of J with
any symmetric matrix X is the zero matrix, X is necessarily the zero matrix. Thus, J
satisfies the Strong Arnold Property. So, ν(Ks) � s−1. Since s � 2 and mrR+(Ks) = 1,
we have ν(Ks) = s−1. It is easy to show ν(K1) = 1. �

THEOREM 7. The shadow graph S(G) of a complete graph G where |G| � 2 ,
satisfies GCC+ .

Proof. Let V (S(G)) = {u1, . . . ,un,v1, . . . ,vn} where ui is a vertex in G for 1 �
i � n and vi is the shadow vertex of ui . Since {u1, . . . ,un} and {v1, . . . ,vn} form
cliques of size n in S(G) and S(G) respectively, S(G) and S(G) contain a complete
graph Kn as an induced subgraph. By Observation 2, Lemma 1 and Lemma 2 we have
n−1 = ν(Kn) � ν(S(G)) � MR

+(S(G)) . Using mrR+(S(G)) = |S(G)|−MR
+(S(G)) we

get mrR+(S(G)) � n + 1. Similarly, mrR+(S(G)) � n + 1. Therefore, mrR+(S(G)) +
mrR+(S(G)) � (n+1)+ (n+1)= |S(G)|+2. �

THEOREM 8. The shadow graph S(G) of a unicyclic graph G satisfies GCC+ .
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Proof. We consider four cases as following:

Case 1. Suppose G is a cycle C3 . The proof is provided in Theorem 7 as the case
of the shadow graph of a complete graph.

Case 2. Suppose G is the vertex sum of C3 and a star graph Sn−2 where |G| =
n � 4. Let V (C3) = {u1,u2,u3} where u1 is the shared vertex of the vertex sum and u1

is the center of the star. Also, let v1 be the corresponding shadow vertex of u1 . Assume
w is a vertex of Sn−2 where w is adjacent to u1 . Consider a partition (V0,V1,V2,V3,V4)
of V (S(G)) where

V0 = V (S(G))\ {V(C3)∪{v1,w}},V1 = {u1},V2 = {u2},V3 = {u3},V4 = {v1,w}.

Let H be the minor obtained from S(G) by deleting V0 and contracting the induced
subgraph G[V4] to a single vertex. The graph H is isomorphic to K4 . Thus, S(G)
contains K4 as a minor. By Observation 2, Lemma 1 and Lemma 2 we have 3 =
ν(K4) � ν(S(G)) � MR

+(S(G)) . Using |S(G)| −MR
+(S(G)) = mrR+(S(G)) , we get

mrR+(S(G)) � |S(G)| − 3. In G , u1 is an isolated vertex and the subgraph induced
by the set of vertices V (G)\ {u1} is the graph 2K1 ∨Kn−3 . By ([14], Proposition 2.6)
we have mrR+(V (G) \ {u1}) = mrR+(2K1 ∨Kn−3) = 2. Since G contains an isolated
vertex, using Theorem 5 we have mrR+(S(G)) � mrR+(2K1 ∨Kn−3)+1+1 = 4. Hence
mrR+(S(G))+mrR+(S(G)) � |S(G)|+1.

Case 3. Suppose G contains a cycle C3 and G is not the vertex sum of C3 and
Sn−2 with |G| = n � 5. Let C3 be an induced cycle of G with V (C3) = {u1,u2,u3} .
Since |G| � 5, there exists a vertex w in G such that w is adjacent to only one vertex
in C3 , say u1 , since G is unicyclic. Let v1 be the shadow vertex of u1 . Consider the
partition of V (S(G)) as the same partition as case 2. and then use the edge contraction
v1w . Thus, S(G) will contain K4 as a minor. As above we get mrR+(S(G))� |S(G)|−3.
By ([15], Corollary 3.4) mrR+(G) � 4. Next, we claim that G does not contain any
isolated vertices. Suppose x is an isolated vertex in G . If x �∈ V (C3) , then there are at
least two cycles in G formed by the set of vertices {u1,u2,u3} and {x,u1,u2} which
contradicts to G is a unicyclic graph. If x ∈ V (C3) , since G is a unicyclic graph,
it implies that G must be the vertex sum of C3 and Sn−2 which contradicts to the
assumption of this case. Thus, G does not contain any isolated vertices. Since G does
not contain any isolated vertices, by Remark 2 we have mrR+(S(G)) � mrR+(G)+1 � 5.
Thus, mrR+(S(G))+mrR+(S(G)) � |S(G)|+2.

Case 4. Suppose G contains an induced subgraph Cn where n � 4. Let V (Cn) =
{u1, . . . ,un} and v1,vn be the shadow vertices of u1,un , respectively. Consider a par-
tition (V0,V1,V2,V3,V4) of V (S(G)) such that V0 = V (S(G))\ [V (Cn)∪{v1,vn}],V1 =
{u1,vn},V2 = {v1,un},V3 = {u2, . . . ,un−2},V4 = {un−1}. Let H be the minor obtained
from S(G) by deleting V0 , contracting each induced subgraph G[V1],G[V2] to a single
vertex. In G[V3] for 3 � i � n− 2, use edge contractions ui−1ui inductively and for
each edge contraction we identify ui−1 and ui and label the new vertex as ui . The
graph H is isomorphic to a complete graph K4 . Thus, S(G) has K4 as a minor. By
Observation 2, Lemma 1 and Lemma 2 we have 3 = ν(K4) � ν(S(G)) � MR

+(S(G)) .
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Using |S(G)|−MR
+(S(G)) = mrR+(S(G)) , we obtain

mrR+(S(G)) � |S(G)|−3.

By ([15], Corollary 3.4) we have mrR+(G) � 4. Using Remark 2 we get

mrR+(S(G)) � mrR+(G)+1 � 5.

Therefore,

mrR+(S(G))+mrR+(S(G)) � (|S(G)|−3)+5 = |S(G)|+2. �

LEMMA 3. Let G be a connected graph with |G| � 3 . Suppose G is not a com-
plete graph and G contains a maximum clique of size m. Then, the shadow graph S(G)
contains a complete graph Km+1 as a minor.

Proof. Let Q be a maximum clique in G with V (Q) = {u1, . . . ,um} . Since G is
a connected graph, there exists w ∈V (G) such that w is adjacent to at least one of the
vertices in V (Q) , namely u1 . Let v be the shadow vertex of u1 in S(G) . Consider a
partition (V0,V1, . . . ,Vm+1) of V (S(G)) where V0 = V (S(G)) \ {V(Q)∪{w,v}} , Vi =
{ui} for 1 � i � m and Vm+1 = {w,v} . Let H be the minor obtained from S(G) by
deleting V0 and contracting the edge in G[Vm+1] . The graph H is a complete graph
Km+1 on {u1, . . . ,um,w} with possible multiple edges. From the definition of a minor
we can replace any multiple edges by single edges. Thus, S(G) contains a complete
graph Km+1 as a minor. �

DEFINITION 7. ([7], p. 167) We give a recursive description of a k -tree.
i) A clique with k vertices is a k -tree.
ii) If T = (V,E) is a k -tree and Q is a clique of T with k vertices and x �∈ V ,

then T ′ = (V ∪{x},E∪{cx : c ∈ Q}) is a k -tree.

Recall that the size of a maximum clique in a graph G is called the clique number
of G , denoted by ω(G) .

OBSERVATION 3. For a k -tree T , ω(T )= k if T is a complete graph and ω(T )=
k+1 otherwise.

THEOREM 9. Suppose G is a k -tree such that G does not contain any isolated
vertices. Then the shadow graph S(G) satisfies GCC+ .

Proof. By Theorem 6 the shadow graph of a 1-tree satisfies GCC+ . Suppose
G is a k -tree with k � 2. By Observation 3, every maximum clique in G has size
ω(G) = k+1. By Lemma 3, the shadow graph S(G) contains a Kω(G)+1 = Kk+2 as a
minor. From Observation 2, Lemma 1 and Lemma 2 we have

k+1 = ν(Kk+2) � ν(S(G)) � MR
+(S(G)).
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Using |S(G)|−MR
+(S(G)) = mrR+(S(G)) , we get

mrR+(S(G)) � |S(G)|− k−1.

By ([21], Corollary 3) we have mrR+(G) � k+2. As there are no isolated vertices in G
by assumption, using Remark 2 we get

mrR+(S(G)) � mrR+(G)+1 � k+3.

Therefore,

mrR+(S(G))+mrR+(S(G)) � (|S(G)|− k−1)+ (k+3)= |S(G)|+2. �

DEFINITION 8. ([12], p. 103) A graph is a partial k -tree if it is a subgraph of a
k -tree.

THEOREM 10. Let G be a partial k -tree with k � 2 . If G has a complete sub-
graph Kk+1 and G does not contain any isolated vertices, then the shadow graph S(G)
satisfies GCC+ .

Proof. By Lemma 3 the shadow graph S(G) contains a complete graph Kk+2 as a
minor. Thus, k+1 = ν(Kk+2) � ν(S(G)) � MR

+(S(G)) . Using |S(G)|−MR
+(S(G)) =

mrR+(S(G)) , we have
mrR+(S(G)) � |S(G)|− k−1.

By ([21], Theorem 5) we have mrR+(G) � k+2. As there are no isolated vertices in G
by assumption, using Remark 2 we get

mrR+(S(G)) � mrR+(G)+1 � k+3.

Therefore,

mrR+(S(G))+mrR+(S(G)) � (|S(G)|− k−1)+ (k+3)= |S(G)|+2. �

THEOREM 11. Suppose G is a chordal graph such that G does not contain any
isolated vertices. Then the shadow graph S(G) satisfies GCC+ .

Proof. Since G is not a complete graph, by Lemma 3 we have S(G) contains a
complete graph Kω(G)+1 as a minor. Thus, we have

ω(G) = ν(Kω(G)+1) � ν(S(G)) � MR
+(S(G)).

Using |S(G)|−MR
+(S(G)) = mrR+(S(G)) , we obtain

mrR+(S(G)) � |S(G)|−ω(G).

By ([19], Proposition 6) we have ν(G) � |G|−ω(G)− 1. Therefore, we have |G|−
ω(G)− 1 � ν(G) � MR

+(G) . Using |G| −MR
+(G) = mrR+(G) , we get mrR+(G) �
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ω(G) + 1. As there are no isolated vertices in G by assumption, using Remark 2
we obtain

mrR+(S(G)) � mrR+(G)+1 � (ω(G)+1)+1 = ω(G)+2.

Therefore,

mrR+(S(G))+mrR+(S(G)) � (|S(G)|−ω(G))+ (ω(G)+2) = |S(G)|+2. �

5. Shadow graph Shad(G) and GCC+

A different definition of a shadow graph, denoted Shad(G) , appears in Chartrand,
Lesniak, and Zhang’s book [10]. We show that if G satisfies GCC+ and G does not
contain any isolated vertices, then Shad(G) satisfies GCC+ .

DEFINITION 9. ([10], p. 412) Let G be a graph with V (G) = {u1,u2, . . . ,un} .
The shadow graph denoted Shad(G) is that graph with vertex set V (G)∪{v1,v2, . . . ,vn} ,
where vi is called the shadow vertex of ui and where vi is adjacent to both v j and u j

if ui is adjacent to u j for 1 � i, j � n .

EXAMPLE 5. The following are Shad(G) where G is the path P5 and the cycle
C4 . The shadow vertices are represented as black vertices.

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 12: Shad(P5)

u4 u3

u2u1

v1 v2

v4 v3

Figure 13: Shad(C4)

REMARK 3. By the definition of Shad(G) , it can be obtained by taking two copies
of G , say G1 and G2 and joining each vertex ui in G1 to the vertex v j in G2 if and
only if the corresponding vertex vi in G2 is adjacent to v j .

PROPOSITION 4. Let G be a connected graph. Then mrR+(Shad(G)) � mrR+(G)+
|G| .
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Proof. Let V (Shad(G)) = {u1, . . . ,un,v1, . . . ,vn} where vi is the shadow vertex
of ui for 1 � i � n . Note that {u1, . . . ,un} and {v1, . . . ,vn} are sets of vertices of
two copies of G . Let A ∈ S+(G,R) with rank(A) = mrR+(G) . Denote A = [ai j] and
D = diag(aii) for 1 � i � n . Define a 2×2 block matrix

M =
[
A+D2 A−D
A−D A+ I

]

where M11 and M22 correspond to the adjacency of the vertices in G . First, we
claim that M is a matrix for Shad(G) . Since A is a matrix for G with positive di-
agonal entries, adding a diagonal matrix with positive diagonal entries will not affect
the adjacency between ui and u j and we have that the diagonal entries of the result-
ing matrix are still positive. The entries in M12 and M21 correspond to the adjacency
between ui and v j . Note that ui is adjacent to v j if and only if ui is adjacent to
u j for i �= j . Since vi is not adjacent to ui , the diagonal entries of M12 and M21

must be zero. We have that the diagonal entries of A−D = M12 = M21 are zero.
Since MT

11 = (A + D2)T = A + D2 = M11 and MT
22 = (A + I)T = A + I = M22 and

MT
12 = M21 = A−D , we have M is symmetric. Since A is psd, A = BT B for some

matrix B . Therefore,[
BT −D
BT I

][
B B
−D I

]
=
[
BT B+D2 BT B−D
BT B−D BT B+ I

]

=
[
A+D2 A−D
A−D A+ I

]
= M.

Thus, M is psd. Moreover, we have

rank(M) = rank

[
A+D2 A−D
A−D A+ I

]
� rank

[
A A
A A

]
+ rank

[
D2 −D
−D I

]
= mrR+(G)+ |G|. �

PROPOSITION 5. Let G be a simple connected graph such that G is disconnected.
If G1,G2, . . . ,Gk are the connected components of G with each component having two
or more vertices and if there are r isolated vertices in G, then

mrR+(Shad(G)) �
(

k

∑
i=1

mrR+(Gi)

)
+ r.

Proof. Denote V (Shad(G)) = {u1, . . . ,un,v1, . . . ,vn} where vi is the shadow ver-
tex of ui for 1 � i � n . Since G is an induced subgraph of Shad(G) , we have
mrR+(G) � mrR+(Shad(G)) . Next, we claim that mrR+(Shad(G)) �

(
∑k

i=1 mrR+(Gi)
)
+ r .

Let Ai ∈ S+(Gi,R) with rank(Ai) = mrR+(Gi) . We define A = [ai j] =
(⊕k

i=1 Ai

)⊕
Ir
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where Ir is the r× r identity matrix. Then we define a 2×2 block matrix

M =
[
A A
A A

]

where M1,1 and M2,2 correspond to the adjacency of the vertices {u1, . . . ,un} and
{v1, . . . ,vn} , respectively and M1,2 corresponds to the adjacency between ui and v j .
Note that A is symmetric and all the diagonal entries of A are positive. It can be verified
that M is a matrix representation of Shad(G) . Since A is symmetric, we have M is also
symmetric. Moreover, we have M is psd since A is psd. Now rank(M) = rank(A) =(
∑k

i=1 mrR+(Gi)
)
+ r . Therefore, mrR+(Shad(G)) �

(
∑k

i=1 mrR+(Gi)
)
+ r . �

REMARK 4. If G does not contain any isolated vertices, by Proposition 5 we have

mrR+(Shad(G)) �
k

∑
i=1

mrR+(Gi) = mrR+(G).

THEOREM 12. Let G be a simple connected graph and G does not contain any
isolated vertices. If G satisfies GCC+ , then Shad(G) satisfies GCC+ .

Proof. By Proposition 4 and Remark 4 we have mrR+(Shad(G)) � mrR+(G)+ |G|
and mrR+(Shad(G))� mrR+(G) . Therefore, mrR+(Shad(G))+mrR+(Shad(G))� mrR+(G)+
|G|+mrR+(G) . When G satisfies GCC+ we get mrR+(G)+mrR+(G) � |G|+2. Hence

mrR+(Shad(G))+mrR+(Shad(G)) � 2|G|+2 = |Shad(G)|+2. �

It has been shown in ([13], [15], [19], [2], [21]) respectively that a tree, a unicyclic
graph, a chordal graph, a graph G with δ (G) � |G| − 3, a partial 3-tree, and a k -
connected partial k -tree satisfy GCC+ .

COROLLARY 2. Suppose G is a tree, a unicyclic graph, a chordal graph, a graph
G with δ (G) � |G|−3 , a partial 3-tree, and a k -connected partial k -tree such that G
does not contain any isolated vertices. Then Shad(G) satisfies GCC+ .

6. Shadow graph S(G) and the delta conjecture

In this section we will prove that the shadow graphs S(G) when G are trees,
unicyclic graphs, k -trees, partial k -trees and chordal graphs satisfy the delta conjecture.

CONJECTURE 1. [8] For a connected graph G, mrR+(G) � |G| − δ (G) , where
δ (G) is the minimum degree of the vertices in G.

LEMMA 4. Let G be a connected graph and S(G) be the shadow graph of G.
Then δ (S(G)) = δ (G) .
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Proof. Let V (S(G)) = {u1, . . . ,un,v1, . . . ,vn} where |G|= n and vi is the shadow
vertex of ui for 1 � i � n . Note that for each j , NS(G)(v j) = NG(u j) so that dS(G)(v j) =
dG(u j). Moreover, dG(ui) � dS(G)(ui) for 1 � i � n . Therefore,

δ (S(G)) = min{dS(G)(ui),dS(G)(v j),1 � i, j � n}
= min{dG(u j),1 � j � n}
= δ (G). �

Clearly, if G is a connected graph with δ (G) = 1 or δ (G) = 2, then S(G) satisfies
the delta conjecture by Theorem 3. That is, the shadow graph S(G) of a tree and the
shadow graph S(G) of a unicyclic graph satisfy the delta conjecture.

PROPOSITION 6. Let G be a complete graph where |G| � 2 . The shadow graph
S(G) satisfies the delta conjecture.

Proof. In the proof of Theorem7 we have mrR+(S(G))� |G|+1. Thus, mrR+(S(G))
� |G|+1 = 2|G|− (|G|−1) = 2|G|− δ (G) = |S(G)|− δ (S(G)) . �

THEOREM 13. Let G be a k -tree where k � 2 . Then the shadow graph S(G)
satisfies the delta conjecture.

Proof. If G is a complete graph, then by Proposition 6 the shadow graph S(G)
satisfies the delta conjecture. Assume G is not a complete graph. Since G is a k -tree,
δ (G) = k . In the proof of Theorem 9 we have mrR+(S(G)) � |S(G)|−k−1. Therefore,

mrR+(S(G)) � |S(G)|− k−1 < |S(G)|− k = |S(G)|− δ (G) = |S(G)|− δ (S(G)). �

THEOREM 14. Let G be a partial k -tree where k � 2 . If, in addition, G has a
complete subgraph Kk+1 , then the shadow graph S(G) satisfies the delta conjecture.

Proof. Since a partial k -tree is a subgraph of a k -tree, we have δ (G) � k . In the
proof of Theorem 10. we have mrR+(S(G)) � |S(G)|− k−1. Therefore,

mrR+(S(G)) � |S(G)|− k−1 < |S(G)|− k � |S(G)|− δ (G) = |S(G)|− δ (S(G)). �

THEOREM 15. Let G be a chordal graph. Then the shadow graph S(G) satisfies
the delta conjecture.

Proof. If G is a complete graph, then by Proposition 6 the shadow graph S(G)
satisfies the delta conjecture. Assume G is not a complete graph. Let ω(G) be the
size of a largest clique in G . Since G is chordal, G has a simplicial vertex ([23],
p. 290), say v . Since the closed neighborhood N[v] forms a clique in G , we have
|N[v]| � ω(G) . Thus, δ (G) � dG(v) � ω(G)− 1. In the proof of Theorem 11. we
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have mrR+(S(G)) � |S(G)|−ω(G) . Therefore, we get mrR+(S(G)) � |S(G)|−ω(G) �
|S(G)|− δ (G)−1< |S(G)|− δ (G) = |S(G)|− δ (S(G)). �

Acknowledgement. The first author thanks Central Michigan University for its
support.

RE F ER EN C ES

[1] FRANCESCO BARIOLI, WAYNE BARRETT, SHAUN M. FALLAT, H. TRACY HALL, LESLIE HOG-
BEN, BRYAN SHADER, P. VAN DEN DRIESSCHE AND HEIN VAN DER HOLST, Zero forcing parame-
ters and minimum rank problems, Linear Algebra Appl., 433 (2): 401–411, 2010.

[2] FRANCESCO BARIOLI, WAYNE BARRETT, SHAUN M. FALLAT, H. TRACY HALL, LESLIE HOGBEN

AND HEIN VAN DER HOLST, On the graph complement conjecture for minimum rank, Linear Algebra
Appl., 436 (12): 4373–4391, 2012.

[3] FRANCESCO BARIOLI, SHAUN M. FALLAT, LON H. MITCHELL AND SIVARAM K. NARAYAN,
Minimum semidefinite rank of outerplanar graphs and the tree cover number, Electron. J. Linear
Algebra, 22: 10–21, 2011.

[4] J. A. BONDY AND U. S. R. MURTY, Graph theory, vol. 244 of Graduate Texts in Mathematics,
Springer, New York, 2008.

[5] MATTHEW BOOTH, PHILIP HACKNEY, BENJAMIN HARRIS, CHARLES R. JOHNSON, MARGARET

LAY, TERRY D. LENKER, LON H. MITCHELL, SIVARAM K. NARAYAN, AMANDA PASCOE AND

BRIAN D. SUTTON, On the minimum semidefinite rank of a simple graph, Linear Multilinear Algebra,
59 (5): 483–506, 2011.

[6] MATTHEW BOOTH, PHILIP HACKNEY, BENJAMIN HARRIS, CHARLES R. JOHNSON, MARGARET

LAY, LON H. MITCHELL, SIVARAM K. NARAYAN, AMANDA PASCOE, KELLY STEINMETZ, BRIAN

D. SUTTON AND WENDY WANG, On the minimum rank among positive semidefinite matrices with a
given graph, SIAM J. Matrix Anal. Appl., 30 (2): 731–740, 2008.
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