ANALYTIC EXTENSION OF *n*-NORMAL OPERATORS

SALAH MECHERI

(Communicated by G. Misra)

Abstract. Normal operators and *n*-normal operators played a pivotal role in the development of operator theory. In order to generalize these classes of operators, we introduce new classes of operators which we call analytic extension of *n*-normal operator and *F*-quasi-*n*-normal operator. We show that every analytic extension of *n*-normal operator and *F*-quasi-*n*-normal operator have scalar extensions. We also show that an analytic extension of *n*-normal operator has a nontrivial invariant subspace. Some spectral properties are also presented.

1. Introduction

Let $B(\mathscr{H})$ be the algebra of all bounded linear operators acting on infinite dimensional separable complex Hilbert space \mathscr{H} . Throughout this paper R(T), N(T), $\sigma(T)$ denotes range, null space and spectrum of $T \in B(\mathscr{H})$ respectively. An operator $T \in B(\mathscr{H})$ is said to be analytic if there exists a nonconstant analytic function F on a neighborhood of $\sigma(T)$ such that F(T) = 0. An operator $T \in B(\mathscr{H})$ is said to be algebraic if there is a nonconstant polynomial p such that p(T) = 0. Recall that an operator $T \in B(\mathscr{H})$ is said to be *normal* if $T^*T = TT^*$. In [1], S. A. Alzuraiqi and A. B. Patel introduced n-normal operators.

DEFINITION 1.1. An operator $T \in B(H)$ is said to be *n*-normal if

$$T^*T^n = T^nT^* \tag{1.1}$$

for some $n \in \mathbb{N}$.

This definition seems natural. S. A. Alzraiqi and A. B. Patel proved characterizations of 2-normal, 3-normal and *n*-normal operators on \mathbb{C}^2 . Also, they made several examples of *n*-normal operators and proved that T is *n*-normal if and only if T^n is normal. Also, they proved that if T is 2-normal with the following condition

$$\sigma(T) \cap (-\sigma(T)) = \emptyset; \tag{1.2}$$

© CENN, Zagreb Paper OaM-15-41

Mathematics subject classification (2020): Primary 47A11; Secondary 47A15, 47B20.

Keywords and phrases: *n*-power normal operator, subscalar operator, invariant subspace, hyperinvariant subspace.

then T is subscalar. Recently, the authors in [5] have studied spectral properties of an n-normal operator T satisfying the following condition (1.2).

$$\sigma(T) \cap (-\sigma(T)) \subset \{0\}. \tag{1.3}$$

It is a little weaker assumption than this condition (1.2). Recently the authors in [6], studied several properties of *n*-normal. In particular, they proved that if T is 2-normal with (1.3), then T is polarloid. They also studied subscalarity of *n*-normal operators under certain conditions.

In order to generalize the classes of quasi-n-normal and k-quasi-n-normal operators, we introduce the class of F-quasi-n-normal operators as follows:

DEFINITION 1.2. An operator $T \in B(\mathscr{H})$ is said to be *F*-quasi-*n*-normal if $F(T)^*(T^nT^* - T^*T^n)F(T) = 0$ for some nonconstant analytic function *F* on some neighborhood of $\sigma(T)$, and *p*-quasi-*n*-normal if there exists a nonconstant polynomial *p* such that $p(T)^*(T^nT^* - T^*T^n)p(T) = 0$. In particular, if $p(z) = z^k$ for some positive integer *k* or p(z) = z, then *T* is said to be *k*-quasi-*n*-normal operator or quasi-*n*-normal operator, respectively.

If $T \in B(\mathscr{H})$ is analytic, then F(T) = 0 for some nonconstant analytic function F on a bounded neighborhood U of spectrum of T. Since F cannot have infinitely many zeros in U, we write F(z) = G(z)p(z), where the function G is analytic and does not vanish on U and p is a nonconstant polynomial with zeros in U. By Riesz-Dunford functional calculus, G(T) is invertible and the invertibility of G(T) induces that p(T) = 0, which means that T is algebraic (See [4]). We say that T is analytic with order n when p has degree n.

In order to generalize the class of n-normal operators, we introduce analytic extensions of n-normal operators as follows:

DEFINITION 1.3. An operator $T \in B(\mathscr{H}_1 \oplus \mathscr{H}_2)$ is said to be an analytic extension of *n*-normal operator if $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \in B(\mathscr{H}_1 \oplus \mathscr{H}_2)$, where T_1 is an *n*-normal operator and T_3 is analytic of order *n*, where *n* is a positive integer. This means that $T \in B(\mathscr{H})$ is said to be an analytic extension of an *n*-normal operator if there exists an invariant subspace \mathscr{M} such that $T|_{\mathscr{M}}$ is n-normal and $T^*|_{\mathscr{M}^{\perp}}$ is algebraic.

Let $0 \le m \le \infty$. Recall that an operator $T \in B(\mathscr{H})$ is said to be a scalar operator of order *m* if there exists a continuous unital moromorphism of topological algebra $\Phi: C_0^m(\mathbb{C}) \to B(\mathscr{H})$ such that $\Phi(z) = T$, where *z* stands for the identity function on C_0^m , the space of all compactly supported functions continuously differentiable of order *m*. An operator *T* is said to be *subscalar* of order *m* if *T* is similar to the restriction of a scalar operator of order *m* to an invariant subspace ([14]). M. Putinar [17] proved subscalarity for hyponormal operators.

Let $H^{\infty}(U)$ denote the space of all bounded analytic functions on a bounded open set U in \mathbb{C} . A subset σ of \mathbb{C} is dominating in U if $||f|| = \sup_{x \in \sigma \cap U} |f(x)|$ holds for each function $f \in H^{\infty}(U)$. Recall [3], a subset σ is thick if there is a bounded open set *U* in \mathbb{C} such that σ is dominating in *U*. In [3], S. Brown [3] proved if *T* is hyponormal operator with thick spectra then *T* has non trivial invariant subspace. Eschmeier [7] showed that a Banach space operator *T* has a nontrivial invariant subspace if *T* has the property (β) with thick spectra.

In this paper we prove that analytic extension of n-normal operators are subscalar without any additional condition and we present several properties of these classes of operators. We also show that an analytic extension of n-normal operator has a nontrivial invariant subspace. Some spectral properties of such operators are also presented.

2. Preliminaries

Let \mathbb{C} denote the set of complex numbers and let D be a bounded open disk in \mathbb{C} . We denote by $L^2(D, \mathscr{H})$ the Hilbert space of measurable functions $f: D \to \mathscr{H}$ such that

$$||f||_{2,D} = \left(\int_{D} ||f(z)||^2 d\mu(z)\right)^{\frac{1}{2}} < \infty$$

where $d\mu(z)$ be the planar Lebesgue measure.

The Bergman space for D, denoted by $A^2(D, \mathcal{H})$, is a subspace of $L^2(D, \mathcal{H})$ in which each function is analytic in D (i.e., $\frac{\partial f}{\partial \overline{z}} = 0$). Let $\mathcal{O}(D, \mathcal{H})$ be the Fréchet space of \mathcal{H} -valued analytic functions on D with respect to uniform topology. Note that

$$A^{2}(D,H) = L^{2}(D,\mathscr{H}) \cap \mathscr{O}(D,\mathscr{H})$$

is a Hilbert space. The following function space $W^m(D, \mathcal{H})$ is a Sobolev type space with respect to $\overline{\partial}$ and of order *m*

$$W^m(D,\mathscr{H}) = \{ f \in L^2(D,\mathscr{H}) : \overline{\partial}^i f \in L^2(D,\mathscr{H}), \text{ for } i = 1, 2, \dots, m \}.$$

Note that $W^2(D, \mathcal{H})$ is a Hilbert space with respect to the norm

$$||f||_{W^m}^2 = \sum_{i=0}^m ||\overline{\partial}^i f||_{2,D}^2,$$

 $W^m(D, \mathcal{H})$ becomes a Hilbert space contained continuously in $L^2(D, \mathcal{H})$. A bounded linear operator S on \mathcal{H} is called scalar of order m if it possesses a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras

$$\Phi: C_0^m(\mathbb{C}) \to B(\mathscr{H})$$

such that $\Phi(z) = S$, where z is the identity function on \mathbb{C} . An operator is subscalar if it is similar to the restriction of a scalar operator to an invariant subspace. Let U be a (connected) bounded open subset of \mathbb{C} , and let m be a nonnegative integer. The linear operator M_f of multiplication by f on $W^m(U, \mathcal{H})$ is continuous, has a spectral distribution of order m, and is defined by the functional calculus

$$\Phi_M: C_0^m(\mathbb{C}) \to B(W^m(U, \mathscr{H})), \, \Phi_M(f) = M_f$$

Therefore, M_f is a scalar operator of order m. Let

$$V: W^m(U,\mathscr{H}) \to \oplus_0^\infty L^2(U,\mathscr{H})$$

be the operator defined by $V(f) = (f, \overline{\partial} f, \dots, \overline{\partial}^m f), f \in W^m(U, \mathcal{H})$. Then V is an isometry such that $VM_z = (\bigoplus_{i=1}^m M_z)V$. Therefore, M_z is a subnormal operator.

An operator $T \in B(\mathscr{H})$ is said to have the *single-valued extension property (SVEP)* if for every open subset \mathscr{U} of \mathbb{C} and any analytic function $f : \mathscr{U} \to \mathscr{H}$ such that $(T-z)f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on \mathscr{U} . A Hilbert space operator $T \in B(\mathscr{H})$ is said to satisfy *Bishop's property* (β) if, for every open subset \mathscr{U} of \mathbb{C} and every sequence $f_n : \mathscr{U} \longrightarrow \mathscr{H}$ of analytic functions with $(T-z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of \mathscr{U} , $f_n(z)$ converges uniformly to 0 in norm on compact subsets of \mathscr{U} .

For $T \in B(\mathscr{H})$ and $x \in \mathscr{H}$, the *local resolvent set* of T at x, $\rho_T(x)$, is the set of elements $z_0 \in \mathbb{C}$ such that there exists an analytic function $f(\lambda)$ defined in a neighborhood of z_0 , with values in \mathscr{H} , which verifies $(T - \lambda)f(\lambda) \equiv x$. The set $\sigma_T(x)$, the compliment of $\rho_T(x)$ is called the *local spectrum* of T at x. The local *spectral subspace* of T denoted by $\mathscr{H}_T(G)$ is the set

$$\mathscr{H}_T(G) = \{ x \in \mathscr{H} : \sigma_T(x) \subset G \}$$

for each subset G of \mathbb{C} .

If $T \in B(H)$ satisfies Bishop's property (β) , then *T* has the (SVEP). For more details see [13, 15, 16].

3. Subscalarity

In this section we prove that an analytic extension of *n*-normal operator is subscalar of order 2n + 2. We begin with the following useful lemma due to Putinar [17].

LEMMA 3.1. (See [17, Proposition 2.1]) For a bounded open disk D in the complex plane \mathbb{C} , there is a constant C_D such that for an arbitrary operator $T \in B(\mathscr{H})$ and $f \in W^2(D, \mathscr{H})$ we have

$$||(I-P)f||_{2,D} \leq C_D(||(T-z)\overline{\partial}f||_{2,D} + ||(T-z)\overline{\partial}^2 f||_{2,D}),$$

where P denote the orthogonal projection of $L^2(D, \mathcal{H})$ on to the Bergman space $A^2(D, \mathcal{H})$

Now we prove the following lemma which will be used for the sequel.

LEMMA 3.2. Let $T \in B(H)$ be *n*-normal operator, then *T* has the Bishop's property (β).

Proof. Let $T \in B(H)$ be *n*-normal. It is easy to see that $T^n(T^*)^n = (T^*)^n T^n$ for some $n \in \mathbb{N}$. Hence T^n is normal. Now, since T^n is normal, by applying [13] T has the Bishop's property (β) . \Box

LEMMA 3.3. Let $T \in B(\mathcal{H})$ be an n-normal operator and let $\{f_j\}$ be a sequence in $W^m(D, \mathcal{H}) \ (m \ge 2)$ such that

$$\lim_{j \to \infty} ||(T-z)\overline{\partial}^i f_j||_{2,D} = 0$$

for i = 1, 2, ..., m, where D is a bounded disc in \mathbb{C} . Then,

$$\lim_{j \to \infty} ||\overline{\partial}^i f_j||_{2,D_0} = 0$$

for $i = 1, 2, \ldots, m - 2$, where $D_0 \subsetneq D$.

Proof. Let $T \in B(\mathcal{H})$ be an *n*-normal operator. From Lemma 3.1, there exists a constant C_D such that

$$||(I-P)f||_{2,D} \leq C_D(||(T-z)\overline{\partial}f||_{2,D} + ||(T-z)\overline{\partial}^2f||_{2,D})$$
(3.1)

for i = 1, 2, ..., m. From (3.1), we have

$$\lim_{j \to \infty} ||(I-P)\overline{\partial}^i f_j||_{2,D} = 0$$
(3.2)

for $i = 1, 2, \ldots, m - 2$. Thus we have

$$\lim_{j \to \infty} ||(T-z)P\overline{\partial}^{t} f_{j}||_{2,D} = 0$$
(3.3)

holds for i = 1, 2, ..., m - 2. From Lemma 3.2, *n*-normal operator satisfies Bishop's property(β) and hence by (3.3), we have

$$\lim_{j \to \infty} ||P\overline{\partial}^i f_j||_{2,D_0} = 0 \tag{3.4}$$

for i = 1, 2, ..., m - 2, where $D_0 \subsetneq D$. From (3.2) and (3.4), we get

$$\lim_{j\to\infty}||\overline{\partial}^i f_j||_{2,D_0}=0$$

for i = 1, 2, ..., m - 2.

LEMMA 3.4. Let $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \in B(\mathscr{H}_1 \oplus \mathscr{H}_2)$, where T_1 is an n-normal operator and T_3 is analytic with order n. For any bounded disc D which contains $\sigma(T)$, define the map $A : \mathscr{H}_1 \oplus \mathscr{H}_2 \to \frac{W^{2n+2}(D,\mathscr{H}_1) \oplus W^{2n+2}(D,\mathscr{H}_2)}{(T-z)W^{2(n+1)}(D,\mathscr{H}_1) \oplus W^{2n+2}(D,\mathscr{H}_2)}$ by

$$Ax = \widetilde{1 \otimes x} (\equiv 1 \otimes x + \overline{(T-z)W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)},$$

where $1 \otimes x$ denotes the constant function sending any $z \in D$ to $x \in \mathcal{H}_1 \oplus \mathcal{H}_2$. Then, *A* is injective with closed range.

Proof. Let $f_j = f_{j,1} \oplus f_{j,2} \in W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)$ and let $x_j = x_{j,1} \oplus x_{j,2} \in \mathscr{H}_1 \oplus \mathscr{H}_2$ be sequences such that

$$\lim_{j \to \infty} ||(T-z)f_j + 1 \otimes x_j||_{W^{2n+2}(D,\mathscr{H}_1) \oplus W^{2n+2}(D,\mathscr{H}_2))} = 0.$$
(3.5)

From (3.5), we write

$$\lim_{j \to \infty} ||(T_1 - z)f_{j,1} + T_2 f_{j,2} + 1 \otimes x_{j,1}||_{W^{2n+2}} = 0,$$
(3.6)

$$\lim_{j \to \infty} ||(T_3 - z)f_{j,2} + 1 \otimes x_{j,2}||_{W^{2n+2}} = 0.$$
(3.7)

Then from the definition of the norm of Sobolev space, (3.6) and (3.7) yields,

$$\lim_{j \to \infty} ||(T_1 - z)\bar{\partial}^i f_{j,1} + T_2 \bar{\partial}^i f_{j,2}||_{2,D} = 0$$
(3.8)

and

$$\lim_{j \to \infty} ||(T_3 - z)\bar{\partial}^t f_{j,2}||_{2,D} = 0$$
(3.9)

for $i = 1, 2, \dots, 2(n+1)$.

Write F(z) = G(z)p(z), where *G* is non vanishing analytic function on a neighborhood of $\sigma(T)$ and nonconstant polynomial *p*. Let $z_1, z_2, z_3, \ldots, z_n$ be zeros of p(z). Set $q_s = (z - z_{(s+1)} \dots (z - z_n), s = 0, 1, 2, 3 \dots, n - 1$.

Now we need to prove that for all s = 0, 1, 2, ..., n-1 the following equation hold

$$\lim_{j \to \infty} ||q_s T_3^{n-s} \overline{\partial}^i f_{j,2}||_{2,D_s} = 0$$
(3.10)

for i = 1, 2, ..., 2n + 2 - 2s, where $\sigma(T) \subsetneq D_n \subsetneq D_{n-1} \gneqq D_{n-1} \subsetneq D_1 \subset D$. We use induction on *s* for the proof (3.10). Since T_3 is analytic of order *n*, (3.10) is true for s = 0. Suppose that

$$\lim_{j\to\infty}||q_s(T_3^{n-s})\overline{\partial}^i f_{j,2}||_{2,D_s}=0$$

holds for 0 < s < n and i = 1, 2, ..., 2n + 2 - 2s.

From (3.9) and (3.10), we obtain that

$$0 = \lim_{j \to \infty} ||q_{s+1}(T_3^{n-s-1} - z)\overline{\partial}^i f_{j,2}||_{2,D_s} = \lim_{j \to \infty} ||(z_{s+1} - z)q_s T_3^{n-s-1}\overline{\partial}^i f_{j,2}||_{2,D_s}$$
(3.11)

holds for i = 1, 2, ..., 2n - 2s + 2.

From [12, lemma 3.2], it follows that

$$\lim_{j \to \infty} ||T_3^{n-s-1} \bar{\partial}^i f_{j,2}||_{2,D_{s+1}} = 0$$
(3.12)

holds for i = 1, 2, where $\sigma(T) \subsetneq D_{s+1} \subsetneq D_s$. Which completes the proof of (3.10). Now consider s = n in (3.10), so we have

$$\lim_{j \to \infty} ||\overline{\partial}^i f_{j,2}||_{2,D_n} = 0 \tag{3.13}$$

for i = 1, 2. So from (3.8) and (3.9), we have

$$\lim_{j\to\infty}||(T_1-z)\overline{\partial}^i f_{j,1}||_{2,D_n}=0$$

for i = 1, 2. It follows from Lemma 3.1 that

$$\lim_{j \to \infty} ||(I - P_{H_1})f_{j,1}||_{2,D_t} = 0,$$
(3.14)

where $\sigma(T) \subseteq D_t \subseteq D_n$ and $P_{\mathscr{H}_1}$ denotes the orthogonal projection of $L^2(D_t, \mathscr{H}_1)$ onto $A^2(D_t, \mathscr{H}_1)$.

From (3.13) and Lemma 3.1 with zero operator, it follows that

$$\lim_{j \to \infty} ||(I - P_{H_2})f_{j,2}||_{2,D_t} = 0,$$
(3.15)

where $P_{\mathcal{H}_2}$ denotes the orthogonal projection of $L^2(D_t, \mathcal{H}_2)$ onto $A^2(D_t, \mathcal{H}_2)$. Set $Pf_j := P_{\mathcal{H}_1}f_{j,1} \oplus P_{\mathcal{H}_2}f_{j,2}$. Then from (3.5), (3.14) and (3.15), we have

$$\lim_{j\to\infty}||(T-z)Pf_j+1\otimes x_j||_{2,D_t}=0.$$

Let γ be a closed curve in D_k surrounding $\sigma(T)$. Then, $\lim_{j\to\infty} ||Pf_j + (T-z)^{-1}(1 \otimes x_j)(z)|| = 0$ uniformly for all $z \in \gamma$. Then by Riesz-Dunford functional calculus, we get $\lim_{j\to\infty} ||\frac{1}{2\pi i} \int_{\gamma} Pf_j(z)dz + x_j|| = 0$. But Cauchy's theorem yields that $\frac{1}{2\pi i} \int_{\gamma} Pf_j(z)dz = 0$. Thus we have

$$\lim_{j\to\infty}||x_j||=0.$$

This completes the proof. \Box

Now we are ready to prove that every analytic extension of an n-normal operator has a scalar extension.

THEOREM 3.5. If T is an analytic extension of n-normal operator, then T is subscalar of order 2n + 2, where n is a positive integer.

Proof. Let $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \in B(\mathscr{H}_1 \oplus \mathscr{H}_2)$, where T_1 is an *n*-normal operator and T_3 is analytic with order *n*. For any bounded disc *D* which contains $\sigma(T)$, the map

$$A: \mathscr{H} \oplus \mathscr{K} \to \frac{W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)}{(T-z)W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)}$$

by

$$Ax = \widetilde{1 \otimes x} (\equiv 1 \otimes x + \overline{(T-z)W^{2n+2}(D,\mathscr{H}_1) \oplus W^{2n+2}(D,\mathscr{H}_2)})$$

where $1 \otimes x$ denotes the constant function sending any $z \in D$ to $x \in \mathscr{H}_1 \oplus \mathscr{H}_2$ is injective with closed range by Lemma 3.4. Consider M, which is the operator of multiplication by z on $W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)$. Then M is scalar operator of order 2n+2 and has spectral distribution

$$\Phi: C_0^{2n+2}(\mathbb{C}) \to W^{2n+2}(D, \mathscr{H}_1) \oplus W^{2n+2}(D, \mathscr{H}_2)$$

defined by $\Phi(v)x = vx$ for $v \in C_0^{2n+2}(\mathbb{C})$ and $x \in W^{2n+2}(D, \mathcal{H}_1) \oplus W^{2n+2}(D, \mathcal{H}_2)$. Since $\overline{(T-z)W^{2n+2}(D, \mathcal{H}_1) \oplus W^{2n+2}(D, \mathcal{H}_2)}$ is invariant under M, \tilde{M} is scalar operator of order 2n + 2 with $\tilde{\Phi}$ as a spectral distribution. From the definition of map A, we have $AT = \tilde{M}A$. In particular R(A) is an invariant subspace for \tilde{M} . Since T is similar to restriction $\tilde{M}|_{R(A)}$, it follows that T is subscalar of order 2n + 2. \Box

The following corollaries are immediate.

COROLLARY 3.6. Let T be an analytic extension of an n-normal operator. Then T satisfies the Bishop's property (β) .

COROLLARY 3.7. Let T be an analytic extension of an n-normal operator. Then T satisfies the single valued extension property (SVEP).

Recall that an operator $T \in B(\mathcal{H})$ is called isoloid if every isolated point of spectrum of T is an eigenvalue. An operator $T \in B(\mathcal{H})$ is said to be polaroid if every $\lambda \in iso\sigma(T)$ is a pole of the resolvent of T.

COROLLARY 3.8. Let T be a analytic extension of n-normal operator. Then T is polaroid.

Proof. Assume that T is an analytic extension of n-normal operator. Then T is subscalar by Theorem 3.5. Hence, it follows from [16, Corollary 2.2] that T is polaroid. \Box

LEMMA 3.9. Let $T \in B(\mathcal{H}_1 \oplus \mathcal{H}_2)$ be an analytic extension of *n*-normal operator, *i.e.*,

$$T = \left(\begin{array}{c} T_1 & T_2 \\ 0 & T_3 \end{array}\right),$$

is an operator matrix on $\mathscr{H}_1 \oplus \mathscr{H}_2$, where T_1 is *n*-normal and $F(T_3) = 0$ for a nonconstant analytic function F on a neighborhood D of $\sigma(T_3)$. Then $\sigma(T) = \sigma(T_1) \cup \sigma(T_3)$ and $\sigma(T_3)$ is a subset of $\{z \in \mathbb{C} : p(z) = 0\}$ where F(z) = G(z)p(z), G is analytic and does not vanish on D, and p is a polynomial. *Proof.* Since $p(T_3) = 0$, choose a minimal polynomial q such that $q(T_3) = 0$ and q(z) is a factor of p(z). Then $\{z \in \mathbb{C} : q(z) = 0\}$ is nonempty and is contained in $\{z \in \mathbb{C} : p(z) = 0\}$. First we will show that $\sigma(T_3) = \sigma_p(T_3) = \{z \in \mathbb{C} : q(z) = 0\}$. Since $q(T_3) = 0$, we have $q(\sigma(T_3)) = \sigma(q(T_3)) = \{0\}$ by the spectral mapping theorem. This means that $\sigma(T_3) = \{z \in \mathbb{C} : q(z) = 0\}$. Moreover if we assume that $z_1 \cdots, z_k$ are all the roots of q(z) = 0, not necessarily distinct, then $(T_3 - z_1)(T_3 - z_2) \cdots (T_3 - z_k)x = 0$ for all $x \in H_2$. By the minimality of the degree of q, we can select a vector $x_0 \in H_2$ such that $(T_3 - z_2) \cdots (T_3 - z_k)x_0 \neq 0$, and so $z_1 \in \sigma(p(T_3)$. Similarly, $z_i \in \sigma_p(T_3)$ for all $i = 1; 2; \cdots; k$. Hence $\sigma(T_3) = \sigma_p(T_3) = \{z \in \mathbb{C} : q(z) = 0\}$. Since $\{z \in \mathbb{C} : q(z) = 0\}$ is a finite set, $\sigma(T_1) \cap \sigma(T_3)$ is also finite, which implies that $\sigma(T_1) \cap \sigma(T_3)$ has no interior point. By using [9], we get $\sigma(T) = \sigma(T_1) \cup \sigma(T_3)$.

THEOREM 3.10. Let $T \in B(\mathcal{H}_1 \oplus \mathcal{H}_2)$ be an analytic extension of *n*-normal operator, i.e.,

$$T = \left(\begin{array}{c} T_1 & T_2 \\ 0 & T_3 \end{array}\right),$$

is an operator matrix on $\mathscr{H}_1 \oplus \mathscr{H}_2$, where T_1 is *n*-normal and $F(T_3) = 0$ for a nonconstant analytic function F on a neighborhood D of $\sigma(T_3)$. Then the following statements hold

(*i*) $H_T(E) \subseteq H_{T_1}(E) \oplus \{0\}$ for every subset E of \mathbb{C} .

(*ii*) $\sigma_{T_3}(x_2) \subset \sigma_T(x_1 \oplus x_2)$ and $\sigma_{T_1}(x_1) = \sigma_T(x_1 \oplus 0)$, where $x_1 \oplus x_2 \in \mathscr{H}_1 \oplus \mathscr{H}_2$. (*iii*) $R_{T_1}(F) \oplus 0 \subset H_T(F)$, where $R_{T_1}(F) := \{y \in H_1 : \sigma_{T_1}(y) \subset F\}$ for any subset $F \subset \mathbb{C}$.

Proof. (i) Let *E* be any subset of \mathbb{C} and let $x_1 \in H_{T_1}(E)$. Since *T* has SVEP by Lemma 3.2, there exists an *H*-valued analytic function f_1 on $\mathbb{C} \setminus E$ such that $(T_1 - z)f_1(z) \equiv x_1$ on $\mathbb{C} \setminus E$. Hence $(T - z)(f_1(z) \oplus 0) \equiv x_1 \oplus 0$ on $\mathbb{C} \setminus E$, and so $x_1 \oplus 0 \in H_T(E)$.

(ii) Let $x_1 \oplus x_2 \in \mathscr{H}_1 \oplus \mathscr{H}_2$. If $z_0 \in \rho_T(x_1 \oplus x_2)$, then there exists an \mathscr{H} -valued analytic function defined on a neighborhood U of z_0 such that $(T - \lambda)f(\lambda) = x_1 \oplus x_2$ for all $\lambda \in U$. We can write $f = f_1 \oplus f_2$ where $f_1 \in O(U; H_1)$ and $f_2 \in O(U; H_2)$. Then we get

$$(T-\lambda)f(\lambda) = \begin{pmatrix} T_1 - \lambda & T_2 \\ 0 & T_3 - \lambda \end{pmatrix} \begin{pmatrix} f_1(\lambda) \\ f_2(\lambda) \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

Thus $(T_3 - \lambda)f_2(\lambda) = x_2$. Hence $z_0 \in \rho_{T_3}(x_2)$. On the other hand, if $z_0 \in \rho_T(x_1 \oplus 0)$, then there exists an \mathscr{H} - valued analytic function defined on a neighborhood U of z_0 such that $(T - \lambda)g(\lambda) = x_1 \oplus 0$ for all $\lambda \in U$. We can write $g = g_1 \oplus g_2$ where $g_1 \in \mathscr{O}(U, \mathscr{H})$ and $g_2 \in \mathscr{O}(U, \mathscr{H}_2)$. Then we get

$$(T-\lambda)(g(\lambda)) = \begin{pmatrix} T_1 - \lambda & T_2 \\ 0 & T_3 - \lambda \end{pmatrix} \begin{pmatrix} g_1(\lambda) \\ g_2(\lambda) \end{pmatrix} = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}.$$

Thus $(T_1 - \lambda)g_1(\lambda) + T_2g_2(\lambda) \equiv x_1$ and $(T_3 - \lambda)g_2(\lambda) \equiv 0$. Since T_3 is algebraic of order *n*, it has SVEP, which implies that $g_2(\lambda) \equiv 0$. Thus $(T_1 - \lambda)g_1(\lambda) \equiv x_1$, and so

 $z_0 \in \rho_{T_1}(x_1)$. Conversely, let $z_0 \in \rho_{T_1}(x_1)$. Then there exists a function $g_1 \in O(U, \mathscr{H}_1)$ for some neighborhood U of z_0 such that $(T_1 - \lambda)g_1(\lambda) \equiv x_1$. Then $(T - \lambda)(g_1(\lambda) \oplus 0) \equiv x_1 \oplus 0$. Hence $z_0 \in \rho_T(x_1 \oplus 0)$.

(iii) If $x_1 \in R_{T_1}(F)$, then $\sigma_{T_1}(x_1) \subset F$. Since $\sigma_{T_1}(x_1) = \sigma_{T_1}(x_1 \oplus 0)$ by (ii), $\sigma_{T_1}(x_1 \oplus 0) \subset F$. Thus $x_1 \oplus 0 \in H_T(F)$, and hence $R_{T_1}(F) \oplus 0 \subset H_T(F)$. \Box

LEMMA 3.11. Let $T \in B(H)$ be F-quasi-n-normal and let \mathcal{M} be a reducing subspace for T. Then the restriction $T \mid_{\mathcal{M}}$ is a p-quasi-n-normal operator.

Proof. Since T is an F-quasi-n-normal operator for some function F analytic and nonconstant on a neighborhood of $\sigma(T)$. Let F(z) = G(z)p(z) where G is a nonvanishing analytic function on a neighborhood of $\sigma(T)$ and p is a nonconstant polynomial. Since \mathcal{M} is a T-reducing subspace, we can write

$$T = \left(\begin{array}{cc} T_1 & 0 \\ 0 & T_3 \end{array}\right),$$

on $\mathscr{M} \oplus \mathscr{M}^{\perp}$; where $T_1 = T|_M$ and $T_3 = (I - P)T(I - P)|_{\mathscr{M}^{\perp}}$, and P denotes the orthogonal projection of \mathscr{H} onto \mathscr{M} . Since T is F-quasi-n-normal, $F(T)^*(T^nT^*)F(T) = F(T)^*T^*T^nF(T)$. Therefore

$$0 = G(T)^* \begin{pmatrix} p(T_1)^* (T_1^n T_1^* - T_1^* T_1^n) p(T_1) & A \\ B & C \end{pmatrix} G(T)$$

for some operators *A*; *B* and *C* by Riesz-Dunfords functional calculus. Since G(T) is invertible, $p(T_1)^*(T_1^nT_1^* - T_1^*T_1^n)p(T_1) = 0$. This implies that $T_1 = T \mid_{\mathcal{M}}$ is *p*-quasi-*n*-normal. \Box

THEOREM 3.12. If T is an F -quasi-n-normal operator, then T is subscalar. In particular, every k-quasi-n-normal operator is subscalar of order 2k + 2.

Proof. Suppose that $T \in B(\mathcal{H})$ be *F*-quasi-*n*-normal for some analytic function *F* on a neighborhood of $\sigma(T)$. If the range of F(T) is norm dense in \mathcal{H} , then *T* is *n*-normal. Hence *T* is subscalar of order 2. Hence it suffices to assume that the range of F(T) is not norm dense in \mathcal{H} . Since F(T) commutes with *T*, $\overline{R(F(T))}$ is a *T*-invariant subspace. Thus *T* can be expressed as

$$T = \left(\begin{array}{c} T_1 & T_2 \\ 0 & T_3 \end{array}\right),$$

on $\overline{R(F(T))} \oplus N(F(T)^*)$; where $T_1 = T|_{\overline{R(F(T))}}$ and $T_3 = (I-P)T(I-P)|_{N(F(T)^*)}$, and P denotes the projection of H onto $\overline{R(F(T))}$. Note that F(z) = G(z)p(z) where G is a nonvanishing analytic function on a neighborhood of $\sigma(T)$ and p is a nonconstant polynomial. Then G(T) is invertible and thus we obtain that N(F(T)) = N(p(T)). Since $p(T_3) = (I-P)p(T)(I-P)|_{N(F(T)^*)}$, it follows for any $x \in N(F(T)^*)$,

$$\langle p(T_3)x;y\rangle = \langle p(T)x;y\rangle = \langle x;p(T)^*y\rangle = 0$$

for all $y \in N(F(T)^*)$. Hence $p(T_3) = 0$. Thus T_3 is analytic. Since $P(T_1^n T_1^* - T_1^* T_1^n)P = 0$, $PT_1^n T_1^* P - PT_1^* T_1^n P = 0$. Hence $T_1^n T_1^* - T_1^* T_1^n = 0$. This shows that T_1 is *n*-normal. If T_3 is analytic of order *k*, then *T* is subscalar of order 2k+2 by Theorem 3.5. \Box

COROLLARY 3.13. Every F-quasi-n-normal operator has the Bishop's property (β) .

COROLLARY 3.14. Every k-quasi-n-normal operator $T \in B(\mathcal{H})$ is subscalar of order 2k+2. In particular, T has the Bishop's property (β) .

It is known that a normal operator has a nontrivial invariant subspace. In the following theorem, we will show that an analytic extension of n-normal operator also has a nontrivial invariant subspace.

THEOREM 3.15. Let T be a n-normal operator. Then T has a nontrivial invariant subspace.

Proof. Let T be a n-normal operator. Then T^n is normal. Hence, T^n has no hypercyclic vector by [11, Corollary 4.5]. Hence, T has no hypercyclic vector by [2]. Therefore, T has a nontrivial closed invariant subspace by [10].

THEOREM 3.16. Let T be an analytic extension of n-normal operator. Then T has a nontrivial invariant subspace.

Proof. Let *T* be an analytic extension of *n*-normal operator. Then there is a closed subspace \mathscr{M} invariant under *T* such that $T_1 = T|_{\mathscr{M}^{\perp}}$ is *n*-normal. If $\mathscr{M}^{\perp} = \{0\}$, then *T* is an *n*-normal. So, *T* has a nontrivial invariant subspace by Theorem 3.16. Now, if $\mathscr{M}^{\perp} \neq \{0\}$, then \mathscr{M} is a non trivial proper invariant subspace for *T*. \Box

Acknowledgements. The author would like to thank the referee for his valuable comments and suggestions, which considerably helped to improve the paper.

REFERENCES

- [1] S. A. ALZURAIQI AND A. B. PATEL, On n-normal operators, General Math. Notes 1, (2010), 61-73.
- [2] S. I. ANSARI, Hypercyclic and cyclic vector, J. Funct. Anal. 128 (1995), 374–383.
- [3] S. BROWN, Hyponormal operator with thick spectrum have invariant subspaces, Ann. Math 125 (1987), 93–103.
- [4] X. H. CAO, Analytically class A operators and Weyl's theorem, J. Math. Anal. Appl. 320 (2006), no. 2, 795–803.
- [5] M. CHO AND B. NACEVSKA NASTOVSKA, Spectral properties of *n*-normal operators, to appear in Filomat.
- [6] MUNEO CHO, JI EUN LEE, KOTARO TANAHASHI, ATSUSHI UCHIYAMA, *Remarks on n-normal operators*, Filomat 32:15 (2018), 5441–5451.
- [7] J. ESCHMEIER, Invariant subspaces for subscalar operators, Arch. Math, 52 (1989), 562-570.
- [8] C. FOIAS AND A. E. FRAZHO, *The commutant lifting approach to interpolation problem*, Operator Theory Adv. Appl., vol. 44, Birkhauser, Boston, 1990.

S. MECHERI

- J. K. HAN, H. Y. LEE, W. Y. LEE, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc, 128 (2000), 119–123.
- [10] D. A. HERRERO AND C. KITAI, On invertible hypercyclic operators, Proc. Amer. Math. Soc. 116 (1992), 873–875.
- [11] C. KITAI, Invariant closed sets for linear operators, Ph. D. Thesis, Univ. of Toronto, 1982.
- [12] E. Ko, Algebraic and triangular n-hyponormal operators, Proc. Amer. Math. Soc. 11 (1995), 3473– 3481.
- [13] K. B. LAURSEN AND M. N NUEMANN, Introduction to local spectral theorey, Clarendon Press, Oxford, 2000.
- [14] M. MARTIN AND M. PUTINAR, *Lectures on Hyponormal operators*, Operator theory Adv. Appl. 39, Birkhauser, Boston, 1989.
- [15] S. MECHERI, Bishop's property (β), Hypercyclicity and hyperinvariant subspaces, Operators and Matrices 8 (2014) 555–562.
- [16] S. MECHERI, Subscalarity, Invariant, and Hyperinvariant Subspaces for Upper Triangular operator Matrices, Bull. Malays. Math. Sci. Soc. 41 (2018), 1085–1104.
- [17] M. PUTINAR, Hyponormal operators are subscalar, J. Operator Theory 12 (1984) 385–395.
- [18] M. RADJABALIPOUR, On majorization and Normality of Operators, Proc. Amer. Math. Soc, 62 (1977), 105–110.
- [19] M. A. ROSENBLUM, On the operator equation BX XA = Q, Duke Math. J. 23 (1956), 263–269.

(Received February 11, 2020)

Salah Mecheri Department of Mathematics Faculty of Mathematics and Informatics Mohamed El Bachir El Ibrahimi University Bordj Bou Arreridj, Algeria e-mail: mecherisalah@hotmail.com