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PROPERTIES OF J/-SELF-ADJOINT OPERATORS

SUNGEUN JUNG

(Communicated by R. Curto)

Abstract. In this paper, we consider operators T € .Z (%) such that (JT)* = JT for some
anti-unitary J with J> = —I; in this case, we say that T is J-self-adjoint. We show that the
Aluthge transform of a J -self-adjoint operator is skew-complex symmetric. As an application,
we prove that w-hyponormal operators which are J-self-adjoint must be normal. Moreover,
we obtain that if T € () is a J-self-adjoint operator with property (), then T +A is
decomposable where A € Z(.) is an algebraic operator commuting with 7. We also give
examples of J-self-adjoint operators.

1. Introduction

Let £ (5¢) be the algebra of all bounded linear operators on a separable complex
Hilbert space . If T € £ (¢), we write p(T), o(T), 6,(T), 64(T), Ccomp(T),
6u(T), 05.(T), 6,(T), and 0,(T) for the resolvent set, spectrum, point spectrum,
approximate point spectrum, compression spectrum, surjective spectrum, left essential
spectrum, right essential spectrum, and essential spectrum of 7', respectively.

An operator J : .77 — S is said to be anti-unitary if J is anti-linear and J*J =
JJ* =1, where J* stands for the adjoint of J, which is uniquely determined by the
relation (J*x,y) = (x,Jy) for x,y € . We say that an operator T € .Z(5) is J -self-
adjoint if there exists an anti-unitary operator J : J# — J# satisfying J*> = —I and
JT) =JT.

An anti-linear operator C : J# — S is said to be a conjugation if C*> =1 and C
is isometric, i.e., (Cx,Cy) = (y,x) for all x,y € . If C: 5# — S is a conjugation,
then the operator matrix ¢ on @7 given by

0-C
7=(e )
is anti-unitary and 72 = —1I.

We say that T € £ () is complex symmetric with conjugation C if T* = CTC
for some conjugation C. The class of complex symmetric operators contains all normal
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operators, Hankel operators, compressed Toeplitz operators, algebraic operators of or-
der 2, and some Volterra integration operator, and there are a lot of consequences and
applications about complex symmetric operators (see [14], [15], [16], [19], [20], [21],
[22], [29], etc.). If T is complex symmetric with conjugation C, then C is anti-unitary
with C* =C and (CT)* =CT. An operator T € £ () is called skew-complex sym-
metric if T* = —CTC for some conjugation C.

If T =U|T| denotes the polar decomposition of an operator T € £ (), the
Aluthge transform of T is defined as T := \T|%U |T|% This transform has several
properties which are transmitted to the original operators. For example, by [23, Corol-
lary 1.16], if T has a nontrivial invariant subspace, then so does 7'. Thus, many authors
have been interested in this operator transform and its applications (see [3], [4], [6], [ 7],
[17], [18], [23], [24], etc.).

For 0 < p < oo, we say that an operator T € .2 () is p-hyponormalif (T*T)?P >
(TT*)P. In particular, 1-hyponormal operators and % -hyponormal operators are called
hyponormal and semi-hyponormal, respectively. We call T € £ () w-hyponormal
if |T| >|T| > |(T)*|. An operator T € Z(J) is said to be paranormal if ||T?x| >
| Tx||? for all unit vectors x € .#. p-Hyponormal operators are w-hyponormal and
w-hyponormal operators are paranormal (see [12]). In addition, if T € .Z(J7) is p-
hyponormal, then T is (p+ %)—hyponormal (see [3]). Thus, if T € L(H) is w-

hyponormal, then T is semi-hyponormal and T is hyponormal.

In this paper, we show that the Aluthge transform of a J-self-adjoint operator is
skew-complex symmetric. As an application, we prove that w-hyponormal operators
which are J-self-adjoint must be normal. Moreover, we obtain that if T € £ ()
is a J-self-adjoint operator with property (), then 7 + A is decomposable where
A € Z(A) is an algebraic operator commuting with 7. We also give examples of
J -self-adjoint operators.

2. Preliminaries

An operator T € £() is said to have the single-valued extension property,
abbreviated SVEDP, if for every open subset G of C, the only analytic solution f: G —
2 of the equation (T —z)f(z) =0 on G is the zero function on G. For T € .Z(5¢)
and x € S, the local resolvent set pr(x) of T at x is defined to be the union of
every open set G in C for which there exists an analytic function f: G — .5 such that
(T —z)f(z) =x on G. Since the analytic function g(z) := (T —z)~'x on p(T) satisfies
that (T —z)g(z) = x on G for every open set G in C containing p(T), it holds that
p(T) C pr(x) and any analytic function f appearing in the definition of pr(x) can
be regarded as an extension of g. It is well known that if 7 has the single-valued
extension property, then the function g is uniquely extended to pr(x). We denote the
complement of pr(x) by or(x), called the local spectrum of T at x, and define the
local spectral subspace of T by 7#7(F) ={x € . : or(x) C F} for each subset F of
C.

An operator T € £ () is said to have Bishop’s property (B) if for every open
subset G of C and every sequence f, : G — S of 7 -valued analytic functions such
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that (7 — z)fu(z) converges uniformly to O in norm on compact subsets of G, then
Jn(z) converges uniformly to 0 in norm on compact subsets of G. We say that T €
L () has Dunford’s property (C) if 77 (F) is closed for each closed subset F of
C. From [8] or [27], we know that

Bishop’s property (f3) = Dunford’s property (C) = SVEP

and each of the converse implications fails to hold, in general.

We say that an operator T € £ () is decomposable provided that for every
open cover {G,G2} of C, there are T -invariant subspaces .#; and .4  such that
I =M+ M, 0(T| 4,)CGy,and 6(T| 4,) C Go. Anoperator T is said to have the
decomposition property (8) if for any open cover {G,G,} of C, each vector x € 7
is written as x = x| +x, where (T —z)fi(z) =x; on C\ G, with % -valued analytic
function f; on C\G,, for j =1,2. We remark that T € () is decomposable
precisely when T has properties (8) and (§), i.e., both T and T* have Bishop’s
property (B) (see [1], [8], or [27]).

3. Main results

In this section, we prove that every J -self-adjoint operator has skew-complex sym-
metric Aluthge transform and give several applications of this result. We begin with the
following lemma.

LEMMA 3.1. Let T € .Z () be J-self-adjoint. Then the following statements
hold:
(1) T* is J*-self-adjoint;
(ii) TJ* = JT* and J*T = T*J;
(iii) If T =U|T| is the polar decomposition, then ker(7') = ker(U*J*) =ker(U*J).
Proof. (i) Since T is J-self-adjoint, we have
TJ =J(JT)] = J*(JT)*J = J(T*J*)J = J*T*,

ie., (J*T*)* = J*T*. Since J* is anti-unitary with J*> = —I, the adjoint T* is J*-
self-adjoint.
(i1) It follows from (i) that
TJ* = —J(JT)J* = —JT*J? =JT*
and
JT = —J(TJ)J] = —J2T*] =T"J.
(iii) If U*J*x = 0, then (i) implies that
Tx=(TJ)J'x=JT"J"x = J*|T|U*J*x = 0.

Hence, we get that ker(T) D ker(U*J").
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Conversely, if Tx =0, then 0 = JTx = T*J*x by (i). Since ker(7T*) = ker(U*),
we obtain that U*J*x = 0, and so ker(7T) C ker(U*J*). Thus ker(T) = ker(U*J*).

If U*Jx =0, then Jx € ker(U*) =ker(T"), i.e., T*Jx=0. Since T* =JTJ and
J? = —1, it follows that 0 = T*Jx = JTJ?x = —JTx, which ensures that Tx = 0. This
means that ker(7") D ker(U*J). By applying this procedure reversely, we can show that
ker(T) C ker(U*J). O

We say that an anti-linear operator W : 5 — ¢ is a partial conjugation if it is
a conjugation on ker(W)* . In the following theorem, we provide a representation for
the polar decomposition of J-self-adjoint operators.

THEOREM 3.2. Let T € £ () be J-self-adjoint. If T = U|T| is the polar
decomposition, then |T'| = J|T*|J* and U is a J*-self-adjoint operator factorized as
U =JW where W := J*U = U*J is a partial conjugation supported by ran(|T'|) such
that |T|W =W|T]|.

Proof. Observe that
T=JTJ =JT|U"J".
Since U*U is the orthogonal projection of 7 onto m, we get that
T =J"(U*U)|T|U*J* = (J2J*U*D)JU|T|U*T) = (JU*T)(J|T*|T7).
Set V :=JU*J and P :=J|T*|J*. Since P >0 and
P2 =J|T*|2J* = (JT)(T*J*) =T*J"JT = |T|?,

we have |T| =P =J|T*|J*. In addition, since V* = J*UJ* and U*UU* = U*, we see
that

VvV = U ) (JUIHJUT) =J(UUU)I =JU* T =V,
which implies that V is a partial isometry. According to Lemma 3.1, we know that
ker(V) =ker(U*J) =ker(T), and thus U =V = JU*J. In other words, U is J*-self-
adjoint. If W :=J*U = U"J, then U =JW and it follows from Lemma 3.1 that
|T|\W =|T\U*J=T"J=JT =JU|T| =W|T|.

Moreover, W* =W and W2 = U*JJ*U = U*U is the orthogonal projection of . onto
ran(|T|), and so W is isometric on ran(|T|). Since

ker(W)* =ker(J*U)* =ker(U)* = ker(|T|)* =ran(|T]),
we conclude that W is a partial conjugation supported by ran(|T|). O

COROLLARY 3.3. Let T € £ () be J-self-adjoint. Then T is normal if and
only if |T|J =J|T]|.
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Proof. Let T = U|T| be the polar decomposition. By Theorem 3.2, it holds that
|T| =J|T*|J* and U = JW where W :=J*U = U*J is a partial conjugation supported
by ran(|T|) such that |T|W = W|T|. Hence, if T is normal, then |T'| = |T*| =J*|T|J,
or equivalently, |T|J =J|T|.

Conversely, if |T|J = J|T|, then

|T*|> = U|TPU* = J(W|T|*W)J* = J(W?|T|*)J*
= JIT)J* = |T)2JJ* = |T|?,

and thus 7 isnormal. [

In [15, page 3916], S. Garcia and M. Putinar pointed out that each partial con-
jugation can be extended to a conjugation; in detail, if W is a partial conjugation on
A, then C:=WaW' acting on 7 = ker(W)*@ker(W) is a conjugation on the entire
space 7, where W’ is any partial conjugation supported by ker(W). This fact leads
to the following decomposition of J-self-adjoint operators.

COROLLARY 3.4. If T € £ () is a J-self-adjoint operator, then it is decom-
posed as T =V/|T| where V is a unitary operator that is J*-self-adjoint; furthermore,
the map C :=J*V = V*J is a conjugation such that |T|C = C|T]|.

Proof. From Theorem 3.2, write T = U|T| where U =JW and W is a partial con-
jugation, supported by ran(|T|), commuting with |T|. Take a partial conjugation W’
with support ker(W) so that C =W@W’ is a conjugationon 7 = ker(W )@ ker(W) =
ran(|T|)@ker(|T]). Set V :=JC. Then V*V =CJ*JC =1 and VV* =JCCJ* =1, and
thus V is unitary. Since C* = C, we have C =J*V =V*/, i.e., V is J*-self-adjoint.
Writing |T'| = |T|®0 on 57 =ran(|T|)®ker(|T]), we obtain that

T =U|T| =JW|T|=JC|T| =V|T|.
Moreover, since |T|W = W|T|, the conjugation C commutes with |T|. O

Let T € £ () be a J-self-adjoint operator having polar decomposition 7 =
U|T|. Under the same notations as in Theorem 3.2 and Corollary 3.4, note that

T =|T|2U|T|> = |T|2(JW)|T|* = |T|*(JC)|T|? = |T|V|T|3. (1)

In the following theorem, we prove that the Aluthge transform of a J-self-adjoint oper-
ator is skew-complex symmetric.

THEOREM 3.5. If T € £() is J-self-adjoint, then its Aluthge transform T is
skew-complex symmetric.

Proof. Suppose that T is J-self-adjoint. Corollary 3.4 permits us to factorize T
as T =V|T| where V is a unitary operator which is J*-self-adjoint and C = J*V is a
conjugation commuting with |T|. Since C|T| = |T|C and C*> =1, it follows by (1) that
= 1 L 1 L 1 #2\ (i 4
CTC = |T|2CVC|T|2 =|T|2CJ|T|2 =|T|2CJ(—=J*)|T|2
1 * 1 1 * L 7\ *
= —|TPPCIT)? = =|T]PVIT]2 = —(T)",
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which completes the proof. [J

From Theorem 3.5, we assert that every w-hyponormal operator that is J-self-
adjoint must be normal.

COROLLARY 3.6. Let T € Z(s) be J-self-adjoint. Then T is w-hyponormal
if and only if it is normal.

Proof. If T is normal, then it is clearly w-hyponormal. Conversely, assume that

T is w-hyponormal. Since T is semi-hyponormal, the square (T)2~is w-hyponormal
by [6]. Since T is J-self-adjoint, it follows from Theorem 3.5 that T is skew-complex
symmetric and so its square (T)2 is complex symmetric. According to [29, Theo-
rem 3.2], the only complex symmetric w-hyponormal operators are normal operators.
Hence, (T)2 must be normal. From [5], the Aluthge transform T is normal, and so is

Tby[7]. O

We now apply Theorem 3.5 to derive local spectral properties of J-self-adjoint
operators.

LEMMA 3.7. Let T € £ (). If T has property () (resp. property (4)) if and
only if T has property () (resp. property (0)).

Proof. Tt is not difficult to show that if A,B € (7€), then AB has property (f3)
if and only if BA does. Hence, taking A = U\T\% and B = |T\%, we see that T has
property (B) if and only if 7' does. Moreover, since T* = \T|%(|T|%U *) has property
(B) exactly when (T)* = (\T\%U *)\T\% has property (f), the duality of properties
(B) and (8) completes the proof. [J

Recall that A € Z(.7) is said to bed algebraic if p(A) =0 for some nonconstant
polynomial p.

THEOREM 3.8. Let T € £ () be a J-self-adjoint operator. If T has property
(B), then T + A is decomposable where A is an algebraic operator in .Z(5¢°) com-
muting with 7.

Proof. Note that (T)2 is complex symmetric by Theorem 3.5. According to
Lemma 3.7, the Aluthge transform T has property (). Since (T)? has property (B)
from [27, Theorem 3.3.9], it follows that (Z)2 is decomposable by [20]. Since (T)?
and (T)** have property (), we get that 7 and T* satisfy the same property using
[27, Theorem 3.3.9] again. Therefore, Lemma 3.7 implies that 7 and 7™ have property
(8).

Next, take any algebraic operator A € .Z(.7) such that AT =TA, and let p(z) =
(z—7)(z— 1)+ (z— %) be a nonconstant polynomial such that p(A) = 0. Suppose
that {f,} is any sequence of analytic functions on an open set G such that

lim (7 +A —2) (@) = 0
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uniformly on compact sets in G. Setting

po(z) = land pj(z) = (z=n)(z = 1) (= ¥) for j = 1,2,--- .k,
we will verify that

lim ||p;(A)f.(2)|| = O uniformly on compact sets in G (2)

forall j=0,1,2,--- k. Equation (2) holds obviously for j = k. If (2) is true for some
integer j with 1 < j <k, then

0= lim [|pj1 (AT +A =7+ —2) /()|
= lim (T +7;—2)pj-1(A) fu(2)|

uniformly on compact sets in G. Since T has property (f3), so does T + ¥, and thus
lim, e [|[pj—1(A) fu(z)|| = O uniformly on compact sets in G. Thus, by induction, we
conclusion that (2) holds for all j=0,1,2,---,k. In particular, lim, . ||f.(z)|]| =0
uniformly on compact sets in G. Accordingly, T + A has property (). Since T*
has property () and A* is an algebraic operator commuting with 7%, T* + A* has
property (f). Hence, T + A is decomposable. [J

For an operator T € .Z(.7) and a vector x € .7, the local spectral radius of T
at x is defined as 1
rr(x) :=limsup || T"x||».
It is known that #(7') = max{rr(x) : x € S} forany T € £ (), where r(T) denotes
the spectral radius of 7' (see [27, Proposition 3.3.14]). An operator T € £ () is
called power regularif lim,_... || T"x|| T exists for every x € . We say that an element

x € H is a cyclic vector for an operator T € £ () if the linear span of the orbit
{T"x:n=0,1,2,---} is dense in J7Z.

COROLLARY 3.9. Let T € £(5) be J-self-adjoint. If T has property (),
then the following assertions hold:

(i) Both T and T* are power regular. Moreover, rr(x) = lim,HwHT"xH% and
rre (%) = limp || T*x|| 7 for all x € .

(ii) If x € A is a cyclic vector for T, then or«(x) = o(T") and rr(x) = r(T*).

Proof. Since both T and T* have property (f3) from Theorem 3.8, the result (i)
follows by [27, Proposition 3.3.17]. Moreover, since T* has Dunford’s property (C),
we obtain (ii) using [27, page 238]. [

The mean transform of an operator T € £ (), firstly introduced in [26], is
defined as T := L(U|T|+|T|U) where T = U|T| is the polar decomposition. There
are several connections between T and T (see [24] for more details). In the following
proposition, we give some local spectral relation between J-self-adjoint operators and
their mean transforms.
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PROPOSITION 3.10. Let T € .Z(5#) be J-self-adjoint with |T|J|T| = |T|>J. If
T has property (B), then both 7 and (T*) have property (B).

Proof. According to Theorem 3.2, the polar decomposition of T is given by T =
U|T| where |T|=J|T*|J* and U = JW for some partial conjugation W commuting
with T. Since |T|J|T| = |T|*J, it holds that

\T|U|T| = |T[JW|T|=|T|J|T|W = |T|*JW = |T|*U.

Due to [24], it follows that 7 has property B).

Now, let {f,} be a sequence of .7 -valued functions analytic on an open set G
such that limy, . || ((T*) — 2) f4(z)|| = 0 uniformly on compact sets in G. Since W =
JU=U"J, |T*|=J"T|J, and W|T| = |T|W, we obtain that

~ 1
JTI = S(WITW + T TIWT) = S(ITIWI" + [T W)

—

(T +|TU7) = (T7).

| =N —

Hence
0= lim [lJ((T%) = 2)J (" fu())| = lim (T +2)(" fu(2))

uniformly on compact sets in G. For each n, define the function g,(§) = J* f,(—§) for
e —G*:={-z:z€G}. Then lim, ... ||(T — £)g,(¢)| = 0 uniformly on compact
sets in —G*. Note that each g, is analytic on the open set —G*; indeed, if & € —G*,
then —{y € G. Writing f,(z) = ¥,_o(z+ o)"a, on a neighborhood of —{, contained
in G, where {a,} C J, we see that for { € —G*,

oo

&) =1 (D) =1 (X (T T a) = 3 (1"~ &) T an

n=0 n=0

This means that g, is analytic at every point { in —G*. Since T has property (B),
we get that lim,—.. ||g»|| = 0 uniformly on compact sets in G, which ensures that {f;, }

converges in norm to O uniformly on compact sets in G. Thus, (7*) has property

B). O

We next examine Dunford’s property (C) of J-self-adjoint operators.

PROPOSITION 3.11. If T € () is J-self-adjoint, then the following proper-
ties hold:
(i) or(x) = —(o7+(Jx))" forall x € .
(ii) Jo#7 (F) = 7« (—F*) for any subset F of C.

Proof. (i) Let x € 7 be given and let G be any open setin C. If f: G — JZ is
an analytic function such that (T —z)f(z) = x for all z € G, then

Jx=J(T —2JJ)f(z) = (T* +2)J f(2)
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forz€ G, i.e.,

(T" =" f(=0) = Jx 3)
for { € —G*. Since J*f (—Z) is analytic for { € —G* (see the proof of Theorem 3.10),
we have —(pr(x))" C pr+(Jx) forall x € 7. Hence

(or-(Jx))" € C\ (= pr(x)) = =(C\ pr(x)) = —or(x) “4)

for all x € 7. Since T* is J*-self-adjoint by Lemma 3.1, we obtain from (4) that
(07(J*x))" C —o7+(x) forall x € . Replacing x with Jx and taking complex con-
jugate, we get that

GT()C) C —(GT* (Jx))* &)

for all x € 7. Thus, we complete the proof from (4) and (5).
(ii) Suppose that F is a subset of 7. If x € 7 (F), then

— (o7 (Jx))* =or(x)CF
by (i). Since or+(Jx) C —F*, it holds that Jx € #7+(—F*), and so
J A1 (F) C Ar-(—F7).
Applying the above argument to the adjoint 7%, we deduce the inclusion
J Ao (~F*) C Ao (F).
Therefore, J#7 (F) = A7+ (—F*). O

COROLLARY 3.12. Let T € £ () be J-self-adjoint. Then T has Dunford’s
property (C) if and only if its adjoint T* does.

Proof. Assume that T € £ () is a J-self-adjoint operator satisfying Dun-
ford’s property (C). Let F be any closed subset of C. Then %7 (—F™) is closed.
Since 7+ (F) = Js¢7(—F"*) from Proposition 3.11 and J is anti-unitary, the subspace
H7+(F) is closed. Hence, we conclude that 7* has Dunford’s property (C). The
converse also holds by Lemma 3.1. [

We say that an operator T € £ () has Dunford’s boundedness condition (B)
if it has the single-valued extension property and there exists a constant K > 0 such
that ||x;|| < K||x; +x2| for any x1,x, € % with or(x;) Nor(x2) =0, where K is
independent of x; and x,.

COROLLARY 3.13. Let T € .Z () be J-self-adjoint. Then the following asser-
tions hold:

(i) T has Dunford’s boundedness condition (B) if and only if 7* does.

(i) If T has the single-valued extension property and possesses the property that
or(Prx) C or(x) for all x € 5 and each closed set F in C, where Pr denotes the
orthogonal projection of # onto 7 (F), then both T and T* have Dunford’s bound-
edness condition (B).
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Proof. (i) It suffices to prove one implication. If 7 has Dunford’s boundedness
condition (B), choose a constant K > 0 such that ||x; || < K||x; +x2]| for any x;,x; €
A with or(x1)Nor(x) =0. Let y; and y, be arbitrary vectors in ¢ with o7+(y;)N
or+(y2) = 0. It follows from Proposition 3.11 that o7 (J*y;) Nor(J*y,) =0, and thus
IV*v1]| < K||J*y1 +J*y2||. This implies that

Iyl = 7yl < K[ (v1 +y2) || = Kl[y1 +y2 |-

In addition, we can obtain that 7* has the single-valued extension property. Thus, T*
satisfies Dunford’s boundedness condition (B).

(ii) Let x1,x2 € J be such that or(x) Nor(x2) =0. Set F; = or(x;) for j=
1,2. By the hypothesis, we have or(Ppx;) C or(x;) = Fi. Moreover, it is obvious
that o7 (Pr,x1) C F> by the definition of Pr,. Hence

GT(PFZXI) CHNk = O'T(xl) ﬁGT()Q) =0.

Since T has the single-valued extension property, we get that Pr,x1 = 0 by [27, Propo-
sition 1.2.16], that is, x; L 7 (F>). But or(x2) = F>, and so x; clearly belongs to
A7 (F). Then (x1,x2) = 0, which implies that ||x; +x2|| = ||x1|. Thus, 7 has Dun-
ford’s boundedness condition (B), and so does T* from (i). O

For an operator T € £ (), the quasinilpotent part of T is defined by
Ho(T) :={x € 2 lim ||T"x||» =0}.

COROLLARY 3.14. Let T € .Z () be J-self-adjoint. If Hy(T —A) is closed for
all A € C, then T* has the single-valued extension property and %7+ ({1}) is closed
foreach A € C.

Proof. Suppose that T is J-self-adjoint and Ho(7 — A) is closed for each 4 € C.
Since T has the single-valued extension property by [, Theorem 2.31], so does T by
some application of the proof of Lemma 3.7. As in the proof of Theorem 3.8, we see
that 7* has the single-valued extension property. Fix any A € C. From [2, Theorem
1.5], we get that 77 ({1}) = Ho(T — 1) . Proposition 3.11 implies that

A (1Y) = T A ({~}) = THo(T + 7).

Since Ho(T + A) is closed and J maps a closed subspace onto a closed one, we con-
clude that the local spectral subspace .#7+({1}) is closed. [

Similarly to complex symmetric operators, there exist connections between the
spectra of a J-self-adjoint operator and its adjoint. Given any set E in C, write E* :=
{z:z€E}and —E:={—z:z€E}.

PROPOSITION 3.15. Let T € £ () be J-self-adjoint. Then
OA(T") = —ou(T)" (6)

where Op € {GpaGuaac()mpaasuacleaGreaaeac}'
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Proof. We first deal with the left essential spectrum. If o € 0;,(T), then there
is a sequence {x,} of unit vectors in .7 such that x, — 0 weakly and lim,, .. ||(T —
o)x,|| = 0. Observe that

0 = lim ||[J(T — a)x,|| = lim |J(T — aJ*)x,
n—oo n—oo
= lim |[(T*J* = 0J2J*)x,|| = lim ||(T* +@)J x|

It is evident that ||J*x,|| = |[x,|| = 1 for all n and J*x, — 0 weakly, and so —¢& €
01.(T*), meaning that

- Gle(T)* C Gle(T*)' (7)

Since T* is J* -self-adjoint by Lemma 3.1, equation (7) holds when we replace 7' with
T*, which yields that

G1e(T*) C —03(T)". ®)
From (7) and (8), it follows that
01.(T") = —05.(T)".

By a similar method, one can see that (6) is also true for the cases ox = 0p,0yp.
Since Geomp(A*) = 0,(A)*, Ow(A*) = 04(A)*, and 0, (A*) = 01.(A)" where A is
any operator in . (J¢), we obtain (6) for oy = 0p = Ocomps Osus Ore - MoTeEOVET, since
0.(A) = 01.(A)U0r(A) and 6(A) = 6,(A) U Geomp(A) for any operator A € .2 (),
equation (6) holds for op = 0., 0. So, we complete the proof. [J

COROLLARY 3.16. If T € £ (5¢) is J-self-adjoint, then the following proper-
ties hold:

(@) Ocomp(T) =—0,(T), Osu(T) =—04(T), and 0,(T) = —03.(T).

(ii)) o(T) = —o(T) and Ge( )= —GE(T)

(iii) 0(T) = 6(T)U (— 6,(T)) = 6,(T ( (7)) =

(iv) Ge(T) = Gle(T) ( Gle(T ) - Gre( ( Gre T )

(v) ker(T — o) = Jker(T* + @) for each o € C.

(vi) ker(T? — o) = J*ker(T*> — @) foreach o € C.

0,(T)U0w(T).

Proof. (1) Proposition 3.15 implies that
Gcamp(T) = _Gcamp(T*)* = _GP(T)'

Similarly, we get the remaining identities in (i).
(i) We obtain from Proposition 3.15 that

0.(T)=-0.(T")"=—-0.(T)and 6(T) = —0(T*)* = —o(T).
(ii1) By (i), it follows that

0(T) = 6a(T) U Geomp(T) = 0u(T) U (— 0,(T)).
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Hence, the proof is complete due to (ii).

(iv) Since 0,(T) = 03,(T) U0y (T) and 6,.(T) = —0y,(T) by (i), we deduce the
result.

(v) As an application of the proof of Proposition 3.15, we see that

J ker(T — o) C ker(T* + ), i.e., ker(T — o) C Jker(T" + @)
for @ € C. Since T* is J*-self-adjoint by Lemma 3.1, it also holds that
Jker(T*+ o) C ker(T — o)

for o € C, which verifies (v).
(vi) Let & € C be arbitrary. If x € ker(T? — o), then

OJx=J(ox) =JT*x = (JT)Tx=T"(J*T)x = T*%Jx

by Lemma 3.1, and so Jx € ker(T*? —@). Hence Jker(T? — o) C ker(T*> — @) . Simi-
larly, we get that J* ker(T*? — @) C ker(T? — o). Therefore it holds that ker(7? — o) =
Jiker(T*? —@). O

4. Examples

In this section, we give several examples and study their spectral properties of
J -self-adjoint operators. In particular, we find J-self-adjoint operators that are not
complex symmetric (see Proposition 4.5 and Example 4.6). We first consider 2x2
operator matrices which are _# -self-adjoint where

0-C
7=
for some conjugation C : 7 — .

T\ T

PROPOSITION 4.1. Let T = <T3 T

0 C) where C is any conjugationon 7. Then T is _¢ -self-adjoint

andlet 7 = (C _0
if and only if both 7, and 73 are complex symmetric with the conjugation C and
T, = —CT{C. In particular, if all of Ty, 7>, and T3 are complex symmetric with the

same conjugation C, then T = (? TzT) is ¢ -self-adjoint.
3 1]

) be a 2Xx2 operator matrix in £ (I DH),

Proof. 1t is easy to see that T is ¢ -self-adjoint if and only if T* = #T 7,

namely
Tl* T3* _ [—CT,C CT:C )
Ty Ty ~\ CTLC —-CT,.C)"
Since T, = —CT\C is equivalent to 7}" = —CT4C, equation (9) holds exactly when
both 75 and T3 are complex symmetric with conjugation C and Ty = —CT{'C. O
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COROLLARY 4.2. Let T} € .Z(5¢) be anormal operator, and let A € £ (%) be
a nonzero operator such that AT; = T{A = 0. Then the operator matrix

i A
Ty =T

Proof. Since every normal operator is complex symmetric by [14], choose a con-
jugation C on 7 satisfying CT1C = T;*. Then

_(Ti 0
r=(n %)

is ¢ -self-adjoint with ¢ = (2‘ _OC> . In addition, it is easy to see that T has prop-

is decomposable.

erty (). Since N := (8 g) is nilpotent of order 2 and NT = TN, we complete the
proof from Theorem 3.8. [

According to Proposition 4.1, one can construct J-self-adjoint operators using
complex symmetric operators. In order to give concrete examples, consider weighted
composition operators on the Hilbert-Hardy space H? of the open unit disk . The
Hardy space H? is regarded as a closed subspace of L? = L?(dD,m) where m denotes
the (normalized) Lebesgue measure on the unit circle dID. For an analytic function f
on ) and an analytic self-map ¢ of D, the operator Wy o, : H 2 — H? given by Wy oh=
f-(ho) is called a weighted composition operator. In particular, Cy := Wy 4 is said
to be a composition operator. If @ is any analytic self-map of D and f € H? for which

Wy o is bounded on H?, then W}‘@Kﬁ = f(B)Ky(p) for B € D, where Kp := 1—152

so-called the reproducing kernel of H? at a point 3 in ID. We refer the readers to [9],
[10], [11], [19], and [28] for more details on weighted composition operators on H>.
In [19], the authors characterized complex symmetric weighted composition operators
on H? with a specific conjugation. Using this characterization, we give the following
example.

EXAMPLE 4.3. Let ¢ : H® — H? be the conjugation given by €/ = h where
h(z) := h(z) for z € D. Suppose that y;(z) = a;+ % and g;(z) = = with

a;z
constants a; € D and bj,c; € C for j =1,2. Then each W, y,; is complejx sym-
metric with conjugation % by [19, Theorem 3.3]. Hence, given analytic self-map
@ of D and f € H? for which Wy, is bounded on H?, Proposition 4.1 implies

Wio  Werwm ; v ; _ (0 -7 ;
that (nglz — W] % is ¢ -self-adjoint with respectto ¢ = v o ) Since
CKg = KE for each point B in D, we compute that

B)Kop) = W7 5Ks

CW; ,CKg = CW} K5 =C(f(B)K,5) =

)
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for B € D. Since the linear span of reproducing kernels is dense in H?, we have
CW; T = W;@. Thus
(Wfﬂp Wgh%)
Wgzﬂllz _W‘;@

is _# -self-adjoint.

If (z) = ?gis is a linear fractional self-map of ID where a,b,c,d are complex

numbers with ad — bc # 0, then Cowen’s adjoint formula states that Cp = T,Co Ty
where g(z) = —Ei+2’ o(z) = %, and h(z) = cz+d (see [9]). Taking f =1 in
Example 4.3, we obtain the following _¢# -self-adjoint block matrix of operators:
C<P ng-%)
ok 10
(Wgzﬂflz _Ca (19)

where ¢ is any analytic self-map of ID. If ¢ is a linear self-map of D, then Cowen’s
adjoint formula allows us to replace C(% in (10) with some weighted composition oper-
ator.

EXAMPLE 4.4. Assume that ¢(z) = az+b where |a|+ |b| < 1. Then ¢ is an

analytic self-map of ID. Since @(z) := ¢(z) = az+b, apply Cowen’s adjoint formula
to C(%, as follows:

C(i; == TgCG B Wg70‘

with g(z) = l+bz and 0(z) = 1%;. Therefore, the block matrix of weighted compo-

sition operators Co W

82:¥2 —ng
well as the anti-unitary _¢# are defined as in Example 4.3. In particular, substituting
We,y; =1 for j=1,2 (ie,, aj=0and b; = cj = 1), we get that

<C<P 1 )_ Caztb 1
I _Wg=6 I Wli_llavlﬁ_zbz

We next find J-self-adjoint operators that are not complex symmetric.

) is _# -self-adjoint, where the maps y; and g; as

is _# -self-adjoint.

COROLLARY 4.5. Suppose that C is a conjugation on . and A is any operator
in () such that &,(A) # —&,(A) where &,(A) := 06,(A)* U (— 0,(A*)). Then

the operator matrix
A 0
r= (0 —CA*C)

is J -self-adjoint but not complex symmetric.
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Proof. We obtain from Proposition 4.1 that 7 = (g B C?A* C) is _# -self-adjoint

where ¢ = (2 _OC) . Since (CA*C)* = CAC, one can see that

{opm 0p(A) U (= 0,(CA*C))
0,(T") A*)U (= 0,(CAC)).

We will use
0,(CBC) = 0,(B)" (11)

where B is any operator in .Z(¢’). Indeed, if a € 0,(CBC), then (CBC — a)x =0
for some nonzero vector x € .7, and so 0 = C(CBC — a)x = (B—&)Cx. Since C
is a conjugation, Cx must be a nonzero vector in ¢, so that o € Gp(B). Hence
0,(CBC) C 0,(B)*. Replacing B with CBC, we get that ¢,(B) C 6,(CBC)*. Thus
0,(CBC) = 0,(B)*. According to (11), we obtain that

{opm = 0,(A)U(—0p(A%)")
0,(T*) = 0,(A")U (_ Gp(A)*)7

which implies that 6,(T)* # 0, (T*) by the given hypothesis. By [20, Lemma 4.1], we
can draw the conclusion that T is not complex symmetric. []

The following example illuminates Corollary 4.5.
EXAMPLE 4.6. Let A := S+ o for some nonzero o« € C where S is a unilateral

shift on 7. Since 0,(A) =0 and 0,(A*) = 0,(S* + @) is the open disk of radius
1 centered at o, we have &),(A) # —&),(A) where &,(A) is given as in Corollary 4.5.

0 —CA*C
J -self-adjoint but not complex symmetric, where C is any conjugation on 7.

Hence, it follows from Corollary 4.5 that the operator matrix 7 = (A 0 ) is

For u € L* = L*(dD, m), the Toeplitz operator T, is defined by
T,h = Py (uh) for h € H?

where P, stands for the orthogonal projection of L? onto the Hardy space H?. In the
following theorem, we show that every J-self-adjoint Toeplitz operator has no eigen-
values.

THEOREM 4.7. Let u € L be nonconstant. If T, is J-self-adjoint, then the fol-
lowing assertions hold:

(i) 0,(T) = 0; hence, both T, and 7, have the single-valued extension property.

(ii) G(Tu) = Ge(Tu) .
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Proof. (i) Since T, is J*-self-adjoint by Lemma 3.1 and the single-valued ex-
tension property holds for each operator in .#(.7#°) whose point spectrum has empty
interior (see [27, page 15]), it is enough to prove that 0,(7,) = 0. We want to show
that 6,(T;?) = 0,(T,2) = 0, which yields that 6,(T,) = 0 by the spectral mapping
theorem. If ker(7;? — o) # {0} for some o € C, then ker(7;> — @) # {0} by Corol-
lary 3.16, which contradicts to the Coburn alternative theorem. Hence, we have that
ker(T? — o) = {0} for all & € C, meaning that 0,(7,?) = 0. Since 0,(T,) =0 by
the spectral mapping theorem, the Toeplitz operator 7, has the single-valued extension
property. Since 6,(7*) = —0,(T)* =0, the adjoint 7, has the single-valued extension
property, too.

(ii) Since T, is J-self-adjoint and T, is J*-self-adjoint, it follows from (i) that
0,(Ty) = 0,(T;7) = 0. This yields that

o(T,) = 0.(T,) Uo,(T,) Uoy(T,) = 0.(Ty),
as we desired. [

From Theorem 4.7, we find skew-diagonal block Toeplitz operators with the single-
valued extension property.

COROLLARY 4.8. Let u and v be nonconstant functions in L. If 7, and T, are
commuting Toeplitz operators which are complex symmetric with the same conjuga-

tion, then T = (2 78‘) is a J-self-adjoint operator with the single-valued extension
Vv

property and
0(T) =04(T) = —0u(T) = | J{or(x) :xe #} = J{—o0r(x) :x € H#}.

Proof. From Proposition 4.1, the block Toeplitz operator T = (2 7&‘) is J-self-
4

adjoint. We know from [27, Theorem 3.3.9] that if T2 has the single-valued extension
property, then so does 7. Thus, we consider the square

2 _ TuTv 0
T‘(o TT,)

Since T, and T, commute, one of the following statements holds:

(1) both T, and T, are analytic;
(i) both 7;, and T, are co-analytic;
(iii) there are o, B € C, not both zero, such that cu + Bv is constant on dID.

If (i) holds, then T, T, = T,,, is subnormal, which ensures from [25] that T2 has the
single-valued extension property. If (i) happens, then 72* has property (B) by [25],
and so is 72 due to Theorem 3.8. Since property () guarantees the single-valued
extension property, the square T2 has the single-valued extension property. Suppose
that (iii) holds, and set cu+ v =y on dID. Here, we may assume that 3 # 0. Then

Gp(TuTv) = Gp(Tuv) = Gp(Tl u()/fotu)) = q(GP(Tu))

B
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where g(A) = +A(y— aA). Since u is a nonconstant function in L* such that T,

is complex symmetric, it follows from Theorem 4.7 that ¢, (7,) = 0, and so we have
0,(TuT,) = q(0,(T,)) = 0. Hence, T,T, has the single-valued extension property, im-
plying that 72 has the single-valued extension property, and so does T as remarked
above.
Since T and T* have the single-valued extension property, [27, Proposition 1.3.2]
yields that
o(T)=0,T)=0uw(T)= U{GT(X) xe A}

In addition, we obtain from Corollary 3.16 that o,(T) = —0y,(T), which completes
the proof. [
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