PROPERTIES OF J-SELF-ADJOINT OPERATORS

Sungeun Jung

(Communicated by R. Curto)

Abstract

In this paper, we consider operators $T \in \mathscr{L}(\mathscr{H})$ such that $(J T)^{*}=J T$ for some anti-unitary J with $J^{2}=-I$; in this case, we say that T is J-self-adjoint. We show that the Aluthge transform of a J-self-adjoint operator is skew-complex symmetric. As an application, we prove that w-hyponormal operators which are J-self-adjoint must be normal. Moreover, we obtain that if $T \in \mathscr{L}(\mathscr{H})$ is a J-self-adjoint operator with property (β), then $T+A$ is decomposable where $A \in \mathscr{L}(\mathscr{H})$ is an algebraic operator commuting with T. We also give examples of J-self-adjoint operators.

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ be the algebra of all bounded linear operators on a separable complex Hilbert space \mathscr{H}. If $T \in \mathscr{L}(\mathscr{H})$, we write $\rho(T), \sigma(T), \sigma_{p}(T), \sigma_{a}(T), \sigma_{\text {comp }}(T)$, $\sigma_{s u}(T), \sigma_{l e}(T), \sigma_{r e}(T)$, and $\sigma_{e}(T)$ for the resolvent set, spectrum, point spectrum, approximate point spectrum, compression spectrum, surjective spectrum, left essential spectrum, right essential spectrum, and essential spectrum of T, respectively.

An operator $J: \mathscr{H} \rightarrow \mathscr{H}$ is said to be anti-unitary if J is anti-linear and $J^{*} J=$ $J J^{*}=I$, where J^{*} stands for the adjoint of J, which is uniquely determined by the relation $\left\langle J^{*} x, y\right\rangle=\overline{\langle x, J y\rangle}$ for $x, y \in \mathscr{H}$. We say that an operator $T \in \mathscr{L}(\mathscr{H})$ is J-selfadjoint if there exists an anti-unitary operator $J: \mathscr{H} \rightarrow \mathscr{H}$ satisfying $J^{2}=-I$ and $(J T)^{*}=J T$.

An anti-linear operator $C: \mathscr{H} \rightarrow \mathscr{H}$ is said to be a conjugation if $C^{2}=I$ and C is isometric, i.e., $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathscr{H}$. If $C: \mathscr{H} \rightarrow \mathscr{H}$ is a conjugation, then the operator matrix \mathscr{J} on $\mathscr{H} \oplus \mathscr{H}$ given by

$$
\mathscr{J}=\left(\begin{array}{cc}
0 & -C \\
C & 0
\end{array}\right)
$$

is anti-unitary and $\mathscr{J}^{2}=-I$.
We say that $T \in \mathscr{L}(\mathscr{H})$ is complex symmetric with conjugation C if $T^{*}=C T C$ for some conjugation C. The class of complex symmetric operators contains all normal

[^0]operators, Hankel operators, compressed Toeplitz operators, algebraic operators of order 2, and some Volterra integration operator, and there are a lot of consequences and applications about complex symmetric operators (see [14], [15], [16], [19], [20], [21], [22], [29], etc.). If T is complex symmetric with conjugation C, then C is anti-unitary with $C^{*}=C$ and $(C T)^{*}=C T$. An operator $T \in \mathscr{L}(\mathscr{H})$ is called skew-complex symmetric if $T^{*}=-C T C$ for some conjugation C.

If $T=U|T|$ denotes the polar decomposition of an operator $T \in \mathscr{L}(\mathscr{H})$, the Aluthge transform of T is defined as $\widetilde{T}:=\left.|T|^{\frac{1}{2}} U\right|^{\frac{1}{2}}$. This transform has several properties which are transmitted to the original operators. For example, by [23, Corollary 1.16], if \widetilde{T} has a nontrivial invariant subspace, then so does T. Thus, many authors have been interested in this operator transform and its applications (see [3], [4], [6], [7], [17], [18], [23], [24], etc.).

For $0<p<\infty$, we say that an operator $T \in \mathscr{L}(\mathscr{H})$ is p-hyponormal if $\left(T^{*} T\right)^{p} \geqslant$ $\left(T T^{*}\right)^{p}$. In particular, 1 -hyponormal operators and $\frac{1}{2}$-hyponormal operators are called hyponormal and semi-hyponormal, respectively. We call $T \in \mathscr{L}(\mathscr{H})$ w-hyponormal if $|\widetilde{T}| \geqslant|T| \geqslant\left|(\widetilde{T})^{*}\right|$. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to be paranormal if $\left\|T^{2} x\right\| \geqslant$ $\|T x\|^{2}$ for all unit vectors $x \in \mathscr{H} . p$-Hyponormal operators are w-hyponormal and w-hyponormal operators are paranormal (see [12]). In addition, if $T \in \mathscr{L}(\mathscr{H})$ is p hyponormal, then \widetilde{T} is $\left(p+\frac{1}{2}\right)$-hyponormal (see [3]). Thus, if $T \in \mathscr{L}(\mathscr{H})$ is w hyponormal, then \widetilde{T} is semi-hyponormal and $\widetilde{\widetilde{T}}$ is hyponormal.

In this paper, we show that the Aluthge transform of a J-self-adjoint operator is skew-complex symmetric. As an application, we prove that w-hyponormal operators which are J-self-adjoint must be normal. Moreover, we obtain that if $T \in \mathscr{L}(\mathscr{H})$ is a J-self-adjoint operator with property (β), then $T+A$ is decomposable where $A \in \mathscr{L}(\mathscr{H})$ is an algebraic operator commuting with T. We also give examples of J-self-adjoint operators.

2. Preliminaries

An operator $T \in \mathscr{L}(\mathscr{H})$ is said to have the single-valued extension property, abbreviated SVEP, if for every open subset G of \mathbb{C}, the only analytic solution $f: G \rightarrow$ \mathscr{H} of the equation $(T-z) f(z) \equiv 0$ on G is the zero function on G. For $T \in \mathscr{L}(\mathscr{H})$ and $x \in \mathscr{H}$, the local resolvent set $\rho_{T}(x)$ of T at x is defined to be the union of every open set G in \mathbb{C} for which there exists an analytic function $f: G \rightarrow \mathscr{H}$ such that $(T-z) f(z) \equiv x$ on G. Since the analytic function $g(z):=(T-z)^{-1} x$ on $\rho(T)$ satisfies that $(T-z) g(z) \equiv x$ on G for every open set G in \mathbb{C} containing $\rho(T)$, it holds that $\rho(T) \subset \rho_{T}(x)$ and any analytic function f appearing in the definition of $\rho_{T}(x)$ can be regarded as an extension of g. It is well known that if T has the single-valued extension property, then the function g is uniquely extended to $\rho_{T}(x)$. We denote the complement of $\rho_{T}(x)$ by $\sigma_{T}(x)$, called the local spectrum of T at x, and define the local spectral subspace of T by $\mathscr{H}_{T}(F)=\left\{x \in \mathscr{H}: \sigma_{T}(x) \subset F\right\}$ for each subset F of \mathbb{C}.

An operator $T \in \mathscr{L}(\mathscr{H})$ is said to have Bishop's property (β) if for every open subset G of \mathbb{C} and every sequence $f_{n}: G \rightarrow \mathscr{H}$ of \mathscr{H}-valued analytic functions such
that $(T-z) f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G, then $f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G. We say that $T \in$ $\mathscr{L}(\mathscr{H})$ has Dunford's property (C) if $\mathscr{H}_{T}(F)$ is closed for each closed subset F of \mathbb{C}. From [8] or [27], we know that

$$
\text { Bishop's property }(\beta) \Rightarrow \text { Dunford's property }(C) \Rightarrow \text { SVEP }
$$

and each of the converse implications fails to hold, in general.
We say that an operator $T \in \mathscr{L}(\mathscr{H})$ is decomposable provided that for every open cover $\left\{G_{1}, G_{2}\right\}$ of \mathbb{C}, there are T-invariant subspaces \mathscr{M}_{1} and \mathscr{N} such that $\mathscr{H}=\mathscr{M}_{1}+\mathscr{M}_{2}, \sigma\left(\left.T\right|_{\mathscr{M}_{1}}\right) \subset G_{1}$, and $\sigma\left(\left.T\right|_{\mathscr{M}_{2}}\right) \subset G_{2}$. An operator T is said to have the decomposition property (δ) if for any open cover $\left\{G_{1}, G_{2}\right\}$ of \mathbb{C}, each vector $x \in \mathscr{H}$ is written as $x=x_{1}+x_{2}$ where $(T-z) f_{1}(z) \equiv x_{j}$ on $\mathbb{C} \backslash \overline{G_{j}}$, with \mathscr{H}-valued analytic function f_{j} on $\mathbb{C} \backslash \overline{G_{j}}$, for $j=1,2$. We remark that $T \in \mathscr{L}(\mathscr{H})$ is decomposable precisely when T has properties (β) and (δ), i.e., both T and T^{*} have Bishop's property (β) (see [1], [8], or [27]).

3. Main results

In this section, we prove that every J-self-adjoint operator has skew-complex symmetric Aluthge transform and give several applications of this result. We begin with the following lemma.

Lemma 3.1. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then the following statements hold:
(i) T^{*} is J^{*}-self-adjoint;
(ii) $T J^{*}=J T^{*}$ and $J^{*} T=T^{*} J$;
(iii) If $T=U|T|$ is the polar decomposition, then $\operatorname{ker}(T)=\operatorname{ker}\left(U^{*} J^{*}\right)=\operatorname{ker}\left(U^{*} J\right)$.

Proof. (i) Since T is J-self-adjoint, we have

$$
T J=J^{*}(J T) J=J^{*}(J T)^{*} J=J^{*}\left(T^{*} J^{*}\right) J=J^{*} T^{*}
$$

i.e., $\left(J^{*} T^{*}\right)^{*}=J^{*} T^{*}$. Since J^{*} is anti-unitary with $J^{* 2}=-I$, the adjoint T^{*} is J^{*} -self-adjoint.
(ii) It follows from (i) that

$$
T J^{*}=-J(J T) J^{*}=-J T^{*} J^{* 2}=J T^{*}
$$

and

$$
J^{*} T=-J^{*}(T J) J=-J^{* 2} T^{*} J=T^{*} J
$$

(iii) If $U^{*} J^{*} x=0$, then (i) implies that

$$
T x=(T J) J^{*} x=J^{*} T^{*} J^{*} x=J^{*}|T| U^{*} J^{*} x=0
$$

Hence, we get that $\operatorname{ker}(T) \supset \operatorname{ker}\left(U^{*} J^{*}\right)$.

Conversely, if $T x=0$, then $0=J T x=T^{*} J^{*} x$ by (i). Since $\operatorname{ker}\left(T^{*}\right)=\operatorname{ker}\left(U^{*}\right)$, we obtain that $U^{*} J^{*} x=0$, and so $\operatorname{ker}(T) \subset \operatorname{ker}\left(U^{*} J^{*}\right)$. Thus $\operatorname{ker}(T)=\operatorname{ker}\left(U^{*} J^{*}\right)$.

If $U^{*} J x=0$, then $J x \in \operatorname{ker}\left(U^{*}\right)=\operatorname{ker}\left(T^{*}\right)$, i.e., $T^{*} J x=0$. Since $T^{*}=J T J$ and $J^{2}=-I$, it follows that $0=T^{*} J x=J T J^{2} x=-J T x$, which ensures that $T x=0$. This means that $\operatorname{ker}(T) \supset \operatorname{ker}\left(U^{*} J\right)$. By applying this procedure reversely, we can show that $\operatorname{ker}(T) \subset \operatorname{ker}\left(U^{*} J\right)$.

We say that an anti-linear operator $W: \mathscr{H} \rightarrow \mathscr{H}$ is a partial conjugation if it is a conjugation on $\operatorname{ker}(W)^{\perp}$. In the following theorem, we provide a representation for the polar decomposition of J-self-adjoint operators.

THEOREM 3.2. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. If $T=U|T|$ is the polar decomposition, then $|T|=J\left|T^{*}\right| J^{*}$ and U is a J^{*}-self-adjoint operator factorized as $U=J W$ where $W:=J^{*} U=U^{*} J$ is a partial conjugation supported by $\overline{\operatorname{ran}(|T|)}$ such that $|T| W=W|T|$.

Proof. Observe that

$$
T=J^{*} T^{*} J^{*}=J^{*}|T| U^{*} J^{*}
$$

Since $U^{*} U$ is the orthogonal projection of \mathscr{H} onto $\overline{\operatorname{ran}(|T|)}$, we get that

$$
T=J^{*}\left(U^{*} U\right)|T| U^{*} J^{*}=\left(J^{2} J^{*} U^{*} J\right)\left(J U|T| U^{*} J^{*}\right)=\left(J U^{*} J\right)\left(J\left|T^{*}\right| J^{*}\right)
$$

Set $V:=J U^{*} J$ and $P:=J\left|T^{*}\right| J^{*}$. Since $P \geqslant 0$ and

$$
P^{2}=J\left|T^{*}\right|^{2} J^{*}=(J T)\left(T^{*} J^{*}\right)=T^{*} J^{*} J T=|T|^{2}
$$

we have $|T|=P=J\left|T^{*}\right| J^{*}$. In addition, since $V^{*}=J^{*} U J^{*}$ and $U^{*} U U^{*}=U^{*}$, we see that

$$
V V^{*} V=\left(J U^{*} J\right)\left(J^{*} U J^{*}\right)\left(J U^{*} J\right)=J\left(U^{*} U U^{*}\right) J=J U^{*} J=V
$$

which implies that V is a partial isometry. According to Lemma 3.1, we know that $\operatorname{ker}(V)=\operatorname{ker}\left(U^{*} J\right)=\operatorname{ker}(T)$, and thus $U=V=J U^{*} J$. In other words, U is J^{*}-selfadjoint. If $W:=J^{*} U=U^{*} J$, then $U=J W$ and it follows from Lemma 3.1 that

$$
|T| W=|T| U^{*} J=T^{*} J=J^{*} T=J^{*} U|T|=W|T|
$$

 $\overline{\operatorname{ran}(|T|)}$, and so W is isometric on $\overline{\operatorname{ran}(|T|)}$. Since

$$
\operatorname{ker}(W)^{\perp}=\operatorname{ker}\left(J^{*} U\right)^{\perp}=\operatorname{ker}(U)^{\perp}=\operatorname{ker}(|T|)^{\perp}=\overline{\operatorname{ran}(|T|)}
$$

we conclude that W is a partial conjugation supported by $\overline{\operatorname{ran}(|T|)}$.
Corollary 3.3. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then T is normal if and only if $|T| J=J|T|$.

Proof. Let $T=U|T|$ be the polar decomposition. By Theorem 3.2, it holds that $|T|=J\left|T^{*}\right| J^{*}$ and $U=J W$ where $W:=J^{*} U=U^{*} J$ is a partial conjugation supported by $\overline{\operatorname{ran}(|T|)}$ such that $|T| W=W|T|$. Hence, if T is normal, then $|T|=\left|T^{*}\right|=J^{*}|T| J$, or equivalently, $|T| J=J|T|$.

Conversely, if $|T| J=J|T|$, then

$$
\begin{aligned}
\left|T^{*}\right|^{2} & =U|T|^{2} U^{*}=J\left(W|T|^{2} W\right) J^{*}=J\left(W^{2}|T|^{2}\right) J^{*} \\
& =J|T|^{2} J^{*}=|T|^{2} J J^{*}=|T|^{2}
\end{aligned}
$$

and thus T is normal.
In [15, page 3916], S. Garcia and M. Putinar pointed out that each partial conjugation can be extended to a conjugation; in detail, if W is a partial conjugation on \mathscr{H}, then $C:=W \oplus W^{\prime}$ acting on $\mathscr{H}=\operatorname{ker}(W)^{\perp} \oplus \operatorname{ker}(W)$ is a conjugation on the entire space \mathscr{H}, where W^{\prime} is any partial conjugation supported by $\operatorname{ker}(W)$. This fact leads to the following decomposition of J-self-adjoint operators.

Corollary 3.4. If $T \in \mathscr{L}(\mathscr{H})$ is a J-self-adjoint operator, then it is decomposed as $T=V|T|$ where V is a unitary operator that is J^{*}-self-adjoint; furthermore, the map $C:=J^{*} V=V^{*} J$ is a conjugation such that $|T| C=C|T|$.

Proof. From Theorem 3.2, write $T=U|T|$ where $U=J W$ and W is a partial conjugation, supported by $\overline{\operatorname{ran}(|T|)}$, commuting with $|T|$. Take a partial conjugation W^{\prime} with support $\operatorname{ker}(W)$ so that $C=W \oplus W^{\prime}$ is a conjugation on $\mathscr{H}=\operatorname{ker}(W)^{\perp} \oplus \operatorname{ker}(W)=$ $\overline{\operatorname{ran}(|T|)} \oplus \operatorname{ker}(|T|)$. Set $V:=J C$. Then $V^{*} V=C J^{*} J C=I$ and $V V^{*}=J C C J^{*}=I$, and thus V is unitary. Since $C^{*}=\underline{C}$, we have $C=J^{*} V=V^{*} J$, i.e., V is J^{*}-self-adjoint. Writing $|T|=|T| \oplus 0$ on $\mathscr{H}=\overline{\operatorname{ran}(|T|)} \oplus \operatorname{ker}(|T|)$, we obtain that

$$
T=U|T|=J W|T|=J C|T|=V|T|
$$

Moreover, since $|T| W=W|T|$, the conjugation C commutes with $|T|$.
Let $T \in \mathscr{L}(\mathscr{H})$ be a J-self-adjoint operator having polar decomposition $T=$ $U|T|$. Under the same notations as in Theorem 3.2 and Corollary 3.4, note that

$$
\begin{equation*}
\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}}(J W)|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}}(J C)|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}} . \tag{1}
\end{equation*}
$$

In the following theorem, we prove that the Aluthge transform of a J-self-adjoint operator is skew-complex symmetric.

THEOREM 3.5. If $T \in \mathscr{L}(\mathscr{H})$ is J-self-adjoint, then its Aluthge transform \widetilde{T} is skew-complex symmetric.

Proof. Suppose that T is J-self-adjoint. Corollary 3.4 permits us to factorize T as $T=V|T|$ where V is a unitary operator which is J^{*}-self-adjoint and $C=J^{*} V$ is a conjugation commuting with $|T|$. Since $C|T|=|T| C$ and $C^{2}=I$, it follows by (1) that

$$
\begin{aligned}
C \widetilde{T} C & =|T|^{\frac{1}{2}} C V C|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} C J|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} C J\left(-J^{* 2}\right)|T|^{\frac{1}{2}} \\
& =-|T|^{\frac{1}{2}} C J^{*}|T|^{\frac{1}{2}}=-|T|^{\frac{1}{2}} V^{*}|T|^{\frac{1}{2}}=-(\widetilde{T})^{*}
\end{aligned}
$$

which completes the proof.
From Theorem 3.5, we assert that every w-hyponormal operator that is J-selfadjoint must be normal.

Corollary 3.6. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then T is w-hyponormal if and only if it is normal.

Proof. If T is normal, then it is clearly w-hyponormal. Conversely, assume that T is w-hyponormal. Since \widetilde{T} is semi-hyponormal, the square $(\widetilde{T})^{2}$ is w-hyponormal by [6]. Since T is J-self-adjoint, it follows from Theorem 3.5 that \widetilde{T} is skew-complex symmetric and so its square $(\widetilde{T})^{2}$ is complex symmetric. According to $[29$, Theorem 3.2], the only complex symmetric w-hyponormal operators are normal operators. Hence, $(\widetilde{T})^{2}$ must be normal. From [5], the Aluthge transform \widetilde{T} is normal, and so is T by [7].

We now apply Theorem 3.5 to derive local spectral properties of J-self-adjoint operators.

Lemma 3.7. Let $T \in \mathscr{L}(\mathscr{H})$. If T has property (β) (resp. property (δ)) if and only if \widetilde{T} has property (β) (resp. property (δ)).

Proof. It is not difficult to show that if $A, B \in \mathscr{L}(\mathscr{H})$, then $A B$ has property (β) if and only if $B A$ does. Hence, taking $A=U|T|^{\frac{1}{2}}$ and $B=|T|^{\frac{1}{2}}$, we see that T has property (β) if and only if \widetilde{T} does. Moreover, since $T^{*}=|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} U^{*}\right)$ has property (β) exactly when $(\widetilde{T})^{*}=\left(|T|^{\frac{1}{2}} U^{*}\right)|T|^{\frac{1}{2}}$ has property (β), the duality of properties (β) and (δ) completes the proof.

Recall that $A \in \mathscr{L}(\mathscr{H})$ is said to bed algebraic if $p(A)=0$ for some nonconstant polynomial p.

THEOREM 3.8. Let $T \in \mathscr{L}(\mathscr{H})$ be a J-self-adjoint operator. If T has property (β), then $T+A$ is decomposable where A is an algebraic operator in $\mathscr{L}(\mathscr{H})$ commuting with T.

Proof. Note that $(\widetilde{T})^{2}$ is complex symmetric by Theorem 3.5. According to Lemma 3.7, the Aluthge transform \widetilde{T} has property (β). Since $(\widetilde{T})^{2}$ has property (β) from [27, Theorem 3.3.9], it follows that $(\widetilde{T})^{2}$ is decomposable by [20]. Since $(\widetilde{T})^{2}$ and $(\widetilde{T})^{2 *}$ have property (β), we get that \widetilde{T} and \widetilde{T}^{*} satisfy the same property using [27, Theorem 3.3.9] again. Therefore, Lemma 3.7 implies that T and T^{*} have property (β).

Next, take any algebraic operator $A \in \mathscr{L}(\mathscr{H})$ such that $A T=T A$, and let $p(z)=$ $\left(z-\gamma_{1}\right)\left(z-\gamma_{2}\right) \cdots\left(z-\gamma_{k}\right)$ be a nonconstant polynomial such that $p(A)=0$. Suppose that $\left\{f_{n}\right\}$ is any sequence of analytic functions on an open set G such that

$$
\lim _{n \rightarrow \infty}\left\|(T+A-z) f_{n}(z)\right\|=0
$$

uniformly on compact sets in G. Setting

$$
p_{0}(z)=1 \text { and } p_{j}(z)=\left(z-\gamma_{1}\right)\left(z-\gamma_{2}\right) \cdots\left(z-\gamma_{j}\right) \text { for } j=1,2, \cdots, k,
$$

we will verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|p_{j}(A) f_{n}(z)\right\|=0 \text { uniformly on compact sets in } G \tag{2}
\end{equation*}
$$

for all $j=0,1,2, \cdots, k$. Equation (2) holds obviously for $j=k$. If (2) is true for some integer j with $1 \leqslant j \leqslant k$, then

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\|p_{j-1}(A)\left(T+A-\gamma_{j}+\gamma_{j}-z\right) f_{n}(z)\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\left(T+\gamma_{j}-z\right) p_{j-1}(A) f_{n}(z)\right\|
\end{aligned}
$$

uniformly on compact sets in G. Since T has property (β), so does $T+\gamma_{k}$, and thus $\lim _{n \rightarrow \infty}\left\|p_{j-1}(A) f_{n}(z)\right\|=0$ uniformly on compact sets in G. Thus, by induction, we conclusion that (2) holds for all $j=0,1,2, \cdots, k$. In particular, $\lim _{n \rightarrow \infty}\left\|f_{n}(z)\right\|=0$ uniformly on compact sets in G. Accordingly, $T+A$ has property (β). Since T^{*} has property (β) and A^{*} is an algebraic operator commuting with $T^{*}, T^{*}+A^{*}$ has property (β). Hence, $T+A$ is decomposable.

For an operator $T \in \mathscr{L}(\mathscr{H})$ and a vector $x \in \mathscr{H}$, the local spectral radius of T at x is defined as

$$
r_{T}(x):=\limsup _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}
$$

It is known that $r(T)=\max \left\{r_{T}(x): x \in \mathscr{H}\right\}$ for any $T \in \mathscr{L}(\mathscr{H})$, where $r(T)$ denotes the spectral radius of T (see [27, Proposition 3.3.14]). An operator $T \in \mathscr{L}(\mathscr{H})$ is called power regular if $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}$ exists for every $x \in \mathscr{H}$. We say that an element $x \in \mathscr{H}$ is a cyclic vector for an operator $T \in \mathscr{L}(\mathscr{H})$ if the linear span of the orbit $\left\{T^{n} x: n=0,1,2, \cdots\right\}$ is dense in \mathscr{H}.

Corollary 3.9. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. If T has property (β), then the following assertions hold:
(i) Both T and T^{*} are power regular. Moreover, $r_{T}(x)=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}$ and $r_{T^{*}}(x)=\lim _{n \rightarrow \infty}\left\|T^{* n} x\right\|^{\frac{1}{n}}$ for all $x \in \mathscr{H}$.
(ii) If $x \in \mathscr{H}$ is a cyclic vector for T^{*}, then $\sigma_{T^{*}}(x)=\sigma\left(T^{*}\right)$ and $r_{T^{*}}(x)=r\left(T^{*}\right)$.

Proof. Since both T and T^{*} have property (β) from Theorem 3.8, the result (i) follows by [27, Proposition 3.3.17]. Moreover, since T^{*} has Dunford's property (C), we obtain (ii) using [27, page 238].

The mean transform of an operator $T \in \mathscr{L}(\mathscr{H})$, firstly introduced in [26], is defined as $\widehat{T}:=\frac{1}{2}(U|T|+|T| U)$ where $T=U|T|$ is the polar decomposition. There are several connections between T and \widehat{T} (see [24] for more details). In the following proposition, we give some local spectral relation between J-self-adjoint operators and their mean transforms.

Proposition 3.10. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint with $|T| J|T|=|T|^{2} J$. If T has property (β), then both \widehat{T} and $\widehat{\left(T^{*}\right)}$ have property (β).

Proof. According to Theorem 3.2, the polar decomposition of T is given by $T=$ $U|T|$ where $|T|=J\left|T^{*}\right| J^{*}$ and $U=J W$ for some partial conjugation W commuting with T. Since $|T| J|T|=|T|^{2} J$, it holds that

$$
|T| U|T|=|T| J W|T|=|T| J|T| W=|T|^{2} J W=|T|^{2} U
$$

Due to [24], it follows that \widehat{T} has property (β).
Now, let $\left\{f_{n}\right\}$ be a sequence of \mathscr{H}-valued functions analytic on an open set G such that $\lim _{n \rightarrow \infty}\left\|\left(\widehat{\left(T^{*}\right)}-z\right) f_{n}(z)\right\|=0$ uniformly on compact sets in G. Since $W=$ $J^{*} U=U^{*} J,\left|T^{*}\right|=J^{*}|T| J$, and $W|T|=|T| W$, we obtain that

$$
\begin{aligned}
J^{*} \widehat{T} J^{*} & =\frac{1}{2}\left(W|T| J^{*}+J^{*}|T| J W J^{*}\right)=\frac{1}{2}\left(|T| W J^{*}+\left|T^{*}\right| W J^{*}\right) \\
& =\frac{1}{2}\left(|T| U^{*}+\left|T^{*}\right| U^{*}\right)=\widehat{\left(T^{*}\right)}
\end{aligned}
$$

Hence

$$
0=\lim _{n \rightarrow \infty}\left\|J\left(\widehat{\left(T^{*}\right)}-z\right) J\left(J^{*} f_{n}(z)\right)\right\|=\lim _{n \rightarrow \infty}\left\|(\widehat{T}+\bar{z})\left(J^{*} f_{n}(z)\right)\right\|
$$

uniformly on compact sets in G. For each n, define the function $g_{n}(\zeta)=J^{*} f_{n}(-\bar{\zeta})$ for $\zeta \in-G^{*}:=\{-\bar{z}: z \in G\}$. Then $\lim _{n \rightarrow \infty}\left\|(\widehat{T}-\zeta) g_{n}(\zeta)\right\|=0$ uniformly on compact sets in $-G^{*}$. Note that each g_{n} is analytic on the open set $-G^{*}$; indeed, if $\zeta_{0} \in-G^{*}$, then $-\overline{\zeta_{0}} \in G$. Writing $f_{n}(z)=\sum_{n=0}^{\infty}\left(z+\overline{\zeta_{0}}\right)^{n} a_{n}$ on a neighborhood of $-\bar{\zeta}_{0}$ contained in G, where $\left\{a_{n}\right\} \subset \mathscr{H}$, we see that for $\zeta \in-G^{*}$,

$$
g_{n}(\zeta)=J^{*} f_{n}(-\bar{\zeta})=J^{*}\left(\sum_{n=0}^{\infty}\left(-\bar{\zeta}+\overline{\zeta_{0}}\right)^{n} a_{n}\right)=\sum_{n=0}^{\infty}(-1)^{n}\left(\zeta-\zeta_{0}\right)^{n} J^{*} a_{n}
$$

This means that g_{n} is analytic at every point ζ_{0} in $-G^{*}$. Since \widehat{T} has property (β), we get that $\lim _{n \rightarrow \infty}\left\|g_{n}\right\|=0$ uniformly on compact sets in G, which ensures that $\left\{f_{n}\right\}$ converges in norm to 0 uniformly on compact sets in G. Thus, $\widehat{\left(T^{*}\right)}$ has property (β).

We next examine Dunford's property (C) of J-self-adjoint operators.
Proposition 3.11. If $T \in \mathscr{L}(\mathscr{H})$ is J-self-adjoint, then the following properties hold:
(i) $\sigma_{T}(x)=-\left(\sigma_{T^{*}}(J x)\right)^{*}$ for all $x \in \mathscr{H}$.
(ii) $J \mathscr{H}_{T}(F)=\mathscr{H}_{T^{*}}\left(-F^{*}\right)$ for any subset F of \mathbb{C}.

Proof. (i) Let $x \in \mathscr{H}$ be given and let G be any open set in \mathbb{C}. If $f: G \rightarrow \mathscr{H}$ is an analytic function such that $(T-z) f(z)=x$ for all $z \in G$, then

$$
J x=J\left(T-z J J^{*}\right) f(z)=\left(T^{*}+\bar{z}\right) J^{*} f(z)
$$

for $z \in G$, i.e.,

$$
\begin{equation*}
\left(T^{*}-\zeta\right) J^{*} f(-\bar{\zeta})=J x \tag{3}
\end{equation*}
$$

for $\zeta \in-G^{*}$. Since $J^{*} f(-\bar{\zeta})$ is analytic for $\zeta \in-G^{*}$ (see the proof of Theorem 3.10), we have $-\left(\rho_{T}(x)\right)^{*} \subset \rho_{T^{*}}(J x)$ for all $x \in \mathscr{H}$. Hence

$$
\begin{equation*}
\left(\sigma_{T^{*}}(J x)\right)^{*} \subset \mathbb{C} \backslash\left(-\rho_{T}(x)\right)=-\left(\mathbb{C} \backslash \rho_{T}(x)\right)=-\sigma_{T}(x) \tag{4}
\end{equation*}
$$

for all $x \in \mathscr{H}$. Since T^{*} is J^{*}-self-adjoint by Lemma 3.1, we obtain from (4) that $\left(\sigma_{T}\left(J^{*} x\right)\right)^{*} \subset-\sigma_{T^{*}}(x)$ for all $x \in \mathscr{H}$. Replacing x with $J x$ and taking complex conjugate, we get that

$$
\begin{equation*}
\sigma_{T}(x) \subset-\left(\sigma_{T^{*}}(J x)\right)^{*} \tag{5}
\end{equation*}
$$

for all $x \in \mathscr{H}$. Thus, we complete the proof from (4) and (5).
(ii) Suppose that F is a subset of \mathscr{H}. If $x \in \mathscr{H}_{T}(F)$, then

$$
-\left(\sigma_{T^{*}}(J x)\right)^{*}=\sigma_{T}(x) \subset F
$$

by (i). Since $\sigma_{T^{*}}(J x) \subset-F^{*}$, it holds that $J x \in \mathscr{H}_{T^{*}}\left(-F^{*}\right)$, and so

$$
J \mathscr{H}_{T}(F) \subset \mathscr{H}_{T^{*}}\left(-F^{*}\right)
$$

Applying the above argument to the adjoint T^{*}, we deduce the inclusion

$$
J^{*} \mathscr{H}_{T^{*}}\left(-F^{*}\right) \subset \mathscr{H}_{T}(F)
$$

Therefore, $J \mathscr{H}_{T}(F)=\mathscr{H}_{T^{*}}\left(-F^{*}\right)$.
Corollary 3.12. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then T has Dunford's property (C) if and only if its adjoint T^{*} does.

Proof. Assume that $T \in \mathscr{L}(\mathscr{H})$ is a J-self-adjoint operator satisfying Dunford's property (C). Let F be any closed subset of \mathbb{C}. Then $\mathscr{H}_{T}\left(-F^{*}\right)$ is closed. Since $\mathscr{H}_{T^{*}}(F)=J \mathscr{H}_{T}\left(-F^{*}\right)$ from Proposition 3.11 and J is anti-unitary, the subspace $\mathscr{H}_{T^{*}}(F)$ is closed. Hence, we conclude that T^{*} has Dunford's property (C). The converse also holds by Lemma 3.1.

We say that an operator $T \in \mathscr{L}(\mathscr{H})$ has Dunford's boundedness condition (B) if it has the single-valued extension property and there exists a constant $K>0$ such that $\left\|x_{1}\right\| \leqslant K\left\|x_{1}+x_{2}\right\|$ for any $x_{1}, x_{2} \in \mathscr{K}$ with $\sigma_{T}\left(x_{1}\right) \cap \sigma_{T}\left(x_{2}\right)=\emptyset$, where K is independent of x_{1} and x_{2}.

Corollary 3.13. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then the following assertions hold:
(i) T has Dunford's boundedness condition (B) if and only if T^{*} does.
(ii) If T has the single-valued extension property and possesses the property that $\sigma_{T}\left(P_{F} x\right) \subset \sigma_{T}(x)$ for all $x \in \mathscr{H}$ and each closed set F in \mathbb{C}, where P_{F} denotes the orthogonal projection of \mathscr{H} onto $\mathscr{H}_{T}(F)$, then both T and T^{*} have Dunford's boundedness condition (B).

Proof. (i) It suffices to prove one implication. If T has Dunford's boundedness condition (B), choose a constant $K>0$ such that $\left\|x_{1}\right\| \leqslant K\left\|x_{1}+x_{2}\right\|$ for any $x_{1}, x_{2} \in$ \mathscr{H} with $\sigma_{T}\left(x_{1}\right) \cap \sigma_{T}\left(x_{2}\right)=\emptyset$. Let y_{1} and y_{2} be arbitrary vectors in \mathscr{H} with $\sigma_{T^{*}}\left(y_{1}\right) \cap$ $\sigma_{T^{*}}\left(y_{2}\right)=\emptyset$. It follows from Proposition 3.11 that $\sigma_{T}\left(J^{*} y_{1}\right) \cap \sigma_{T}\left(J^{*} y_{2}\right)=\emptyset$, and thus $\left\|J^{*} y_{1}\right\| \leqslant K\left\|J^{*} y_{1}+J^{*} y_{2}\right\|$. This implies that

$$
\left\|y_{1}\right\|=\left\|J^{*} y_{1}\right\| \leqslant K\left\|J^{*}\left(y_{1}+y_{2}\right)\right\|=K\left\|y_{1}+y_{2}\right\|
$$

In addition, we can obtain that T^{*} has the single-valued extension property. Thus, T^{*} satisfies Dunford's boundedness condition (B).
(ii) Let $x_{1}, x_{2} \in \mathscr{H}$ be such that $\sigma_{T}\left(x_{1}\right) \cap \sigma_{T}\left(x_{2}\right)=\emptyset$. Set $F_{j}=\sigma_{T}\left(x_{j}\right)$ for $j=$ 1,2. By the hypothesis, we have $\sigma_{T}\left(P_{F_{2}} x_{1}\right) \subset \sigma_{T}\left(x_{1}\right)=F_{1}$. Moreover, it is obvious that $\sigma_{T}\left(P_{F_{2}} x_{1}\right) \subset F_{2}$ by the definition of $P_{F_{2}}$. Hence

$$
\sigma_{T}\left(P_{F_{2}} x_{1}\right) \subset F_{1} \cap F_{2}=\sigma_{T}\left(x_{1}\right) \cap \sigma_{T}\left(x_{2}\right)=\emptyset
$$

Since T has the single-valued extension property, we get that $P_{F_{2}} x_{1}=0$ by [27, Proposition 1.2.16], that is, $x_{1} \perp \mathscr{H}_{T}\left(F_{2}\right)$. But $\sigma_{T}\left(x_{2}\right)=F_{2}$, and so x_{2} clearly belongs to $\mathscr{H}_{T}\left(F_{2}\right)$. Then $\left\langle x_{1}, x_{2}\right\rangle=0$, which implies that $\left\|x_{1}+x_{2}\right\| \geqslant\left\|x_{1}\right\|$. Thus, T has Dunford's boundedness condition (B), and so does T^{*} from (i).

For an operator $T \in \mathscr{L}(\mathscr{H})$, the quasinilpotent part of T is defined by

$$
H_{0}(T):=\left\{x \in \mathscr{H}: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

Corollary 3.14. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. If $H_{0}(T-\lambda)$ is closed for all $\lambda \in \mathbb{C}$, then T^{*} has the single-valued extension property and $\mathscr{H}_{T^{*}}(\{\lambda\})$ is closed for each $\lambda \in \mathbb{C}$.

Proof. Suppose that T is J-self-adjoint and $H_{0}(T-\lambda)$ is closed for each $\lambda \in \mathbb{C}$. Since T has the single-valued extension property by [1, Theorem 2.31], so does \widetilde{T} by some application of the proof of Lemma 3.7. As in the proof of Theorem 3.8, we see that T^{*} has the single-valued extension property. Fix any $\lambda \in \mathbb{C}$. From [2, Theorem 1.5], we get that $\mathscr{H}_{T}(\{\lambda\})=H_{0}(T-\lambda)$. Proposition 3.11 implies that

$$
\mathscr{H}_{T^{*}}(\{\lambda\})=J \mathscr{H}_{T}(\{-\bar{\lambda}\})=J H_{0}(T+\bar{\lambda})
$$

Since $H_{0}(T+\bar{\lambda})$ is closed and J maps a closed subspace onto a closed one, we conclude that the local spectral subspace $\mathscr{H}_{T^{*}}(\{\lambda\})$ is closed.

Similarly to complex symmetric operators, there exist connections between the spectra of a J-self-adjoint operator and its adjoint. Given any set E in \mathbb{C}, write $E^{*}:=$ $\{\bar{z}: z \in E\}$ and $-E:=\{-z: z \in E\}$.

Proposition 3.15. Let $T \in \mathscr{L}(\mathscr{H})$ be J-self-adjoint. Then

$$
\begin{equation*}
\sigma_{\Delta}\left(T^{*}\right)=-\sigma_{\Delta}(T)^{*} \tag{6}
\end{equation*}
$$

where $\sigma_{\Delta} \in\left\{\sigma_{p}, \sigma_{a}, \sigma_{c o m p}, \sigma_{s u}, \sigma_{l e}, \sigma_{r e}, \sigma_{e}, \sigma\right\}$.

Proof. We first deal with the left essential spectrum. If $\alpha \in \sigma_{l e}(T)$, then there is a sequence $\left\{x_{n}\right\}$ of unit vectors in \mathscr{H} such that $x_{n} \rightarrow 0$ weakly and $\lim _{n \rightarrow \infty} \|(T-$ $\alpha) x_{n} \|=0$. Observe that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\|J(T-\alpha) x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J\left(T-\alpha J J^{*}\right) x_{n}\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\left(T^{*} J^{*}-\bar{\alpha} J^{2} J^{*}\right) x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\left(T^{*}+\bar{\alpha}\right) J^{*} x_{n}\right\|
\end{aligned}
$$

It is evident that $\left\|J^{*} x_{n}\right\|=\left\|x_{n}\right\|=1$ for all n and $J^{*} x_{n} \rightarrow 0$ weakly, and so $-\bar{\alpha} \in$ $\sigma_{l e}\left(T^{*}\right)$, meaning that

$$
\begin{equation*}
-\sigma_{l e}(T)^{*} \subset \sigma_{l e}\left(T^{*}\right) \tag{7}
\end{equation*}
$$

Since T^{*} is J^{*}-self-adjoint by Lemma 3.1, equation (7) holds when we replace T with T^{*}, which yields that

$$
\begin{equation*}
\sigma_{l e}\left(T^{*}\right) \subset-\sigma_{l e}(T)^{*} \tag{8}
\end{equation*}
$$

From (7) and (8), it follows that

$$
\sigma_{l e}\left(T^{*}\right)=-\sigma_{l e}(T)^{*}
$$

By a similar method, one can see that (6) is also true for the cases $\sigma_{\Delta}=\sigma_{p}, \sigma_{a p}$. Since $\sigma_{\text {comp }}\left(A^{*}\right)=\sigma_{p}(A)^{*}, \sigma_{s u}\left(A^{*}\right)=\sigma_{a}(A)^{*}$, and $\sigma_{\text {re }}\left(A^{*}\right)=\sigma_{l e}(A)^{*}$ where A is any operator in $\mathscr{L}(\mathscr{H})$, we obtain (6) for $\sigma_{\Delta}=\sigma_{\Delta}=\sigma_{c o m p}, \sigma_{s u}, \sigma_{r e}$. Moreover, since $\sigma_{e}(A)=\sigma_{l e}(A) \cup \sigma_{r e}(A)$ and $\sigma(A)=\sigma_{a}(A) \cup \sigma_{\text {comp }}(A)$ for any operator $A \in \mathscr{L}(\mathscr{H})$, equation (6) holds for $\sigma_{\Delta}=\sigma_{e}, \sigma$. So, we complete the proof.

Corollary 3.16. If $T \in \mathscr{L}(\mathscr{H})$ is J-self-adjoint, then the following properties hold:
(i) $\sigma_{\text {comp }}(T)=-\sigma_{p}(T), \sigma_{s u}(T)=-\sigma_{a}(T)$, and $\sigma_{r e}(T)=-\sigma_{l e}(T)$.
(ii) $\sigma(T)=-\sigma(T)$ and $\sigma_{e}(T)=-\sigma_{e}(T)$.
(iii) $\sigma(T)=\sigma_{a}(T) \cup\left(-\sigma_{p}(T)\right)=\sigma_{p}(T) \cup\left(-\sigma_{a}(T)\right)=\sigma_{p}(T) \cup \sigma_{s u}(T)$.
(iv) $\sigma_{e}(T)=\sigma_{l e}(T) \cup\left(-\sigma_{l e}(T)\right)=\sigma_{r e}(T) \cup\left(-\sigma_{r e}(T)\right)$.
(v) $\operatorname{ker}(T-\alpha)=J \operatorname{ker}\left(T^{*}+\bar{\alpha}\right)$ for each $\alpha \in \mathbb{C}$.
(vi) $\operatorname{ker}\left(T^{2}-\alpha\right)=J^{*} \operatorname{ker}\left(T^{* 2}-\bar{\alpha}\right)$ for each $\alpha \in \mathbb{C}$.

Proof. (i) Proposition 3.15 implies that

$$
\sigma_{\text {comp }}(T)=-\sigma_{\text {comp }}\left(T^{*}\right)^{*}=-\sigma_{p}(T)
$$

Similarly, we get the remaining identities in (i).
(ii) We obtain from Proposition 3.15 that

$$
\sigma_{e}(T)=-\sigma_{e}\left(T^{*}\right)^{*}=-\sigma_{e}(T) \text { and } \sigma(T)=-\sigma\left(T^{*}\right)^{*}=-\sigma(T)
$$

(iii) By (i), it follows that

$$
\sigma(T)=\sigma_{a}(T) \cup \sigma_{\text {comp }}(T)=\sigma_{a}(T) \cup\left(-\sigma_{p}(T)\right)
$$

Hence, the proof is complete due to (ii).
(iv) Since $\sigma_{e}(T)=\sigma_{l e}(T) \cup \sigma_{r e}(T)$ and $\sigma_{r e}(T)=-\sigma_{l e}(T)$ by (i), we deduce the result.
(v) As an application of the proof of Proposition 3.15, we see that

$$
J^{*} \operatorname{ker}(T-\alpha) \subset \operatorname{ker}\left(T^{*}+\bar{\alpha}\right) \text {, i.e., } \operatorname{ker}(T-\alpha) \subset J \operatorname{ker}\left(T^{*}+\bar{\alpha}\right)
$$

for $\alpha \in \mathbb{C}$. Since T^{*} is J^{*}-self-adjoint by Lemma 3.1, it also holds that

$$
J \operatorname{ker}\left(T^{*}+\bar{\alpha}\right) \subset \operatorname{ker}(T-\alpha)
$$

for $\alpha \in \mathbb{C}$, which verifies (v).
(vi) Let $\alpha \in \mathbb{C}$ be arbitrary. If $x \in \operatorname{ker}\left(T^{2}-\alpha\right)$, then

$$
\bar{\alpha} J x=J(\alpha x)=J T^{2} x=(J T) T x=T^{*}\left(J^{*} T\right) x=T^{* 2} J x
$$

by Lemma 3.1, and so $J x \in \operatorname{ker}\left(T^{* 2}-\bar{\alpha}\right)$. Hence $J \operatorname{ker}\left(T^{2}-\alpha\right) \subset \operatorname{ker}\left(T^{* 2}-\bar{\alpha}\right)$. Similarly, we get that $J^{*} \operatorname{ker}\left(T^{* 2}-\bar{\alpha}\right) \subset \operatorname{ker}\left(T^{2}-\alpha\right)$. Therefore it holds that $\operatorname{ker}\left(T^{2}-\alpha\right)=$ $J^{*} \operatorname{ker}\left(T^{* 2}-\bar{\alpha}\right)$.

4. Examples

In this section, we give several examples and study their spectral properties of J-self-adjoint operators. In particular, we find J-self-adjoint operators that are not complex symmetric (see Proposition 4.5 and Example 4.6). We first consider 2×2 operator matrices which are \mathscr{J}-self-adjoint where

$$
\mathscr{J}=\left(\begin{array}{cc}
0 & -C \\
C & 0
\end{array}\right)
$$

for some conjugation $C: \mathscr{H} \rightarrow \mathscr{H}$.
PROPOSITION 4.1. Let $T=\left(\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right)$ be a 2×2 operator matrix in $\mathscr{L}(\mathscr{H} \oplus \mathscr{H})$, and let $\mathscr{J}=\left(\begin{array}{cc}0 & -C \\ C & 0\end{array}\right)$ where C is any conjugation on \mathscr{H}. Then T is \mathscr{J}-self-adjoint if and only if both T_{2} and T_{3} are complex symmetric with the conjugation C and $T_{4}=-C T_{1}^{*} C$. In particular, if all of T_{1}, T_{2}, and T_{3} are complex symmetric with the same conjugation C, then $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ T_{3} & -T_{1}\end{array}\right)$ is \mathscr{J}-self-adjoint.

Proof. It is easy to see that T is \mathscr{J}-self-adjoint if and only if $T^{*}=\mathscr{J} T \mathscr{J}$, namely

$$
\left(\begin{array}{cc}
T_{1}^{*} & T_{3}^{*} \tag{9}\\
T_{2}^{*} & T_{4}^{*}
\end{array}\right)=\left(\begin{array}{cc}
-C T_{4} C & C T_{3} C \\
C T_{2} C & -C T_{1} C
\end{array}\right)
$$

Since $T_{4}^{*}=-C T_{1} C$ is equivalent to $T_{1}^{*}=-C T_{4} C$, equation (9) holds exactly when both T_{2} and T_{3} are complex symmetric with conjugation C and $T_{4}=-C T_{1}^{*} C$.

Corollary 4.2. Let $T_{1} \in \mathscr{L}(\mathscr{H})$ be a normal operator, and let $A \in \mathscr{L}(\mathscr{H})$ be a nonzero operator such that $A T_{1}=T_{1} A=0$. Then the operator matrix

$$
\left(\begin{array}{cc}
T_{1} & A \\
T_{1} & -T_{1}
\end{array}\right)
$$

is decomposable.
Proof. Since every normal operator is complex symmetric by [14], choose a conjugation C on \mathscr{H} satisfying $C T_{1} C=T_{1}^{*}$. Then

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
T_{1} & -T_{1}
\end{array}\right)
$$

is \mathscr{J}-self-adjoint with $\mathscr{J}=\left(\begin{array}{cc}0 & -C \\ C & 0\end{array}\right)$. In addition, it is easy to see that T has property (β). Since $N:=\left(\begin{array}{ll}0 & A \\ 0 & 0\end{array}\right)$ is nilpotent of order 2 and $N T=T N$, we complete the proof from Theorem 3.8.

According to Proposition 4.1, one can construct J-self-adjoint operators using complex symmetric operators. In order to give concrete examples, consider weighted composition operators on the Hilbert-Hardy space H^{2} of the open unit disk \mathbb{D}. The Hardy space H^{2} is regarded as a closed subspace of $L^{2}=L^{2}(\partial \mathbb{D}, m)$ where m denotes the (normalized) Lebesgue measure on the unit circle $\partial \mathbb{D}$. For an analytic function f on \mathbb{D} and an analytic self-map φ of \mathbb{D}, the operator $W_{f, \varphi}: H^{2} \rightarrow H^{2}$ given by $W_{f, \varphi} h=$ $f \cdot(h \circ \varphi)$ is called a weighted composition operator. In particular, $C_{\varphi}:=W_{1, \varphi}$ is said to be a composition operator. If φ is any analytic self-map of \mathbb{D} and $f \in H^{2}$ for which $W_{f, \varphi}$ is bounded on H^{2}, then $W_{f, \varphi}^{*} K_{\beta}=\overline{f(\beta)} K_{\varphi(\beta)}$ for $\beta \in \mathbb{D}$, where $K_{\beta}:=\frac{1}{1-\bar{\beta} z}$ so-called the reproducing kernel of H^{2} at a point β in \mathbb{D}. We refer the readers to [9], [10], [11], [19], and [28] for more details on weighted composition operators on H^{2}. In [19], the authors characterized complex symmetric weighted composition operators on H^{2} with a specific conjugation. Using this characterization, we give the following example.

EXAMPLE 4.3. Let $\mathscr{C}: H^{2} \rightarrow H^{2}$ be the conjugation given by $\mathscr{C} h=\widehat{h}$ where $\widehat{h}(z):=\overline{h(\bar{z})}$ for $z \in \mathbb{D}$. Suppose that $\psi_{j}(z)=a_{j}+\frac{b_{j} z}{1-a_{j} z}$ and $g_{j}(z)=\frac{c_{j}}{1-a_{j} z}$ with constants $a_{j} \in \mathbb{D}$ and $b_{j}, c_{j} \in \mathbb{C}$ for $j=1,2$. Then each $W_{g_{j}, \psi_{j}}$ is complex symmetric with conjugation \mathscr{C} by [19, Theorem 3.3]. Hence, given analytic self-map φ of \mathbb{D} and $f \in H^{2}$ for which $W_{f, \varphi}$ is bounded on H^{2}, Proposition 4.1 implies that $\left(\begin{array}{cc}W_{f, \varphi} & W_{g_{1}, \psi_{1}} \\ W_{g_{2}, \psi_{2}} & -\mathscr{C} W_{f, \varphi}^{*} \mathscr{C}\end{array}\right)$ is \mathscr{J}-self-adjoint with respect to $\mathscr{J}=\left(\begin{array}{cc}0 & -\mathscr{C} \\ \mathscr{C} & 0\end{array}\right)$. Since $\mathscr{C} K_{\beta}=K_{\bar{\beta}}$ for each point β in \mathbb{D}, we compute that

$$
\mathscr{C} W_{f, \varphi}^{*} \mathscr{C} K_{\beta}=\mathscr{C} W_{f, \varphi}^{*} K_{\bar{\beta}}=\mathscr{C}\left(\overline{f(\bar{\beta})} K_{\varphi(\bar{\beta})}\right)=\overline{\widehat{f}(\beta)} K_{\widehat{\varphi}(\beta)}=W_{\widehat{f}, \widehat{\varphi}}^{*} K_{\beta}
$$

for $\beta \in \mathbb{D}$. Since the linear span of reproducing kernels is dense in H^{2}, we have $\mathscr{C} W_{f, \varphi}^{*} \mathscr{C}=W_{\hat{f}, \widehat{\varphi}}^{*}$. Thus

$$
\left(\begin{array}{cc}
W_{f, \varphi} & W_{g_{1}, \psi_{1}} \\
W_{g_{2}, \psi_{2}} & -W_{\hat{f}, \widehat{\varphi}}^{*}
\end{array}\right)
$$

is \mathscr{J}-self-adjoint.
If $\varphi(z)=\frac{a z+b}{c z+d}$ is a linear fractional self-map of \mathbb{D} where a, b, c, d are complex numbers with $a d-b c \neq 0$, then Cowen's adjoint formula states that $C_{\varphi}^{*}=T_{g} C_{\sigma} T_{h}^{*}$ where $g(z)=\frac{1}{-\bar{b} z+\bar{d}}, \sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}}$, and $h(z)=c z+d$ (see [9]). Taking $f \equiv 1$ in Example 4.3, we obtain the following \mathscr{J}-self-adjoint block matrix of operators:

$$
\left(\begin{array}{cc}
C_{\varphi} & W_{g_{1}, \psi_{1}} \tag{10}\\
W_{g_{2}, \psi_{2}} & -C_{\widehat{\varphi}}^{*}
\end{array}\right)
$$

where φ is any analytic self-map of \mathbb{D}. If φ is a linear self-map of \mathbb{D}, then Cowen's adjoint formula allows us to replace $C_{\widehat{\varphi}}^{*}$ in (10) with some weighted composition operator.

Example 4.4. Assume that $\varphi(z)=a z+b$ where $|a|+|b| \leqslant 1$. Then φ is an analytic self-map of \mathbb{D}. Since $\widehat{\varphi}(z):=\overline{\varphi(\bar{z})}=\bar{a} z+\bar{b}$, apply Cowen's adjoint formula to $C_{\hat{\varphi}}^{*}$, as follows:

$$
C_{\widehat{\varphi}}^{*}=T_{g} C_{\sigma}=W_{g, \sigma}
$$

with $g(z)=\frac{1}{1-b z}$ and $\sigma(z)=\frac{a z}{1-b z}$. Therefore, the block matrix of weighted composition operators $\left(\begin{array}{cc}C_{\varphi} & W_{g_{1}, \psi_{1}} \\ W_{g_{2}, \psi_{2}} & -W_{g, \sigma}\end{array}\right)$ is \mathscr{J}-self-adjoint, where the maps ψ_{j} and g_{j} as well as the anti-unitary \mathscr{J} are defined as in Example 4.3. In particular, substituting $W_{g_{j}, \psi_{j}}=I$ for $j=1,2$ (i.e., $a_{j}=0$ and $b_{j}=c_{j}=1$), we get that

$$
\left(\begin{array}{cc}
C_{\varphi} & I \\
I & -W_{g, \sigma}
\end{array}\right)=\left(\begin{array}{cc}
C_{a z+b} & I \\
I & W_{\frac{-1}{}, \frac{a z}{1-b z}, 1-b z}^{1-2}
\end{array}\right)
$$

is
\mathscr{J}-self-adjoint.
We next find J-self-adjoint operators that are not complex symmetric.

Corollary 4.5. Suppose that C is a conjugation on \mathscr{H} and A is any operator in $\mathscr{L}(\mathscr{H})$ such that $\mathscr{E}_{p}(A) \neq-\mathscr{E}_{p}(A)$ where $\mathscr{E}_{p}(A):=\sigma_{p}(A)^{*} \cup\left(-\sigma_{p}\left(A^{*}\right)\right)$. Then the operator matrix

$$
T=\left(\begin{array}{cc}
A & 0 \\
0 & -C A^{*} C
\end{array}\right)
$$

is J-self-adjoint but not complex symmetric.

Proof. We obtain from Proposition 4.1 that $T=\left(\begin{array}{cc}A & 0 \\ 0 & -C A^{*} C\end{array}\right)$ is \mathscr{J}-self-adjoint where $\mathscr{J}=\left(\begin{array}{cc}0 & -C \\ C & 0\end{array}\right)$. Since $\left(C A^{*} C\right)^{*}=C A C$, one can see that

$$
\left\{\begin{array}{l}
\sigma_{p}(T)=\sigma_{p}(A) \cup\left(-\sigma_{p}\left(C A^{*} C\right)\right) \\
\sigma_{p}\left(T^{*}\right)=\sigma_{p}\left(A^{*}\right) \cup\left(-\sigma_{p}(C A C)\right) .
\end{array}\right.
$$

We will use

$$
\begin{equation*}
\sigma_{p}(C B C)=\sigma_{p}(B)^{*} \tag{11}
\end{equation*}
$$

where B is any operator in $\mathscr{L}(\mathscr{H})$. Indeed, if $\alpha \in \sigma_{p}(C B C)$, then $(C B C-\alpha) x=0$ for some nonzero vector $x \in \mathscr{H}$, and so $0=C(C B C-\alpha) x=(B-\bar{\alpha}) C x$. Since C is a conjugation, $C x$ must be a nonzero vector in \mathscr{H}, so that $\bar{\alpha} \in \sigma_{p}(B)$. Hence $\sigma_{p}(C B C) \subset \sigma_{p}(B)^{*}$. Replacing B with $C B C$, we get that $\sigma_{p}(B) \subset \sigma_{p}(C B C)^{*}$. Thus $\sigma_{p}(C B C)=\sigma_{p}(B)^{*}$. According to (11), we obtain that

$$
\left\{\begin{array}{l}
\sigma_{p}(T)=\sigma_{p}(A) \cup\left(-\sigma_{p}\left(A^{*}\right)^{*}\right) \\
\sigma_{p}\left(T^{*}\right)=\sigma_{p}\left(A^{*}\right) \cup\left(-\sigma_{p}(A)^{*}\right)
\end{array}\right.
$$

which implies that $\sigma_{p}(T)^{*} \neq \sigma_{p}\left(T^{*}\right)$ by the given hypothesis. By [20, Lemma 4.1], we can draw the conclusion that T is not complex symmetric.

The following example illuminates Corollary 4.5.

Example 4.6. Let $A:=S+\alpha$ for some nonzero $\alpha \in \mathbb{C}$ where S is a unilateral shift on \mathscr{H}. Since $\sigma_{p}(A)=\emptyset$ and $\sigma_{p}\left(A^{*}\right)=\sigma_{p}\left(S^{*}+\bar{\alpha}\right)$ is the open disk of radius 1 centered at $\bar{\alpha}$, we have $\mathscr{E}_{p}(A) \neq-\mathscr{E}_{p}(A)$ where $\mathscr{E}_{p}(A)$ is given as in Corollary 4.5. Hence, it follows from Corollary 4.5 that the operator matrix $T=\left(\begin{array}{cc}A & 0 \\ 0 & -C A^{*} C\end{array}\right)$ is J-self-adjoint but not complex symmetric, where C is any conjugation on \mathscr{H}.

For $u \in L^{\infty}=L^{\infty}(\partial \mathbb{D}, m)$, the Toeplitz operator T_{u} is defined by

$$
T_{u} h=P_{+}(u h) \text { for } h \in H^{2}
$$

where P_{+}stands for the orthogonal projection of L^{2} onto the Hardy space H^{2}. In the following theorem, we show that every J-self-adjoint Toeplitz operator has no eigenvalues.

THEOREM 4.7. Let $u \in L^{\infty}$ be nonconstant. If T_{u} is J-self-adjoint, then the following assertions hold:
(i) $\sigma_{p}\left(T_{u}\right)=\emptyset$; hence, both T_{u} and T_{u}^{*} have the single-valued extension property.
(ii) $\sigma\left(T_{u}\right)=\sigma_{e}\left(T_{u}\right)$.

Proof. (i) Since T_{u}^{*} is J^{*}-self-adjoint by Lemma 3.1 and the single-valued extension property holds for each operator in $\mathscr{L}(\mathscr{H})$ whose point spectrum has empty interior (see [27, page 15]), it is enough to prove that $\sigma_{p}\left(T_{u}\right)=\emptyset$. We want to show that $\sigma_{p}\left(T_{u}^{2}\right)=\sigma_{p}\left(T_{u^{2}}\right)=\emptyset$, which yields that $\sigma_{p}\left(T_{u}\right)=\emptyset$ by the spectral mapping theorem. If $\operatorname{ker}\left(T_{u}^{2}-\alpha\right) \neq\{0\}$ for some $\alpha \in \mathbb{C}$, then $\operatorname{ker}\left(T_{u}^{* 2}-\bar{\alpha}\right) \neq\{0\}$ by Corollary 3.16, which contradicts to the Coburn alternative theorem. Hence, we have that $\operatorname{ker}\left(T_{u}^{2}-\alpha\right)=\{0\}$ for all $\alpha \in \mathbb{C}$, meaning that $\sigma_{p}\left(T_{u}^{2}\right)=\emptyset$. Since $\sigma_{p}\left(T_{u}\right)=\emptyset$ by the spectral mapping theorem, the Toeplitz operator T_{u} has the single-valued extension property. Since $\sigma_{p}\left(T^{*}\right)=-\sigma_{p}(T)^{*}=\emptyset$, the adjoint T_{u}^{*} has the single-valued extension property, too.
(ii) Since T_{u} is J-self-adjoint and T_{u}^{*} is J^{*}-self-adjoint, it follows from (i) that $\sigma_{p}\left(T_{u}\right)=\sigma_{p}\left(T_{u}^{*}\right)=\emptyset$. This yields that

$$
\sigma\left(T_{u}\right)=\sigma_{e}\left(T_{u}\right) \cup \sigma_{p}\left(T_{u}\right) \cup \sigma_{p}\left(T_{u}^{*}\right)=\sigma_{e}\left(T_{u}\right)
$$

as we desired.
From Theorem 4.7, we find skew-diagonal block Toeplitz operators with the singlevalued extension property.

Corollary 4.8. Let u and v be nonconstant functions in L^{∞}. If T_{u} and T_{v} are commuting Toeplitz operators which are complex symmetric with the same conjugation, then $T=\left(\begin{array}{cc}0 & T_{u} \\ T_{v} & 0\end{array}\right)$ is a J-self-adjoint operator with the single-valued extension property and

$$
\sigma(T)=\sigma_{a}(T)=-\sigma_{a}(T)=\bigcup\left\{\sigma_{T}(x): x \in \mathscr{H}\right\}=\bigcup\left\{-\sigma_{T}(x): x \in \mathscr{H}\right\}
$$

Proof. From Proposition 4.1, the block Toeplitz operator $T=\left(\begin{array}{cc}0 & T_{u} \\ T_{v} & 0\end{array}\right)$ is J-selfadjoint. We know from [27, Theorem 3.3.9] that if T^{2} has the single-valued extension property, then so does T. Thus, we consider the square

$$
T^{2}=\left(\begin{array}{cc}
T_{u} T_{v} & 0 \\
0 & T_{v} T_{u}
\end{array}\right)
$$

Since T_{u} and T_{v} commute, one of the following statements holds:
(i) both T_{u} and T_{v} are analytic;
(ii) both T_{u} and T_{v} are co-analytic;
(iii) there are $\alpha, \beta \in \mathbb{C}$, not both zero, such that $\alpha u+\beta v$ is constant on $\partial \mathbb{D}$.

If (i) holds, then $T_{u} T_{v}=T_{u v}$ is subnormal, which ensures from [25] that T^{2} has the single-valued extension property. If (ii) happens, then $T^{2 *}$ has property (β) by [25], and so is T^{2} due to Theorem 3.8. Since property (β) guarantees the single-valued extension property, the square T^{2} has the single-valued extension property. Suppose that (iii) holds, and set $\alpha u+\beta v \equiv \gamma$ on $\partial \mathbb{D}$. Here, we may assume that $\beta \neq 0$. Then

$$
\sigma_{p}\left(T_{u} T_{v}\right)=\sigma_{p}\left(T_{u v}\right)=\sigma_{p}\left(T_{\frac{1}{\beta} u(\gamma-\alpha u)}\right)=q\left(\sigma_{p}\left(T_{u}\right)\right)
$$

where $q(\lambda)=\frac{1}{\beta} \lambda(\gamma-\alpha \lambda)$. Since u is a nonconstant function in L^{∞} such that T_{u} is complex symmetric, it follows from Theorem 4.7 that $\sigma_{p}\left(T_{u}\right)=\emptyset$, and so we have $\sigma_{p}\left(T_{u} T_{v}\right)=q\left(\sigma_{p}\left(T_{u}\right)\right)=\emptyset$. Hence, $T_{u} T_{v}$ has the single-valued extension property, implying that T^{2} has the single-valued extension property, and so does T as remarked above.

Since T and T^{*} have the single-valued extension property, [27, Proposition 1.3.2] yields that

$$
\sigma(T)=\sigma_{a}(T)=\sigma_{s u}(T)=\bigcup\left\{\sigma_{T}(x): x \in \mathscr{H}\right\}
$$

In addition, we obtain from Corollary 3.16 that $\sigma_{a}(T)=-\sigma_{s u}(T)$, which completes the proof.

REFERENCES

[1] P. AIENA, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Pub. 2004.
[2] P. Aiena, M. L. Colasante, and M. Gonza' lez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710.
[3] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equ. Oper. Theory 13 (1990), 307-315.
[4] A. Aluthge and E. Wang, w-Hypnormal operators, Integr. Equ. Oper. Theory 36 (2000), 1-10.
[5] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169-178.
[6] M. Chō and T. Huruya, Square of w-hyponormal operators, Integr. Equ. Oper. Theory 39 (2001), 413-420.
[7] M. Chō, T. Huruya, and Y. O. Kim, A note on w-hyponormal operators, J. Inequal. Appl. 7 (2002), 1-10.
[8] I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
[9] C. C. Cowen, Linear fractional composition operator on H^{2}, Integr. Equ. Oper. Theory 11 (1988), 151-160.
[10] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995.
[11] C. C. Cowen and E. Ko, Hermitian weighted composition operators on H^{2}, Trans. Amer. Math. Soc. 362 (2010), 5771-5801.
[12] T. Furuta, Invitation to linear operators, London, New York, Taylor \& Francis, 2001.
[13] S. R. Garcia, Aluthge transforms of complex symmetric operators, Integr. Equ. Oper. Theory $\mathbf{6 0}$ (2008), 357-367.
[14] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[15] S. R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007), 3913-3931.
[16] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), 6065-6077.
[17] M. Ito and T. Yamazaki, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{p}{p+r}} \geqslant B^{r}$ and $A^{p} \geqslant$ $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ and their applications, Integr. Equ. Oper. Theory 44 (2002), 442-450.
[18] S. Jung, Y. Kim, And E. Ko, Iterated Aluthge transforms of composition operators on H^{2}, Int. J. Math. 26 (2015), 1550079 (31 pages).
[19] S. Jung, Y. Kim, E. Ko, AND J. Lee, Complex symmetic weighted composition operators on $H^{2}(\mathbb{D})$, J. Funct. Anal. 267 (2014), 323-351.
[20] S. Jung, E. Ko, M. Lee, And J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), 325-333.
[21] S. Jung, E. Ko, And J. Lee, On scalar extensions and spectral decompositions of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), 325-333.
[22] S. Jung, E. Ko, And J. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406 (2013), 373-385.
[23] I. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integr. Equ. Oper. Theory 38 (2000), 437-448.
[24] S. Jung, E. Ko, AND S. PARK, Subscalarity of operator transforms, Math. Nachr. 288 (2015), 20422056.
[25] E. Ko, Algebraic and triangular n-hyponormal operators, Proc. Amer. Math. Soc. 11 (1995), 34733481.
[26] S. Lee, W. Lee, and J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. Appl. 410 (2014), 70-81.
[27] K. Laursen and M. Neumann, An introduction to local spectral theory, Clarendon Press, Oxford, 2000.
[28] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
[29] X. WANG and Z. GaO, A note on Aluthge transforms of complex symmetric operators and applications, Integr. Equ. Oper. Theory 65 (2009), 573-580.
(Received February 22, 2020)
Sungeun Jung
Department of Mathematics
Hankuk University of Foreign Studies
Yongin-si, Gyeonggi-do, 17035, Korea
e-mail: sungeun@hufs.ac.kr

[^0]: Mathematics subject classification (2020): 47A11, 47A10, 47B49, 47B32.
 Keywords and phrases: J-self-adjoint operator, polar decomposition, Aluthge transform, skewcomplex symmetric, complex symmetric, property (β), decomposable.

 This research was supported by Hankuk University of Foreign Studies Research Fund.

