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PROPERTIES OF J–SELF–ADJOINT OPERATORS

SUNGEUN JUNG

(Communicated by R. Curto)

Abstract. In this paper, we consider operators T ∈ L (H ) such that (JT )∗ = JT for some
anti-unitary J with J2 = −I ; in this case, we say that T is J -self-adjoint. We show that the
Aluthge transform of a J -self-adjoint operator is skew-complex symmetric. As an application,
we prove that w -hyponormal operators which are J -self-adjoint must be normal. Moreover,
we obtain that if T ∈ L (H ) is a J -self-adjoint operator with property (β) , then T + A is
decomposable where A ∈ L (H ) is an algebraic operator commuting with T . We also give
examples of J -self-adjoint operators.

1. Introduction

Let L (H ) be the algebra of all bounded linear operators on a separable complex
Hilbert space H . If T ∈ L (H ) , we write ρ(T ) , σ(T ) , σp(T ) , σa(T ) , σcomp(T ) ,
σsu(T ) , σle(T ) , σre(T ) , and σe(T ) for the resolvent set, spectrum, point spectrum,
approximate point spectrum, compression spectrum, surjective spectrum, left essential
spectrum, right essential spectrum, and essential spectrum of T , respectively.

An operator J : H → H is said to be anti-unitary if J is anti-linear and J∗J =
JJ∗ = I , where J∗ stands for the adjoint of J , which is uniquely determined by the
relation 〈J∗x,y〉= 〈x,Jy〉 for x,y ∈ H . We say that an operator T ∈L (H ) is J -self-
adjoint if there exists an anti-unitary operator J : H → H satisfying J2 = −I and
(JT )∗ = JT.

An anti-linear operator C : H → H is said to be a conjugation if C2 = I and C
is isometric, i.e., 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . If C : H → H is a conjugation,
then the operator matrix J on H ⊕H given by

J =
(

0 −C
C 0

)
is anti-unitary and J 2 = −I .

We say that T ∈ L (H ) is complex symmetric with conjugation C if T ∗ = CTC
for some conjugation C . The class of complex symmetric operators contains all normal
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operators, Hankel operators, compressed Toeplitz operators, algebraic operators of or-
der 2, and some Volterra integration operator, and there are a lot of consequences and
applications about complex symmetric operators (see [14], [15], [16], [19], [20], [21],
[22], [29], etc.). If T is complex symmetric with conjugation C , then C is anti-unitary
with C∗ = C and (CT )∗ = CT . An operator T ∈ L (H ) is called skew-complex sym-
metric if T ∗ = −CTC for some conjugation C .

If T = U |T | denotes the polar decomposition of an operator T ∈ L (H ) , the

Aluthge transform of T is defined as T̃ := |T | 1
2U |T | 1

2 . This transform has several
properties which are transmitted to the original operators. For example, by [23, Corol-
lary 1.16], if T̃ has a nontrivial invariant subspace, then so does T . Thus, many authors
have been interested in this operator transform and its applications (see [3], [4], [6], [7],
[17], [18], [23], [24], etc.).

For 0 < p < ∞ , we say that an operator T ∈L (H ) is p-hyponormal if (T ∗T )p �
(TT ∗)p . In particular, 1-hyponormal operators and 1

2 -hyponormal operators are called
hyponormal and semi-hyponormal, respectively. We call T ∈ L (H ) w-hyponormal
if |T̃ | � |T | � |(T̃ )∗| . An operator T ∈ L (H ) is said to be paranormal if ‖T 2x‖ �
‖Tx‖2 for all unit vectors x ∈ H . p -Hyponormal operators are w-hyponormal and
w-hyponormal operators are paranormal (see [12]). In addition, if T ∈ L (H ) is p -
hyponormal, then T̃ is (p + 1

2 )-hyponormal (see [3]). Thus, if T ∈ L (H ) is w-

hyponormal, then T̃ is semi-hyponormal and ˜̃T is hyponormal.
In this paper, we show that the Aluthge transform of a J -self-adjoint operator is

skew-complex symmetric. As an application, we prove that w-hyponormal operators
which are J -self-adjoint must be normal. Moreover, we obtain that if T ∈ L (H )
is a J -self-adjoint operator with property (β ) , then T + A is decomposable where
A ∈ L (H ) is an algebraic operator commuting with T . We also give examples of
J -self-adjoint operators.

2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property,
abbreviated SVEP, if for every open subset G of C , the only analytic solution f : G →
H of the equation (T − z) f (z) ≡ 0 on G is the zero function on G . For T ∈ L (H )
and x ∈ H , the local resolvent set ρT (x) of T at x is defined to be the union of
every open set G in C for which there exists an analytic function f : G→H such that
(T −z) f (z)≡ x on G . Since the analytic function g(z) := (T −z)−1x on ρ(T ) satisfies
that (T − z)g(z) ≡ x on G for every open set G in C containing ρ(T ) , it holds that
ρ(T ) ⊂ ρT (x) and any analytic function f appearing in the definition of ρT (x) can
be regarded as an extension of g . It is well known that if T has the single-valued
extension property, then the function g is uniquely extended to ρT (x) . We denote the
complement of ρT (x) by σT (x) , called the local spectrum of T at x , and define the
local spectral subspace of T by HT (F) = {x ∈ H : σT (x) ⊂ F} for each subset F of
C .

An operator T ∈ L (H ) is said to have Bishop’s property (β ) if for every open
subset G of C and every sequence fn : G → H of H -valued analytic functions such
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that (T − z) fn(z) converges uniformly to 0 in norm on compact subsets of G , then
fn(z) converges uniformly to 0 in norm on compact subsets of G . We say that T ∈
L (H ) has Dunford’s property (C) if HT (F) is closed for each closed subset F of
C . From [8] or [27], we know that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP

and each of the converse implications fails to hold, in general.
We say that an operator T ∈ L (H ) is decomposable provided that for every

open cover {G1,G2} of C , there are T -invariant subspaces M1 and N such that
H = M1+M2 , σ(T |M1)⊂G1 , and σ(T |M2)⊂G2 . An operator T is said to have the
decomposition property (δ ) if for any open cover {G1,G2} of C , each vector x ∈ H
is written as x = x1 + x2 where (T − z) f1(z) ≡ x j on C\Gj , with H -valued analytic
function f j on C \Gj , for j = 1,2. We remark that T ∈ L (H ) is decomposable
precisely when T has properties (β ) and (δ ) , i.e., both T and T ∗ have Bishop’s
property (β ) (see [1], [8], or [27]).

3. Main results

In this section, we prove that every J -self-adjoint operator has skew-complex sym-
metric Aluthge transform and give several applications of this result. We begin with the
following lemma.

LEMMA 3.1. Let T ∈ L (H ) be J -self-adjoint. Then the following statements
hold:

(i) T ∗ is J∗ -self-adjoint;
(ii) TJ∗ = JT ∗ and J∗T = T ∗J ;
(iii) If T =U |T | is the polar decomposition, then ker(T )= ker(U∗J∗)= ker(U∗J) .

Proof. (i) Since T is J -self-adjoint, we have

TJ = J∗(JT )J = J∗(JT )∗J = J∗(T ∗J∗)J = J∗T ∗,

i.e., (J∗T ∗)∗ = J∗T ∗ . Since J∗ is anti-unitary with J∗2 = −I , the adjoint T ∗ is J∗ -
self-adjoint.

(ii) It follows from (i) that

TJ∗ = −J(JT )J∗ = −JT ∗J∗2 = JT ∗

and

J∗T = −J∗(TJ)J = −J∗2T ∗J = T ∗J.

(iii) If U∗J∗x = 0, then (i) implies that

Tx = (TJ)J∗x = J∗T ∗J∗x = J∗|T |U∗J∗x = 0.

Hence, we get that ker(T ) ⊃ ker(U∗J∗) .
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Conversely, if Tx = 0, then 0 = JTx = T ∗J∗x by (i). Since ker(T ∗) = ker(U∗) ,
we obtain that U∗J∗x = 0, and so ker(T ) ⊂ ker(U∗J∗) . Thus ker(T ) = ker(U∗J∗) .

If U∗Jx = 0, then Jx ∈ ker(U∗) = ker(T ∗) , i.e., T ∗Jx = 0. Since T ∗ = JTJ and
J2 = −I , it follows that 0 = T ∗Jx = JTJ2x = −JTx , which ensures that Tx = 0. This
means that ker(T )⊃ ker(U∗J) . By applying this procedure reversely, we can show that
ker(T ) ⊂ ker(U∗J) . �

We say that an anti-linear operator W : H → H is a partial conjugation if it is
a conjugation on ker(W )⊥ . In the following theorem, we provide a representation for
the polar decomposition of J -self-adjoint operators.

THEOREM 3.2. Let T ∈ L (H ) be J -self-adjoint. If T = U |T | is the polar
decomposition, then |T | = J|T ∗|J∗ and U is a J∗ -self-adjoint operator factorized as
U = JW where W := J∗U = U∗J is a partial conjugation supported by ran(|T |) such
that |T |W = W |T | .

Proof. Observe that

T = J∗T ∗J∗ = J∗|T |U∗J∗.

Since U∗U is the orthogonal projection of H onto ran(|T |) , we get that

T = J∗(U∗U)|T |U∗J∗ = (J2J∗U∗J)(JU |T |U∗J∗) = (JU∗J)(J|T ∗|J∗).

Set V := JU∗J and P := J|T ∗|J∗ . Since P � 0 and

P2 = J|T ∗|2J∗ = (JT )(T ∗J∗) = T ∗J∗JT = |T |2,

we have |T | = P = J|T ∗|J∗ . In addition, since V ∗ = J∗UJ∗ and U∗UU∗ =U∗ , we see
that

VV ∗V = (JU∗J)(J∗UJ∗)(JU∗J) = J(U∗UU∗)J = JU∗J = V,

which implies that V is a partial isometry. According to Lemma 3.1, we know that
ker(V ) = ker(U∗J) = ker(T ) , and thus U = V = JU∗J . In other words, U is J∗ -self-
adjoint. If W := J∗U = U∗J , then U = JW and it follows from Lemma 3.1 that

|T |W = |T |U∗J = T ∗J = J∗T = J∗U |T | = W |T |.

Moreover, W ∗ =W and W 2 =U∗JJ∗U =U∗U is the orthogonal projection of H onto
ran(|T |) , and so W is isometric on ran(|T |) . Since

ker(W )⊥ = ker(J∗U)⊥ = ker(U)⊥ = ker(|T |)⊥ = ran(|T |),

we conclude that W is a partial conjugation supported by ran(|T |) . �

COROLLARY 3.3. Let T ∈ L (H ) be J -self-adjoint. Then T is normal if and
only if |T |J = J|T | .
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Proof. Let T = U |T | be the polar decomposition. By Theorem 3.2, it holds that
|T | = J|T ∗|J∗ and U = JW where W := J∗U =U∗J is a partial conjugation supported
by ran(|T |) such that |T |W =W |T | . Hence, if T is normal, then |T | = |T ∗|= J∗|T |J ,
or equivalently, |T |J = J|T | .

Conversely, if |T |J = J|T | , then

|T ∗|2 = U |T |2U∗ = J(W |T |2W )J∗ = J(W 2|T |2)J∗
= J|T |2J∗ = |T |2JJ∗ = |T |2,

and thus T is normal. �
In [15, page 3916], S. Garcia and M. Putinar pointed out that each partial con-

jugation can be extended to a conjugation; in detail, if W is a partial conjugation on
H , then C :=W⊕W ′ acting on H = ker(W )⊥⊕ker(W ) is a conjugation on the entire
space H , where W ′ is any partial conjugation supported by ker(W ) . This fact leads
to the following decomposition of J -self-adjoint operators.

COROLLARY 3.4. If T ∈ L (H ) is a J -self-adjoint operator, then it is decom-
posed as T = V |T | where V is a unitary operator that is J∗ -self-adjoint; furthermore,
the map C := J∗V = V ∗J is a conjugation such that |T |C = C|T | .

Proof. From Theorem 3.2, write T =U |T | where U = JW and W is a partial con-
jugation, supported by ran(|T |) , commuting with |T | . Take a partial conjugation W ′
with support ker(W ) so that C =W⊕W ′ is a conjugation on H = ker(W )⊥⊕ker(W ) =
ran(|T |)⊕ker(|T |) . Set V := JC . Then V ∗V =CJ∗JC = I and VV ∗ = JCCJ∗ = I , and
thus V is unitary. Since C∗ = C , we have C = J∗V = V ∗J , i.e., V is J∗ -self-adjoint.
Writing |T | = |T |⊕0 on H = ran(|T |)⊕ker(|T |) , we obtain that

T = U |T | = JW |T | = JC|T | = V |T |.
Moreover, since |T |W = W |T | , the conjugation C commutes with |T | . �

Let T ∈ L (H ) be a J -self-adjoint operator having polar decomposition T =
U |T | . Under the same notations as in Theorem 3.2 and Corollary 3.4, note that

T̃ = |T | 1
2U |T | 1

2 = |T | 1
2 (JW )|T | 1

2 = |T | 1
2 (JC)|T | 1

2 = |T | 1
2V |T | 1

2 . (1)

In the following theorem, we prove that the Aluthge transform of a J -self-adjoint oper-
ator is skew-complex symmetric.

THEOREM 3.5. If T ∈ L (H ) is J -self-adjoint, then its Aluthge transform T̃ is
skew-complex symmetric.

Proof. Suppose that T is J -self-adjoint. Corollary 3.4 permits us to factorize T
as T = V |T | where V is a unitary operator which is J∗ -self-adjoint and C = J∗V is a
conjugation commuting with |T | . Since C|T |= |T |C and C2 = I , it follows by (1) that

CT̃C = |T | 1
2CVC|T | 1

2 = |T | 1
2CJ|T | 1

2 = |T | 1
2CJ(−J∗2)|T | 1

2

= −|T | 1
2CJ∗|T | 1

2 = −|T | 1
2V ∗|T | 1

2 = −(T̃ )∗,
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which completes the proof. �

From Theorem 3.5, we assert that every w-hyponormal operator that is J -self-
adjoint must be normal.

COROLLARY 3.6. Let T ∈ L (H ) be J -self-adjoint. Then T is w-hyponormal
if and only if it is normal.

Proof. If T is normal, then it is clearly w-hyponormal. Conversely, assume that
T is w-hyponormal. Since T̃ is semi-hyponormal, the square (T̃ )2 is w-hyponormal
by [6]. Since T is J -self-adjoint, it follows from Theorem 3.5 that T̃ is skew-complex
symmetric and so its square (T̃ )2 is complex symmetric. According to [29, Theo-
rem 3.2], the only complex symmetric w-hyponormal operators are normal operators.
Hence, (T̃ )2 must be normal. From [5], the Aluthge transform T̃ is normal, and so is
T by [7]. �

We now apply Theorem 3.5 to derive local spectral properties of J -self-adjoint
operators.

LEMMA 3.7. Let T ∈L (H ) . If T has property (β ) (resp. property (δ )) if and
only if T̃ has property (β ) (resp. property (δ )).

Proof. It is not difficult to show that if A,B ∈ L (H ) , then AB has property (β )
if and only if BA does. Hence, taking A = U |T | 1

2 and B = |T | 1
2 , we see that T has

property (β ) if and only if T̃ does. Moreover, since T ∗ = |T | 1
2 (|T | 1

2U∗) has property

(β ) exactly when (T̃ )∗ = (|T | 1
2U∗)|T | 1

2 has property (β ) , the duality of properties
(β ) and (δ ) completes the proof. �

Recall that A∈ L (H ) is said to bed algebraic if p(A) = 0 for some nonconstant
polynomial p .

THEOREM 3.8. Let T ∈ L (H ) be a J -self-adjoint operator. If T has property
(β ) , then T + A is decomposable where A is an algebraic operator in L (H ) com-
muting with T .

Proof. Note that (T̃ )2 is complex symmetric by Theorem 3.5. According to
Lemma 3.7, the Aluthge transform T̃ has property (β ) . Since (T̃ )2 has property (β )
from [27, Theorem 3.3.9], it follows that (T̃ )2 is decomposable by [20]. Since (T̃ )2

and (T̃ )2∗ have property (β ) , we get that T̃ and T̃ ∗ satisfy the same property using
[27, Theorem 3.3.9] again. Therefore, Lemma 3.7 implies that T and T ∗ have property
(β ) .

Next, take any algebraic operator A ∈ L (H ) such that AT = TA , and let p(z) =
(z− γ1)(z− γ2) · · · (z− γk) be a nonconstant polynomial such that p(A) = 0. Suppose
that { fn} is any sequence of analytic functions on an open set G such that

lim
n→∞

‖(T +A− z) fn(z)‖ = 0
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uniformly on compact sets in G . Setting

p0(z) = 1 and p j(z) = (z− γ1)(z− γ2) · · · (z− γ j) for j = 1,2, · · · ,k,

we will verify that

lim
n→∞

‖p j(A) fn(z)‖ = 0 uniformly on compact sets in G (2)

for all j = 0,1,2, · · · ,k . Equation (2) holds obviously for j = k . If (2) is true for some
integer j with 1 � j � k , then

0 = lim
n→∞

‖p j−1(A)(T +A− γ j + γ j − z) fn(z)‖
= lim

n→∞
‖(T + γ j − z)p j−1(A) fn(z)‖

uniformly on compact sets in G . Since T has property (β ) , so does T + γk , and thus
limn→∞ ‖p j−1(A) fn(z)‖ = 0 uniformly on compact sets in G . Thus, by induction, we
conclusion that (2) holds for all j = 0,1,2, · · · ,k . In particular, limn→∞ ‖ fn(z)‖ = 0
uniformly on compact sets in G . Accordingly, T + A has property (β ) . Since T ∗
has property (β ) and A∗ is an algebraic operator commuting with T ∗ , T ∗ + A∗ has
property (β ) . Hence, T +A is decomposable. �

For an operator T ∈ L (H ) and a vector x ∈ H , the local spectral radius of T
at x is defined as

rT (x) := limsup
n→∞

‖Tnx‖ 1
n .

It is known that r(T ) = max{rT (x) : x ∈H } for any T ∈L (H ) , where r(T ) denotes
the spectral radius of T (see [27, Proposition 3.3.14]). An operator T ∈ L (H ) is

called power regular if limn→∞ ‖Tnx‖ 1
n exists for every x∈H . We say that an element

x ∈ H is a cyclic vector for an operator T ∈ L (H ) if the linear span of the orbit
{Tnx : n = 0,1,2, · · ·} is dense in H .

COROLLARY 3.9. Let T ∈ L (H ) be J -self-adjoint. If T has property (β ) ,
then the following assertions hold:

(i) Both T and T ∗ are power regular. Moreover, rT (x) = limn→∞ ‖Tnx‖ 1
n and

rT ∗(x) = limn→∞ ‖T ∗nx‖ 1
n for all x ∈ H .

(ii) If x ∈ H is a cyclic vector for T ∗ , then σT ∗(x) = σ(T ∗) and rT ∗(x) = r(T ∗) .

Proof. Since both T and T ∗ have property (β ) from Theorem 3.8, the result (i)
follows by [27, Proposition 3.3.17]. Moreover, since T ∗ has Dunford’s property (C) ,
we obtain (ii) using [27, page 238]. �

The mean transform of an operator T ∈ L (H ) , firstly introduced in [26], is
defined as T̂ := 1

2 (U |T |+ |T |U) where T = U |T | is the polar decomposition. There
are several connections between T and T̂ (see [24] for more details). In the following
proposition, we give some local spectral relation between J -self-adjoint operators and
their mean transforms.
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PROPOSITION 3.10. Let T ∈ L (H ) be J -self-adjoint with |T |J|T | = |T |2J . If

T has property (β ) , then both T̂ and (̂T ∗) have property (β ) .

Proof. According to Theorem 3.2, the polar decomposition of T is given by T =
U |T | where |T | = J|T ∗|J∗ and U = JW for some partial conjugation W commuting
with T . Since |T |J|T | = |T |2J , it holds that

|T |U |T | = |T |JW |T | = |T |J|T |W = |T |2JW = |T |2U.

Due to [24], it follows that T̂ has property (β ) .
Now, let { fn} be a sequence of H -valued functions analytic on an open set G

such that limn→∞ ‖((̂T ∗)− z) fn(z)‖ = 0 uniformly on compact sets in G . Since W =
J∗U = U∗J , |T ∗| = J∗|T |J , and W |T | = |T |W , we obtain that

J∗T̂ J∗ =
1
2
(W |T |J∗ + J∗|T |JWJ∗) =

1
2
(|T |WJ∗ + |T ∗|WJ∗)

=
1
2
(|T |U∗+ |T ∗|U∗) = (̂T ∗).

Hence

0 = lim
n→∞

‖J((̂T ∗)− z
)
J(J∗ fn(z))‖ = lim

n→∞
‖(T̂ + z)(J∗ fn(z))‖

uniformly on compact sets in G . For each n , define the function gn(ζ ) = J∗ fn(−ζ ) for
ζ ∈ −G∗ := {−z : z ∈ G} . Then limn→∞ ‖(T̂ − ζ )gn(ζ )‖ = 0 uniformly on compact
sets in −G∗ . Note that each gn is analytic on the open set −G∗ ; indeed, if ζ0 ∈ −G∗ ,
then −ζ0 ∈ G . Writing fn(z) = ∑∞

n=0(z+ζ0)nan on a neighborhood of −ζ0 contained
in G , where {an} ⊂ H , we see that for ζ ∈ −G∗ ,

gn(ζ ) = J∗ fn(−ζ ) = J∗
( ∞

∑
n=0

(−ζ + ζ0)nan

)
=

∞

∑
n=0

(−1)n(ζ − ζ0)nJ∗an.

This means that gn is analytic at every point ζ0 in −G∗ . Since T̂ has property (β ) ,
we get that limn→∞ ‖gn‖ = 0 uniformly on compact sets in G , which ensures that { fn}
converges in norm to 0 uniformly on compact sets in G . Thus, (̂T ∗) has property
(β ) . �

We next examine Dunford’s property (C) of J -self-adjoint operators.

PROPOSITION 3.11. If T ∈ L (H ) is J -self-adjoint, then the following proper-
ties hold:
(i) σT (x) = −(σT ∗(Jx)

)∗
for all x ∈ H .

(ii) JHT (F) = HT ∗(−F∗) for any subset F of C .

Proof. (i) Let x ∈ H be given and let G be any open set in C . If f : G → H is
an analytic function such that (T − z) f (z) = x for all z ∈ G , then

Jx = J(T − zJJ∗) f (z) = (T ∗ + z)J∗ f (z)
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for z ∈ G , i.e.,

(T ∗ − ζ )J∗ f (−ζ ) = Jx (3)

for ζ ∈−G∗ . Since J∗ f (−ζ ) is analytic for ζ ∈−G∗ (see the proof of Theorem 3.10),
we have −(ρT (x)

)∗ ⊂ ρT ∗(Jx) for all x ∈ H . Hence(
σT ∗(Jx)

)∗ ⊂ C\ (−ρT (x)
)

= −(C\ρT (x)
)

= −σT (x) (4)

for all x ∈ H . Since T ∗ is J∗ -self-adjoint by Lemma 3.1, we obtain from (4) that(
σT (J∗x)

)∗ ⊂ −σT∗(x) for all x ∈ H . Replacing x with Jx and taking complex con-
jugate, we get that

σT (x) ⊂−(σT ∗(Jx)
)∗

(5)

for all x ∈ H . Thus, we complete the proof from (4) and (5).
(ii) Suppose that F is a subset of H . If x ∈ HT (F) , then

−(σT ∗(Jx)
)∗ = σT (x) ⊂ F

by (i). Since σT ∗(Jx) ⊂−F∗ , it holds that Jx ∈ HT ∗(−F∗) , and so

JHT (F) ⊂ HT ∗(−F∗).

Applying the above argument to the adjoint T ∗ , we deduce the inclusion

J∗HT ∗(−F∗) ⊂ HT (F).

Therefore, JHT (F) = HT ∗(−F∗). �

COROLLARY 3.12. Let T ∈ L (H ) be J -self-adjoint. Then T has Dunford’s
property (C) if and only if its adjoint T ∗ does.

Proof. Assume that T ∈ L (H ) is a J -self-adjoint operator satisfying Dun-
ford’s property (C) . Let F be any closed subset of C . Then HT (−F∗) is closed.
Since HT ∗(F) = JHT (−F∗) from Proposition 3.11 and J is anti-unitary, the subspace
HT ∗(F) is closed. Hence, we conclude that T ∗ has Dunford’s property (C) . The
converse also holds by Lemma 3.1. �

We say that an operator T ∈ L (H ) has Dunford’s boundedness condition (B)
if it has the single-valued extension property and there exists a constant K > 0 such
that ‖x1‖ � K‖x1 + x2‖ for any x1,x2 ∈ K with σT (x1)∩σT (x2) = /0 , where K is
independent of x1 and x2 .

COROLLARY 3.13. Let T ∈L (H ) be J -self-adjoint. Then the following asser-
tions hold:

(i) T has Dunford’s boundedness condition (B) if and only if T ∗ does.
(ii) If T has the single-valued extension property and possesses the property that

σT (PFx) ⊂ σT (x) for all x ∈ H and each closed set F in C , where PF denotes the
orthogonal projection of H onto HT (F) , then both T and T ∗ have Dunford’s bound-
edness condition (B) .
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Proof. (i) It suffices to prove one implication. If T has Dunford’s boundedness
condition (B) , choose a constant K > 0 such that ‖x1‖ � K‖x1 + x2‖ for any x1,x2 ∈
H with σT (x1)∩σT (x2) = /0 . Let y1 and y2 be arbitrary vectors in H with σT ∗(y1)∩
σT ∗(y2) = /0 . It follows from Proposition 3.11 that σT (J∗y1)∩σT (J∗y2) = /0 , and thus
‖J∗y1‖ � K‖J∗y1 + J∗y2‖ . This implies that

‖y1‖ = ‖J∗y1‖ � K‖J∗(y1 + y2)‖ = K‖y1 + y2‖.
In addition, we can obtain that T ∗ has the single-valued extension property. Thus, T ∗
satisfies Dunford’s boundedness condition (B) .

(ii) Let x1,x2 ∈ H be such that σT (x1)∩σT (x2) = /0 . Set Fj = σT (x j) for j =
1,2. By the hypothesis, we have σT (PF2x1) ⊂ σT (x1) = F1 . Moreover, it is obvious
that σT (PF2x1) ⊂ F2 by the definition of PF2 . Hence

σT (PF2x1) ⊂ F1∩F2 = σT (x1)∩σT (x2) = /0.

Since T has the single-valued extension property, we get that PF2x1 = 0 by [27, Propo-
sition 1.2.16], that is, x1 ⊥ HT (F2) . But σT (x2) = F2 , and so x2 clearly belongs to
HT (F2) . Then 〈x1,x2〉 = 0, which implies that ‖x1 + x2‖ � ‖x1‖. Thus, T has Dun-
ford’s boundedness condition (B) , and so does T ∗ from (i). �

For an operator T ∈ L (H ) , the quasinilpotent part of T is defined by

H0(T ) := {x ∈ H : lim
n→∞

||Tnx|| 1
n = 0}.

COROLLARY 3.14. Let T ∈L (H ) be J -self-adjoint. If H0(T −λ ) is closed for
all λ ∈ C , then T ∗ has the single-valued extension property and HT ∗({λ}) is closed
for each λ ∈ C .

Proof. Suppose that T is J -self-adjoint and H0(T −λ ) is closed for each λ ∈ C .
Since T has the single-valued extension property by [1, Theorem 2.31], so does T̃ by
some application of the proof of Lemma 3.7. As in the proof of Theorem 3.8, we see
that T ∗ has the single-valued extension property. Fix any λ ∈ C . From [2, Theorem
1.5], we get that HT ({λ}) = H0(T −λ ) . Proposition 3.11 implies that

HT ∗({λ}) = JHT ({−λ}) = JH0(T + λ).

Since H0(T + λ ) is closed and J maps a closed subspace onto a closed one, we con-
clude that the local spectral subspace HT ∗({λ}) is closed. �

Similarly to complex symmetric operators, there exist connections between the
spectra of a J -self-adjoint operator and its adjoint. Given any set E in C , write E∗ :=
{z : z ∈ E} and −E := {−z : z ∈ E} .

PROPOSITION 3.15. Let T ∈ L (H ) be J -self-adjoint. Then

σΔ(T ∗) = −σΔ(T )∗ (6)

where σΔ ∈ {σp,σa,σcomp,σsu,σle,σre,σe,σ} .
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Proof. We first deal with the left essential spectrum. If α ∈ σle(T ) , then there
is a sequence {xn} of unit vectors in H such that xn → 0 weakly and limn→∞ ‖(T −
α)xn‖ = 0. Observe that

0 = lim
n→∞

‖J(T −α)xn‖ = lim
n→∞

‖J(T −αJJ∗)xn‖
= lim

n→∞
‖(T ∗J∗ −αJ2J∗)xn‖ = lim

n→∞
‖(T ∗ + α)J∗xn‖.

It is evident that ‖J∗xn‖ = ‖xn‖ = 1 for all n and J∗xn → 0 weakly, and so −α ∈
σle(T ∗) , meaning that

−σle(T )∗ ⊂ σle(T ∗). (7)

Since T ∗ is J∗ -self-adjoint by Lemma 3.1, equation (7) holds when we replace T with
T ∗ , which yields that

σle(T ∗) ⊂−σle(T )∗. (8)

From (7) and (8), it follows that

σle(T ∗) = −σle(T )∗.

By a similar method, one can see that (6) is also true for the cases σΔ = σp,σap .
Since σcomp(A∗) = σp(A)∗ , σsu(A∗) = σa(A)∗ , and σre(A∗) = σle(A)∗ where A is
any operator in L (H ) , we obtain (6) for σΔ = σΔ = σcomp,σsu,σre . Moreover, since
σe(A) = σle(A)∪σre(A) and σ(A) = σa(A)∪σcomp(A) for any operator A ∈ L (H ) ,
equation (6) holds for σΔ = σe,σ . So, we complete the proof. �

COROLLARY 3.16. If T ∈ L (H ) is J -self-adjoint, then the following proper-
ties hold:

(i) σcomp(T ) = −σp(T ) , σsu(T ) = −σa(T ) , and σre(T ) = −σle(T ) .
(ii) σ(T ) = −σ(T ) and σe(T ) = −σe(T ) .
(iii) σ(T ) = σa(T )∪ (−σp(T )

)
= σp(T )∪ (−σa(T )

)
= σp(T )∪σsu(T ) .

(iv) σe(T ) = σle(T )∪ (−σle(T )
)

= σre(T )∪ (−σre(T )
)
.

(v) ker(T −α) = J ker(T ∗ + α) for each α ∈ C .
(vi) ker(T 2−α) = J∗ ker(T ∗2−α) for each α ∈ C .

Proof. (i) Proposition 3.15 implies that

σcomp(T ) = −σcomp(T ∗)∗ = −σp(T ).

Similarly, we get the remaining identities in (i).
(ii) We obtain from Proposition 3.15 that

σe(T ) = −σe(T ∗)∗ = −σe(T ) and σ(T ) = −σ(T ∗)∗ = −σ(T ).

(iii) By (i), it follows that

σ(T ) = σa(T )∪σcomp(T ) = σa(T )∪ (−σp(T )
)
.
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Hence, the proof is complete due to (ii).
(iv) Since σe(T ) = σle(T )∪σre(T ) and σre(T ) = −σle(T ) by (i), we deduce the

result.
(v) As an application of the proof of Proposition 3.15, we see that

J∗ ker(T −α) ⊂ ker(T ∗ + α), i.e., ker(T −α) ⊂ J ker(T ∗ + α)

for α ∈ C . Since T ∗ is J∗ -self-adjoint by Lemma 3.1, it also holds that

J ker(T ∗ + α) ⊂ ker(T −α)

for α ∈ C , which verifies (v).
(vi) Let α ∈ C be arbitrary. If x ∈ ker(T 2 −α) , then

αJx = J(αx) = JT 2x = (JT )Tx = T ∗(J∗T )x = T ∗2Jx

by Lemma 3.1, and so Jx ∈ ker(T ∗2−α) . Hence J ker(T 2−α)⊂ ker(T ∗2−α) . Simi-
larly, we get that J∗ker(T ∗2−α)⊂ ker(T 2−α) . Therefore it holds that ker(T 2−α) =
J∗ ker(T ∗2−α) . �

4. Examples

In this section, we give several examples and study their spectral properties of
J -self-adjoint operators. In particular, we find J -self-adjoint operators that are not
complex symmetric (see Proposition 4.5 and Example 4.6). We first consider 2×2
operator matrices which are J -self-adjoint where

J =
(

0 −C
C 0

)
for some conjugation C : H → H .

PROPOSITION 4.1. Let T =
(

T1 T2

T3 T4

)
be a 2×2 operator matrix in L (H ⊕H ) ,

and let J =
(

0 −C
C 0

)
where C is any conjugation on H . Then T is J -self-adjoint

if and only if both T2 and T3 are complex symmetric with the conjugation C and
T4 = −CT ∗

1 C . In particular, if all of T1 , T2 , and T3 are complex symmetric with the

same conjugation C , then T =
(

T1 T2

T3 −T1

)
is J -self-adjoint.

Proof. It is easy to see that T is J -self-adjoint if and only if T ∗ = J TJ ,
namely (

T ∗
1 T ∗

3
T ∗
2 T ∗

4

)
=
(−CT4C CT3C

CT2C −CT1C

)
. (9)

Since T ∗
4 = −CT1C is equivalent to T ∗

1 = −CT4C , equation (9) holds exactly when
both T2 and T3 are complex symmetric with conjugation C and T4 = −CT ∗

1 C . �
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COROLLARY 4.2. Let T1 ∈L (H ) be a normal operator, and let A ∈L (H ) be
a nonzero operator such that AT1 = T1A = 0. Then the operator matrix(

T1 A
T1 −T1

)
is decomposable.

Proof. Since every normal operator is complex symmetric by [14], choose a con-
jugation C on H satisfying CT1C = T ∗

1 . Then

T =
(

T1 0
T1 −T1

)

is J -self-adjoint with J =
(

0 −C
C 0

)
. In addition, it is easy to see that T has prop-

erty (β ) . Since N :=
(

0 A
0 0

)
is nilpotent of order 2 and NT = TN , we complete the

proof from Theorem 3.8. �

According to Proposition 4.1, one can construct J -self-adjoint operators using
complex symmetric operators. In order to give concrete examples, consider weighted
composition operators on the Hilbert-Hardy space H2 of the open unit disk D . The
Hardy space H2 is regarded as a closed subspace of L2 = L2(∂D,m) where m denotes
the (normalized) Lebesgue measure on the unit circle ∂D . For an analytic function f
on D and an analytic self-map ϕ of D , the operator Wf ,ϕ : H2 →H2 given by Wf ,ϕh =
f · (h ◦ϕ) is called a weighted composition operator. In particular, Cϕ := W1,ϕ is said
to be a composition operator. If ϕ is any analytic self-map of D and f ∈H2 for which
Wf ,ϕ is bounded on H2 , then W ∗

f ,ϕKβ = f (β )Kϕ(β ) for β ∈ D , where Kβ := 1
1−β z

so-called the reproducing kernel of H2 at a point β in D . We refer the readers to [9],
[10], [11], [19], and [28] for more details on weighted composition operators on H2 .
In [19], the authors characterized complex symmetric weighted composition operators
on H2 with a specific conjugation. Using this characterization, we give the following
example.

EXAMPLE 4.3. Let C : H2 → H2 be the conjugation given by C h = ĥ where

ĥ(z) := h(z) for z ∈ D . Suppose that ψ j(z) = a j +
b jz

1−a jz
and g j(z) = c j

1−a jz
with

constants a j ∈ D and b j,c j ∈ C for j = 1,2. Then each Wgj ,ψ j is complex sym-
metric with conjugation C by [19, Theorem 3.3]. Hence, given analytic self-map
ϕ of D and f ∈ H2 for which Wf ,ϕ is bounded on H2 , Proposition 4.1 implies

that

(
Wf ,ϕ Wg1,ψ1

Wg2,ψ2 −CW ∗
f ,ϕC

)
is J -self-adjoint with respect to J =

(
0 −C
C 0

)
. Since

C Kβ = Kβ for each point β in D , we compute that

CW ∗
f ,ϕC Kβ = CW ∗

f ,ϕKβ = C
(
f (β )Kϕ(β )

)
= f̂ (β )Kϕ̂(β ) = W ∗

f̂ ,ϕ̂Kβ
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for β ∈ D . Since the linear span of reproducing kernels is dense in H2 , we have
CW ∗

f ,ϕC =W ∗
f̂ ,ϕ̂

. Thus (
Wf ,ϕ Wg1,ψ1

Wg2,ψ2 −W ∗
f̂ ,ϕ̂

)
is J -self-adjoint.

If ϕ(z) = az+b
cz+d is a linear fractional self-map of D where a,b,c,d are complex

numbers with ad − bc �= 0, then Cowen’s adjoint formula states that C∗
ϕ = TgCσ T ∗

h

where g(z) = 1
−bz+d

, σ(z) = az−c
−bz+d

, and h(z) = cz + d (see [9]). Taking f ≡ 1 in
Example 4.3, we obtain the following J -self-adjoint block matrix of operators:(

Cϕ Wg1,ψ1

Wg2,ψ2 −C∗
ϕ̂

)
(10)

where ϕ is any analytic self-map of D . If ϕ is a linear self-map of D , then Cowen’s
adjoint formula allows us to replace C∗

ϕ̂ in (10) with some weighted composition oper-
ator.

EXAMPLE 4.4. Assume that ϕ(z) = az + b where |a|+ |b| � 1. Then ϕ is an
analytic self-map of D . Since ϕ̂(z) := ϕ(z) = az+b , apply Cowen’s adjoint formula
to C∗

ϕ̂ , as follows:

C∗
ϕ̂ = TgCσ = Wg,σ

with g(z) = 1
1−bz and σ(z) = az

1−bz . Therefore, the block matrix of weighted compo-

sition operators

(
Cϕ Wg1,ψ1

Wg2,ψ2 −Wg,σ

)
is J -self-adjoint, where the maps ψ j and g j as

well as the anti-unitary J are defined as in Example 4.3. In particular, substituting
Wgj ,ψ j = I for j = 1,2 (i.e., a j = 0 and b j = c j = 1), we get that

(
Cϕ I
I −Wg,σ

)
=

(
Caz+b I

I W −1
1−bz ,

az
1−bz

)

is J -self-adjoint.

We next find J -self-adjoint operators that are not complex symmetric.

COROLLARY 4.5. Suppose that C is a conjugation on H and A is any operator
in L (H ) such that Ep(A) �= −Ep(A) where Ep(A) := σp(A)∗ ∪ (−σp(A∗)

)
. Then

the operator matrix

T =
(

A 0
0 −CA∗C

)
is J -self-adjoint but not complex symmetric.
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Proof. We obtain from Proposition 4.1 that T =
(

A 0
0 −CA∗C

)
is J -self-adjoint

where J =
(

0 −C
C 0

)
. Since (CA∗C)∗ = CAC , one can see that

{
σp(T ) = σp(A)∪ (−σp(CA∗C)

)
σp(T ∗) = σp(A∗)∪ (−σp(CAC)

)
.

We will use

σp(CBC) = σp(B)∗ (11)

where B is any operator in L (H ) . Indeed, if α ∈ σp(CBC) , then (CBC−α)x = 0
for some nonzero vector x ∈ H , and so 0 = C(CBC−α)x = (B−α)Cx . Since C
is a conjugation, Cx must be a nonzero vector in H , so that α ∈ σp(B) . Hence
σp(CBC) ⊂ σp(B)∗ . Replacing B with CBC , we get that σp(B) ⊂ σp(CBC)∗ . Thus
σp(CBC) = σp(B)∗ . According to (11), we obtain that{

σp(T ) = σp(A)∪ (−σp(A∗)∗
)

σp(T ∗) = σp(A∗)∪ (−σp(A)∗
)
,

which implies that σp(T )∗ �= σp(T ∗) by the given hypothesis. By [20, Lemma 4.1], we
can draw the conclusion that T is not complex symmetric. �

The following example illuminates Corollary 4.5.

EXAMPLE 4.6. Let A := S+ α for some nonzero α ∈ C where S is a unilateral
shift on H . Since σp(A) = /0 and σp(A∗) = σp(S∗ + α) is the open disk of radius
1 centered at α , we have Ep(A) �= −Ep(A) where Ep(A) is given as in Corollary 4.5.

Hence, it follows from Corollary 4.5 that the operator matrix T =
(

A 0
0 −CA∗C

)
is

J -self-adjoint but not complex symmetric, where C is any conjugation on H .

For u ∈ L∞ = L∞(∂D,m) , the Toeplitz operator Tu is defined by

Tuh = P+(uh) for h ∈ H2

where P+ stands for the orthogonal projection of L2 onto the Hardy space H2 . In the
following theorem, we show that every J -self-adjoint Toeplitz operator has no eigen-
values.

THEOREM 4.7. Let u ∈ L∞ be nonconstant. If Tu is J -self-adjoint, then the fol-
lowing assertions hold:

(i) σp(Tu) = /0 ; hence, both Tu and T ∗
u have the single-valued extension property.

(ii) σ(Tu) = σe(Tu) .
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Proof. (i) Since T ∗
u is J∗ -self-adjoint by Lemma 3.1 and the single-valued ex-

tension property holds for each operator in L (H ) whose point spectrum has empty
interior (see [27, page 15]), it is enough to prove that σp(Tu) = /0 . We want to show
that σp(T 2

u ) = σp(Tu2) = /0 , which yields that σp(Tu) = /0 by the spectral mapping
theorem. If ker(T 2

u −α) �= {0} for some α ∈ C , then ker(T ∗2
u −α) �= {0} by Corol-

lary 3.16, which contradicts to the Coburn alternative theorem. Hence, we have that
ker(T 2

u −α) = {0} for all α ∈ C , meaning that σp(T 2
u ) = /0 . Since σp(Tu) = /0 by

the spectral mapping theorem, the Toeplitz operator Tu has the single-valued extension
property. Since σp(T ∗) =−σp(T )∗ = /0 , the adjoint T ∗

u has the single-valued extension
property, too.

(ii) Since Tu is J -self-adjoint and T ∗
u is J∗ -self-adjoint, it follows from (i) that

σp(Tu) = σp(T ∗
u ) = /0 . This yields that

σ(Tu) = σe(Tu)∪σp(Tu)∪σp(T ∗
u ) = σe(Tu),

as we desired. �
From Theorem4.7, we find skew-diagonal block Toeplitz operators with the single-

valued extension property.

COROLLARY 4.8. Let u and v be nonconstant functions in L∞ . If Tu and Tv are
commuting Toeplitz operators which are complex symmetric with the same conjuga-

tion, then T =
(

0 Tu

Tv 0

)
is a J -self-adjoint operator with the single-valued extension

property and

σ(T ) = σa(T ) = −σa(T ) =
⋃
{σT (x) : x ∈ H } =

⋃
{−σT (x) : x ∈ H }.

Proof. From Proposition 4.1, the block Toeplitz operator T =
(

0 Tu

Tv 0

)
is J -self-

adjoint. We know from [27, Theorem 3.3.9] that if T 2 has the single-valued extension
property, then so does T . Thus, we consider the square

T 2 =
(

TuTv 0
0 TvTu

)
.

Since Tu and Tv commute, one of the following statements holds:

(i) both Tu and Tv are analytic;
(ii) both Tu and Tv are co-analytic;
(iii) there are α,β ∈ C , not both zero, such that αu+ βv is constant on ∂D .

If (i) holds, then TuTv = Tuv is subnormal, which ensures from [25] that T 2 has the
single-valued extension property. If (ii) happens, then T 2∗ has property (β ) by [25],
and so is T 2 due to Theorem 3.8. Since property (β ) guarantees the single-valued
extension property, the square T 2 has the single-valued extension property. Suppose
that (iii) holds, and set αu+ βv≡ γ on ∂D . Here, we may assume that β �= 0. Then

σp(TuTv) = σp(Tuv) = σp(T 1
β u(γ−αu)) = q(σp(Tu))
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where q(λ ) = 1
β λ (γ −αλ ) . Since u is a nonconstant function in L∞ such that Tu

is complex symmetric, it follows from Theorem 4.7 that σp(Tu) = /0 , and so we have
σp(TuTv) = q(σp(Tu)) = /0 . Hence, TuTv has the single-valued extension property, im-
plying that T 2 has the single-valued extension property, and so does T as remarked
above.

Since T and T ∗ have the single-valued extension property, [27, Proposition 1.3.2]
yields that

σ(T ) = σa(T ) = σsu(T ) =
⋃
{σT (x) : x ∈ H }.

In addition, we obtain from Corollary 3.16 that σa(T ) = −σsu(T ) , which completes
the proof. �
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[6] M. CHŌ AND T. HURUYA, Square of w-hyponormal operators, Integr. Equ. Oper. Theory 39 (2001),

413–420.
[7] M. CHŌ, T. HURUYA, AND Y. O. KIM, A note on w-hyponormal operators, J. Inequal. Appl. 7

(2002), 1–10.
[8] I. COLOJOARA AND C. FOIAS, Theory of generalized spectral operators, Gordon and Breach, New

York, 1968.
[9] C. C. COWEN, Linear fractional composition operator on H2 , Integr. Equ. Oper. Theory 11 (1988),

151–160.
[10] C. C. COWEN AND B. D. MACCLUER, Composition operators on spaces of analytic functions, CRC

Press, 1995.
[11] C. C. COWEN AND E. KO, Hermitian weighted composition operators on H2 , Trans. Amer. Math.

Soc. 362 (2010), 5771–5801.
[12] T. FURUTA, Invitation to linear operators, London, New York, Taylor & Francis, 2001.
[13] S. R. GARCIA, Aluthge transforms of complex symmetric operators, Integr. Equ. Oper. Theory 60

(2008), 357–367.
[14] S. R. GARCIA AND M. PUTINAR, Complex symmetric operators and applications, Trans. Amer.

Math. Soc. 358 (2006), 1285–1315.
[15] S. R. GARCIA AND M. PUTINAR, Complex symmetric operators and applications II, Trans. Amer.

Math. Soc. 359 (2007), 3913–3931.
[16] S. R. GARCIA AND W. R. WOGEN, Some new classes of complex symmetric operators, Trans. Amer.

Math. Soc. 362 (2010), 6065–6077.

[17] M. ITO AND T. YAMAZAKI, Relations between two inequalities (B
r
2 ApB

r
2 )

p
p+r � Br and Ap �

(A
p
2 BrA

p
2 )

p
p+r and their applications, Integr. Equ. Oper. Theory 44 (2002), 442–450.

[18] S. JUNG, Y. KIM, AND E. KO, Iterated Aluthge transforms of composition operators on H2 , Int. J.
Math. 26 (2015), 1550079 (31 pages).

[19] S. JUNG, Y. KIM, E. KO, AND J. LEE, Complex symmetic weighted composition operators on H2(D) ,
J. Funct. Anal. 267 (2014), 323–351.

[20] S. JUNG, E. KO, M. LEE, AND J. LEE, On local spectral properties of complex symmetric operators,
J. Math. Anal. Appl. 379 (2011), 325–333.

[21] S. JUNG, E. KO, AND J. LEE, On scalar extensions and spectral decompositions of complex symmet-
ric operators, J. Math. Anal. Appl. 379 (2011), 325–333.



644 S. JUNG

[22] S. JUNG, E. KO, AND J. LEE, On complex symmetric operator matrices, J. Math. Anal. Appl. 406
(2013), 373–385.

[23] I. JUNG, E. KO, AND C. PEARCY, Aluthge transforms of operators, Integr. Equ. Oper. Theory 38
(2000), 437–448.

[24] S. JUNG, E. KO, AND S. PARK, Subscalarity of operator transforms, Math. Nachr. 288 (2015), 2042–
2056.

[25] E. KO, Algebraic and triangular n-hyponormal operators, Proc. Amer. Math. Soc. 11 (1995), 3473–
3481.

[26] S. LEE, W. LEE, AND J. YOON, The mean transform of bounded linear operators, J. Math. Anal.
Appl. 410 (2014), 70–81.

[27] K. LAURSEN AND M. NEUMANN, An introduction to local spectral theory, Clarendon Press, Oxford,
2000.

[28] J. H. SHAPIRO, Composition operators and classical function theory, Springer-Verlag, New York,
1993.

[29] X. WANG AND Z. GAO, A note on Aluthge transforms of complex symmetric operators and applica-
tions, Integr. Equ. Oper. Theory 65 (2009), 573–580.

(Received February 22, 2020) Sungeun Jung
Department of Mathematics

Hankuk University of Foreign Studies
Yongin-si, Gyeonggi-do, 17035, Korea

e-mail: sungeun@hufs.ac.kr

Operators and Matrices
www.ele-math.com
oam@ele-math.com


