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RATIONAL ELIMINATION ALGORITHM AND APPLICATIONS

BÉCHIR DALI AND MOHAMED ELGHAOUI

(Communicated by R. Vandebril)

Abstract. Given a matrix A ∈ Rm×n , we develop an algorithm called the rational elimination
algorithm which ressembles the algorithm elimination except that the pivot (the leading coeffi-
cient) is a sequence of real independent numbers over Q . This algorithm is used to calculate the
rank of A over Q and to seek rational solutions to any linear system Ax = b with b ∈ Rm . We
also present a criterion for testing the density of additive subgroups of Rn which needs the rank
of a certain matrix over Q . Finally, we apply such algorithm for testing the regularity of an orbit
under the linear continuous action of some subgroup of GL(V) where V is finite dimensional
real vector space.

1. Introduction

When solving a linear system Ax = b , where A∈Rm×n and b∈Rm , the existence
of solution depends only on the ranks of the matrices A and (A|b) . These ranks can
be easily obtained by using Gauss elimination method. In this method the matrix A is
reduced to echelon row form. When both A and b have their entries in Z , and inte-
gral solutions are sought, then the Hermite Normal Form (HNF) can be used ([8]). In
theoretical computer science, the generalized multi-knapsack feasibility problem arises
when we seek a binary solution to real coefficients linear system [6]. In this paper we
are interested in solving real linear system in Qn , to this end an algorithm analogue
to the usual Gauss elimination is presented. The main feature of this algorithm is that
the leading coefficient (pivot) in the usual Gauss process is now a tuple of rationally
independent entries.

We now briefly describe the contents of the paper. In Section 2 we present our
algorithm for a matrix A ∈ Rm×n , and we generalize it in Section 3. In Section 4 we
give applications of the algorithm of column reduction, more precisely we define the
rankQ(A) as the dimension of the Q -vector space spanned by the columns of A . Next
we apply the algorithm of reduction to find rational solutions of a real linear system. In
this Section we also apply the obtained results concerning the Q -rank of a real matrix
to test directly the density of additive subgroups of Rn (and Cn ) and then we give an
explicit description of the hypercyclicity test of finitely generated abelian subgroups of
GL(n,C) . Finally we apply our algorithm to the test of regularity of an orbit under
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the action of a group G = exp
(
∑k

j=1 RMj
)
, where exp denotes the matrix exponen-

tial mapping and M1, . . . ,Mk are linearly independent pairwise commuting square real
matrices acting on a finite dimensional real vector space V .

2. The rational elimination algorithm

Our goal in this section is to introduce an algorithm by which we obtain a column
echelon rational form for any real entries matrix.

DEFINITION 2.1. A matrix M ∈ Rm×n is in column echelon rational form if it
satisfies the following conditions:

• All zero columns, if any, are at the rightmost of the matrix.

• There exist s positive integers r1,r2, . . . ,rs such that the first non zero entry in each

of the columns 1+
i−1

∑
k=1

rk, . . . ,
i

∑
k=1

rk , for 2 � i � s , are on the same row and form a

sequence of real independent numbers over Q called the leading sequence and ri its
length.

• Each leading sequence is in a row strictly below the previous leading sequence above
it.

A similar definition holds for a matrix in row echelon rational form.
As an example, the following matrix⎛

⎜⎜⎜⎜⎝

√
2 π 1+

√
2 0 0 0 0

1 2 −π 0 0 0 0
4
√

3 −17 2
√

3 0 0
π −5 6 −11 eπ 0 0
−1 3

√
7 11 13 0 0

⎞
⎟⎟⎟⎟⎠

is in column echelon rational form where:

r1 = 3, r2 = 2.

So let A = (ai, j)1�i�m,1� j�n be a non-zero matrix (with real entries). Without loss of
generality we may assume that the first row of A is non zero and choose a1, j1 , . . . ,a1, jr1
to be a longest sequence extracted from the list {a1,1, . . . ,a1,n} such that its elements
are independent over Q . Set I1 := { j1, . . . , jr1} .

Then we move the columns (Cj) j∈I1 to the leftmost of the matrix. In matrix form,
A(0) := A is transformed to:

A(0)→ A(0)P(1) := Ã(1) = (ãi, j),

where P(1) is a square permutation matrix.
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Now, we write the scalars ã1, j for every j = 1 + r1, . . . ,n as a rational linear
combination of the real numbers {ã1,k, k = 1, . . . ,r1} , i.e;

ã1, j = ∑r1
k=1γ(1)

j,k ã1,k;

where γ(1)
j,1 , . . . ,γ(1)

j,r1
∈Q .

The idea is now to reduce to zero the entries ã1, j, j = 1 + r1, . . . ,n using the
columns elementary operations:

Cj←Cj−
r1

∑
k=1

γ(1)
j,k Ck, j = 1+ r1, . . . ,n.

We can translate matricially the whole step as:

A(0)→ A(0)P(1)→ A(0)P(1)Q(1) := A(1) = (a(1)
i, j ),

where Q(1) is the square upper-triangular matrix:

Q(1) =

⎛
⎜⎜⎜⎜⎜⎝

Ir1

⎛
⎜⎜⎜⎝
−γ(1)

1+r1,1
. . . −γ(1)

n,1

...
. . .

...

−γ(1)
1+r1,r1

. . . −γ(1)
n,r1

⎞
⎟⎟⎟⎠

0 In−r1

⎞
⎟⎟⎟⎟⎟⎠ .

The next step is to consider the sub-matrix (a(1)
i j ) 2�i�m, 1+r1� j�n, of A(1) . If this sub-

matrix is zero or of order 1, the process stops otherwise we apply the same procedure
as that done for A(0) .

At the end of the algorithm, we end up with a matrix A(s) verifying only one of
the following statements:

• r1 + r2 + . . .+ rs = n .

• r1 + r2 + . . .+ rs < n and C(s)
j = 0 for every j = 1+

s

∑
k=1

rk, . . . ,n

where C(s)
j is the jth column of the matrix A(s) .

Finally, any encountered zero column has to be moved to the rightmost of the
processed matrix. This column permutation should be included in the matrix P(k) of
the treated step.

The algorithm produces a matrix U in column echelon rational form. Actually,
we have:

THEOREM 2.2. Given a matrix A ∈ Rm×n then there exists Q ∈ GL(n,Q) such
that U := AQ ∈ Rm×n is in column echelon rational form.
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The fact that the matrix Q has rational entries is very important as we will see
later. Moreover such a matrix is not unique.

REMARK 2.3. Our reduction can be treated in an algorithmic process. Indeed, let
A = (ai, j)1�i�m,1� j�n and set

i1 = min{1 � i � m : ith row of A is nonzero}.

For k = 1, . . . ,n we let V (k)
i1

= Q -span of (ai1, j)1� j�k , the sequence (V (k)
i1

)1�k�n is

nondecreasing. Then we define inductively the sequence ( j(1)
k )1�k�n by

j(1)
1 = min{1 � j � n : ai1, j �= 0},

j(1)
k = min{ j(1)

k−1 � j � n : dimQV ( j)
i1

> dimQV
( j

(1)
k−1)

i1
},

Set r1 = dimQV (n)
i1

and J1 = { j(1)
1 , . . . , j(1)

r1 } , then for each j /∈ J1 one has a unique
decomposition

ai1, j =
r1

∑
k=1

γ(1)
j,k a

i1, j
(1)
k

, (γ(1)
j,k )1�k�r1 ⊂Q,

and then we apply the following column operation

Cj ←Cj−
r1

∑
k=1

γ(1)
j,k Cjk , j /∈ J1.

Finally we consider a permutation by which the columns Cj1 , . . . ,Cjr1
are moved to

the left. Let A(1) be the resulting matrix (obtained after this column reduction and
permutation on A). Then the matrix A(1) satisfies in particular:

(a(1)
i1, j

)1� j�r1 are Q-linearly independent and for j � 1+ r1, a(1)
i1, j

= 0.

If (a(1)
i, j )1+i1�i�m,1+r1� j�n is the zero matrix or of order 1, then the algorithm stops,

otherwise we move to the next step which is analog to the preceding one except that the

modifications should be done on the sub-matrix (a(1)
i, j )1+i1�i�m ,1+r1� j�n of A(1) .

REMARK 2.4. Note that if the entries of the matrix A are all rational then our
process is the usual Gauss column reduction with ri = 1.

3. The generalized elimination algorithm

In this section we will present a generalization of the algorithm introduced in the
previous section.

Let α be a real algebraic number of order p i.e; p is the largest positive integer
such that 1,α, . . . ,α p−1 are rationally independent, then Q[α] is a subfield of R .

The following lemma characterises the independence of a finite set of real numbers
over Q[α] .
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LEMMA 3.1. Let (xi)1�i�N be a set of N real numbers. Then (xi)1�i�N are in-
dependent over Q[α] if and only if (xiα j)1�i�N,0� j�p−1 are rationally independent.

To define a matrix A ∈Rm×n as being in Q[α]-echelon form, we generalize Defi-
nition (2.1) by replacing the field Q by Q[α] . The steps of the algorithm of reduction
over Q is then extended to Q[α] . For instance the entries of the leading sequence are
independent over Q[α] . An analog of Theorem (2.2) is now stated:

THEOREM 3.2. Given a matrix A∈Rm×n then there exists Q∈GL(n,Q[α]) such
that U := AQ ∈ Rm×n is in Q[α]-echelon form.

EXAMPLE 3.3. Let A =
(

1
√

2
√

3
√

2+
√

3√
6
√

3 −√2
√

3

)
.

If the reduction is done in Q then:

U =
(

1
√

2
√

3 0√
6
√

3 −√2
√

2

)
and Q =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 −1
0 0 1 −1
0 0 0 1

⎞
⎟⎟⎠ .

However in Q[
√

3] , we get:

U =
(

1
√

2 0 0√
6
√

3 −4
√

2 0

)
and Q =

⎛
⎜⎜⎝

1 0 −√3 −
√

3
4

0 1 0 −1
0 0 1 − 3

4
0 0 0 1

⎞
⎟⎟⎠ .

And finally, in Q[
√

2+
√

3] :

U =
(

1 0 0 0√
6 −√3 0 0

)
and Q =

⎛
⎜⎜⎝

1 −√2 5
√

3
3

√
3

0 1 − 4
√

6
3 −1−√6

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

We can easily show that
√

2,
√

3 ∈Q[
√

2+
√

3] .

4. Applications

4.1. Rank of a matrix over Q

Let us first define the rank of a matrix over Q :

DEFINITION 4.1. The rank of a matrix A over Q denoted by rankQ(A) is the
maximal number of rationally linearly independent columns of A, i.e.

rankQ(A) = dimQ(colsp(A)).
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The reason behind choosing the column definition for the rank is that, unlike the
real case, the dimension over Q of the vector space spanned by the rows of A may be
different from the dimension over Q of the vector space spanned by the columns of

A . Take for example the matrix A =
(

1
√

2
1
√

2

)
; where dimQ(rowsp(A)) = 1 whereas

dimQ(colsp(A)) = 2.
Let A = (ai, j) ∈Rm×n be a matrix in column echelon rational form having s lead-

ing sequences carried by the rows i1, i2, . . . , is and respectively of length r1,r2, . . . ,rs .
Let’s denote e j = (δi j)1�i�n ∈ Rn so the jth column of A is equal to Aej .

With these notations, we have:

LEMMA 4.2. colspQ(A) =
�⊕

j=1

QAe j where � = r1 + r2 + . . .+ rs .

Proof. First it is obvious that colspQ(A) =
�

∑
j=1

QAe j .

Now if (�) :
�

∑
j=1

p jAe j = 0 with p j ∈Q , then by identifying the ith1 component of

each term, we get
r1

∑
j=1

p jai1, j = 0. As (ai1, j)1� j�r1 are the terms of a leading sequence

so they are rationally independent. Therefore p j = 0 for every j = 1, . . . ,r1 and (�)

becomes
�

∑
j=1+r1

p jAe j = 0.

If we keep on identifying each time the ith component of each term in (�) for
i = i2, . . . , is while bearing in mind the stairwise property of the leading sequences and
observing that the part of columns above any given leading sequence are zero, then
we end up having p j = 0 for every j = 1, . . . , � so that (Aej)1� j�� is a Q -basis of
colspQ(A) . �

COROLLARY 4.3. For any matrix A ∈ Rm×n :

rankQ(A) =
s

∑
i=1

ri

where s is the number of the leading sequences of the matrix obtained after transform-
ing A to column echelon rational form and ri is the length of ith leading sequence.

Proof. There exists a matrix Q ∈ GL(n,Q) such that U = AQ is in column ech-
elon rational form, so colspQ(A) = colspQ(U) and hence rankQ(A) = rankQ(U) . By

Lemma (4.2), rankQ(U) =
s

∑
i=1

ri . Therefore rankQ(A) =
s

∑
i=1

ri . �

A final result is now presented which will be used in the last application concerning
the regularity of orbits under linear action. But first, we need the following lemma:
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LEMMA 4.4. Let A ∈Rm×n and R ∈ GL(m,R) then

dimcolspQ(A) = dimcolspQ(RA).

Proof. The ith column of RA is (RA)ei = R(Aei) so that colspQ(RA)= RcolspQ(A) .
Hence rankQ(A) = rankQ(RA) since R ∈ GL(m,R) i.e. R induces a Q -isomorphism
between colspQ(A) and colspQ(RA) . �

PROPOSITION 4.5. Let A ∈ Rm×n then rankR(A) = rankQ(A) := r if and only if
there exist P ∈ GL(m,R) and R ∈ GL(n,Q) such that:

A = P

(
Ir 0
0 0

)
R.

Proof. There exists a matrix Q∈GL(n,Q) such that U = AQ is in column echelon
rational form. If rankR(A) = rankQ(A) := r then the first r columns of U are also
independent over R (the remaining columns if any are zero). Hence there exists P ∈
GL(m,R) so that U = P

(
Ir 0
0 0

)
and so A = P

(
Ir 0
0 0

)
Q−1 .

Conversely, suppose there exist P ∈ GL(m,R) and R ∈ GL(n,Q) such that:

A = P

(
Ir 0
0 0

)
R.

By Lemma (4.4) and using the fact that P−1A ∈Qm×n , we can write

rankQ(A) = rankQ(P−1A) = rankR(P−1A) = rankR(A) = r. �

4.2. Solving a real linear system over Q

Let AX = B be a linear system where A ∈ Rm×n and B ∈ Rm . We present an
algorithm to solve this system over the rationals, i.e. X ∈Qn .

4.2.1. Case when the system is homogeneous

Let us first consider the case when A is already in echelon rational form and set
� = rankQ(A) . By Lemma (4.2), the first � columns are rationally independent (the rest
of the columns if any are zero) so the system AX = 0 leads to xi = 0 for i = 1,2, . . . , � .

Therefore the solution is:

1. X = 0 if � = n .

2. X = [0, . . . ,0, t�+1, . . . ,tn]T with t�+1, . . . ,tn ∈Q if � < n .

In the case when the matrix A is not in column echelon rational form, then there
exists a matrix Q ∈ GL(n,Q) such that AQ := U is in echelon rational form. So if
we set Y = Q−1X ∈Qn then the system AX = 0 is transformed to the system UY = 0
which can be solved as described in the last paragraph. More precisely the rational

solutions set of the system AX = 0 is
n

∑
j=�+1

Q(Qej) .
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LEMMA 4.6. Let AX = 0 be a homogeneous linear system with A ∈ Rm×n then
the system admits the trivial solution over Q if and only if:

rankQ(A) = n

4.2.2. The general case

As before, there exists a matrix Q ∈ GL(n,Q) such that AQ = U is in echelon
rational form. So if we set Y = Q−1X ∈Qn then the system AX = B is transformed to
UY = B .

Assume that the matrix U have s leading sequences carried by the rows i1, i2, . . . , is
and respectively of length r1,r2, . . . ,rs and define the integers r̃i (1 � i � n ) such that:{

r̃ik = rk for every k = 1,2, . . . ,s
r̃i = 0 if i /∈ {i1, i2, . . . , is}

Then the first equation of the system UY = B reads:

r̃1

∑
j=1

u1, jy j = b1

If r̃1 = 0 then either b1 = 0 and so we proceed to the next equation, or b1 �= 0 and the
resolution stops with no solution found (inconsistent system over Q ).

If r̃1 �= 0 then either b1 is in the spanQ(u1,1, . . . ,u1,r̃1) and so we choose y1, . . . ,yr̃1
are the coordinates of b1 in the Q -basis (u1,1, . . . ,u1,r̃1) of this span (these numbers are
independent over Q by construction) or otherwise the resolution stops with no solution
found. This kind of inconsistency is not observed in the case the solutions are sought
in R .

Now the ith equation once it is reached during the resolution can be written as:

si

∑
j=1+si−1

ui, jy j = bi−
si−1

∑
j=1

ui, jy j

where si = r̃1 + r̃2 + . . .+ r̃i .
At this stage of the resolution, the sum in the right hand side is known and so we

can apply the same argument as before.
As expected, three cases can be encountered when we solve a linear system of

equations over Q :

Case 1: The system has infinitely many solutions of the form Xp +V ; where

V ∈ {X ∈Qn | AX = 0}
and Xp is a particular rational solution to AX = B .

Case 2: The system has a unique solution when it is consistent and rankQ(A) = n .

Case 3: The system has no solution.
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4.3. Hypercyclicity of finitely generated abelian subgroups of GL(n,C)

4.3.1. Density of additive subgroups of Rn and Cn

The following proposition characterizes the density of additive subgroups Zu1 +
. . .+Zup of Rn :

PROPOSITION 4.7. ([7], Proposition (4.3), Chapter II) Let H = Zu1 + . . .+ Zup

with uk ∈Rn , k = 1, . . . , p. Then H is dense in Rn if and only if for every (s1, . . . ,sp)∈
Zp \ {0} :

rankR

(
u1 . . . . . . up

s1 . . . . . . sp

)
= n+1.

As explained in [4], we assume that p � n + 1 and
p

∑
k=1

Ruk = Rn , otherwise H

is not dense in Rn . To be able to apply the results of this paper, we need to proceed
differently from [4].

THEOREM 4.8. Let H = Zu1+ . . .+Zup and assume that p � n+1 and (u1, . . . ,un)

is a basis of Rn . If uk =
n
∑
i=1

αk,iui , for every k � n+ 1 , then H is dense in Rn if and

only if

rankQ

⎛
⎜⎜⎜⎜⎝ Ip−n

⎛
⎜⎜⎜⎜⎝

αn+1,1 . . . αn+1,n
...

...
...

...
...

...
αp,1 . . . αp,n

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ = p.

Proof. The rank condition in Proposition (4.7) can be written as:

rankR

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 αn+1,1 . . . αp,1

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

...
...

...
0 . . . 0 1 αn+1,n . . . αp,n

s1 . . . . . . sn sn+1 . . . sp

⎞
⎟⎟⎟⎟⎟⎟⎠

= n+1, (4.1)

which, by elementary row operations, simplifies to:

rankR

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 αn+1,1 . . . αp,1

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

...
...

...
0 . . . 0 1 αn+1,n . . . αp,n

0 . . . . . . 0 sn+1−
n
∑
i=1

siαn+1,i . . . sp−
n
∑
i=1

siαp,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= n+1,
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but this condition is true for every (s1, . . . ,sp)∈Zp \{0} if and only if the linear system
of equations in the variables s1, . . . ,sp :

sk−
n

∑
i=1

siαk,i = 0; k = n+1, . . . , p

also written in matrix form as⎛
⎜⎜⎜⎜⎝
−αn+1,1 . . . −αn+1,n 1 0 . . . 0

...
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

−αp,1 . . . −αp,n 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

s1
...
...
sp

⎞
⎟⎟⎟⎟⎠ = 0

has no solution in Zp other than the trivial solution. As the system is homogeneous,
the last claim is also true (equivalent) when we replace Zp by Qp . Then by applying
Lemma(4.6) and swapping the columns, we get the required result (once we scale the
columns containing the α ’s terms by −1). �

REMARK 4.9. We note that when p = n + 1, we recover the well-known result
(see for instance [5, 4, 7]): H = Zu1 + . . .+Zun+1 , with (u1, . . . ,un) a basis of Rn and

un+1 =
n
∑
i=1

θiui , is dense in Rn if and only if (1,θ1, . . . ,θn) are rationally independent

or equivalently rankQ

(
1 θ1 . . . θn

)
= n+1 = p .

REMARK 4.10. In the same way, when n = 1 and p � 2, we get the following
classical result: H = a1Z+ . . . + apZ with a1 �= 0, is dense in R if and only if there

exists k ∈ {2, . . . , p} such that
ak

a1
is irrational.

Indeed, in this case αk,1 = ak/a1 for every k = 2, . . . , p and the matrix in Theorem
(4.8) becomes:

A :=

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 a2
a1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 . . . 0 1 ap

a1

⎞
⎟⎟⎟⎟⎠ .

It is clear that ri ∈ {1,2} for every i ∈ {1, . . . , p−1} , so rankQ(A) = p if and only if

there exists i0 ∈ {1, . . . , p−1} such that ri0 = 2 or equivalently
a1+i0

a1
is irrational.

REMARK 4.11. Let H = Zu1 + . . .+Zup with uk ∈ Cn .
To test the density of H in Cn , we proceed as follows: we define (by reali-

fication) the real additive subgroup H̃ ⊂ R2n as H̃ = Zũ1 + . . . + Zũp where ũk =
(ℜ(uk), ℑ(uk))

T for every k = 1, . . . , p . Then H is dense in Cn if and only if H̃ is
dense in R2n . Finally, we use Theorem (4.8) to test the density of H̃ in R2n .
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EXAMPLE 4.12. The following example is taken from ([4], Example 3.6.).
Let H = Zu1 + . . .+Zu7 , where u1 = (1,0,0)T , u2 = (0,1,0)T , u3 = (0,0,1)T ,

u4 =
(
1,
√

2,1
)T

, u5 =
(
0,1,
√

3
)T

, u6 =
(√

2,
√

3,1
)T

, u7 =
(
1,
√

2,
√

2
)T

.

Here n = 3 and p = 7 and the matrix in Theorem (4.8) is given by:

A :=

⎛
⎜⎜⎝

1 0 0 0 1
√

2 1
0 1 0 0 0 1

√
3

0 0 1 0
√

2
√

3 1
0 0 0 1 1

√
2
√

2

⎞
⎟⎟⎠ .

Transforming A to column rational echelon form:

Ã =

⎛
⎜⎜⎝

1
√

2 0 0 0 0 0
0 1 1

√
3 0 0 0

0
√

3 0 1 1
√

2 0
0
√

2 0
√

2 0 1 1

⎞
⎟⎟⎠ .

We have:
r1 = r2 = r3 = 2 and r4 = 1.

So rankQ(A) = 7 and by Theorem (4.8), H is dense in R3 .

4.3.2. Hypercyclicity test

Let r ∈N0 := N\{0} and η = (n1, . . . ,nr) ∈Nr
0 such that

r
∑
i=1

ni = n . Then denote

• K ∗
η,r(C)=

{
diag(T1, . . . ,Tr) ∈Mn(C) : Tk ∈ Tnk(C), k = 1, . . . ,r

}∩GL(n,C) ,
where Tn(C) is the set of all lower-triangularmatrices over C , of order n and with only
one eigenvalue.

• u0 = (e1,1, . . . ,er,1)
T ∈Cn , where ek,1 = (1,0, . . . ,0)T ∈ Cnk , 1 � k � r.

• e(k) =
(
0Cn1 , . . . ,0C

nk−1 ,eT
k,1,0C

nk+1 , . . . ,0Cnr

)T ∈ Cn, 1 � k � r.

In this section, we shall study the notion of hyperciclicity, to this end we first recall
the following

DEFINITION 4.13. Let G be an abelian subgroup of GL(n,C) . We say that G is
hypercyclic if there exists a vector x ∈ Cn such that the orbit of x under the action of
G is dense in Cn .

In [1], the authors proved the following

PROPOSITION 4.14. ([1], Proposition 6.1.) Let G be an abelian subgroup of
GL(n,C) , then there exists P ∈ GL(n,C) such that G̃ = P−1GP is a subgroup of
K ∗

η,r(C) , for some 1 � r � n and η ∈ Nr
0 .
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THEOREM 4.15. ([1], equivalent version of Theorem 1.3) Let G be an abelian
subgroup of GL(n,C) and P∈GL(n,C) such that P−1GP⊂K ∗

η,r(C) . Assume that G

is generated by A1, . . . ,Ap . Then G is hypercyclic if and only if
p
∑

k=1
ZBku0+2iπ

r
∑

k=1
Ze(k)

is a dense additive subgroup of Cn , where P−1A1P = eB1 , . . . ,P−1ApP = eBp with
B1, . . . ,Bp ∈K ∗

η,r(C) .

COROLLARY 4.16. Let G be an abelian subgroup of GL(n,C) , generated by
A1, . . . ,Ap and P ∈ GL(n,C) such that P−1GP⊂K ∗

η,r(C) . If p+ r � 2n, then G has
no dense orbit.

So let G be an abelian subgroup of GL(n,C) generated by A1, . . . ,Ap .
In [5], the authors gave a complete algorithm to test the hypercyclicity of finitely

generated abelian subgroups of GL(n,C) . In this paper, this algorithm is only used to

get the expression of the complex additive subgroup H(G) :=
p
∑

k=1
ZBku0 +2iπ

r
∑

k=1
Ze(k)

stated in Theorem (4.15). To test the density of H(G) in Cn and subsequently the
hypercyclicity of G , we refer to Remark (4.11) and Theorem (4.8).

The following example is taken from [5].

EXAMPLE 4.17. Let G be the subgroup of GL(3,C) generated by A1 ,A2 , A3 ,
A4 , A5 and A6 , where:

A1 =

⎛
⎝ e 3−2e+ i −2+ e− i

0 2+ i −1− i
0 1+ i −i

⎞
⎠ , A2 =

⎛
⎜⎝1 −2+2e

√
2 1− e

√
2

0 e
√

2 0

0 0 e
√

2

⎞
⎟⎠

A3 =

⎛
⎝ e
√

3 −2e
√

3 +2ei e
√

3− ei

0 ei 0
0 0 ei

⎞
⎠

A4 =

⎛
⎝ ei

√
5
√

2(
√

2+ i)e−2ei
√

5 ei
√

5− (1+ i
√

2)e
0 (1+ i

√
2)e −i

√
2e

0 i
√

2e (1− i
√

2)e

⎞
⎠

A5 =

⎛
⎝ e 2−2e+

√
7+ i
√

2 e−1−√7− i
√

2
0 1+

√
7+ i
√

2 −√7− i
√

2
0

√
7+ i
√

2 1−√7− i
√

2

⎞
⎠

A6 =

⎛
⎝1 i

√
2 −i

√
2

0 1+ i
√

2 −i
√

2
0 i
√

2 1− i
√

2

⎞
⎠ .

Then the complex additive group H(G) =
6
∑

k=1
ZBku0 +2π i Ze1 +2π i Ze2 where ei is

the ith vector of the Cn -standard basis and u0 = e1 + e2 .
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As shown in [5], H(G) =
8
∑

k=1
Zuk where

u1 =
(
1,0, 1

2 + 1
2 i

)T
, u2 =

(
0,
√

2,0
)T

, u3 =
(√

3, i,0
)T

, u4 =
(
i
√

5,1,
√

2
2 i

)T
,

u5 =
(
1,0,

√
7

2 +
√

2
2 i

)T
, u6 =

(
0,0,

√
2

2 i
)T

, u7 = (2π i,0,0)T , u8 = (0,2π i,0)T

Therefore, the real additive group H̃(G) =
8
∑

k=1
Zuk where:

ũ1 =
(
1,0, 1

2 ,0,0, 1
2

)T
, ũ2 =

(
0,
√

2,0,0,0,0
)T

, ũ3 =
(√

3,0,0,0,1,0
)T

,

ũ4 =
(
0,1,0,

√
5,0,

√
2

2

)T
, ũ5 =

(
1,0,

√
7

2 ,0,0,
√

2
2

)T
, ũ6 =

(
0,0,0,0,0,

√
2

2

)T
,

ũ7 = (0,0,0,2π ,0,0)T , ũ8 = (0,0,0,0,2π ,0)T

The vectors ũ7 and ũ8 can be expressed in the basis (ũ1, ũ2, . . . , ũ6) as

ũ7 = −π
√

10
5

ũ2 +2π
√

5
5

ũ4−2π
√

5
5

ũ6

ũ8 = −π
7
√

3+
√

21
3

ũ1 +2π ũ3 + π
√

3+
√

21
3

ũ5 + π
√

42−2
√

21+7
√

6−2
√

3
6

ũ6

To test the density of H̃(G) in R6 , we evaluate first the matrix in Theorem (4.8):

A :=

⎛
⎝1 0 0 −π

√
10
5 0 2π

√
5

5 0 −2π
√

5
5

0 1 −π 7
√

3+
√

21
3 0 2π 0 π

√
3+
√

21
3 π

√
42−2

√
21+7

√
6−2
√

3
6

⎞
⎠ .

Transforming A to column rational echelon form:

Ã =

⎛
⎝1 −π

√
10
5 2π

√
5

5 0 0 0 0 0

0 0 0 1 −π 7
√

3+
√

21
3 2π π

√
3+
√

21
3 π

√
42−2

√
21+7

√
6−2
√

3
6

⎞
⎠ .

We have:
r1 = 3 and r2 = 5.

So rankQ(A) = 8 and by Theorem (4.8), H̃(G) is dense in R6 . Then we conclude that
H(G) is dense in C3 and finally G is hypercyclic.

4.4. Regularity of orbits under linear actions

DEFINITION 4.18. ([2]) Let G be a topological group acting continuousily on a
topological space, the orbit of a point is said to be regular if the relative topology of
the orbit coincides with the quotient topology that the orbit carries as a homogeneous
space.
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As in [2, 3], we let

(i) V a finite dimensional real vector space with dimV = n ,

(ii) M1, . . . ,Mk linearly independent pairwise commuting square matrices of order n
and G = exp

(
∑k

j=1 RMj
)
, where exp denotes the matrix exponential mapping.

The group G is acting on V via

G×V −→V, (g = exp
k

∑
j=1

t jMj,v) 
−→ g.v = e∑k
j=1 t jMj v.

If Gv denotes the G-orbit of v ∈V , Gv is in bijection with G/Gv , where

Gv = {g ∈ G : g · v = v}
is the stability subgroup of v in G which is closed in G . On other hand, the quotient
topology on G/Gv is Hausdorff and the orbit Gv is regular if the natural bijection
G/Gv→ Gv is a homeomorphism. Following [3], let g = ∑k

j=1 RMj which is realized
as a space of lower triangular complex matrices, simultaneously in block form, with the
j -th block having scalar diagonal part given by a linear form

λ j : g→C, M 
→ λ j(M) = α j(M)+ iβ j(M).

The functionnals (λ j)1� j�k are called the roots of g . For each matrix M ∈ g , let n(M)
be the nilpotent (strictly lower triangular) part of M , so we write the decomposition
M = d(M)+n(M) where d(M) is diagonal and n(M) is nilpotent (with d(M)n(M) =
n(M)d(M)). Put

g0 =
k⋂

j=1

kerα j.

That is g0 is the subspace of g consisting of those M whose eigenvalues have vanishing
real part. Next, for each v ∈V , let

n(v) = {M ∈ g0 : n(M)v = 0}.
The subgroup expn(v) acts on v by rotations, and regularity of the orbit Gv is reduced
to regularity of expn(v)v ([3], Theorem 3.6 p.8). It follows that Gv is regular if and
only if

dimQ spanQ{λ j|n(v)}= dimR spanR{λ j|n(v)}. (4.2)

For simplicity of notation, let {N1, . . . ,Np} be a basis in the R-space n(v) and {λ1, . . . ,
λq} be the set of roots of g , then one has

λr(Ns) = iβr(Ns) ∈ iR (i2 =−1), r = 1, . . . ,q, s = 1, . . . , p.

Let A = (ai, j) be the real matrix whose entries

ai, j = β j(Ni), i = 1, . . . p, j = 1, . . . ,n.
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Then the regularity condition (4.2) is traduced as follows:

Gv is regular if and only if rankQ(A) = rankR(A).

EXAMPLE 4.19. Let V = R6 = R2×R2×R2 and g = RM with

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0
1 a 0 0 0 0
0 0 0 −b 0 0
0 0 b 0 0 0
0 0 0 0 0 −c
0 0 0 0 c 0

⎞
⎟⎟⎟⎟⎟⎟⎠

; a,b,c ∈ R.

The eigenvalues of M are a,±ib,±ic . We can easily check, that there is a non singular
(complex) matrix P such that

PMP−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0
1 a 0 0 0 0
0 0 ib 0 0 0
0 0 0 −ib 0 0
0 0 0 0 ic 0
0 0 0 0 0 −ic

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The roots of g are λ1,λ2,λ3 = λ2,λ4,λ5 = λ4, with

λ1(M) = a, λ2(M) = ib, λ4(M) = ic, (i2 =−1).

The only real root of g is α1(M) = a . For any v = (v1, . . . ,v6) ∈ V the orbit Gv of v
is given by

Gv = {etMv, t ∈ R}= {(eatv1,e
at(tv1 + v2),eibtv3,e

−ibtv4,e
ict v5,e

−ict v6), t ∈ R}
Now assume that a = 0, then g0 = g and let v = (0,v2,v3,v4,v5,v6) , then

n(v) = {M ∈ g0 : n(M)v = 0}= g = g0,

In this case the matrix A is
A =

(
b −b c −c

)
.

Consequently, Gv is regular if and only if b and c are rationally dependent.

EXAMPLE 4.20. In this example we shall consider the space V = R7 = R3×C2

and g = RM1⊕RM2⊕RM3 with

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 ia 0 0 0
0 0 0 0 −ia 0 0
0 0 0 0 0 ib 0
0 0 0 0 0 0 −ib

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 +ic 0 0 0
0 0 0 0 −ic 0 0
0 0 0 0 0 id 0
0 0 0 0 0 0 −id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +ie 0 0 0
0 0 0 0 −ie 0 0
0 0 0 0 0 i f 0
0 0 0 0 0 0 −i f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; a,b,c,d,e, f ∈ R.

It is clear that dimg = 3 and the roots of g are given by

λ1 = 0,

⎧⎨
⎩

λ2(M1) = ia
λ2(M2) = ic
λ2(M3) = ie

, λ3 = λ2,

⎧⎨
⎩

λ4(M1) = ib
λ4(M2) = id
λ4(M3) = i f

, λ5 = λ4.

On the other hand, for any v = (v1, . . . ,v7) ∈V the orbit Gv is given by

Gv = {et1M1+t2M2+t3M3v, t1,t2,t3 ∈ R}.
Now let v = (0,0,v3,v4,v5,v6,v7) , hence

n(v) = {M ∈ g0 : n(M)v = 0}= g = g0,

In this case the matrix A is

A =

⎛
⎝0 a −a b −b

0 c −c d −d
0 e −e f − f

⎞
⎠ .

As r := rankR(A) ∈ {1,2} then Gv is regular if and only if:

• either r = rankQ(A) = 2. In this case (ad−bc,c f −ed,a f −be) �= (0,0,0) . Assume
for example that ad−bc �= 0 then

A =

⎛
⎝a b 0

c d 0
e f 1

⎞
⎠

⎛
⎝1 0 0 0 0

0 1 0 0 0
0 0 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

0 1 −1 0 0
0 0 0 1 −1
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

By Proposition (4.5), no other condition is needed.

• or r = rankQ(A) = 1. In this case (ad−bc,c f − ed,a f −be) = (0,0,0) and
b
a
∈Q

where we assume that a �= 0 so that (a,c,e) �= (0,0,0) then

A =

⎛
⎝a 0 0

c 1 0
e 0 1

⎞
⎠

⎛
⎝1 0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1
b
a
−b

a
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .



RATIONAL ELIMINATION ALGORITHM AND APPLICATIONS 675

RE F ER EN C ES

[1] A. AYADI AND H. MARZOUGUI, Dense orbits for abelian subgroups of GL(n,C) , Foliations 2005:
World Scientific, Hackensack, NJ, (2006), 47–69.

[2] D. ARNAL, B. DALI, B. CURREY, V. OUSSA, Regularity of abelian linear actions, Commutative
and noncommutative harmonic analysis and applications, 89–109, Contemp. Math., 603, Amer. Math.
Soc., Providence, RI, 2013.

[3] DIDIER ARNAL, BRADLEY CURREY, VIGNON OUSSA, Characterization of regularity for a con-
nected Abelian action, Monatsh. Math. Volume 180. Issue 1, pp. 1–37, doi:10.1007/s00605-015-0811-
y.

[4] ELGHAOUI, MOHAMED, AND ADLENE AYADI, Rational Criterion Testing the Density of Addi-
tive Subgroups of Rn and Cn , Applied General Topology, vol. 16, no. 2, Oct. 2015, pp. 127–139,
doi:10.4995/agt.2015.3257.

[5] MOHAMED ELGHAOUI AND ADLENE AYADI, Algorithm testing for the hypercyclicity of finitely
abelian subgroups of GL(n,C) , Operators and Matrices Volume 10, Number 3 (2016), 669–678,
doi:10.7153/oam-10-40.

[6] O. L. MANGASARIAN, AND M. C. FERRIS, Uniqueness of Integer Solution of Linear Equations,
Optimization Letters, vol. 4, no. 4, Nov. 2010, pp. 559–65, doi:10.1007/s11590-010-0183-0.

[7] M. WALDSCHMIDT, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M.
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