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Abstract. Let C (S) denote the centralizer of an arbitrary square matrix S . An element A∈C (S)
is simple if A− I is of rank 1. Let AS denote the subalgebra generated by the simple elements
of C (S) . We use the Weyr canonical form to describe the subalgebra AS , and we show that if
λ1, . . . ,λk are the distinct eigenvalues of S , and l is the number of defective eigenvalues of S ,
then AS is of dimension l +∑k

i=1 nullity(S−λiI)2 .

1. Introduction

We consider matrices over an algebraically closed field F with zero characteristic.
Let S be any set of n -by-n matrices. We call an element A ∈ S simple if A− I is
of rank 1. The following are known matrix decompositions with simple elements as
factors.

• Every n -by-n matrix with determinant ±1 is a product of 2n− 1 involutions
which are simple [10].

• Every n -by-n orthogonalmatrix is a product of n+1 simple orthogonal matrices
[11, 14].

• Every 2n -by-2n symplectic matrix is a product of 2n + 1 simple symplectic
matrices [2, 5].

For nonsingular matrices A and S , we say that A is φS -orthogonal if SATS−1 =
A−1 , or equivalently,

AS = SA−T .

Notice that if S = I , then a φS -orthogonal matrix is an orthogonal matrix, and that

if S =
[

0 In
−In 0

]
, then a φS -orthogonal matrix is a symplectic matrix. Thus the φS -

orthogonal matrices may be viewed as generalizations of symplectic and orthogonal
matrices. Let OS be the set of φS -orthogonal matrices. If F = C , then every element
in OS is a product of simple elements in OS if and only if S−TS is an involution [4]. A
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related study [1] has been recently done for the set of ψS -orthogonal matrices, where
given nonsingular matrices S and A , we say that A is ψS -orthogonal if SA−1S−1 =
A−1 , or equivalently,

AS = SA.

It is shown in [1] that if F = C , then every ψS -orthogonal matrix is a product of simple
ψS -orthogonal matrices if and only if S is consimilar to a diagonal matrix.

For an arbitrary square matrix S the centralizer C (S) of S is the set of all A such
that

AS = SA.

If S is a nontrivial involution, and oftentimes assumed to be also Hermitian, the ele-
ments of C (S) are also called S -symmetric, and has been characterized in [12]. Gen-
eralizations and eigenvalue problems relating to S -symmetric matrices have also been
considered [3, 7, 8, 13]. In this paper, we consider an arbitrary square matrix S and
we use the Weyr canonical form to describe the subalgebra generated by the simple
elements of C (S) . We use the preceding to prove our main result, which we state in the
following theorem. Recall that a defective eigenvalue is an eigenvalue whose geometric
multiplicity is strictly less than its algebraic multiplicity.

THEOREM 1. Let S be an arbitrary square matrix over an algebraically closed
field of zero characteristic, and AS be the subalgebra generated by the elements X
that satisfy XS = SX and rank(X − I) = 1 . Suppose that λ1, . . . ,λk are the distinct
eigenvalues of S and l is the number of defective eigenvalues of S . Then

dimAS = l +
k

∑
i=1

nullity(S−λiI)2.

The following is immediate from Theorem 1 as we will see in our discussions.

COROLLARY 1. Following the assumptions and notations in Theorem 1, we have
that C (S) = AS if and only if the Jordan structure of S corresponding to each eigen-
value is of the form (2,1, . . . ,1) or (1,1, . . . ,1) .

In other words, the simple elements of C (S) generate the whole algebra if and
only if S is almost diagonalizable.

2. Proof of the main result

If XS1X−1 = S2 for some nonsingular matrix X , then

C (S1) = X−1C (S2)X = {X−1AX |A ∈ C (S2)},
that is, there is an isomorphism between the algebras C (S1) and C (S2) . Thus, to count
the dimension of AS , we can assume without loss of generality that S is in a canonical
form under similarity. Both the Jordan Canonical form and Weyr Canonical form imply
that if λ1, . . . ,λk are the distinct eigenvalues of S , then we can assume S =W1⊕·· ·⊕Wk
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where λi is the only eigenvalue of Wi . Due to Sylvester’s Theorem [6, Theorem 4.4.6],
if X commutes with S , then X = X1 ⊕·· ·⊕Xk , where Xi and Wi have the same sizes
for i = 1, . . . ,k . Thus, dimAS = ∑k

i=1 dimAWi . Since AWi � C (Wi) , we have that
AS = C (S) if and only if dimAWi = dimC (Wi) for i = 1, . . . ,k .

PROPOSITION 1. Theorem 1 and Corollary 1 are true if they are true for the case
when S has only one eigenvalue.

If S = λ In for some λ ∈ F , then C (S) = Fn×n . Define Ei, j to be the matrix
whose (i, j)-entry is 1 and whose other entries are 0. Observe that if i �= j , then Ei, j =
(I + (2Ei, j))− (I + Ei, j) is a difference of simple elements in C (S) . If i = j , then
Ei,i = diag(Ii−1,3, In−i)−diag(Ii−1,2, In−i) is a difference of simple elements in C (S) .
Since the Ei, j ’s form a basis for Fn×n , we have AS = Fn×n and so

dimAS = dimF
n×n = nullity(S−λ I)2.

We are left to prove Theorem 1 for defective eigenvalues.
Let J be an n -by-n Jordan matrix with only one eigenvalue and suppose (m1, . . . ,ms)

is the Jordan structure of J , where m1 > m2 > · · · > ms . Then an n -by-n blocked
matrix K = [Ki, j] , where each Ki, j is mi -by-mj , commutes with J if and only if

Ki, j =
[
0 T

]
for i � j , and Ki, j =

[
T
0

]
for i � j , where T is a matrix of the form

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 . . . . . . amj

0 a1 a2 a3 . . .
0 0 a1 a2
...

. . .
0 0 0 . . . a1

⎤
⎥⎥⎥⎥⎥⎦

,

see [9, Proposition 3.1.2]. For instance, if

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then K commutes with J if and only if

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g
0 a b 0 d e 0
0 0 a 0 0 d 0
h i j k l m n
0 h i 0 k l 0
0 0 h 0 0 k 0
0 0 o 0 0 p q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The Frobenius formula [9, Proposition 3.1.3] gives the dimension of C (J) as m1 +
3m2 + · · ·+(2s− 1)ms , which justifies the use of 17 variables in the above matrix K .
We note that the rank of K− I is not immediately obtained from this form, and so we
turn to the Weyr canonical form.

A very good reference material for properties and applications of the Weyr canon-
ical form is [9]. We recall some concepts and adapt notations from this book.

DEFINITION 1. (Definition 2.1.1 in [9]) A basic Weyr matrix with eigenvalue λ
is an n -by-n matrix W of the following form: There is a partition n1 + · · ·+nr = n of
n with n1 � · · · � nr � 1 such that, when W is viewed as an r -by-r blocked matrix
(Wi, j) , where the (i, j) block Wi, j is an ni -by-n j matrix, the following three features
are present:

1. The main diagonal blocks Wi,i are the ni -by-ni scalar matrices λ I for i = 1, . . . ,r .

2. The first superdiagonal blocks Wi,i+1 are full column-rank ni -by-ni+1 matrices
in reduced row echelon form (that is, an identity matrix followed by zero rows)
for i = 1, . . . ,r−1.

3. All other blocks of W are zero.

In this case, we say that W has Weyr structure (n1, . . . ,nr) . A matrix W is a Weyr
matrix, or is in Weyr form if it is a direct sum of basic Weyr matrices with distinct
eigenvalues.

We also have that the number n1 is the nullity of W −λ In . For example,

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 1 0 0 0 0 0 0
0 λ 0 0 0 1 0 0 0 0 0
0 0 λ 0 0 0 1 0 0 0 0
0 0 0 λ 0 0 0 0 0 0 0
0 0 0 0 λ 0 0 1 0 0 0
0 0 0 0 0 λ 0 0 1 0 0
0 0 0 0 0 0 λ 0 0 1 0
0 0 0 0 0 0 0 λ 0 0 1
0 0 0 0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 0 0 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

is a basic Weyr matrix with Weyr structure (4,3,3,1) such that nullity(W −λ I) = 4.

THEOREM 2. (Theorem 2.2.4 in [9]) To within permutation of basic Weyr blocks,
each square matrix A over an algebraically closed field is similar to a unique Weyr
matrix W . The matrix W is called the Weyr canonical form of A.

With Proposition 1 in mind, we prove Theorem 1 only for the case when S = W
is a nonscalar basic Weyr matrix. The following completely describes the elements in
C (W ) .



THE ALGEBRA GENERATED BY ELEMENTS OF A MATRIX CENTRALIZER 681

LEMMA 1. (Proposition 2.3.3 in [9]) Let W be an n-by-n basic Weyr matrix with
Weyr structure (n1, . . . ,nr) , r � 2 . Let K be an n-by-n matrix, blocked according to
the partition n = n1 + · · ·+nr , and let Ki, j denote its (i, j) block (an ni -by-n j matrix)
for i, j = 1, . . . ,r . Then W and K commute if and only if K is a block upper triangular
matrix for which

Ki, j =
[
Ki+1, j+1 ∗

0 ∗
]

for 1 � i � j � r−1. (2)

Here, we have written Ki, j as a blocked matrix where the zero block is (ni −ni+1)-by-
n j+1 .

In particular, a matrix in C(W ) is completely determined by its top row of blocks.
For illustration, suppose a basic Weyr matrix W has Weyr structure (3,3,2,1) . When
we write K ∈ C (W ) as

K =

⎡
⎣1 0 1 1 −1 1 2 1 1

0 1 2 0 1 −1 0 1 1
0 0 2 0 0 −2 1 1 0

⎤
⎦

we basically mean that

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 −1 1 2 1 1
0 1 2 0 1 −1 0 1 1
0 0 2 0 0 −2 1 1 0
0 0 0 1 0 1 1 −1 2
0 0 0 0 1 2 0 1 0
0 0 0 0 0 2 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For convenience, a linear combination of elements in C (W ) will also be written simply
as a linear combination of the first row of these elements.

THEOREM 3. Let W be a basic Weyr matrix with Weyr structure (n1, . . . ,nr) . Let
K = [Ki, j] ∈ C (W ) such that Ki, j is ni -by-n j . Then K is simple if and only if the
following hold:

(a) K1,1 =
[
In2 B1

0 C1

]
.

(b) K1,i =
[
0n2×ni+1 Bi

0 Ci

]
for i = 2, . . . ,r−1 .

(c) K1,r =
[
Br

Cr

]
, where Br has n2 rows.

(d)

[
B1 B2 . . . Br

C1 − I C2 . . . Cr

]
has rank 1.
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Proof. Let K ∈ C (W ) . It is straightforward to verify that if K satisfies the set of
conditions above, then K is simple. Now, suppose K is simple. In view of Lemma 1,

if Ki,i �= I for some i = 2, . . . ,r , then K1,1 =
[
Ki,i ∗
0 ∗

]
�= I and we have

rank(K− I) = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

K1,1 − I ∗
. . .

Ki,i − I
. . .

0 Kr,r − I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

� rank(Ki,i − I)+ rank(K1,1− I)
� 2.

This is a contradiction since K − I is of rank 1, and so Ki,i = I for i = 2, . . . ,r ,
that is,

K =

⎡
⎢⎢⎢⎢⎢⎣

K1,1 . . .
In2 K2,3

. . .
. . .

Inr−1 Kr−1,r

0 Inr

⎤
⎥⎥⎥⎥⎥⎦

.

Suppose that Ki,i+ j �= 0 for some 2 � i � r−1 and j = 1, . . . ,r− i . We assume without
loss of generality that Ki,i+ j is the immediate nonzero superdiagonal block. This gives
us,

rank(K− I) = rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1− I · · · K1,1+ j

0 0
. . .

. . . 0 Ki,i+ j

0
. . .
. . . 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� rank(K1,1+ j)+ rank(Ki,i+ j)
� 2,

which is again a contradiction to the assumption that K is simple. This implies that

K =
[
K1,1 ∗
0 I

]
and so the rank of K− I is equal to the rank of the first row of blocks of

K− I . The previous discussion and Lemma 1 give us the desired form of K . �
The characterization in Theorem 3 of simple elements in C (W ) implies that AW

is contained in the algebra BW of matrices in C (W ) whose first row of blocks is of the
form

K =
[[

αIn2 B1

0 C1

] [
0n2×ni+1 B2

0 C2

]
. . .

[
Br

Cr

]]
, (3)
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where each Bi ∈ Fn2×(ni−ni+1) and each Ci ∈ F(n1−n2)×(ni−ni+1) for i = 1, . . . ,r − 1,
Br ∈Fn2×nr , and Cr ∈F(n1−n2)×nr . It is then straightforward to count that the dimension
of BW is

1+n1((n1 −n2)+ (n2−n3)+ · · ·+(nr−1−nr)+nr) = 1+n2
1.

Hence, since n1 = nullity(W − I) , we are done if we show that BW = AW . It is enough
to prove that the matrix K in Equation 3 is in AW , for the cases when

• K = αI for some α ∈ F , or

• α = 0 and all other blocks are zero except for one which is a matrix of the form
Ek,l .

Indeed, I ∈ AW since it is the linear combination

2

[[
In2 Ei, j

0 Is

]
0

]
−

[[
In2 2Ei, j

0 Is

]
0

]
(4)

of simple elements in C (W ) , and so K = αI ∈ AW for all α . Also if K satisfies the
other condition, one checks that K + I is a simple element, and thus K = (K + I)− I ∈
AW . This proves Theorem 1.

REMARK 1. In both the defective and nondefective case, we have shown that a
basis containing only simple elements exists for AS .

We now consider Corollary 1 for the case when S has only one eigenvalue. If S =
λ I , that is, when the Jordan structure of S is (1, . . . ,1) , we have shown that AS =C (S) .
Assume that S is a nonscalar basic Weyr matrix with eigenvalue λ . We use Proposition
3.2.2 in [9] which implies that if S has Weyr structure (n1, . . . ,nr) , the dimension of
C (S) is n2

1 + · · ·+ n2
r . Thus, Theorem 1 and the fact that n1 = nullity(S−λ I) imply

that AS = C (S) if and only if 1 = n2
2 + · · ·+ n2

r , and this happens only when r = 2
and n2 = 1. In summary, if S is a nonscalar basic Weyr matrix with eigenvalue λ ,
AS = C (S) if and only if the Weyr structure of S is (n1,1) . One easily checks that
a basic Weyr matrix with this Weyr structure has Jordan structure (2,1, . . . ,1) (or one
may consult Corollary 2.4.3 in [9] for the relation of the Weyr structure and Jordan
structure).
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