THE ALGEBRA GENERATED BY SIMPLE ELEMENTS OF A MATRIX CENTRALIZER

Ralph John de la Cruz
(Communicated by H. Radjavi)

Abstract

Let $\mathscr{C}(S)$ denote the centralizer of an arbitrary square matrix S. An element $A \in \mathscr{C}(S)$ is simple if $A-I$ is of rank 1 . Let \mathscr{A}_{S} denote the subalgebra generated by the simple elements of $\mathscr{C}(S)$. We use the Weyr canonical form to describe the subalgebra \mathscr{A}_{S}, and we show that if $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of S, and l is the number of defective eigenvalues of S, then \mathscr{A}_{S} is of dimension $l+\sum_{i=1}^{k} \operatorname{nullity}\left(S-\lambda_{i} I\right)^{2}$.

1. Introduction

We consider matrices over an algebraically closed field \mathbb{F} with zero characteristic. Let \mathscr{S} be any set of n-by- n matrices. We call an element $A \in \mathscr{S}$ simple if $A-I$ is of rank 1. The following are known matrix decompositions with simple elements as factors.

- Every n-by- n matrix with determinant ± 1 is a product of $2 n-1$ involutions which are simple [10].
- Every n-by- n orthogonal matrix is a product of $n+1$ simple orthogonal matrices [11, 14].
- Every $2 n$-by- $2 n$ symplectic matrix is a product of $2 n+1$ simple symplectic matrices [2, 5].

For nonsingular matrices A and S, we say that A is ϕ_{S}-orthogonal if $S A^{T} S^{-1}=$ A^{-1}, or equivalently,

$$
A S=S A^{-T}
$$

Notice that if $S=I$, then a ϕ_{S}-orthogonal matrix is an orthogonal matrix, and that if $S=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$, then a ϕ_{S}-orthogonal matrix is a symplectic matrix. Thus the $\phi_{S}{ }^{-}$ orthogonal matrices may be viewed as generalizations of symplectic and orthogonal matrices. Let \mathscr{O}_{S} be the set of ϕ_{S}-orthogonal matrices. If $\mathbb{F}=\mathbb{C}$, then every element in \mathscr{O}_{S} is a product of simple elements in \mathscr{O}_{S} if and only if $S^{-T} S$ is an involution [4]. A
related study [1] has been recently done for the set of ψ_{S}-orthogonal matrices, where given nonsingular matrices S and A, we say that A is ψ_{S}-orthogonal if $\overline{S A^{-1}} S^{-1}=$ A^{-1}, or equivalently,

$$
A S=S \bar{A}
$$

It is shown in [1] that if $\mathbb{F}=\mathbb{C}$, then every ψ_{S}-orthogonal matrix is a product of simple ψ_{S}-orthogonal matrices if and only if S is consimilar to a diagonal matrix.

For an arbitrary square matrix S the centralizer $\mathscr{C}(S)$ of S is the set of all A such that

$$
A S=S A
$$

If S is a nontrivial involution, and oftentimes assumed to be also Hermitian, the elements of $\mathscr{C}(S)$ are also called S-symmetric, and has been characterized in [12]. Generalizations and eigenvalue problems relating to S-symmetric matrices have also been considered $[3,7,8,13]$. In this paper, we consider an arbitrary square matrix S and we use the Weyr canonical form to describe the subalgebra generated by the simple elements of $\mathscr{C}(S)$. We use the preceding to prove our main result, which we state in the following theorem. Recall that a defective eigenvalue is an eigenvalue whose geometric multiplicity is strictly less than its algebraic multiplicity.

THEOREM 1. Let S be an arbitrary square matrix over an algebraically closed field of zero characteristic, and \mathscr{A}_{S} be the subalgebra generated by the elements X that satisfy $X S=S X$ and $\operatorname{rank}(X-I)=1$. Suppose that $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of S and l is the number of defective eigenvalues of S. Then

$$
\operatorname{dim} \mathscr{A}_{S}=l+\sum_{i=1}^{k} \operatorname{nullity}\left(S-\lambda_{i} I\right)^{2}
$$

The following is immediate from Theorem 1 as we will see in our discussions.
Corollary 1. Following the assumptions and notations in Theorem 1, we have that $\mathscr{C}(S)=\mathscr{A}_{S}$ if and only if the Jordan structure of S corresponding to each eigenvalue is of the form $(2,1, \ldots, 1)$ or $(1,1, \ldots, 1)$.

In other words, the simple elements of $\mathscr{C}(S)$ generate the whole algebra if and only if S is almost diagonalizable.

2. Proof of the main result

If $X S_{1} X^{-1}=S_{2}$ for some nonsingular matrix X, then

$$
\mathscr{C}\left(S_{1}\right)=X^{-1} \mathscr{C}\left(S_{2}\right) X=\left\{X^{-1} A X \mid A \in \mathscr{C}\left(S_{2}\right)\right\}
$$

that is, there is an isomorphism between the algebras $\mathscr{C}\left(S_{1}\right)$ and $\mathscr{C}\left(S_{2}\right)$. Thus, to count the dimension of \mathscr{A}_{S}, we can assume without loss of generality that S is in a canonical form under similarity. Both the Jordan Canonical form and Weyr Canonical form imply that if $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of S, then we can assume $S=W_{1} \oplus \cdots \oplus W_{k}$
where λ_{i} is the only eigenvalue of W_{i}. Due to Sylvester's Theorem [6, Theorem 4.4.6], if X commutes with S, then $X=X_{1} \oplus \cdots \oplus X_{k}$, where X_{i} and W_{i} have the same sizes for $i=1, \ldots, k$. Thus, $\operatorname{dim} \mathscr{A}_{S}=\sum_{i=1}^{k} \operatorname{dim} \mathscr{A}_{W_{i}}$. Since $\mathscr{A}_{W_{i}} \leqslant \mathscr{C}\left(W_{i}\right)$, we have that $\mathscr{A}_{S}=\mathscr{C}(S)$ if and only if $\operatorname{dim} \mathscr{A}_{W_{i}}=\operatorname{dim} \mathscr{C}\left(W_{i}\right)$ for $i=1, \ldots, k$.

Proposition 1. Theorem 1 and Corollary 1 are true if they are true for the case when S has only one eigenvalue.

If $S=\lambda I_{n}$ for some $\lambda \in \mathbb{F}$, then $\mathscr{C}(S)=\mathbb{F}^{n \times n}$. Define $E_{i, j}$ to be the matrix whose (i, j)-entry is 1 and whose other entries are 0 . Observe that if $i \neq j$, then $E_{i, j}=$ $\left(I+\left(2 E_{i, j}\right)\right)-\left(I+E_{i, j}\right)$ is a difference of simple elements in $\mathscr{C}(S)$. If $i=j$, then $E_{i, i}=\operatorname{diag}\left(I_{i-1}, 3, I_{n-i}\right)-\operatorname{diag}\left(I_{i-1}, 2, I_{n-i}\right)$ is a difference of simple elements in $\mathscr{C}(S)$. Since the $E_{i, j}$'s form a basis for $\mathbb{F}^{n \times n}$, we have $\mathscr{A}_{S}=\mathbb{F}^{n \times n}$ and so

$$
\operatorname{dim} \mathscr{A}_{S}=\operatorname{dim} \mathbb{F}^{n \times n}=\operatorname{nullity}(S-\lambda I)^{2}
$$

We are left to prove Theorem 1 for defective eigenvalues.
Let J be an n-by- n Jordan matrix with only one eigenvalue and suppose (m_{1}, \ldots, m_{s}) is the Jordan structure of J, where $m_{1}>m_{2}>\cdots>m_{s}$. Then an n-by- n blocked matrix $K=\left[K_{i, j}\right]$, where each $K_{i, j}$ is m_{i}-by- m_{j}, commutes with J if and only if $K_{i, j}=\left[\begin{array}{ll}0 & T\end{array}\right]$ for $i \geqslant j$, and $K_{i, j}=\left[\begin{array}{l}T \\ 0\end{array}\right]$ for $i \leqslant j$, where T is a matrix of the form

$$
\left[\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \ldots & \ldots & a_{m_{j}} \\
0 & a_{1} & a_{2} & a_{3} & \ldots & \\
0 & 0 & a_{1} & a_{2} & & \\
\vdots & & & \ddots & & \\
0 & 0 & 0 & \ldots & & a_{1}
\end{array}\right]
$$

see [9, Proposition 3.1.2]. For instance, if

$$
J=\left[\begin{array}{lll|lll|l}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

then K commutes with J if and only if

$$
K=\left[\begin{array}{ccc|ccc|c}
a & b & c & d & e & f & g \\
0 & a & b & 0 & d & e & 0 \\
0 & 0 & a & 0 & 0 & d & 0 \\
\hline h & i & j & k & l & m & n \\
0 & h & i & 0 & k & l & 0 \\
0 & 0 & h & 0 & 0 & k & 0 \\
\hline 0 & 0 & o & 0 & 0 & p & q
\end{array}\right] .
$$

The Frobenius formula [9, Proposition 3.1.3] gives the dimension of $\mathscr{C}(J)$ as $m_{1}+$ $3 m_{2}+\cdots+(2 s-1) m_{s}$, which justifies the use of 17 variables in the above matrix K. We note that the rank of $K-I$ is not immediately obtained from this form, and so we turn to the Weyr canonical form.

A very good reference material for properties and applications of the Weyr canonical form is [9]. We recall some concepts and adapt notations from this book.

Definition 1. (Definition 2.1.1 in [9]) A basic Weyr matrix with eigenvalue λ is an n-by- n matrix W of the following form: There is a partition $n_{1}+\cdots+n_{r}=n$ of n with $n_{1} \geqslant \cdots \geqslant n_{r} \geqslant 1$ such that, when W is viewed as an r-by- r blocked matrix $\left(W_{i, j}\right)$, where the (i, j) block $W_{i, j}$ is an n_{i}-by- n_{j} matrix, the following three features are present:

1. The main diagonal blocks $W_{i, i}$ are the n_{i}-by- n_{i} scalar matrices λI for $i=1, \ldots, r$.
2. The first superdiagonal blocks $W_{i, i+1}$ are full column-rank n_{i}-by- n_{i+1} matrices in reduced row echelon form (that is, an identity matrix followed by zero rows) for $i=1, \ldots, r-1$.
3. All other blocks of W are zero.

In this case, we say that W has Weyr structure $\left(n_{1}, \ldots, n_{r}\right)$. A matrix W is a Weyr matrix, or is in Weyr form if it is a direct sum of basic Weyr matrices with distinct eigenvalues.

We also have that the number n_{1} is the nullity of $W-\lambda I_{n}$. For example,

$$
W=\left[\begin{array}{llll|lll|lll|l}
\lambda & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{1}\\
0 & \lambda & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]
$$

is a basic Weyr matrix with Weyr structure $(4,3,3,1)$ such that nullity $(W-\lambda I)=4$.
THEOREM 2. (Theorem 2.2 .4 in [9]) To within permutation of basic Weyr blocks, each square matrix A over an algebraically closed field is similar to a unique Weyr matrix W. The matrix W is called the Weyr canonical form of A.

With Proposition 1 in mind, we prove Theorem 1 only for the case when $S=W$ is a nonscalar basic Weyr matrix. The following completely describes the elements in $\mathscr{C}(W)$.

Lemma 1. (Proposition 2.3.3 in [9]) Let W be an n-by- n basic Weyr matrix with Weyr structure $\left(n_{1}, \ldots, n_{r}\right), r \geqslant 2$. Let K be an n-by- n matrix, blocked according to the partition $n=n_{1}+\cdots+n_{r}$, and let $K_{i, j}$ denote its (i, j) block (an n_{i}-by- n_{j} matrix) for $i, j=1, \ldots, r$. Then W and K commute if and only if K is a block upper triangular matrix for which

$$
K_{i, j}=\left[\begin{array}{cc}
K_{i+1, j+1} & * \tag{2}\\
0 & *
\end{array}\right] \text { for } 1 \leqslant i \leqslant j \leqslant r-1 .
$$

Here, we have written $K_{i, j}$ as a blocked matrix where the zero block is $\left(n_{i}-n_{i+1}\right)$-by$n_{j+1}$.

In particular, a matrix in $C(W)$ is completely determined by its top row of blocks. For illustration, suppose a basic Weyr matrix W has Weyr structure $(3,3,2,1)$. When we write $K \in \mathscr{C}(W)$ as

$$
K=\left[\begin{array}{ccc|ccc|cc|c}
1 & 0 & 1 & 1 & -1 & 1 & 2 & 1 & 1 \\
0 & 1 & 2 & 0 & 1 & -1 & 0 & 1 & 1 \\
0 & 0 & 2 & 0 & 0 & -2 & 1 & 1 & 0
\end{array}\right]
$$

we basically mean that

$$
K=\left[\begin{array}{ccc|ccc|cc|c}
1 & 0 & 1 & 1 & -1 & 1 & 2 & 1 & 1 \\
0 & 1 & 2 & 0 & 1 & -1 & 0 & 1 & 1 \\
0 & 0 & 2 & 0 & 0 & -2 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

For convenience, a linear combination of elements in $\mathscr{C}(W)$ will also be written simply as a linear combination of the first row of these elements.

THEOREM 3. Let W be a basic Weyr matrix with Weyr structure $\left(n_{1}, \ldots, n_{r}\right)$. Let $K=\left[K_{i, j}\right] \in \mathscr{C}(W)$ such that $K_{i, j}$ is $n_{i}-b y-n_{j}$. Then K is simple if and only if the following hold:
(a) $K_{1,1}=\left[\begin{array}{cc}I_{n_{2}} & B_{1} \\ 0 & C_{1}\end{array}\right]$.
(b) $K_{1, i}=\left[\begin{array}{cc}0_{n_{2} \times n_{i+1}} & B_{i} \\ 0 & C_{i}\end{array}\right]$ for $i=2, \ldots, r-1$.
(c) $K_{1, r}=\left[\begin{array}{l}B_{r} \\ C_{r}\end{array}\right]$, where B_{r} has n_{2} rows.
(d) $\left[\begin{array}{rrrr}B_{1} & B_{2} & \ldots & B_{r} \\ C_{1}-I & C_{2} & \ldots & C_{r}\end{array}\right]$ has rank 1 .

Proof. Let $K \in \mathscr{C}(W)$. It is straightforward to verify that if K satisfies the set of conditions above, then K is simple. Now, suppose K is simple. In view of Lemma 1, if $K_{i, i} \neq I$ for some $i=2, \ldots, r$, then $K_{1,1}=\left[\begin{array}{cc}K_{i, i} * \\ 0 & *\end{array}\right] \neq I$ and we have

$$
\begin{aligned}
\operatorname{rank}(K-I) & =\operatorname{rank}\left(\left[\begin{array}{ccccc}
K_{1,1}-I & & & & * \\
& \ddots & & & \\
& & & K_{i, i}-I & \\
& & & & \ddots \\
& & & & \\
& & & \\
& & & \\
& \geqslant \operatorname{rank}\left(K_{i, r}-I\right.
\end{array}\right]\right) \\
& \geqslant 2
\end{aligned}
$$

This is a contradiction since $K-I$ is of rank 1 , and so $K_{i, i}=I$ for $i=2, \ldots, r$, that is,

$$
K=\left[\begin{array}{ccccc}
K_{1,1} & \ldots & & & \\
& I_{n_{2}} & K_{2,3} & & \\
& & \ddots & \ddots & \\
& & & I_{n_{r-1}} & K_{r-1, r} \\
0 & & & & I_{n_{r}}
\end{array}\right]
$$

Suppose that $K_{i, i+j} \neq 0$ for some $2 \leqslant i \leqslant r-1$ and $j=1, \ldots, r-i$. We assume without loss of generality that $K_{i, i+j}$ is the immediate nonzero superdiagonal block. This gives us,

$$
\begin{aligned}
\operatorname{rank}(K-I) & =\operatorname{rank}\left(\left[\begin{array}{ccccc}
K_{1,1}-I \cdots & K_{1,1+j} & & & \\
& 0 & 0 & \ddots & \\
& & \ddots & 0 & K_{i, i+j} \\
& & & 0 & \ddots \\
\\
& & & & \ddots
\end{array}\right)\right. \\
& \\
& \\
& \geqslant \operatorname{rank}\left(K_{1,1+j}\right)+\operatorname{rank}\left(K_{i, i+j}\right) \\
& \geqslant 2
\end{aligned}
$$

which is again a contradiction to the assumption that K is simple. This implies that $K=\left[\begin{array}{cc}K_{1,1} & * \\ 0 & I\end{array}\right]$ and so the rank of $K-I$ is equal to the rank of the first row of blocks of $K-I$. The previous discussion and Lemma 1 give us the desired form of K.

The characterization in Theorem 3 of simple elements in $\mathscr{C}(W)$ implies that \mathscr{A}_{W} is contained in the algebra \mathscr{B}_{W} of matrices in $\mathscr{C}(W)$ whose first row of blocks is of the form

$$
K=\left[\left[\begin{array}{cc}
\alpha I_{n_{2}} & B_{1} \tag{3}\\
0 & C_{1}
\end{array}\right]\left[\begin{array}{cc}
0_{n_{2} \times n_{i+1}} & B_{2} \\
0 & C_{2}
\end{array}\right] \cdots\left[\begin{array}{c}
B_{r} \\
C_{r}
\end{array}\right]\right]
$$

where each $B_{i} \in \mathbb{F}^{n_{2} \times\left(n_{i}-n_{i+1}\right)}$ and each $C_{i} \in \mathbb{F}^{\left(n_{1}-n_{2}\right) \times\left(n_{i}-n_{i+1}\right)}$ for $i=1, \ldots, r-1$, $B_{r} \in \mathbb{F}^{n_{2} \times n_{r}}$, and $C_{r} \in \mathbb{F}^{\left(n_{1}-n_{2}\right) \times n_{r}}$. It is then straightforward to count that the dimension of \mathscr{B}_{W} is

$$
1+n_{1}\left(\left(n_{1}-n_{2}\right)+\left(n_{2}-n_{3}\right)+\cdots+\left(n_{r-1}-n_{r}\right)+n_{r}\right)=1+n_{1}^{2} .
$$

Hence, since $n_{1}=\operatorname{nullity}(W-I)$, we are done if we show that $\mathscr{B}_{W}=\mathscr{A}_{W}$. It is enough to prove that the matrix K in Equation 3 is in \mathscr{A}_{W}, for the cases when

- $K=\alpha I$ for some $\alpha \in \mathbb{F}$, or
- $\alpha=0$ and all other blocks are zero except for one which is a matrix of the form $E_{k, l}$.

Indeed, $I \in \mathscr{A}_{W}$ since it is the linear combination

$$
\left.\left.2\left[\begin{array}{cc}
I_{n_{2}} & E_{i, j} \tag{4}\\
0 & I_{s}
\end{array}\right] 0\right]-\left[\begin{array}{cc}
{\left[\begin{array}{c}
I_{n_{2}} \\
0
\end{array}\right.} & 2 E_{i, j} \\
0 & I_{s}
\end{array}\right] 0\right]
$$

of simple elements in $\mathscr{C}(W)$, and so $K=\alpha I \in \mathscr{A}_{W}$ for all α. Also if K satisfies the other condition, one checks that $K+I$ is a simple element, and thus $K=(K+I)-I \in$ \mathscr{A}_{W}. This proves Theorem 1.

REMARK 1. In both the defective and nondefective case, we have shown that a basis containing only simple elements exists for \mathscr{A}_{S}.

We now consider Corollary 1 for the case when S has only one eigenvalue. If $S=$ λI, that is, when the Jordan structure of S is $(1, \ldots, 1)$, we have shown that $\mathscr{A}_{S}=\mathscr{C}(S)$. Assume that S is a nonscalar basic Weyr matrix with eigenvalue λ. We use Proposition 3.2.2 in [9] which implies that if S has Weyr structure $\left(n_{1}, \ldots, n_{r}\right)$, the dimension of $\mathscr{C}(S)$ is $n_{1}^{2}+\cdots+n_{r}^{2}$. Thus, Theorem 1 and the fact that $n_{1}=\operatorname{nullity}(S-\lambda I)$ imply that $\mathscr{A}_{S}=\mathscr{C}(S)$ if and only if $1=n_{2}^{2}+\cdots+n_{r}^{2}$, and this happens only when $r=2$ and $n_{2}=1$. In summary, if S is a nonscalar basic Weyr matrix with eigenvalue λ, $\mathscr{A}_{S}=\mathscr{C}(S)$ if and only if the Weyr structure of S is $\left(n_{1}, 1\right)$. One easily checks that a basic Weyr matrix with this Weyr structure has Jordan structure $(2,1, \ldots, 1)$ (or one may consult Corollary 2.4.3 in [9] for the relation of the Weyr structure and Jordan structure).

REFERENCES

[1] T. Agapito, A. T. Paras, ψ_{S}-orthogonal matrices and ψ_{S}-symmetries, Linear Algebra Appl. 584 (2020) 185-196.
[2] R. J. de la Cruz, K. Dela Rosa, D. I. Merino, A. T. Paras, The Cartan-Diedonne-Scherk Theorems for complex S-orthogonal matrices, Linear Algebra Appl. 458 (2014) 251-260.
[3] M. Catral, L. Lebtahi, J. Stuart, N. Thome, On a matrix group constructed from an $\{R, s+$ $1, k\}$-potent matrix, Linear Algebra Appl. 461 (2014) 200-210.
[4] R. J. de la Cruz, D. I. Merino, A. T. Paras, S orthogonal matrices and S symmetries, Linear Algebra Appl. 474 (2015) 213-229.
[5] J. Dieudonne, Sur les generateurs des groupes classiques, Summa Bras. Math. 3 (1955) 149-178.
[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univesity Press, New York, 1991.
[7] G. Huang, F. Yin, Constrained inverse eigenproblem and associated approximation problem for anti-Hermitian R-symmetric matrices, Applied Mathematics and Computation 186 (2007) 426-434.
[8] G. HUANG, F. YIN, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Applied Mathematics and Computation 189 (2007) 482-489.
[9] K. O'Meara, J. Clark, C. Vinsonhaler, Advanced topics in linear algebra: weaving matrix problems through the Weyr form, Oxford University Press, Oxford 2011.
[10] H. Radjavi, Decomposition of matrices into simple involutions, Linear Algebra Appl., 12 (1975) 247-255.
[11] P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 1 (1950) 481-491.
[12] W. TRENCH, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.
[13] W. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23-31.
[14] F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl. 332-334 (2001) 459-467.
(Received March 27, 2020)
Ralph John de la Cruz
Institute of Mathematics
University of the Philippines
Diliman, Quezon City, Philippines
e-mail: rjdelacruz@math.upd.edu.ph

