# APPLYING SOLVABILITY THEOREMS FOR MATRIX EQUATIONS 

Z. Mousavi and F. Mirzapour

(Communicated by L. Zhang)


#### Abstract

In this paper, using solvability theorems for matrix equations, generally applicable results are proved for the existence of positive semidefinite or asymptotically positive semidefinite solution. In the following, a question about the matrix equation $f(A) X+X f(A)=A B+B A$ is answered. This question was asked, first by Chan and Kwong [6] and then by Furuta [7].


## 1. Introduction

It is known that positive semidefiniteness of the matrices $A, B$ does not imply positive semidefiniteness of the $A B+B A$. In [6], Chan and Kwong studied some inequalities involving $A B+B A$ and proved the following theorem.

THEOREM 1.1. Let A be a positive definite matrix and $B$ a positive semidefinite matrix. The solution $X$ of the following matrix equation is always positive semidefinite.

$$
\begin{equation*}
A^{2} X+X A^{2}=A B+B A \tag{1.1}
\end{equation*}
$$

At the end of the paper [6], the following problem was posed associated with Theorem 1.1.

Problem. How can one characterize all the functions $f$ such that the solution of the matrix equation

$$
\begin{equation*}
f(A) X+X f(A)=A B+B A \tag{1.2}
\end{equation*}
$$

is positive semidefinite?
In order to answer the above question, Furuta proved the existence of the positive semidefinite solution of the following operator equation in the Hilbert space by an order-preserving operator inequality (Furuta's inequality).

$$
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=B
$$

where $A$ is a positive definite operator and $B$ is a self-adjoint operator([7]).

[^0]On the other hand, Berman and Ben-Israel have used the special case of Mazur's theorem for Lyapunov's characterization of stable matrices (by taking $S$ the cone of positive semi-definite matrices in the real space of Hermitian matrices, $T(X)=A^{*} X+X A$ and $b=-I$ ) [4] which means they proved a famous result about Lyapanov equation under the condition that all eigenvalues of $A$ have negative real parts. That was a new method for proving the existence of the positive definite or semidefinite solution for nonlinear matrix equations.

In this paper, using solvability theorems, we study the matrix equations. In section 2 , preliminaries are presented. In section 3, a general result to prove the existence of the positive semidefinite solution will be presented which is a kind of Farkas Lemma for nonlinear matrix equations. This method, which can be applied to more nonlinear matrix equation, is used for the equations $f(A) X+X f(A)=A B+B A, \sum_{j=1}^{n} A^{n-j} X A^{j-1}=$ $B$ and $X-A^{*} X A=B$ in section 4.

## 2. Preliminaries

Let $\mathbb{C}^{n}$ be the $n$-dimensional complex vector space and $\mathbb{C}^{m \times n}$ be the $m \times n$ complex matrices. $A^{*}$ is used for conjugate of $A$ and if $A=A^{*}, A$ is Hermitian. If A and B are Hermitian matrices and $A-B$ is positive semidefinite (positive definite, resp.), then we write $A \geqslant B(A>B$, resp.). For an arbitrary $n \times n$ complex matrix $A$, the symbol $\lambda(A)$ stands for the eigenvalue. We denote the $n \times n$ identity matrix by $I$. The notations $\mathscr{R}(A), \mathscr{N}(A), \sigma(A), \operatorname{tr}(A)$ and $A^{+}$is used for the range of matrix $A$, the null of $A$, the spectrum of $A$, the trace of $A$ and the generalized inverse of $A$, respectively.

Let $A$ and $B$ be two matrices of order $m \times n$. The Kronecker product of the matrix $A$ and $B$ is denoted by $A \otimes B$ and the vector operator is defined by

$$
\operatorname{Vec}(A)=\left[a_{11}, a_{21}, \ldots, a_{m 1}, a_{12}, a_{22}, \ldots, a_{m 2}, \ldots, a_{1 n}, a_{2 n}, \ldots, a_{m n}\right]^{T}
$$

We have the following properties:
(i) $\operatorname{Vec}(A B)=\left(I_{n} \otimes A\right) \operatorname{Vec}(B)$.
(ii) Let $\lambda_{i}$ and $\mu_{j}$ be the eigenvalues of $A$ and $B$, respectively. then $\lambda_{i} \mu_{j}$ are eigenvalues of $A \otimes B$.

Definition 2.1. A nonempty set $S$ in $\mathbb{C}^{n}$ is a
(i) convex cone if $S+S \subset S$ and if $\alpha \geqslant 0$ implies $\alpha S \subset S$,
(ii) pointed convex cone if it satisfies (i) and if $S \cap(-S)=\{0\}$.
(iii) The polar set of $S$ is defined as follows:

$$
S^{p}=\left\{y \in \mathbb{C}^{n}: x \in S \Rightarrow \operatorname{Re}\langle y, x\rangle \geqslant 0\right\}
$$

Note that $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \cdot \bar{y}_{i}$, for any $x, y \in \mathbb{C}^{n}$.

## Example 2.2. [1]

(a) If $S$ is a subspace of $\mathbb{C}^{n}$ then $S^{P}=S^{\perp}$. Accordingly, $\mathbb{R}$ as a subset of $\mathbb{C}$ has the polar $\mathbb{R}^{P}=i \mathbb{R}$.
(b) $S^{P}$ is a closed convex cone.
(c) $S \subset S^{P P}$.
(d) $S^{p}=(\bar{S})^{p}$.

Note that $\bar{S}$ is closure of $S$.
DEFInition 2.3. The following system

$$
T x=b, x \in S
$$

is consistent if there exists an $x$ satisfying this system.
Definition 2.4. [1] The following system

$$
T x=b, x \in S
$$

is asymptotically consistent if there exists a sequence $\left\{x_{k}\right\} \subset S$ such that

$$
\lim _{k \rightarrow \infty} T x_{k}=b
$$

## 3. Main results

We recall a few valuable theorems for our discussion calling solvability theorems.
THEOREM 3.1. [1] Let $T \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$ and $S$ be a nonempty closed convex cone in $\mathbb{C}^{n}$. Then the following are equivalent:
(i) The system

$$
T x=b, \quad x \in S
$$

is asymptotically consistent.
(ii) $T^{*} y \in S^{p}$ implies $\operatorname{Re}\langle b, y\rangle \geqslant 0$.
(iii) $b \in \mathscr{R}(T)$ and $T^{+} b \in \mathscr{\mathscr { N } ( T ) + S}$.

The following solvability theorem is the generalization of the Farkas theorem.
THEOREM 3.2. $[1,3]$ Let $T \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$, $S$ be a closed convex cone in $\mathbb{C}^{n}$, and let $\mathscr{N}(T)+S$ be closed. Then the following are equivalent:
(i) The system

$$
T x=b, \quad x \in S
$$

is consistent.
(ii) $T^{*} y \in S^{p}$ implies $\operatorname{Re}\langle b, y\rangle \geqslant 0$.

Comparing Theorems 3.1 and 3.2 , it is noticed that being consistent or asymptotically consistent of a solution depends on whether $\mathscr{N}(T)+S$ is closed or not. Thus we are interested in the class of systems which for $\mathscr{N}(T)+S$ is always closed. One of the most known sets of these kinds is the polyhedral cone. It is reminded that a complex finite-dimensional space is a polyhedral cone and if $S_{1}$ and $S_{2}$ are polyhedral cones then so is $S_{1}+S_{2}$. Since we focus on positive semidefinite matrices, it is worth noting that the cone of positive semidefinite matrices is non-polyhedral.

The following theorem is the geometric form of the Hahn-Banach theorem.

THEOREM 3.3. [3] Let $T \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$ and $S$ be a closed convex cone with nonempty interior in $\mathbb{C}^{n}$. Then the following are equivalent:
(i) The system

$$
T x=b, \quad x \in \operatorname{int} S
$$

( intS means the interior of the set $S$ ) is consistent.
(ii) $b \in \mathscr{R}(T)$ and $0 \neq T^{*} y \in S^{p}$ implies $\operatorname{Re}\langle b, y\rangle>0$.

In order to use the above theorems, we shall prepare properly the space. Let $V$ be the real space of $n \times n$ Hermitian matrices, $S$ be the cone of positive semidefinite matrices in $V$ and let an inner product on $V$ be defined by

$$
\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right)
$$

For this inner product, it is shown that the cone $S$ of positive semidefinite matrices is self-polar i.e. $S=S^{p}$ and also the interior of $S$ is

$$
\operatorname{int}(S)=\text { the positive definite matrices in } \mathbb{C}^{n \times n}
$$

We are now ready to present the main result which will be applied for the matrix equations. Note that $T X=B$ is equivalent with $\left(I_{n} \otimes T\right) \operatorname{Vec}(X)=\operatorname{Vec}(B)$ and the eigenvalue of $\left(I_{n} \otimes T\right)$ is eigenvalue of $T$.

THEOREM 3.4. Let $B$ be a matrix in $\mathbb{C}^{n \times n}, T(X)=Q$ be a linear map on $\mathbb{C}^{n}$ and $Q$ be a positive semidefinite matrix. Assume that $T^{*}(Y)=Q$ has a positive semidefinite solution $Y$. If $\operatorname{Re}(\operatorname{tr}(B Y)) \geqslant 0$, then $T(X)=B$ has a asymptotical positive semidefinite solution.

Proof. Let $T(X)=B$. Considering the second part of Theorem 3.1, we assume $T^{*}(Y) \in S^{p}$ which means $T^{*}(Y)$ is positive semidefinite or $T^{*}(Y)=Q$ where $Q$ is positive semidefinite. By assumption, the equation $T^{*}(Y)=Q$ has a positive semidefinite solution $Y$ such that $\operatorname{Re}(\operatorname{tr}(B Y)) \geqslant 0$. Therefore, by equivalency of (i) and (ii) in Theorem 3.1, the equation $T(X)=B$ has an asymptotical positive semidefinite solution.

## 4. Applications

In order to apply Theorem 3.4, we follow two steps.
Step 1: we prove the existence of the positive semidefinite solution for matrix equation $T X=Q$, where $Q$ is a positive semidefinite matrix.

Step 2: we prove the existence of the positive semidefinite solution for $T X=B$, where $B$ is any matrix.

We are interested in investigating the following equation.

$$
\begin{equation*}
f(A) X+X f(A)=C \tag{4.1}
\end{equation*}
$$

where $A$ is a positive definite matrix. We recall the following theorem to show that Equation (4.1) has a solution in general. It is necessary to remind that we intend to
characterize all the functions $f$ such that the solution of the matrix equation is positive semidefinite.

THEOREM 4.1. [5]Let A and B be operators whose spectra are contained in the open right half-plane and the open left half-plane, respectively. Then the solution of the equation $A X-X B=C$ can be expressed as

$$
X=\int_{0}^{\infty} e^{-t A} C e^{t B} d t
$$

Hence, we conclude the next corollary.
COROLLARY 4.2. If $A$ is a positive definite matrix and $f$ is a non-negative monotone function, then Equation (4.1) has solution.

Proof. It is sufficient to prove that the conditions of Theorem 4.1 are satisfied. Since $A$ is positive definite, the spectra of $A$ and $f(A)$ are contained in the open right half-plane.

We now consider the following equation.

$$
\begin{equation*}
f(A) X+X f(A)=Q, \tag{4.2}
\end{equation*}
$$

where $A$ is a positive definite matrix and $Q$ is a positive semi-definite matrix.
In the following theorem, we are going to use a technique introduced in [6].
Theorem 4.3. Let $A$ be a positive definite matrix. Assume that $Q$ is a positive semi-definite (positive definite) matrix. If $f$ is a nonnegative function on $(0, \infty)$, then the solution of the following equation is always positive semi-definite (positive definite).

$$
\begin{equation*}
f(A) X+X f(A)=Q \tag{4.3}
\end{equation*}
$$

Proof. Set $Y(t)=\left(f^{2}(A)+t Q\right)^{\frac{1}{2}}$. Since $f^{2}(A)+t Q \geqslant f^{2}(A)$ for any $t \geqslant 0$, so $Y^{2}(t) \geqslant Y^{2}(0)$ which implies $Y(t) \geqslant Y(0)$ for any $t \geqslant 0$. Hence, $Y^{\prime}(0) \geqslant 0$. On the other hand, by differentiating the equation $Y^{2}(t)=f^{2}(A)+t Q$ and then letting $t=0$, we get

$$
Y(0) Y^{\prime}(0)+Y^{\prime}(0) Y(0)=\left.\frac{d}{d t}\left(f^{2}(A)+t Q\right)\right|_{t=0}
$$

Then for $X=Y^{\prime}(0) \geqslant 0$, we have

$$
f(A) X+X f(A)=Q
$$

We consider the following equation.

$$
\begin{equation*}
f(A) X+X f(A)=A B+B A, \tag{4.4}
\end{equation*}
$$

noting that $A, B \geqslant 0$ does not imply $A B+B A \geqslant 0$. In other words, we want to study this matrix equation in which the right hand side is not positive semidefinite, necessarily.

We assume that $T_{A}(X)=f(A) X+X f(A)$ and $b=A B+B A$.

LEmma 4.4. If $T_{A}(X)=f(A) X+X f(A)$ for any $A$, then $T_{A}^{*}=T_{A}$.
Proof. We have

$$
\begin{aligned}
\left\langle T_{A}(X), Y\right\rangle & =\langle f(A) X+X f(A), Y\rangle \\
& =\langle f(A) X, Y\rangle+\langle X f(A), Y\rangle \\
& =\operatorname{tr}\left(f(A) X Y^{*}\right)+\operatorname{tr}\left(X f(A) Y^{*}\right) \\
& =\operatorname{tr}\left(X Y^{*} f(A)\right)+\operatorname{tr}\left(X f(A) Y^{*}\right) \\
& =\left\langle X, Y f^{*}(A)+f^{*}(A) Y\right\rangle \\
& =\left\langle X, Y f\left(A^{*}\right)+f\left(A^{*}\right) Y\right\rangle .
\end{aligned}
$$

Since $A$ is positive semidefinite, so $T_{A}=T_{A^{*}}=T_{A}^{*}$.
By using Theorems 3.1 and 3.4, we have the following theorem for Equation (4.4).
THEOREM 4.5. Let $A, B, Q$ be positive semidefinite matrices and assume that $f$ is a non-negative function. If $Y$ is a positive semidefinite solution of $f(A) Y+Y f(A)=$ $Q$ and $\operatorname{Re}(\operatorname{tr}((A B+B A) Y))>0$, then Equation of (4.4) has a positive definite solution.

Proof. According to Theorem 4.3, matrix equation $f(A) X+X f(A)=Q$ has a positive definite solution $Y$. By assumption, $\operatorname{Re}(\operatorname{tr}((A B+B A) Y))>0$. Using Corollary 4.2, the matrix equation $f(A) X+X f(A)=A B+B A$ has a solution. The second part of Theorem 3.3 is then satisfied. Since the first and the second part of Theorem 3.3 are equivalent, so $f(A) X+X f(A)=A B+B A$ has a positive definite solution.

Next, we consider the following equation that Furuta investigated in [7] for spacial type.

$$
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=B
$$

where $A$ is a positive definite operator. Furuta has proved the following theorem.
THEOREM 4.6. [7] Let A be a positive definite operator and $B$ be a positive semidefinite operator. Let $m$ and $n$ be natural numbers. There exists positive semidefinite operator solution $X$ of the following operator equation:

$$
\begin{equation*}
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=A^{\frac{n r}{2(m+r)}}\left(\sum_{j=1}^{m} A^{\frac{n(m-j)}{m+r}} B A^{\frac{n(j-1)}{m+r}}\right) A^{\frac{n r}{2(m+r)}} \tag{4.5}
\end{equation*}
$$

for $r$ such that $\left\{\begin{array}{l}\text { (i) } \quad r \geqslant 0 \quad \text { if } n \geqslant m, \\ \text { (ii) } \quad r \geqslant \frac{m-n}{n-1} \quad \text { ifm } \geqslant n \geqslant 2 .\end{array}\right.$
In the following, we intend to revise and rewrite some results about Equation (4.5) in the matrix space using solvability theorems. First, we consider the following matrix equation.

$$
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=Q
$$

where $A$ is a positive definite and $Q$ is a positive semidefinite matrix.
LEMMA 4.7. If $T_{A}(X)=\sum_{j=1}^{n} A^{n-j} X A^{j-1}$ for any Hermitian matrix $A$, then $T_{A}^{*}=$ $T_{A}$.

Proof. We have

$$
\begin{aligned}
\left\langle T_{A}(X), Y\right\rangle & =\left\langle\sum_{j=1}^{n} A^{n-j} X A^{j-1}, Y\right\rangle \\
& =\operatorname{tr}\left(\sum_{j=1}^{n} A^{n-j} X A^{j-1} Y^{*}\right) \\
& =\sum_{j=1}^{n}\left(\operatorname{tr}\left(A^{n-j} X A^{j-1} Y^{*}\right)\right. \\
& =\sum_{j=1}^{n}\left(\operatorname{tr}\left(X A^{j-1} Y^{*} A^{n-j}\right)\right. \\
& =\operatorname{tr}\left(\sum_{j=1}^{n} X A^{j-1} Y^{*} A^{n-j}\right) \\
& =\left\langle X, \sum_{j=1}^{n} A^{n-j} Y A^{j-1}\right\rangle
\end{aligned}
$$

THEOREM 4.8. Let $A$ be a positive definite and $Q$ be a positive semidefinite matrix. Then there exists a positive semidefinite solution $X$ for the following matrix equation.

$$
\begin{equation*}
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=Q \tag{4.6}
\end{equation*}
$$

Proof. Let $Y(t)=\left(A^{n}+t Q\right)^{\frac{1}{n}}$ for $n \in \mathbb{N}$. Since $A^{n}+t Q \geqslant A^{n}$, so $\left(A^{n}+t Q\right)^{\frac{1}{n}} \geqslant A$. Therefore, $Y(t) \geqslant Y(0)$ which implies $Y^{\prime}(0) \geqslant 0$. On the other hand, by differentiating the equation $Y^{n}(t)=A^{n}+t Q$ and then letting $t=0$, we get

$$
Y^{\prime}(0) Y^{n-1}(0)+Y(0) Y^{\prime}(0) Y^{n-2}+\ldots+Y^{n-1}(0) Y^{\prime}(0)=Q
$$

By substituting $0 \leqslant Y^{\prime}(0)=X$ and $Y(0)=A$, it is concluded that there exists a positive semidefinite solution $X$ for Equation (4.6).

THEOREM 4.9. Let $B$ be any matrix. Assume that $A$ and $Q$ are positive semidefinite matrices. If $Y$ is a positive semidefinite solution of $\sum_{j=1}^{n} A^{n-j} Y A^{j-1}=Q$ and $\operatorname{Re}(\operatorname{tr}(B Y)) \geqslant 0$, then the equation of

$$
\sum_{j=1}^{n} A^{n-j} X A^{j-1}=B
$$

has a positive semidefinite solution.

Proof. Let $T_{A}(Y)=\sum_{j=1}^{n} A^{n-j} Y A^{j-1}$ and $b=B$ in Theorem 3.4.
We consider matrix equation $X-A^{*} X A=Q$ which is called the Stein equation ( $Q$ is positive definite). Stein equation has a unique solution if and only if $A$ is stable ([10], [8]). In addition, this unique solution is positive definite and is given by

$$
X=\sum_{n=0}^{\infty} A^{* n} Q A^{n}
$$

THEOREM 4.10. Let $B$ be any matrix, $A$ be a stable matrix and $Q$ be a positive definite matrix. If $X$ is a positive definite solution of $X-A^{*} X A=Q$ and $\operatorname{Re}(\operatorname{tr}(B X)) \geqslant$ 0 , then the equation of $X-A^{*} X A=B$ has an asymptotical positive semidefinite solution.

Proof. Let $T_{A}(X)=X-A^{*} X A$ and $b=B$ in Theorem 3.4.

## REFERENCES

[1] A. Ben-Israel, Linear Equations and Inequalities on Finite Dimensional, Real or Complex, Vector Spaces: A Unified Theory, J. Math. Anal. Appl. 27, 367-389 (1969).
[2] E. V. Belmega, S. Lasaulce and M. Debbah, A Trace inequality for positive definite matrices, Journal of inequalities in pure and applied mathematics, Vol. 10 (2009), Issue 1, Article 5, 4 pp.
[3] A. Berman and A. Ben-Israel, More on linear inequalities with applications to matrix theory, J. Math. Anal. Appl. 33 (1971), 482-496.
[4] A. Berman and A. Ben-Israel, Linear Equations over Cones with Interior: A Solvability Theorem with Applications to Matrix Theory, Linear Algebra Appl. 7 (1973) 139-149.
[5] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer-Verlag, New York, 1997.
[6] N. N. Chan and M. K. Kwong, Hermitian matrix inequalities and a conjecture, Amer. Math. Monthly 92 (1985), 533-541.
[7] T. Furuta, Positive semidefinite solutions of the operator equation $\sum_{j=1}^{n} A_{n-j} X A_{j-1}=B$, Linear Algebra Appl. 432 (2010) 949-955.
[8] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford University Press, New York, 1995.
[9] T. Mori, Comments on "A Matrix Inequality Associated with Bounds on Solutions of Algebraic Riccati and Lyapunov Equation", IEEE Trans. Automat. Contr., vol. AC-33, p. 1088, Nov. 1988.
[10] A. M. Ran And M. C. B. Reurings, The symmetric linear matrix equation, The Electronic Journal of Linear Algebra 9 (2002) 93-107.
(Received March 29, 2020)

> Z. Mousavi
> Department of Engineering Abhar Branch, Islamic Azad University
> Abhar, Iran
> e-mail: Mousavi.z@abhariau.ac.ir; mousavi.zeinabb@gmail.com
> F. Mirzapour
> Department of Mathematics Faculty of Sciences, University of Zanjan P.O. Box 45195-313, Zanjan, Iran e-mail: $\mathrm{f} . \mathrm{mirza@znu.ac.ir}$


[^0]:    Mathematics subject classification (2020): 15A24.
    Keywords and phrases: Matrix equation, solvability theorem, positive definite solution, Farkas lemma.

