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APPLYING SOLVABILITY THEOREMS FOR MATRIX EQUATIONS
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Abstract. In this paper, using solvability theorems for matrix equations, generally applicable re-
sults are proved for the existence of positive semidefinite or asymptotically positive semidefinite
solution. In the following, a question about the matrix equation f (A)X +X f (A) = AB+BA is
answered. This question was asked, first by Chan and Kwong [6] and then by Furuta [7].

1. Introduction

It is known that positive semidefiniteness of the matrices A,B does not imply
positive semidefiniteness of the AB + BA . In [6], Chan and Kwong studied some in-
equalities involving AB+BA and proved the following theorem.

THEOREM 1.1. Let A be a positive definite matrix and B a positive semidefinite
matrix. The solution X of the following matrix equation is always positive semidefinite.

A2X +XA2 = AB+BA. (1.1)

At the end of the paper [6], the following problem was posed associated with
Theorem 1.1.

PROBLEM. How can one characterize all the functions f such that the solution
of the matrix equation

f (A)X +X f (A) = AB+BA (1.2)

is positive semidefinite?

In order to answer the above question, Furuta proved the existence of the posi-
tive semidefinite solution of the following operator equation in the Hilbert space by an
order-preserving operator inequality (Furuta’s inequality).

n

∑
j=1

An− jXA j−1 = B,

where A is a positive definite operator and B is a self-adjoint operator([7]).
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On the other hand, Berman and Ben-Israel have used the special case of Mazur’s
theorem for Lyapunov’s characterization of stable matrices (by taking S the cone of pos-
itive semi-definite matrices in the real space of Hermitian matrices, T (X) = A∗X +XA
and b = −I ) [4] which means they proved a famous result about Lyapanov equation
under the condition that all eigenvalues of A have negative real parts. That was a new
method for proving the existence of the positive definite or semidefinite solution for
nonlinear matrix equations.

In this paper, using solvability theorems, we study the matrix equations. In section
2, preliminaries are presented. In section 3, a general result to prove the existence of the
positive semidefinite solution will be presented which is a kind of Farkas Lemma for
nonlinear matrix equations. This method, which can be applied to more nonlinear ma-
trix equation, is used for the equations f (A)X +X f (A) = AB+BA , ∑n

j=1 An− jXA j−1 =
B and X −A∗XA = B in section 4.

2. Preliminaries

Let C
n be the n-dimensional complex vector space and C

m×n be the m×n com-
plex matrices. A∗ is used for conjugate of A and if A = A∗ , A is Hermitian. If A and B
are Hermitian matrices and A−B is positive semidefinite (positive definite, resp.), then
we write A � B (A > B , resp.). For an arbitrary n× n complex matrix A , the symbol
λ (A) stands for the eigenvalue. We denote the n× n identity matrix by I . The nota-
tions R(A) , N (A) , σ(A) , tr(A) and A+ is used for the range of matrix A , the null of
A , the spectrum of A , the trace of A and the generalized inverse of A , respectively.

Let A and B be two matrices of order m×n . The Kronecker product of the matrix
A and B is denoted by A⊗B and the vector operator is defined by

Vec(A) = [a11,a21, . . . ,am1,a12,a22, . . . ,am2, . . . ,a1n,a2n, . . . ,amn]T .

We have the following properties:
(i) Vec(AB) = (In⊗A)Vec(B) .
(ii) Let λi and μ j be the eigenvalues of A and B , respectively. then λiμ j are

eigenvalues of A⊗B .

DEFINITION 2.1. A nonempty set S in Cn is a
(i) convex cone if S+S ⊂ S and if α � 0 implies αS ⊂ S ,
(ii) pointed convex cone if it satisfies (i) and if S∩ (−S) = {0} .
(iii) The polar set of S is defined as follows:

Sp = {y ∈ C
n : x ∈ S ⇒ Re〈y,x〉 � 0}.

Note that 〈x,y〉 = ∑n
i=1 xi.yi, for any x,y ∈ Cn.

EXAMPLE 2.2. [1]
(a) If S is a subspace of Cn then SP = S⊥ . Accordingly, R as a subset of C has

the polar RP = iR .
(b)SP is a closed convex cone.
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(c) S ⊂ SPP .
(d) Sp = (S)p .

Note that S is closure of S .

DEFINITION 2.3. The following system

Tx = b, x ∈ S

is consistent if there exists an x satisfying this system.

DEFINITION 2.4. [1] The following system

Tx = b, x ∈ S

is asymptotically consistent if there exists a sequence {xk} ⊂ S such that

lim
k→∞

Txk = b.

3. Main results

We recall a few valuable theorems for our discussion calling solvability theorems.

THEOREM 3.1. [1] Let T ∈ Cm×n, b ∈ Cm and S be a nonempty closed convex
cone in Cn . Then the following are equivalent:

(i) The system
Tx = b, x ∈ S

is asymptotically consistent.
(ii) T ∗y ∈ Sp implies Re〈b,y〉 � 0 .
(iii) b ∈ R(T ) and T+b ∈ N (T )+S.

The following solvability theorem is the generalization of the Farkas theorem.

THEOREM 3.2. [1, 3] Let T ∈ Cm×n, b ∈ Cm, S be a closed convex cone in Cn ,
and let N (T )+S be closed. Then the following are equivalent:

(i) The system
Tx = b, x ∈ S

is consistent.
(ii) T ∗y ∈ Sp implies Re〈b,y〉 � 0 .

Comparing Theorems 3.1 and 3.2, it is noticed that being consistent or asymptoti-
cally consistent of a solution depends on whether N (T )+S is closed or not. Thus we
are interested in the class of systems which for N (T )+S is always closed. One of the
most known sets of these kinds is the polyhedral cone. It is reminded that a complex
finite-dimensional space is a polyhedral cone and if S1 and S2 are polyhedral cones
then so is S1 +S2 . Since we focus on positive semidefinite matrices, it is worth noting
that the cone of positive semidefinite matrices is non-polyhedral.

The following theorem is the geometric form of the Hahn-Banach theorem.
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THEOREM 3.3. [3] Let T ∈ Cm×n, b ∈ Cm and S be a closed convex cone with
nonempty interior in Cn . Then the following are equivalent:

(i) The system
Tx = b, x ∈ intS

( intS means the interior of the set S ) is consistent.
(ii) b ∈ R(T ) and 0 �= T ∗y ∈ Sp implies Re〈b,y〉 > 0 .

In order to use the above theorems, we shall prepare properly the space. Let V
be the real space of n× n Hermitian matrices, S be the cone of positive semidefinite
matrices in V and let an inner product on V be defined by

〈X ,Y 〉 = tr(XY ∗).

For this inner product, it is shown that the cone S of positive semidefinite matrices is
self-polar i.e. S = Sp and also the interior of S is

int(S) = the positive definite matrices in Cn×n.

We are now ready to present the main result which will be applied for the matrix equa-
tions. Note that TX = B is equivalent with (In ⊗T )Vec(X) = Vec(B) and the eigen-
value of (In ⊗T) is eigenvalue of T .

THEOREM 3.4. Let B be a matrix in Cn×n , T (X)= Q be a linear map on Cn and
Q be a positive semidefinite matrix. Assume that T ∗(Y ) = Q has a positive semidefinite
solution Y . If Re(tr(BY )) � 0 , then T (X) = B has a asymptotical positive semidefinite
solution.

Proof. Let T (X) = B . Considering the second part of Theorem 3.1, we assume
T ∗(Y ) ∈ Sp which means T ∗(Y ) is positive semidefinite or T ∗(Y ) = Q where Q is
positive semidefinite. By assumption, the equation T ∗(Y ) = Q has a positive semidef-
inite solution Y such that Re(tr(BY )) � 0. Therefore, by equivalency of (i) and (ii) in
Theorem 3.1, the equation T (X) = B has an asymptotical positive semidefinite solu-
tion. �

4. Applications

In order to apply Theorem 3.4, we follow two steps.
Step 1: we prove the existence of the positive semidefinite solution for matrix

equation TX = Q , where Q is a positive semidefinite matrix.
Step 2: we prove the existence of the positive semidefinite solution for TX = B ,

where B is any matrix.
We are interested in investigating the following equation.

f (A)X +X f (A) = C, (4.1)

where A is a positive definite matrix. We recall the following theorem to show that
Equation (4.1) has a solution in general. It is necessary to remind that we intend to
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characterize all the functions f such that the solution of the matrix equation is positive
semidefinite.

THEOREM 4.1. [5]Let A and B be operators whose spectra are contained in the
open right half-plane and the open left half-plane, respectively. Then the solution of the
equation AX −XB = C can be expressed as

X =
∫ ∞

0
e−tACetBdt.

Hence, we conclude the next corollary.

COROLLARY 4.2. If A is a positive definite matrix and f is a non-negativemono-
tone function, then Equation (4.1) has solution.

Proof. It is sufficient to prove that the conditions of Theorem 4.1 are satisfied.
Since A is positive definite, the spectra of A and f (A) are contained in the open right
half-plane. �

We now consider the following equation.

f (A)X +X f (A) = Q, (4.2)

where A is a positive definite matrix and Q is a positive semi-definite matrix.
In the following theorem, we are going to use a technique introduced in [6].

THEOREM 4.3. Let A be a positive definite matrix. Assume that Q is a positive
semi-definite (positive definite) matrix. If f is a nonnegative function on (0,∞) , then
the solution of the following equation is always positive semi-definite (positive definite).

f (A)X +X f (A) = Q. (4.3)

Proof. Set Y (t) = ( f 2(A)+ tQ)
1
2 . Since f 2(A)+ tQ � f 2(A) for any t � 0, so

Y 2(t) � Y 2(0) which implies Y (t) � Y (0) for any t � 0. Hence, Y ′(0) � 0. On the
other hand, by differentiating the equation Y 2(t) = f 2(A)+ tQ and then letting t = 0,
we get

Y (0)Y ′(0)+Y ′(0)Y (0) =
d
dt

( f 2(A)+ tQ)|t=0.

Then for X = Y ′(0) � 0, we have

f (A)X +X f (A) = Q. �

We consider the following equation.

f (A)X +X f (A) = AB+BA, (4.4)

noting that A, B � 0 does not imply AB+BA � 0. In other words, we want to study this
matrix equation in which the right hand side is not positive semidefinite, necessarily.

We assume that TA(X) = f (A)X +X f (A) and b = AB+BA .
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LEMMA 4.4. If TA(X) = f (A)X +X f (A) for any A, then T ∗
A = TA .

Proof. We have

〈TA(X),Y 〉 = 〈 f (A)X +X f (A),Y 〉
= 〈 f (A)X ,Y 〉+ 〈X f (A),Y 〉
= tr( f (A)XY ∗)+ tr(X f (A)Y ∗)
= tr(XY ∗ f (A))+ tr(X f (A)Y ∗)
= 〈X ,Y f ∗(A)+ f ∗(A)Y 〉
= 〈X ,Y f (A∗)+ f (A∗)Y 〉.

Since A is positive semidefinite, so TA = TA∗ = T ∗
A . �

By using Theorems 3.1 and 3.4, we have the following theorem for Equation (4.4).

THEOREM 4.5. Let A, B, Q be positive semidefinite matrices and assume that f
is a non-negative function. If Y is a positive semidefinite solution of f (A)Y +Y f (A) =
Q and Re(tr((AB+BA)Y )) > 0 , then Equation of (4.4) has a positive definite solution.

Proof. According to Theorem 4.3, matrix equation f (A)X + X f (A) = Q has a
positive definite solution Y . By assumption, Re(tr((AB+BA)Y )) > 0. Using Corollary
4.2, the matrix equation f (A)X +X f (A) = AB+BA has a solution. The second part
of Theorem 3.3 is then satisfied. Since the first and the second part of Theorem 3.3 are
equivalent, so f (A)X +X f (A) = AB+BA has a positive definite solution. �

Next, we consider the following equation that Furuta investigated in [7] for spacial
type.

n

∑
j=1

An− jXA j−1 = B,

where A is a positive definite operator. Furuta has proved the following theorem.

THEOREM 4.6. [7] Let A be a positive definite operator and B be a positive
semidefinite operator. Let m and n be natural numbers. There exists positive semidefi-
nite operator solution X of the following operator equation:

n

∑
j=1

An− jXA j−1 = A
nr

2(m+r) (
m

∑
j=1

A
n(m− j)
m+r BA

n( j−1)
m+r )A

nr
2(m+r) (4.5)

for r such that

{
(i) r � 0 i f n � m,
(ii) r � m−n

n−1 i fm � n � 2.

In the following, we intend to revise and rewrite some results about Equation (4.5)
in the matrix space using solvability theorems. First, we consider the following matrix
equation.

n

∑
j=1

An− jXA j−1 = Q,
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where A is a positive definite and Q is a positive semidefinite matrix.

LEMMA 4.7. If TA(X)= ∑n
j=1 An− jXA j−1 for any Hermitian matrix A, then T ∗

A =
TA .

Proof. We have

〈TA(X),Y 〉 = 〈
n

∑
j=1

An− jXA j−1,Y 〉

= tr(
n

∑
j=1

An− jXA j−1Y ∗)

=
n

∑
j=1

(tr(An− jXA j−1Y ∗)

=
n

∑
j=1

(tr(XAj−1Y ∗An− j)

= tr(
n

∑
j=1

XAj−1Y ∗An− j)

= 〈X ,
n

∑
j=1

An− jYA j−1〉. �

THEOREM 4.8. Let A be a positive definite and Q be a positive semidefinite ma-
trix. Then there exists a positive semidefinite solution X for the following matrix equa-
tion.

n

∑
j=1

An− jXA j−1 = Q. (4.6)

Proof. Let Y (t) = (An +tQ)
1
n for n∈N . Since An +tQ � An , so (An +tQ)

1
n � A .

Therefore, Y (t) �Y (0) which implies Y ′(0) � 0. On the other hand, by differentiating
the equation Yn(t) = An + tQ and then letting t = 0, we get

Y ′(0)Yn−1(0)+Y(0)Y ′(0)Yn−2 + . . .+Yn−1(0)Y ′(0) = Q.

By substituting 0 �Y ′(0) = X and Y (0) = A , it is concluded that there exists a positive
semidefinite solution X for Equation (4.6). �

THEOREM 4.9. Let B be any matrix. Assume that A and Q are positive semidef-
inite matrices. If Y is a positive semidefinite solution of ∑n

j=1 An− jYA j−1 = Q and
Re(tr(BY )) � 0 , then the equation of

n

∑
j=1

An− jXA j−1 = B,

has a positive semidefinite solution.
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Proof. Let TA(Y ) = ∑n
j=1 An− jYA j−1 and b = B in Theorem 3.4. �

We consider matrix equation X −A∗XA = Q which is called the Stein equation
(Q is positive definite). Stein equation has a unique solution if and only if A is stable
([10], [8]). In addition, this unique solution is positive definite and is given by

X =
∞

∑
n=0

A∗nQAn.

THEOREM 4.10. Let B be any matrix, A be a stable matrix and Q be a positive
definite matrix. If X is a positive definite solution of X −A∗XA = Q and Re(tr(BX)) �
0 , then the equation of X −A∗XA = B has an asymptotical positive semidefinite solu-
tion.

Proof. Let TA(X) = X −A∗XA and b = B in Theorem 3.4. �
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