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Abstract. The Khatri-Rao product is a generalization of the classical Hadamard product for
block matrices. In this paper, we give an Oppenheim type determinantal inequality for the
Khatri-Rao product of two block positive semidefinite matrices, and then we extend our result to
multiple block matrices.

1. Introduction

We use the following standard notation. The set of m× n complex matrices is
denoted by Mm×n(C) , or simply by Mm×n , when m = n , we put Mn for Mn×n . The
identity matrix of order n by In , or I for short. If A = [ai j] is of order p×q and B is
of order r× s , the Kronecker product (tensor product) of A with B , denoted by A⊗B ,
is a pr×qs matrix, partitioned into p×q block matrix with the (i, j)-block the r× s
matrix ai jB , i.e., A⊗B = [ai jB]p,q

i, j=1 . Given two matrices A = [ai j] and B = [bi j] with
the same order, the Hadamard product of A and B is defined as A ◦B = [ai jbi j] . It
is easy to see that A ◦B is a principal submatrix of A⊗B . By convention, the μ × μ
leading principal submatrix of A is denoted by Aμ .

Let A = [ai j] ∈ Mn be positive semidefinite. The Hadamard inequality says that

n

∏
i=1

aii � detA. (1)

If B = [bi j]∈Mn is positive semidefinite, it is well-known that A◦B is positive semidef-
inite. Moreover, the celebrated Oppenheim inequality (see [15] or [7, p. 509]) states
that

det(A◦B) � detA ·
n

∏
i=1

bii � det(AB). (2)

Setting B = In , then (2) reduces to (1). Note that A◦B = B◦A , thus we also have

det(A◦B) � detB ·
n

∏
i=1

aii � det(AB). (3)
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The following inequality (4) not only generalized Oppenheim’s result, but also pre-
sented a well connection between (2) and (3); see [16, Theorem 3.7] for more details.

det(A◦B)+det(AB) � detA ·
n

∏
i=1

bii +detB ·
n

∏
i=1

aii. (4)

Inequality (4) is usually called Oppenheim-Schur’s inequality. Furthermore, Chen [2]
generalized (4) and proved an implicit improvement, i.e., if A and B are n×n positive
definite matrices, then

det(A◦B) � det(AB)
n

∏
μ=2

(
aμμ detAμ−1

detAμ
+

bμμ detBμ−1

detBμ
−1

)
, (5)

where Aμ and Bμ denote the μ ×μ leading principal submatrices of A and B , respec-
tively.

Over the past years, various generalizations and extensions of (4) and (5) have
been obtained in the literature. For instance, see [18, 19] for the equality cases; see
[1, 10, 17, 3] for the extensions of M -matrices; see [6, 14, 4] for the extensions of
block Hadamard product.

In this paper, we mainly concentrate on block positive semidefinite matrices. Let
Mn(Mp×q) be the set of complex matrices partitioned into n×n blocks with each block
being a p× q matrix. The element of Mn(Mp×q) is usually written as the bold letter
AAA = [Ai j]ni, j=1 , where Ai j ∈ Mp×q for all 1 � i, j � n . For AAA = [Ai j] ∈ Mn(Mp×q)
and BBB = [Bi j] ∈ Mn(Mr×s) , the Khatri-Rao product AAA ∗BBB , first introduced in [8], is
given as AAA ∗BBB := [Ai j ⊗Bi j]ni, j=1 , where Ai j ⊗Bi j denotes the Kronecker product of
Ai j and Bi j . Clearly, when p = q = r = s = 1, that is, AAA and BBB are n× n matrices
with complex entries, the Khatri-Rao product coincides with the classical Hadamard
product; when n = 1, it is identical with the usual Kronecker product. It is easy to
verify that (AAA∗BBB)∗CCC = AAA∗ (BBB∗CCC) , so the Khatri-Rao product of AAA(1), . . . ,AAA(m) could
be denoted by ∏m

i=1 ∗AAA(i) . We refer to [11, 12, 13] for more properties of Khatri-Rao
product.

Recently, motivated by the breakthrough of Lin [14], Kim et al. [9] gave the
following extension of Chen’s result (5) for the Khatri-Rao product, if AAA,BBB ∈ Mn(Mk)
are positive definite, then

det(AAA∗BBB) � (detAAABBB)k

×
n

∏
μ=2

((detAμμ detAAAμ−1

detAAAμ

)k
+
(detBμμ detBBBμ−1

detBBBμ

)k −1

)
,

(6)

where AAAμ = [Ai j]
μ
i, j=1 and BBBμ = [Bi j]

μ
i, j=1 stand for the μ × μ leading principal block

submatrices of AAA and BBB , respectively.
Clearly, when k = 1, Kim’s result (6) reduces to Chen’s result (5). In this paper,

we will prove the following main result, which is a generalization of the above (6).
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THEOREM 1.1. Let AAA(i) ∈ Mn(Mqi) , i = 1,2, . . . ,m be positive definite. Then

det

(
m

∏
i=1

∗AAA(i)

)
�

m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

×
n

∏
μ=2

⎛
⎜⎝ m

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm
qi

− (m−1)

⎞
⎟⎠ ,

where AAA(i)
μ stands for the μ × μ leading principal block submatrix of AAA(i) .

The paper is organized as follows. We first modify Kim’s result (6) to more general
setting where the blocks in each n× n block matrix are of different order (Theorem
2.1). Motivated by the works in [5] and [4], we then show a proof of our main result
(Theorem 1.1), as a byproduct, we will present the second main result (Theorem 2.5).
Our results extend the above mentioned results (4), (5) and (6).

2. Auxiliary results and proofs

To review the proof of (6) in [9], we present a slightly more general result (Theo-
rem 2.1). Clearly, when p = q = k , Theorem 2.1 reduces to (6). Such a generalization
also actuates our cerebration and propels the main result (Theorem 1.1). Because the
lines of proof between Theorem 2.1 and (6) are similar, so we leave the details to the
interested readers.

THEOREM 2.1. Let AAA = [Ai j] ∈ Mn(Mp) , BBB = [Bi j] ∈ Mn(Mq) be positive defi-
nite. Then

det(AAA∗BBB) � (detAAA)q(detBBB)p

×
n

∏
μ=2

((detAμμ detAAAμ−1

detAAAμ

)q
+
(detBμμ detBBBμ−1

detBBBμ

)p−1

)
,

where AAAμ = [Ai j]
μ
i, j=1 and BBBμ = [Bi j]

μ
i, j=1 for every μ = 1,2, . . . ,n.

The following Lemma 2.2 is called Fischer’s inequality, which is an improvement
of Hadamard’s inequality (1) for block positive semidefinite matrices.

LEMMA 2.2. (see [7, p. 506] or [20, p. 217]) If A =
[
A11 A12

A21 A22

]
is an n× n

positive semidefinite matrix with diagonal blocks being square, then

n

∏
i=1

aii � detA11 detA22 � detA.

Next, we need to introduce a numerical inequality, which could be found in [4].
For completeness, we here include a proof for the convenience.
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LEMMA 2.3. If
(
a(i)

1 ,a(i)
2 , . . . ,a(i)

n
) ∈ Rn , i = 1, . . . ,m and a(i)

μ � 1 for all i,μ ,
then

n

∏
μ=1

(
m

∑
i=1

a(i)
μ − (m−1)

)
�

m

∑
i=1

n

∏
μ=1

a(i)
μ − (m−1).

Proof. We use induction on n . When n = 1, there is nothing to show. Suppose
that the required inequality is true for n = k . Then we consider the case n = k+1,

k+1

∏
μ=1

(
m

∑
i=1

a(i)
μ − (m−1)

)

=

(
m

∑
i=1

a(i)
k+1− (m−1)

)
·

k

∏
μ=1

(
m

∑
i=1

a(i)
μ − (m−1)

)

�
(

m

∑
i=1

a(i)
k+1− (m−1)

)
·
(

m

∑
i=1

k

∏
μ=1

a(i)
μ − (m−1)

)

=
m

∑
i=1

k+1

∏
μ=1

a(i)
μ − (m−1)+

m

∑
i=1

(
a(i)

k+1−1
)( m

∑
j=1, j �=i

k

∏
μ=1

a( j)
μ − (m−1)

)

�
m

∑
i=1

k+1

∏
μ=1

a(i)
μ − (m−1).

Thus, the required inequality holds for n = k + 1, so the proof of induction step is
complete. �

REMARK. When m = 2, Lemma 2.3 implies that for every aμ ,bμ � 1, then

n

∏
μ=1

(aμ +bμ −1) �
n

∏
μ=1

aμ +
n

∏
μ=1

bμ −1. (7)

This inequality (7) plays an important role in [14] for deriving determinantal inequal-
ities, and we can see from (7) that Chen’s result (5) is indeed an improvement of (4).
The above proof of Lemma 2.3 is by induction on n . In fact, combining the above (7)
and by induction on m , one could get another way to prove Lemma 2.3.

The following Corollary 2.4 is a direct consequence from Lemma 2.3, it will be
used to facilitate the proof of Theorem 1.1.

COROLLARY 2.4. If b1,b2, . . . ,bm ∈ R and bi � 1 for all i , then for positive
integer q (

m

∑
i=1

bi− (m−1)

)q

�
m

∑
i=1

bq
i − (m−1).

Now, we are in a position to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. We show the proof by induction on m . When m = 2, the
required result degrades into Theorem 2.1. Assume that the required inequality is true
for the case m−1, that is

det

(
m−1

∏
i=1

∗AAA(i)

)
�

m−1

∏
i=1

(
detAAA(i)

) q1q2···qm−1
qi

×
n

∏
μ=2

⎛
⎜⎝m−1

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm−1
qi

− (m−2)

⎞
⎟⎠.

Now we consider the case m > 2, we have

det

(
m

∏
i=1

∗AAA(i)

)

= det

((m−1

∏
i=1

∗AAA(i)
)
∗AAA(m)

)

�
(

det
(m−1

∏
i=1

∗AAA(i)
))qm (

detAAA(m)
)q1q2···qm−1

×
n

∏
μ=2

⎛
⎜⎜⎜⎝
(det

(
m−1
∏
i=1

∗AAA(i)
)

μμ
det
(m−1

∏
i=1

∗AAA(i)
)

μ−1

det
(m−1

∏
i=1

∗AAA(i)
)

μ

)qm

+

⎛
⎝detA(m)

μμ detAAA(m)
μ−1

detAAA(m)
μ

⎞
⎠

q1q2···qm−1

−1

⎞
⎟⎟⎟⎠

�
m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi ×

n

∏
μ=2

⎛
⎜⎝m−1

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm−1
qi

− (m−2)

⎞
⎟⎠

qm

×
n

∏
μ=2

⎛
⎜⎜⎜⎝
(det

(
m−1
∏
i=1

∗AAA(i)
)

μμ
det
(m−1

∏
i=1

∗AAA(i)
)

μ−1

det
(m−1

∏
i=1

∗AAA(i)
)

μ

)qm

+

⎛
⎝detA(m)

μμ detAAA(m)
μ−1

detAAA(m)
μ

⎞
⎠

q1q2···qm−1

−1

⎞
⎟⎟⎟⎠ .

For notational convenience, we denote

Rμ :=

⎛
⎜⎝m−1

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm−1
qi

− (m−2)

⎞
⎟⎠

qm

,

and

Sμ :=

⎛
⎜⎜⎜⎝

det

(
m−1
∏
i=1

∗AAA(i)
)

μμ
det
(m−1

∏
i=1

∗AAA(i)
)

μ−1

det
(m−1

∏
i=1

∗AAA(i)
)

μ

⎞
⎟⎟⎟⎠

qm

+

⎛
⎝detA(m)

μμ detAAA(m)
μ−1

detAAA(m)
μ

⎞
⎠

q1q2···qm−1

−1.
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By Fischer’s inequality (Lemma 2.2), we can see that

detA(i)
μμ detAAA(i)

μ−1 � detAAA(i)
μ , i = 1,2, . . . ,m,

which together with Corollary 2.4 yields

Rμ �
m−1

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm−1qm
qi

− (m−2) � 1. (8)

On the other hand, by Fischer’s inequality (Lemma 2.2) again, we have

det
(m−1

∏
i=1

∗AAA(i)
)

μμ
det
(m−1

∏
i=1

∗AAA(i)
)

μ−1
� det

(m−1

∏
i=1

∗AAA(i)
)

μ
.

Therefore, we obtain

Sμ �

⎛
⎝detA(m)

μμ detAAA(m)
μ−1

detAAA(m)
μ

⎞
⎠

q1q2···qm−1

� 1. (9)

Since Rμ � 1 and Sμ � 1, this leads to

RμSμ � Rμ +Sμ −1.

Hence, we get from (8) and (9) that

det

(
m

∏
i=1

∗AAA(i)

)
�

m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

n

∏
μ=2

Rμ
n

∏
μ=2

Sμ

�
m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

n

∏
μ=2

(Rμ +Sμ −1)

�
m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

×
n

∏
μ=2

⎛
⎜⎝ m

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm
qi

− (m−1)

⎞
⎟⎠.

This completes the proof. �

Next, we will present the extension of Oppenheim type determinantal inequality
(4).
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THEOREM 2.5. Let AAA(i) ∈Mn(Mqi) , i = 1,2, . . . ,m be positive demidefinite. Then

det

(
m

∏
i=1

∗AAA(i)

)
+(m−1)

m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

�
m

∑
i=1

m

∏
j=1, j �=i

(
detAAA( j) ·

n

∏
μ=1

detA(i)
μμ

) q1q2···qm
qi

.

(10)

Proof. If some of A(i)
μμ in (10) is singular, then so is AAA(i) . In this case, the right

hand side of (10) equals to zero. Indeed, by a standard perturbation argument, we may
assume without loss of generality that all AAA(i) are positive definite. Thus, we may
rewrite (10) as

det

(
m

∏
i=1

∗AAA(i)

)
�

m

∏
i=1

(
detAAA(i)

)q1q2···qm
qi

⎛
⎜⎝ m

∑
i=1

(
∏n

μ=1 detA(i)
μμ

detAAA(i)

)q1q2···qm
qi

− (m−1)

⎞
⎟⎠ .

(11)
By Fischer’s inequality (Lemma 2.2), we have

detA(i)
μμ detAAA(i)

μ−1 � detAAA(i)
μ .

Therefore, it follows from Theorem 1.1 and Lemma 2.3 that

det

(
m

∏
i=1

∗AAA(i)

)

�
m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

n

∏
μ=2

⎛
⎜⎝ m

∑
i=1

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm
qi

− (m−1)

⎞
⎟⎠

�
m

∏
i=1

(
detAAA(i)

) q1q2···qm
qi

⎛
⎜⎝ m

∑
i=1

n

∏
μ=2

⎛
⎝detA(i)

μμ detAAA(i)
μ−1

detAAA(i)
μ

⎞
⎠

q1q2···qm
qi

− (m−1)

⎞
⎟⎠.

Observe that
n

∏
μ=2

detA(i)
μμ detAAA(i)

μ−1

detAAA(i)
μ

=
∏n

μ=1 detA(i)
μμ

detAAA(i) .

Hence, the proof of (11) is complete. �
In the sequel, by setting q1 = q2 = · · · = qm = 1 in Theorem 1.1 and Theorem 2.5,

we can get the following Corollary 2.6 and Corollary 2.7 for the Hadamard product,
respectively. These two corollaries are extensions of Oppenheim-Schur’s inequality (4)
and Chen’s result (5). The first corollary can be found in [5, Theorem 7] and the second
one can be seen in [4, Theorem 4].
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COROLLARY 2.6. Let A(i) ∈ Mn(C) , i = 1,2, . . . ,m be positive definite. Then

det

(
m

∏
i=1

◦A(i)

)
�
(

m

∏
i=1

detA(i)

)
n

∏
μ=2

⎛
⎝ m

∑
i=1

a(i)
μμ detA(i)

μ−1

detA(i)
μ

− (m−1)

⎞
⎠ ,

where A(i)
μ stands for the μ × μ leading principal submatrix of A(i) .

COROLLARY 2.7. Let A(i) ∈Mn(C) , i = 1,2, . . . ,m be positive semidefinite. Then

det

(
m

∏
i=1

◦A(i)

)
+(m−1)

m

∏
i=1

detA(i) �
m

∑
i=1

m

∏
j=1, j �=i

detA( j)
n

∏
μ=1

a(i)
μμ .
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