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FURTHER INEQUALITIES FOR SECTOR MATRICES

DENGPENG ZHANG ∗ AND NING ZHANG

(Communicated by F. Kittaneh)

Abstract. We mainly generalize a norm inequality of n×n block accretive-dissipative matrices.
This complements the results of Kittaneh [10, Theorem 2.4] and Fu [18, Theorem 2.9]. And
then, we present some singular value inequalities for sector matrices.

1. Introduction

Let Mn(C) be the set of all n×n complex matrices and In be the identity matrix
in Mn(C) . For any T ∈ Mn(C) , T ∗ stands for the conjugate transpose of T . Every
matrix T has its Cartesian (or Toeptliz) decomposition (see [2]),

T = RT + iIT, (1)

in which RT = 1
2(T + T ∗), IT = 1

2i (T − T ∗) are Hermitian. A matrix T is said to
be accretive (resp. dissipative) if in its cartesian decomposition (1) the matrix RT
(resp. IT ) is positive defnite. If both RT and IT , in the decomposition (1), are
positive defnite, T is called accretive-dissipative. We refer the interested reader to
[7, 15, 16, 17] and the references therein for further study of such matrices and their
rich applications.

Moreover, if T ∈ M2n , we will consider the partition of T as,

T =
(

T11 T12

T21 T22

)
, where Tjk ∈ Mn(C), j,k = 1,2. (2)

Recall that a norm || · || on Mn(C) is unitarily invariant if ||UAV || = ||A|| for
any A ∈ Mn(C) and unitary matrices U,V ∈ Mn(C) . For p > 0 and A ∈ Mn(C) , let

||A||p = (∑n
j=1 sp

j (A))
1
p , where s1(A) � s2(A) � · · · � sn(A) are the singular values of

A . This defines the Schatten p -norm (quasinorm) for p � 1 (0 < p < 1) . If A is Her-
mitian, then all eigenvalues of A are real and ordered as λ1(A) � λ2(A) � · · · � λn(A) .
We denote s(A) = (s1(A),s2(A), . . . ,sn(A)) and λ (A) = (λ1(A),λ2(A), . . . ,λn(A)) .
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Another important class of matrices, called sectorial matrices, is related to the
above classes. First, let us introduce two definitions. The numerical range of A ∈
Mn(C) is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

For α ∈ [0, π
2 ) , Sα denotes the sector in the complex plane given by

Sα = {z ∈ C|Rz > 0, |Iz| � (Rz) tan(α)}.

Clearly, A is positive definite if and only if W (A) ⊆ S0 , and if W (A),W (B) ⊆
Sα for some α ∈ [0, π

2 ) , then W (A + B) ⊆ Sα . As 0 /∈ Sα , then A is nonsingular.
Recent research interest in this class of matrices starts with a resolution of a problem
from numerical analysis [3]. Some research results on sector matrices can be found in
[13, 14, 22, 23].

Gumus et al. [7, Theorem 4.2] proved the following norm inequalities.

THEOREM 1. [7, Theorem 4.2] Let T ∈ Mn(C) be accretive-dissipative parti-
tioned as in (2). Then

||T12||Pp + ||T21||Pp � 2P−1||T11||
P
2
p ||T22||

P
2
p , for p � 2,

and

||T12||Pp + ||T21||Pp � 23−P||T11||
P
2
p ||T22||

P
2
p , for 0 < p � 2.

Based on Theorem 1, Kittaneh and Sakkijha [10, Theorem 2.4] presented the fol-
lowing norm inequalities, which compares the norms of the off diagonal blocks and the
diagonal blocks.

THEOREM 2. [10, Theorem 2.4] For i, j = 1,2, · · · ,n, let Ti j be square matrices
of the same size such that the block matrix

T =

⎛
⎜⎜⎜⎝

T11 T12 · · · T1n

T21 T22 · · · T2n
...

... · · · ...
Tn1 Tn2 · · · Tnn

⎞
⎟⎟⎟⎠

is accretive-dissipative. Then

∑
i�= j

||Ti j||pp � (n−1)2p−2
n

∑
i=1

||Tii||pp f or p � 2

and

∑
i�= j

||Ti j||pp � (n−1)22−p
n

∑
i=1

||Tii||pp f or 0 < p � 2.
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Garg and Aujla [6, Theorem 2.8, 2.10] showed the following inequalities:

k

∏
j=1

s j(|A+B|r) �
k

∏
j=1

s j(In + |A|r)
k

∏
j=1

s j(In + |B|r) 1 � k � n, 1 � r � 2 (3)

and

k

∏
j=1

s j(In + f (|A+B|)) �
k

∏
j=1

s j(In + f (|A|))
k

∏
j=1

s j(In + f (|B|)), 1 � k � n, (4)

where A,B ∈ Mn(C) and f : [0,∞) → [0,∞) is an operator concave function.
Let A,B ∈ Mn(C) be positive semidefinite, r = 1 and f (X) = X for any X ∈

Mn(C) in (3) and (4), we have

k

∏
j=1

s j(A+B) �
k

∏
j=1

s j (In +A)
k

∏
j=1

s j (In +B) , 1 � k � n (5)

and
k

∏
j=1

s j (In +A+B) �
k

∏
j=1

s j (In +A)
k

∏
j=1

s j (In +B) , 1 � k � n. (6)

In this paper, we will extend the results of Theorem 1 and 2 to a larger class of
matrices, i.e. sector matrices and give several singular value inequalities based on (5)
and (6).

2. Main result

We begin this section with some lemmas which are useful to establish our main
results.

LEMMA 1. [1, Theorem 2.6] Let T ∈ Mn(C) be such that W (T ) ⊆ Sα . Then

s j(T ) � sec(α)s[( j+1)/2](Re(T )) for j = 1,2, . . . ,n, (7)

where [x] is the greatest integer � x.

In Lemma 2 and 3, assume that T ∈ M2n(C) is partitioned as in (2) and W (T ) ⊆
Sα .

LEMMA 2. [1, Theorem 3.2] For k = 1,2, · · · ,n,

k

∏
l=1

sl(Ti j) �
k

∏
l=1

sec(α)s1/2
l (Re(Tii))s

1/2
l (Re(Tj j)), i, j = 1,2. (8)
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LEMMA 3. [1, Theorem 3.4] Let r, p and q be positive numbers such that 1/p+
1/q = 1 . Then

|| |T12|r|| � secr(α)||(Re(T11))rp/2||1/p ||(Re(T22))rq/2||1/q

� secr(α)||T rp/2
11 ||1/p ||T rq/2

22 ||1/q,

for any unitarily invariant norm || · || .

LEMMA 4. [2, p.73] Let A ∈ Mn(C) . Then

λ j(RA) � s j(A), j = 1,2, . . . ,n. (9)

LEMMA 5. [20, (2.2)] Let A, B ∈ Mn(C) be such that W (A), W (B) ⊆ Sα . Then

R(A+B)−1 � sec4 α
4

R(A−1 +B−1).

THEOREM 3. Let T ∈ M2n(C) be partitioned as in (2) and W (T ) ⊆ Sα for some
α ∈ [0, π

2 ) . And let s , r be positive numbers such that 1/s+1/r = 1 . Then

max{||T12||pp, ||T21||pp} � secp(α)||(Re(T11))s/2||p/s
p ||(Re(T22))r/2||p/r

p for p > 0.

Proof. From Lemma 3, we know that, let r = 1, the result is true for Schatten
p-norms ( p � 1). When 0 < p < 1, from Lemma 2, we know

k

∏
l=1

sp
l (Ti j) �

k

∏
l=1

secp(α)sp/2
l (Re(Tii))s

p/2
l (Re(Tj j)), i, j = 1,2.

The fact that weak log-majorization implies weak majorization gives

k

∑
l=1

sp
l (Ti j) �

k

∑
l=1

secp(α)sp/2
l (Re(Tii))s

p/2
l (Re(Tj j))

= secp(α)
k

∑
l=1

sp/2
l (Re(Tii))s

p/2
l (Re(Tj j))

� secp(α)(
k

∑
l=1

ssp/2
l (Re(Tii)))1/s(

k

∑
l=1

srp/2
l (Re(Tj j)))1/r. (Hölder inequality)

Thus
||Ti j||pp � secp(α)||(Re(Tii))s/2||p/s

p ||(Re(Tj j))r/2||p/r
p .

So
max{||T12||pp, ||T21||pp} � secp(α)||(Re(T11))s/2||p/s

p ||(Re(T22))r/2||p/r
p .

This completes the proof. �
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COROLLARY 1. Let T ∈ M2n(C) be partitioned as in (2) and assume W (T ) ⊆
Sα . And let s, r be positive numbers such that 1/s+1/r = 1 . Then

||T12||pp + ||T21||pp � 2secp(α)||(Re(T11))s/2||p/s
p ||(Re(T22))r/2||p/r

p for p > 0.
(10)

THEOREM 4. For i, j = 1,2, · · · ,n, let Ti j be square matrices of the same size
such that the block matrix ⎛

⎜⎜⎜⎝
T11 T12 · · · T1n

T21 T22 · · · T2n
...

... · · · ...
Tn1 Tn2 · · · Tnn

⎞
⎟⎟⎟⎠

is a sector matrix. And let s, r be positive numbers such that 1/s+1/r = 1 . Then

∑
i�= j

||Ti j||pp � n−1
2

secp(α)
n

∑
i=1

(||(Re(Tii))s/2||2p/s
p + ||(Re(Tii))r/2||2p/r

p ), for p > 0.

(11)

Proof. It is easy to obtain that a principal submatrix

(
Tii Ti j

Tji Tj j

)
of T is also sector

matrix. Now, applying (10) to

(
Tii Ti j

Tji Tj j

)
, we get

‖Ti j‖p
p +‖Tji‖p

p � 2secp(α)||(Re(Tii))s/2||p/s
p ||(Re(Tj j))r/2||p/r

p

for i �= j and p > 0.
Consequently, using the arithmetic-geometric mean inequality, we have

‖Ti j‖p
p +‖Tji‖p

p � secp(α)(||(Re(Tii))s/2||2p/s
p + ||(Re(Tj j))r/2||2p/r

p ). (12)

Meanwhile, by putting i := j , j := i ,

‖Tji‖p
p +‖Ti j‖p

p � secp(α)(||(Re(Tj j))s/2||2p/s
p + ||(Re(Tii))r/2||2p/r

p ) (13)

for i �= j and p > 0.
Adding up the previous inequalities (12), (13) for i, j = 1,2, · · · ,n , we get

∑
i�= j

‖Ti j‖p
p � n−1

2
secp(α)

n

∑
i=1

(||(Re(Tii))s/2||2p/s
p + ||(Re(Tii))r/2||2p/r

p ),

which proves the inequality. �

By Lemma 3 and following the same technique which is used in the proof of
Theorem 4, we can prove the conclusion for any unitarily invariant norm.
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REMARK 1. For i, j = 1,2, · · · ,n , let Ti j be square matrices of the same size such
that the block matrix ⎛

⎜⎜⎜⎝
T11 T12 · · · T1n

T21 T22 · · · T2n
...

... · · · ...
Tn1 Tn2 · · · Tnn

⎞
⎟⎟⎟⎠

is a sector matrix. And let t , s , r be positive numbers such that 1/s+1/r = 1. Then

∑
i�= j

|| |Ti j|t || � n−1
2

sect(α)
n

∑
i=1

(||(Re(Tii))ts/2||2/s + ||(Re(Tii))tr/2||2/r),

for any unitarily invariant norm || · || .

REMARK 2. Set r = s = 2 in inequality 11. Then, for p > 0

∑
i�= j

||Ti j||pp � (n−1)secp(α)
n

∑
i=1

||Re(Tii)||pp

� (n−1)secp(α)
n

∑
i=1

||Tii||pp. (14)

The inequality (14) is the result of [18, Theorem 2.9].
If we further set α = π

4 , then we get

∑
i�= j

||Ti j||pp � (n−1)2p/2
n

∑
i=1

||Re(Tii)||pp

� (n−1)2p/2
n

∑
i=1

||Tii||pp. (15)

The inequality (15) is the result of [19, Theorem 2.4].
At last, we set α = 0, then

∑
i�= j

||Ti j||pp � (n−1)
n

∑
i=1

||Re(Tii)||pp

= (n−1)
n

∑
i=1

||Tii||pp.

Next, we present the singular value inequalities for sector matrices A , B and A+B
in Mn(C) .

THEOREM 5. Let A,B ∈ Mn(C) be such that W (A),W (B) ⊂ Sα . Then

k

∏
j=1

s j(A+B) � seck(α)
k

∏
j=1

s[ j+1
2 ](In +A)

k

∏
j=1

s[ j+1
2 ](In +B) 1 � k � n; (16)
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k

∏
j=1

s j(In +A+B)) � seck(α)
k

∏
j=1

s[ j+1
2 ](In +A)

k

∏
j=1

s[ j+1
2 ](In +B), 1 � k � n; (17)

Proof.

k

∏
j=1

s j(A+B) � seck(α)
k

∏
j=1

s[ j+1
2 ](R(A+B)) (by Lemma 1)

= seck(α)
k

∏
j=1

s[ j+1
2 ](R(A)+R(B))

� seck(α)
k

∏
j=1

s[ j+1
2 ](In +R(A))

k

∏
j=1

s[ j+1
2 ](In +R(B)) (by (5))

= seck(α)
k

∏
j=1

s[ j+1
2 ](R(In +A))

k

∏
j=1

s[ j+1
2 ](R(In +B))

� seck(α)
k

∏
j=1

s[ j+1
2 ](In +A)

k

∏
j=1

s[ j+1
2 ](In +B). (by Lemma 4)

k

∏
j=1

s j(In +A+B) � seck(α)
k

∏
j=1

s[ j+1
2 ](R(In +A+B)) (by Lemma 1)

= seck(α)
k

∏
j=1

s[ j+1
2 ](In +R(A)+R(B))

� seck(α)
k

∏
j=1

s[ j+1
2 ](In +R(A))

k

∏
j=1

s[ j+1
2 ](In +R(B)) (by (6))

= seck(α)
k

∏
j=1

s[ j+1
2 ](R(In +A))

k

∏
j=1

s[ j+1
2 ](R(In +B))

� seck(α)
k

∏
j=1

s[ j+1
2 ](In +A)

k

∏
j=1

s[ j+1
2 ](In +B). (by Lemma 4) �

REMARK 3. It’s clear that the upper bounds of inequalities (16) and (17) are
stronger than that of [21, Theorem 2.7(5,6)], respectively.

Now, we present the singular value inequalities including the inverse of A , B and
A+B in Mn(C) , as follows.

THEOREM 6. Let A,B∈Mn be such that W (A),W (B)⊂ Sα . Then for k = 1, . . . ,n

k

∏
j=1

s j(A+B)−1 � sec5k(α)
4k

k

∏
j=1

s[ j+1
2 ](In +A−1)

k

∏
j=1

s[ j+1
2 ](In +B−1), (18)
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k

∏
j=1

s j(In +(A+B)−1) � seck(α)
k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

A−1
)

×
k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

B−1
)
. (19)

Proof.

k

∏
j=1

s j(A+B)−1

� seck(α)
k

∏
j=1

s[ j+1
2 ](R(A+B)−1) (by Lemma 1)

� sec5k(α)
4k

k

∏
j=1

s[ j+1
2 ](R(A−1)+R(B−1)) (by Lemma 5)

� sec5k(α)
4k

k

∏
j=1

s[ j+1
2 ](In +R(A−1))

k

∏
j=1

s[ j+1
2 ](In +R(B−1)) (by (5))

=
sec5k(α)

4k

k

∏
j=1

s[ j+1
2 ](R(In +A−1))

k

∏
j=1

s[ j+1
2 ](R(In +B−1))

� sec5k(α)
4k

k

∏
j=1

s[ j+1
2 ](In +A−1)

k

∏
j=1

s[ j+1
2 ](In +B−1). (by Lemma 4)

k

∏
j=1

s j(In +(A+B)−1)

� seck(α)
k

∏
j=1

s[ j+1
2 ](R(In +(A+B)−1) (by Lemma 1)

� seck(α)
k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

R(A−1 +B−1)
)

(by Lemma 5)

� seck(α)
k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

R(A−1)
) k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

R(B−1)
)

(by (6))

= seck(α)
k

∏
j=1

s[ j+1
2 ](R

(
In +

sec4(α)
4

A−1
)
)

k

∏
j=1

s[ j+1
2 ]

(
R

(
In +

sec4(α)
4

B−1
))

� seck(α)
k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

A−1
) k

∏
j=1

s[ j+1
2 ]

(
In +

sec4(α)
4

B−1
)
. (by Lemma 4)

�

REMARK 4. Obviously, the upper bounds of inequalities (18) and (19) are stronger
than that of [20, Theorem 2.1 (2.5, 2.6)], respectively.
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Mohammad [1, Theorem 1.1] proved that

|T | � sec(α)
2

[Re(T )+U∗(Re(T ))U ]. (20)

for T ∈ Mn , W (T ) ⊆ Sα and U be the unitary part of T in the polar decomposition
T = U |T | .

On the basis of (20), inequalities (5) and (6) are generalized to get two results
which are different from that of Theorem 5.

THEOREM 7. Let A,B∈Mn be such that W (A),W (B)⊂ Sα . Then for k = 1, . . . ,n

k

∏
j=1

s j(A+B) �
(sec(α)

2

)k k

∏
j=1

s2
j(In +Re(A))

k

∏
j=1

s2
j(In +Re(B)), (21)

and

k

∏
j=1

s j(In +A+B)) � seck(α)
k

∏
j=1

s2
j

(
In +

1
2
Re(A)

) k

∏
j=1

s2
j

(
In +

1
2
Re(B)

)
. (22)

Proof.

k

∏
j=1

s j(A+B)

�
k

∏
j=1

sec(α)
2

s j(Re(A+B)+U∗Re(A+B)U) (by (20))

�
(sec(α)

2

)k k

∏
j=1

s j(In +Re(A+B))
k

∏
j=1

s j(In +U∗Re(A+B)U) (by (5))

=
(sec(α)

2

)k k

∏
j=1

s2
j(In +Re(A+B))

=
(sec(α)

2

)k k

∏
j=1

s2
j(In +Re(A)+Re(B))

�
(sec(α)

2

)k k

∏
j=1

s2
j(In +Re(A))

k

∏
j=1

s2
j(In +Re(B)) (by (6))

k

∏
j=1

s j(In +A+B)

�
k

∏
j=1

sec(α)
2

s j(Re(In +A+B)+U∗Re(In +A+B)U) (by (20))

=
(sec(α)

2

)k k

∏
j=1

s j(In +Re(A+B)+ In+U∗Re(A+B)U)
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= seck(α)
k

∏
j=1

s j

(
In +Re

(A+B
2

)
+U∗Re

(A+B
2

)
U

)

� seck(α)
k

∏
j=1

s j

(
In +Re

(A+B
2

)) k

∏
j=1

s j

(
In +U∗Re

(A+B
2

)
U

)
(by (6))

= seck(α)
k

∏
j=1

s2
j

(
In +

1
2
Re(A)+

1
2
Re(B)

)

� seck(α)
k

∏
j=1

s2
j

(
In +

1
2
Re(A)

) k

∏
j=1

s2
j

(
In +

1
2
Re(B)

)
. (by (6)) �

COROLLARY 2. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα .

||A+B||� sec(α)
2

||In +Re(A))||2 ||In +Re(B)||2,

and

||In +A+B||� sec(α)||In +
1
2
Re(A)||2 ||In +

1
2
Re(B)||2. (23)

Proof. From (21), we can get

k

∏
j=1

s
1
4
j (A+B) �

k

∏
j=1

(sec(α)
2

) 1
4
s

1
2
j (In +Re(A))s

1
2
j (In +Re(B)),

for k = 1, · · · ,n .
By the property that weak log-majorization implies weak majorization and Cauchy-

Schwarz inequality, we get

k

∑
j=1

s
1
4
j (A+B) �

(sec(α)
2

) 1
4
( k

∑
j=1

s j(In +Re(A))
) 1

2
( k

∑
j=1

s j(In +Re(B))
) 1

2
, (24)

for k = 1, · · · ,n .
Inequality (24) is equivalent to the following inequality

|||A+B| 1
4 ||2k �

( sec(α)
2

) 1
2 ||In +Re(A))||k ||In +Re(B)||k, (25)

for k = 1, · · · ,n .
According to the generalizations of Ky Fan’s dominance theorem [12, Theorem

1.4], (25) implies

|||A+B| 1
4 ||2 �

( sec(α)
2

) 1
2 ||In +Re(A))|| ||In +Re(B)||.
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Since ||A+B||= || |A+B| || = || (|A+B| 1
4 )4 || � || |A+B| 1

4 ||4 ,

||A+B||� sec(α)
2

||In +Re(A))||2 ||In +Re(B)||2.

Similarly, (23) can be proved in the same way. �

COROLLARY 3. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

|det(A+B)|�
(sec(α)

2

)n
det2(In +Re(A))det2(In +Re(B)),

and

det(In +A+B)) � secn(α)det2
(
In +

1
2
Re(A)

)
det2

(
In +

1
2
Re(B)

)
.
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