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UNCERTAINTY PRINCIPLES IN TERM OF

SUPPORTS IN HANKEL WAVELET SETTING

S. HKIMI AND S. OMRI ∗

(Communicated by D. Han)

Abstract. Uncertainty principles in term of supports, namely Amrein-Berthier and Logvinenko-
Sereda theorems are proved for the continuous Hankel wavelet transform.

1. Introduction

During the last decades, many developments in harmonic analysis and signal the-
ory showed that despite the power of the Fourier transform as a main tool in studying
and analyzing signals. This transform revealed some inabilities to localize the fre-
quency spectrum of some non-stationary signals. To get over this problem, Gabor [6]
introduced the short time Fourier transform (STFT). The author considered a nonzero
function g ∈ L2(Rd) called a window and defined the short time Fourier transform of a
function f ∈ L2(Rd) on the so-called time-frequency plan, by

∀(x,ω) ∈Rd × R̂d, Vg( f )(x,ω) =
∫
Rd

f (t)g(t − x)e−i〈ω|t〉 dt

(2π)
d
2

.

Even though the short time Fourier transform solved the localization problem, a given
window couldn’t be well adapted to study every multi-frequency signals though. To
solve this issue, Grossman and Morlet [10] introduced the wavelet transform, that is,
given a nonzero function g ∈ L2(Rd) satisfying the following relation for every ξ ∈
Sd−1 , known as the admissibility condition,

Cg =
∫ +∞

0
|ĝ(aξ )|2 da

a
< +∞.

The classical wavelet transform of a function f ∈ L2(Rd) is defined on the so-called
time-scale plan R∗

+×Rd , by

Tg( f )(a,x) =
1

a
d
2

∫
Rd

f (t)g
( t− x

a

) dt

(2π)
d
2

.
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The classical wavelet transform is closely related to signal theory, for more details we
refer the reader to [4, 24].

Let μα be the measure defined on R+ by

dμα(r) =
r2α+1dr

2α Γ(α +1)
.

For every p∈ [1,+∞] , let Lp
α(R+) the Banach space of measurable functions f on R+

satisfying

‖ f‖p,μα =
(∫ +∞

0
| f (x)|pdμα(x)

) 1
p

< +∞ if p ∈ [1,+∞[,

‖ f‖∞,μα = esssupx∈R+ | f (x)| < +∞ if p = +∞.

The Hankel transform of order α � − 1
2 , is defined on L1

α(R+) by [13]

∀λ ∈ R, Hα( f )(λ ) =
∫ +∞

0
f (r) jα (λ r)dμα(r), (1.1)

where jα is the Bessel function of the first kind and index α given by [16]

jα (z) =
2αΓ(α +1)

zα Jα(z) = Γ(α +1)
+∞

∑
n=0

(−1)n

n!Γ(α +n+1)

( z
2

)2n
, z ∈ C.

The Hankel transform given by Relation (1.1) is closely related to the Bessel operator

�α , α � −1
2

, defined on ]0,+∞[ by

�α =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

,

knowing that jα(λ .) is the unique differentiable function satisfying the followingCauchy
problem ⎧⎪⎪⎨⎪⎪⎩

�α(ϕ) = −λ 2ϕ ,

ϕ ′(0) = 0,

ϕ(0) = 1.

The Hankel transform of index
d
2
− 1 is the Fourier transform of radial functions on

Rd and involves in many physical problems [12, 19].
Let g∈ L2

α(R+) be a nonzero function satisfying the following admissibility rela-
tion

0 < Cg =
∫ +∞

0
|Hα(g)(a)|2 da

a
< +∞.

Then the Hankel wavelet transform of a function f ∈ L2
α(R+) is defined on R∗

+×R+ ,
by

Wg( f )(a,x) =
∫ +∞

0
f (t)gx,a(t)dμα(t),
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where gx,a(t) = τα
x δag(t), τα

x is the generalized shift operator defined for every x∈R+
on Lp

α(R+), 1 � p � +∞ , by

τα
x (h)(y) =

⎧⎪⎪⎨⎪⎪⎩
Γ(α +1)

Γ( 1
2 )Γ(α + 1

2)

∫ π

0
h(
√

x2 + y2 +2xycos(θ ))sin(θ )2αdθ , if α > − 1
2 ,

h(x+ y)+h(|x− y|)
2

, if α = − 1
2 ,

(1.2)
and δa is the dilation operator defined for every a > 0 on M (R+) , the space of all
measurable functions on R+ , by

δa(h)(z) = aα+1h(az).

The Hankel wavelet transform Wg has many interesting applications in signal analysis,
namely in Laser and ultrasound area [23]. In the last years many works have been
interested in studying and developing the harmonic analysis related to the transform
Wg namely Baccar, Pathak, Dixit, Mahato, Prasad, Ben Hamadi, Omri and Ünalmis
[3, 11, 18, 20, 21, 25].

The uncertainty principles in harmonic analysis state that a nonzero function can’t
be arbitrarily localized simultaneously with its Fourier transform. The idea of uncer-
tainty was first introduced in 1927 by Heisenberg [15] and constituted one of the most
important foundation of quantum mechanics. Roughly speaking, Heisenberg showed
that we can’t localize simultaneously with an arbitrary precision the position and the
momentum of a high speed particle by providing a lower bound of the product of their
variances. As mentioned above, in harmonic analysis, the uncertainty principles claim
the impossibility for a nonzero function and its Fourier transform to be arbitrary small
at the same time. In the last decades, the general idea of the uncertainty has been inter-
preted differently by many authors who have given many formulations of the localiza-
tion and the smallness, we cite for instance Amrein-Berthier and Logvinenko-Sereda
theorems [1, 17], who studied the localization in term of supports. For more details, we
refer the reader to [5, 14, 22].

Uncertainty principles remain closely related to Gabor and wavelet analysis on
which they play an important role by improving the knowledge and the localization of
the frequency spectrum of a given signal [27], in this context many results have been
already established notably by Wilckzok [26]. In the Hankel sitting, many uncertainty
principles have been also proved namely by Baccar, Ben Hamadi and Omri [3, 11]. In
Ben Hamadi and Omri [11] the authors proved several uncertainty principles associated
to the transform Wg directly related to the dispersions, namely the authors established
Shapiro’s dispersion theorem as well as Price’s local theorem. In Baccar [3] the author
showed in particular the well-known Amrein-Berthier theorem related to the transform
Wg , unfortunately the theorem was proved with a constraining additional hypothesis
which covers only a particular case of admissible Hankel wavelets. The aim of this work
is to prove the Amrein-Berthier theorem for the Hankel wavelet transform Wg in the
general case, in addition we also generalize Logvinenko-Sereda uncertainty principle
for the same transform. Even if this paper turns out as part of a series of papers about
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uncertainty principles related to the transform Wg , the results proved here are interested
for the first time in the studying of the support of this transform.

The paper is organized as follows, in the second section we recall some prelimi-
nary harmonic analysis results related to the Hankel transform and the Hankel wavelet
transform. The last section will be devoted to the main results of this paper that are
Amrein-Berthier and Logvinenko-Sereda theorems associated to the Hankel wavelet
transform Wg .

2. Preliminaries

In this section we introduce the Hankel transform as well as the continuous Hankel
wavelet transform for which we recall some basic harmonic analysis results.

2.1. The Hankel transform

For every α � −1
2

, the modified Bessel function jα has the following integral

representation [2, 16],

∀z ∈ C, jα(z) =

⎧⎨⎩
2Γ(α +1)√

πΓ(α +(1/2))

∫ 1

0
(1− t2)α−1/2 cos(zt)dt, if α > − 1

2 ,

cos(z), if α = − 1
2 .

In particular, for every n ∈N and x ∈ R

| j(n)
α (x)| � 1.

For every x,y,λ � 0, we have

τα
x ( jα (λ .))(y) = jα (λx) jα (λy),

where τα
x is the generalized shift operator defined by Relation (1.2).

For α > −1
2

and for every measurable function f and x,y > 0 the generalized

shift operator defined by Relation (1.2) may be expressed as an integral operator with
kernel by

τα
x ( f )(y) =

∫ +∞

0
f (t)Wα (t,x,y)dμα(t), (2.1)

where Wα is the kernel given by

Wα(t,x,y) =

⎧⎨⎩ Γ(α+1)2√
π2α−1Γ(α+ 1

2 )
([(x+y)2−t2][t2−(x−y)2])α−1/2

(xyt)2α , if |x− y|< t < x+ y,

0, otherwise.

The kernel Wα is symmetric with respect to the variables t,x,y, and satisfies∫ +∞

0
Wα(t,x,y)dμα(t) =

Γ(α +1)
Γ( 1

2)Γ(α + 1
2)

∫ π

0
sin(θ )2αdθ = 1. (2.2)
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Relations (2.1) and (2.2) show that for every p ∈ [1,+∞] and for every x ∈ R+ the
generalized shift operator τα

x is a bounded linear operator from Lp
α (R+) into itself

satisfying for every f ∈ Lp
α(R+)

‖τα
x ( f )‖p,μα � ‖ f‖p,μα .

Moreover, for every f ∈ L1
α (R+) , and for every x ∈R+ , we have

∫ +∞

0
τα
x ( f )(y)dμα (y) =

∫ +∞

0
f (y)dμα (y).

The generalized convolution product associated to the Bessel operator is defined by

f ∗α g(x) =
∫ +∞

0
τα
x ( f )(y)g(y)dμα(y),

whenever the integral on the right hand side is well defined.
The Hankel transform defined on L1

α(R+) , by Relation (1.1), by

∀λ ∈R+, Hα( f )(λ ) =
∫ +∞

0
f (t) jα (tλ )dμα(t),

is a bounded linear operator from L1
α (R+) into L∞

α(R+) and that for every f ∈ L1
α(R+) ,

we have

‖Hα( f )‖∞,μα � ‖ f‖1,μα .

It’s well-known that the Hankel transform Hα satisfies an inversion formula on
L1

α(R+) , that is for every f ∈ L1
α(R+) such that Hα( f ) ∈ L1

α(R+) , we have

f (r) =
∫ +∞

0
Hα ( f )(x) jα (rx)dμα(x) a.e.

Moreover, Hα can be extended by the standard density argument from the Schwartz
class to L2

α(R+) , and satisfies for every f ,g ∈ L2
α (R+) , the following Parseval’s for-

mula ∫ +∞

0
f (x)g(x)dμα(x) =

∫ +∞

0
Hα( f )(λ )Hα (g)(λ )dμα(λ ).

In particular, for every f ∈ L2
α(R+) , we have

‖Hα( f )‖2,μα = ‖ f‖2,μα .
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PROPOSITION 2.1.

i) For every f ∈ Lp
α(R+) , p = 1,2 , and x ∈ R+ ,

∀λ ∈ R+, Hα (τα
x f )(λ ) = jα(xλ )Hα ( f )(λ ).

2i) For every f ∈ L1
α(R+) and g ∈ Lp

α (R+) , p = 1,2 , the function f ∗α g is in
Lp

α (R+) , p = 1,2 and

Hα( f ∗α g) = Hα( f )Hα (g).

PROPOSITION 2.2. Let f and g ∈ L2
α(R+) . Then,

f ∗α g = Hα (Hα( f )Hα (g)).

Moreover, f ∗α g ∈ L2
α(R+) if and only if Hα ( f )Hα (g) ∈ L2

α(R+) and in this case

Hα( f ∗α g) = Hα( f )Hα (g).

Proof. Consider the space Se(R) of Schwartz class functions, even it’s well-known
that for every 1 � p < +∞, Se(R) is dense in Lp

α(R+) . It’s also well-known that the
Hankel transform is an isomorphism from Se(R) into itself. Let ( fn)n∈N and (gn)n∈N
be two sequences of Se(R) which converge respectively to f and g in L2

α(R+) . Then,
we have

fn ∗α gn− f ∗α g = ( fn − f )∗α gn + f ∗α (gn−g).

Hence by using the Cauchy-Schwarz inequality, we deduce that for every n ∈ N and
y ∈ R+ ,

| fn ∗α gn(y)− f ∗α g(y)| �
∫ +∞

0
|( fn − f )(x)τα

y (gn−g)(x)|dμα(x)

+
∫ +∞

0
| f (x)τα

y (gn −g)(x)|dμα(x)

� ‖gn‖2,μα‖ fn − f‖2,μα +‖ f‖2,μα‖gn−g‖2,μα .

Then

‖ fn ∗α gn− f ∗α g‖∞,μα � ‖gn‖2,μα‖ fn − f‖2,μα +‖ f‖2,μα‖gn−g‖2,μα ,

in particular

lim
n→+∞

‖ fn ∗α gn− f ∗α g‖∞,μα � lim
n→+∞

‖gn‖2,μα‖ fn− f‖2,μα +‖ f‖2,μα‖gn−g‖2,μα = 0,

which means that the sequence ( fn ∗α gn)n∈N converges uniformly to f ∗α g . On the
other hand, for every n ∈N , we have

Hα ( fn)Hα (gn)−Hα( f )Hα (g)
= (Hα( fn)−Hα( f ))Hα (gn)+ (Hα(gn)−Hα(g))Hα( f ),
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and therefore by the same way using the Cauchy-Schwarz inequality, we deduce that
for every n ∈ N , we have

‖Hα( fn)Hα(gn)−Hα( f )Hα (g)‖1,μα

= ‖(Hα ( fn)−Hα( f ))Hα (gn)+ (Hα(gn)−Hα(g))Hα ( f )‖1,μα

� ‖(Hα ( fn)−Hα( f ))Hα (gn)‖1,μα +‖(Hα(gn)−Hα(g))Hα( f )‖1,μα

� ‖Hα(gn)‖2,μα‖Hα( fn)−Hα( f )‖2,μα +‖Hα( f )‖2,μα ‖Hα(gn)−Hα(g)‖2,μα

= ‖gn‖2,μα‖ fn − f‖2,μα +‖ f‖2,μα‖gn−g‖2,μα .

Hence,

lim
n→+∞

‖Hα( fn)Hα (gn)−Hα( f )Hα (g)‖1,μα

� lim
n→+∞

‖gn‖2,μα‖ fn− f‖2,μα +‖ f‖2,μα‖gn−g‖2,μα = 0,

which implies that the sequence (Hα ( fn)(Hα (gn))n∈N converges to Hα( f )Hα (g) in
L1

α(R+) . However, for every n ∈N , we have

Hα ( fn ∗α gn) = Hα( fn)Hα (gn),

then (Hα( fn ∗α gn))n∈N converges to Hα( f )Hα (g) in L1
α(R+) . Since the Hankel

transform is continuous from L1
α(R+) into C∗,0(R+) (Space of even continuous func-

tions f on R such that lim
x→+∞

| f (x)| = 0), we get that the sequence ( fn ∗α gn)n∈N con-

verges uniformly to Hα (Hα ( f )Hα (g)) , in particular f ∗α g = Hα (Hα( f )Hα (g)) .
Thus, f ∗α g ∈ L2

α(R+) is equivalent to the fact that Hα (Hα( f )Hα (g)) ∈ L2
α(R+)

which implies that Hα( f )Hα (g) ∈ L2
α(R+) . Conversely, if Hα( f )Hα (g) ∈ L2

α(R+)
then Hα( f )Hα (g) ∈ L1

α(R+)∩L2
α(R+) and consequently

f ∗α g = Hα (Hα( f )Hα (g)) ∈ L2
α(R+). �

2.2. The continuous Hankel Wavelet transform

In the following we denote by dνα the measure defined on R∗
+ ×R+ by

dνα(a,x) =
a2α+1x2α+1

2αΓ(α +1)
dadx.

We denote also by Lp
α(R∗

+ ×R+), p ∈ [1,+∞] its related Lebesgue spaces of measur-
able functions F on R∗

+×R+ such that

‖F‖p,να =
(∫ +∞

0
|F(a,x)|pdνα(a,x)

)1/p

< +∞ if p ∈ [1,+∞[,

‖F‖∞,να = esssup(a,x)∈R∗
+×R+ |F(a,x)| < +∞ if p = +∞.
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For every measurable subset M ⊂ R∗
+×R+ and for all λ ∈R∗

+ , we denote by

λM =
{(

λa,
x
λ

)
∈ R∗

+×R+ | (a,x) ∈ M
}

=
{
(a,x) ∈R∗

+ ×R+ |
( a

λ
,λx
)
∈ M

}
.

For every λ ∈ R∗
+ , the dilation operator Dλ is defined on M (R∗

+ ×R+) the set a
measurable function on R∗

+ ×R+ , by

Dλ (F)(a,x) = F
( a

λ
,λx
)
.

In the following we denote by 〈 | 〉μα the inner product defined on L2
α(R+) by

〈 f |g〉μα =
∫ +∞

0
f (x)g(x)dμα(x).

We denote also by 〈 | 〉να the inner product defined on L2
α(R∗

+ ×R+) , by

〈ϕ |ψ〉να =
∫ +∞

0

∫ +∞

0
ϕ(a,x)ψ(a,x)dνα(a,x).

Then we have the following properties.

PROPERTIES 2.3.

i) For every f ∈ L2
α(R+) and a > 0, we have

‖δa( f )‖2,μα = ‖ f‖2,μα .

2i) For every f ,g ∈ L2
α(R+) and a > 0, we have

〈δa( f )|g〉μα = 〈 f |δ 1
a
g〉μα .

3i) For every x � 0 and a > 0, we have

δaτα
x = τ x

a
δa.

4i) For every a > 0,
Hα δa = δ 1

a
Hα .

5i) For every measurable function F ∈ M (R∗
+ ×R+) , we have

Supp(Dλ (F)) = λSupp(F),

where the support of a given measurable function h on R∗
+×R+ is defined by

Supp(h) =
{
(a,x) ∈ R∗

+×R+ | h(a,x) = 0
}

.
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DEFINITION 2.4. A nonzero function g ∈ L2
α(R+) is said to be an admissible

Hankel wavelet if

0 < Cg =
∫ +∞

0
|Hα(g)(a)|2 da

a
< +∞.

DEFINITION 2.5. Let g be an admissible Hankel wavelet. The continuous Hankel
wavelet transform Wg is defined on L2

α(R+) by

∀(a,x) ∈ R∗
+×R+, Wg( f )(a,x) =

∫ +∞

0
f (t)gx,a(t)dμα(t), (2.3)

where gx,a = τα
x δag .

Relation (2.3) can also be written as

Wg( f )(a,x) = f ∗α δa(g)(x)
= 〈 f |gx,a〉μα .

PROPOSITION 2.6. Let g be an admissible Hankel wavelet. Then, the continu-
ous Hankel wavelet transform Wg is a bounded linear operator from L2

α(R+) onto
L∞

α(R∗
+ ×R+) and we have

‖Wg( f )‖∞,να � ‖ f‖2,μα‖g‖2,μα .

THEOREM 2.7. (Plancherel) Let g be an admissible Hankel wavelet. Then,

i) For every f ,h ∈ L2
α(R+) , we have

〈Wg( f )|Wg(h)〉να = Cg〈 f |h〉μα .

2i) For every f ∈ L2
α(R+) , we have

‖Wg( f )‖2,να =
√

Cg‖ f‖2,μα .

Moreover, the Hankel wavelet transform satisfies the following properties (see
[3]).

PROPOSITION 2.8. Let g be an admissible Hankel wavelet and f ∈ L2
α(R+) .

Then, we have

i) Wg( f ) ∈ Cb(R∗
+ ×R+) (the space of continuous functions bounded on R∗

+ ×
R+ ).

2i) For every λ > 0 , we have

∀(a,x) ∈ R∗
+×R+, Wg(δλ f )(a,x) = Dλ (Wg( f ))(a,x). (2.4)

3i) For x0 � 0 ,

τx0(Wg( f )(a, .))(x) = Wg(τx0( f ))(a,x), (a,x) ∈ R∗
+×R+.

4i) For every (a,x) ∈ R∗
+×R+ , we have

Wg( f )(a,x) =
1

aα+1 Hα

(
Hα ( f )Hα (g)

( .

a

))
(x).
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3. Amrein-Berthier uncertainty principles associated
to the Hankel wavelet transform

In [1] Amrein and Berthier showed that for every measurable subsets S,Σ ⊂ Rd

with finite Lebesgue measure, there exists a nonnegative constant C(S,Σ) which de-
pends on S and Σ , such that for every f ∈ L2(Rd) , we have

‖ f‖2
2,d � C(S,Σ)(‖χSc f‖2

2,d +‖χΣc f̂ ‖2
2,d),

where χ denotes the characteristic function and Sc,Σc denote respectively the com-
plements of S and Σ . Many generalizations of this theorem have been proved in the
last decades, namely by Ghobber and Jaming [7, 9] for the Hankel transform and by
Wilczok [26] for the classical short time Fourier transform and classical wavelet trans-
form.

In [3], Baccar proved the Amrein-Berthier for the continuous Hankel wavelet
transform, however the author imposed a constraint on the support of the admissible
Hankel wavelet g so that the theorem doesn’t cover the general case. The aim of this
section is to prove the main results of this work, more precisely we will prove the
Amrein-Berthier theorem for the continuous Hankel wavelet transform in the general
case, which implies in particular that the continuous Hankel wavelet transform can not
has its support in a set of finite measure unless f is zero. In the second part of this sec-
tion we will also prove an analogue of Logvinenko-Sereda uncertainty for the transform
Wg with which we will characterize annihilating set for the Wg .

The following proposition has been given by Wilczok [26].

PROPOSITION 3.1. Let (X ,τ,μ) be a σ -finite measurable space. Let M ⊂ X be
a measurable subspace with finite measure and let PM be the orthogonal projection on
L2(dμ) defined by PM(F) = χMF . Let H be a reproducing kernel Hilbert subspace
of L2(X) with reproducing kernel K . Assuming that

sup
(x,y)∈M×M

|K(x,y)| < +∞.

Then, we have

dim(H ∩ ImPM) � μ(M) sup
(x,y)∈M×M

|K(x,y)| < +∞.

Proof. The proof can be found in [26]. In the following for the sake of complete-
ness, we summarize Wilczok’s arguments. Let α = sup

(x,y)∈M×M
|K(x,y)| . Then,

∫∫
M×M

|K(x,y)|2dμ(x)⊗dμ(y) � α2μ(M)2 < +∞,

and therefore K ∈ L2(M×M) . Let m ∈N and (en)1�n�m be an orthonormal sequence
of H ∩ ImPM and for every 1 � n � m let vn be the the tensor product defined on
M×M by

vn(x,y) = en(x)en(y).
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Then for every 1 � p,q � m , we have∫∫
M×M

vp(x,y)vq(x,y)dμ(x)⊗dμ(y) =
(∫

M
ep(x)eq(x)dμ(x)

)(∫
M

ep(y)eq(y)dμ(y)
)

= δpq,

so that (vn)1�n�m is an orthonormal sequence in L2(M ×M) . Thus, using Bessel’s
inequality, we deduce that

‖K‖L2(M×M) �
m

∑
n=1

〈K|vn〉M×M

=
m

∑
n=1

∫∫
M×M

K(x,y)vn(x,y)dμ(x)⊗dμ(y)

=
∫

M

(
m

∑
n=1

∫
M

K(x,y)en(x)dμ(x)

)
en(y)dμ(y)

=
∫

M

m

∑
n=1

〈en|K(.,y)〉Men(y)dμ(y)

=
∫

M

m

∑
n=1

en(y)en(y)dμ(y)

= m.

This shows that the cardinal of each orthonormal family of H ∩ ImPM is less than
‖K‖L2(M×M) , in particular

dim(H ∩ ImPM) � ‖K‖L2(M×M) � αμ(M) < +∞. �

LEMMA 3.2. Let p∈ [1,+∞[ . Then for every F ∈Lp
α(R∗

+×R+) such that να(M)
< +∞ , we have

lim
λ→1

‖Dλ F −F‖p,να = 0.

Proof. The idea is basic, the result will be shown first for continuous functions
with compact support and then extended by the usual density argument. Actually, let
G ∈ Cc(R∗

+×R+) (space of continuous function on R∗
+ ×R+ with compact support).

Then for every λ > 0, we have Dλ G∈Cc(R∗
+×R+) and thus for all ε > 0 sufficiently

small there are a,b > 0 such that for every λ ∈]1− ε,1+ ε[, Supp(Dλ G) ⊂ [a,b]×
[a,b] and therefore by using the dominate convergence theorem, we get

lim
λ→1

‖Dλ G−G‖p
p,να = 0. �

LEMMA 3.3. Let M,M0 ⊂ R∗
+ ×R+ be two measurable subsets such that M0 ⊂

M, να(M0) > 0 and να(M) < +∞ . Then, the function ϕ defined on R∗
+ by

ϕ(λ ) = να(M∪λM0),

is a non constant continuous function on R∗
+ .



766 S. HKIMI AND S. OMRI

Proof. For every λ ∈ R∗
+ , we have

ϕ(λ ) = να(M∪λM0)
= να(M)+ να(λM0)−να(M∩λM0)

= να(M)+
∫∫
R∗

+×R+
χλM0

(a,x)dνα (a,x)

−
∫∫
R∗

+×R+
χM(a,x)χλM0

(a,x)dνα(a,x)

= να(M)+
∫∫
R∗

+×R+
χMc(a,x)χM0(

a
λ

,λx)dνα(a,x).

Consequently, for every λ ,λ0 ∈ R∗
+ , we have

|ϕ(λ )−ϕ(λ0)| =
∣∣∣∣∫∫

R∗
+×R+

χMc(a,x)
(

χM0

( a
λ

,λx
)
− χM0

( a
λ0

,λ0x
))

dνα(a,x)
∣∣∣∣

�
∫∫
R∗

+×R+
|χMc(a,x)|

∣∣∣χM0

( a
λ

,λx
)
− χM0

( a
λ0

,λ0x
)∣∣∣dνα(a,x)

�
∫∫
R∗

+×R+

∣∣∣χM0

( a
λ

,λx
)
− χM0

( a
λ0

,λ0x
)∣∣∣dνα(a,x)

=
∫∫
R∗

+×R+
|χM0

(
λ0

λ
a,

λ
λ0

x

)
− χM0(a,x)|dνα(a,x).

So by Lemma 3.2, we deduce that

lim
λ→λ0

|ϕ(λ )−ϕ(λ0)| � lim
λ
λ0

→1

∫∫
R∗

+×R+

∣∣∣χM0

(
λ0

λ
a,

λ
λ0

x

)
− χM0(a,x)

∣∣∣dνα(a,x)

= lim
h→1

∫∫
R∗

+×R+

∣∣∣χM0

(a
h
,hx
)
− χM0(a,x)

∣∣∣dνα(a,x)

= lim
h→1

‖Dh(χM0)− χM0‖1,να

= 0.

Hence, ϕ is continuous on R∗
+ . Now we shall prove that ϕ is non constant, so one can

see that

ϕ(1) = να(M∪M0) = να (M).

For every p ∈ N∗ , let Bp =
{
(a,x) ∈ R∗

+×R+ | 1
p � x � p

}
and Cp = M∩Bc

p . Then

the sequence (Cp)p∈N∗ is decreasing in the sense of inclusion and we have

να(C1) � να (M) < +∞.
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Consequently, by the right continuous of the measure να , we have

lim
p→+∞

να(Cp) = να

(
+∞⋂
p=1

Cp

)

= να

(
+∞⋂
p=1

M∩Bc
p

)
= να

(
M
⋂(+∞⋂

p=1

Bc
p

))
= να(M∩R∗

+×{0}) = 0.

Let 0 < δ <
να(M0)

2
. Then there exists p0 ∈ N∗ such that να(Cp0) < δ . So, we have

να(M∩Bp0) = να (M)−να(Cp0) > να(M)− δ . (3.1)

On the other hand, for every λ ∈ R∗
+ , and for all subsets F,G ⊂ R∗

+×R+ , we have

λF ∩G = λ
(
F ∩ 1

λ
G
)
.

Let λ ∈R∗
+ such that λ > p2

0 . Since να(λM) = να (M) , thus, we have

να(λM∩Bp0) = να

(
λ
(
M∩ 1

λ
Bp0

))
= να

(
M∩ 1

λ
Bp0

)
.

Since M0 ⊂ M , thus for every λ > p2
0 , we have 1

λ Bp0 ⊂ Bc
p0

and

να(λM0 ∩Bp0) = να

(
M0 ∩ 1

λ
Bp0

)
� να

(
M∩ 1

λ
Bp0

)
� να

(
M∩Bc

p0

)
= να (Cp0)

< δ ,

and then

να(λM0∩Bc
p0

) = να(λM0)−να(λM0 ∩Bp0)

� να(λM0)− δ
= να(M0)− δ . (3.2)

Using now Relations (3.1) and (3.2), we get

ϕ(λ ) = να (M∪λM0)

= να
(
(M∪λM0)∩Bp0

)
+ να

(
(M∪λM0)∩Bc

p0

)
� να

(
M∩Bp0

)
+ να

(
λM0∩Bc

p0

)
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� να (M)+ να(λM0)−2δ
= να (M)+ να(M0)−2δ
> να (M) = ϕ(1),

and then ϕ is not constant. �

COROLLARY 3.4. Let M,M0 ⊂ R∗
+ ×R+ be two measurable subsets such that

M0 ⊂ M, να (M0) > 0 and να(M) < +∞ . Then, for every ε ∈]0,να(M0)[ there exists
λε ∈ R∗

+ such that
να (M) < να(M∪λεM0) < να (M)+ ε.

PROPOSITION 3.5. Let g be an admissible Hankel wavelet. The space Wg(L2
α(R+))

is a reproducing kernel Hilbert space with kernel

Kg
(
(x′,a′);(x,a)

)
=

1
Cg

gx′,a′ ∗α δa(g)(x) =
1
Cg

Wg(gx′,a′)(x,a).

Proof. The proof is identical to that given by [11]. In fact, it is obvious that

‖Kg ((., .);(x,a))‖2
2,να =

1
C2

g
‖Wg(gx,a)‖2

2,να =
1
Cg

‖gx,a‖2
2,μα � 1

Cg
‖g‖2

2,μα < +∞. �

The Proposition 3.5 allows us to define for every admissible Hankel wavelet g ,
the orthogonal projection operator Pg from L2

α(R∗
+ ×R+) over Wg

(
L2

α(R+)
)
. We

also define for every given measurable subset M ⊂R∗
+×R+ , the orthogonal projection

PM on L2(R∗
+ ×R+) by

PM(F) = χMF.

PROPOSITION 3.6. Let g be an admissible Hankel wavelet and M ⊂ R∗
+ ×R+

be a measurable subset such that να(M) < +∞ . Then, PMPg is a Hilbert-Schmidt
operator, with

‖PMPg‖HS �
√

να(M)‖g‖2,μα ,

where ‖ ‖HS denotes the Hilbert-Schmidt norm. In particular, PMPg is compact.

Proof. For every F ∈ L2
α(R∗

+ ×R+) , we have

PMPg(F)(a,x) = χM(a,x)Pg(F)(a,x)

=
∫∫
R∗

+×R+
χM(a,x)F(b,y)Kg((b,y),(a,x))dνα(a,x).

Then, PMPg is an integral operator with kernel Ng,M defined on (R∗
+×R+)× (R∗

+×
R+) by

Ng,M((b,y),(a,x)) = χM(a,x)Kg((b,y),(a,x)).
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Furthermore,∫∫
R∗

+×R+

∫∫
R∗

+×R+
|Ng,M((b,y),(a,x))|2dνα(b,y)dνα(a,x)

=
∫∫
R∗

+×R+
χM(a,x)

(∫∫
R∗

+×R+
|Kg((b,y),(a,x))|2dνα(b,y)

)
dνα(a,x)

=
∫∫
R∗

+×R+
χM(a,x)

(∫∫
R∗

+×R+

1
C2

g
|Wg(ga,x)(b,y)|2dνα(b,y)

)
dνα(a,x)

=
∫∫
R∗

+×R+
χM(a,x)‖ga,x‖2

2,μα dνα(a,x)

�
∫∫
R∗

+×R+
χM(a,x)‖g‖2

2,μα dνα(a,x)

= να(M)‖g‖2
2,μα . �

PROPOSITION 3.7. Let g ∈ L2
α(R+) be an admissible Hankel wavelet and M ⊂

R∗
+×R+ be a measurable subset such that να(M) < +∞ . Then,

ImPg ∩ ImPM = {0} .

Proof. Suppose that ImPg ∩ ImPM = {0} and let F0 ∈ ImPg ∩ ImPM such
that F0 = 0. Let M0 = Supp(F0) . Since F0 = 0 and F0 ∈ PM , then

0 < να(M0) � να(M) < +∞.

Let (Mk)k∈N be the sequence of subsets of R∗
+ ×R+ defined by M0 = M0 and

∀k � 1, Mk = Mk−1∪
(

k

∏
j=1

λ jM0

)
,

where (λ j)1� j�k ⊂R∗
+ are chosen according to Corollary 3.4, such that for every k � 1

να(Mk−1) < να (Mk) = να

(
Mk−1 ∪

(
k

∏
j=1

λ jM0

))
< να(Mk−1)+

1
2k−1 . (3.3)

Therefore, we obtain

∀k ∈ N∗, να (M0) < να(Mk) < να(M0)+
k

∑
j=1

1
2 j . (3.4)

Note that by Relation (3.3), we have in particular

∀k ∈ N, Mk �Mk+1. (3.5)
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Let M̃ =
∞⋃

k=0

Mk . Then by Relations (3.4) and (3.5), we deduce that

να(M̃) = να (
∞⋃

k=0

Mk)

= lim
k→∞

να(Mk)

� να (M0)+
∞

∑
i=0

1
2i

= να (M0)+2

< ∞.

Let (Fk)k∈N∗ be the sequence of functions defined on R∗
+×R+ by

∀k � 1, Fk = Dλk
(Fk−1).

Since F0 ∈ Wg(L2
α (R+)) . Then by Relation (2.4), we deduce that

∀k ∈N, Fk ∈ Wg(L2
α (R+)). (3.6)

However, using Relation (3.5), we have

∀k ∈N, Supp(Fk) ⊂ Mk ⊂ M̃. (3.7)

Thus, by Relations (3.6) and (3.7), we deduce that

∀k ∈ N, Fk ∈ (ImPM̃ ∩ ImPg).

Now, we suppose that there exist k � 2 and γ0, . . . ,γk−1 ∈R+ such that

Fk =
k−1

∑
j=1

γ jFj.

Then, we get

Supp(Fk) = Supp(
k−1

∑
j=0

γ jFj) ⊂
k−1⋃
j=0

γ jSupp(Fj) = Mk−1.

which leads to
να(Mk) � να(Mk−1),

and contradicts then Relation (3.5). Thus, the sequence (Fk)k∈N∗ is linearly indepen-
dent which contradicts the fact that

dim(ImPM̃ ∩ ImPg) < +∞. �
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DEFINITION 3.8. (Annihilating set) Let g ∈ L2
α(R+) be an admissible Hankel

wavelet and M ⊂ R∗
+ ×R+ be a measurable subset. We say that M is a strong an-

nihilating set for the continuous Hankel wavelet transform Wg , if there exists a non
negative constant Cg,M such that for every f ∈ L2

α (R+) , we have

‖χMcWg( f )‖2,να � Cg,M‖ f‖2,μα .

THEOREM 3.9. (Amrein-Berthier) Let M ⊂ R∗
+ ×R+ be a measurable subset.

If να(M) < +∞ , then for every admissible Hankel wavelet g ∈ L2
α(R+), M is a strong

annihilating set for the continuous Hankel wavelet transform Wg .

Proof. According to [14, Theorem A, p 88] and [14, Theorem A, p 90], and using
Propositions 3.6 and 3.7, we deduce that there exists C > 0 such that for every f ∈
L2

α(R+) , we have

‖χMcWg( f )‖2,να � C
√

Cg‖ f‖2,μα . �

4. Logvinenko-Sereda uncertainy principle associated to the
Hankel Wavelet transfom

In [17] Logvinenko and Sereda showed that if Σ is a closed interval in R then
for every measurable set S ⊂ R, (S,Σ) is a strong annihilating pair if and only if Sc is
relatively dense. This result has been generalized by Ghobber and Jaming [8] in the
Hankel setting. In this part we are interesting in proving an analogue of this theorem
for the continuous Hankel wavelet transform. More precisely we will prove that if a
measurable subset M ⊂ R∗

+ ×R+ is a strong annihilating set, then Mc satisfy some
topological density property.

DEFINITION 4.1. Let M ⊂ R∗
+ ×R+ be a measurable subset and let N,γ > 0.

The subset M is said to be (N,γ)-dense if for every λ ∈ R∗
+ , we have

να(M∩λKN) � γ,

where KN = [0,N]2 .

THEOREM 4.2. Let g ∈ L2
α(R+) be an admissible Hankel wavelet, and let M be

a measurable subset of R∗
+ ×R+ . If M is an annihilating set for Wg , then there exist

N,γ > 0 such that Mc is (N,γ)-dense.

Proof. Let f ∈ L2
α(R+) such that ‖ f‖2,μα = 1. For every σ � 0 we denote by

Tg(σ) = sup
να (E)�σ

{‖χEWg( f )‖2
2,να }.
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Then, for every λ > 0 and for every measurable subset E ⊂ R∗
+×R+ , we have∫∫

E
|Dλ (Wg( f ))(a,x)|2dνα(a,x) =

∫∫
E

∣∣∣Wg( f )
( a

λ
,λx
)∣∣∣2dνα(a,x)

=
∫∫

1
λ E

|Wg( f )(a,x)|2dνα(a,x)

� Tg

(
να

( 1
λ

E
))

.

Since

να (λE) =
∫∫
R∗

+×R+
χ(λE)(a,x)dνα(a,x) =

∫∫
R∗

+×R+
χE

( a
λ

,λx
)
dνα(a,x) = να(E),

then we get ∫∫
E
|Dλ (Wg( f ))(a,x)|2dνα(a,x) � Tg(να (E)). (4.1)

On the other hand, for every n ∈ N∗ , let Kn = [0,n]2 , then we have

lim
n→+∞

∫∫
Kc

n

|Wg( f )(a,x)|2dνα(a,x) = 0,

so that there exists N ∈ N∗ such that∫∫
Kc

N

|Wg( f )(a,x)|2dνα(a,x) �
C2

g

2C2
g,M

.

Consequently, for every λ > 0, we get∫∫
λKc

N

|Dλ Wg( f )(a,x)|2dνα(a,x) =
∫∫

λKc
N

∣∣∣Wg( f )
( a

λ
,λx
)∣∣∣2dνα(a,x)

=
∫∫

Kc
N

|Wg( f )(a,x)|2dνα(a,x),

and therefore by using Definition 3.8, we have

∫∫
λKc

N

|Dλ Wg( f )(a,x)|2dνα(a,x) �
C2

g

2C2
g,M

. (4.2)

Hence, by using Relations (4.1) and (4.2), we deduce that

C2
g =

∫∫
R∗

+×R+
|Dλ Wg( f )(a,x)|2dνα(a,x)

=
∫∫
R∗

+×R+
|Wg(δλ f )(a,x)|2dνα (a,x)

� C2
g,M

∫∫
Mc

|Wg(δλ f )(a,x)|2dνα(a,x)
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= C2
g,M

∫∫
Mc∩λKN

|Dλ Wg( f )(a,x)|2dνα(a,x)

+C2
g,M

∫∫
Mc∩(λKN)c

|Dλ Wg( f )(a,x)|2dνα(a,x)

�
C2

g

2
+C2

g,MTg(να (Mc ∩λKN)),

and then

Tg(να (Mc ∩λKN)) �
C2

g

2C2
g,M

.

However, lim
σ→0

Tg(σ) = 0, then there exists γ > 0 such that for every λ > 0

να(Mc ∩λKN) � γ,

thus Mc is (N,γ)-dense. �
In the following let

∀r ∈ R+, ψα(r) =
1

(1+ r2)α+ 3
2

,

and let Ψα the function defined on R2
+ by

Ψα(a,x) = ψα(a)ψα(x).

For every λ > 0 we denote by

dηα ,λ = Dλ Ψαdνα .

In the following we give an equivalent characterization of the (N− γ) density property.

THEOREM 4.3. Let M be a measurable subset of R∗
+ ×R+ , then the following

assertions are equivalents

i) There exist N,γ > 0 such that M is (N,γ)-dense.

ii) inf{ηα ,λ (M) | λ > 0} > 0 .

Proof. Suppose that there exist N,γ > 0 such that M is (N,γ)-dense, then

ηα ,λ (M) � ηα ,λ (M∩λKN)

=
∫∫

M∩λKN

Dλ Ψα(a,x)dνα(a,x)

=
∫∫

λKN

χM(a,x)Dλ Ψα(a,x)dνα (a,x)

=
∫ λN

0

∫ N
λ

0
χM(a,x)Dλ Ψα(a,x)dνα(a,x)
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=
∫ λN

0

∫ N
λ

0
χM(a,x)ψα

( a
λ

)
ψα(λx)dνα (a,x)

� ψα(N)2
∫ λN

0

∫ N
λ

0
χM(a,x)dνα(a,x)

= ψα(N)2
∫∫

λKN

χM(a,x)dνα(a,x)

= ψα(N)2να (M∩λKn)

� ψα(N)2γ.

In particular inf{ηα ,λ (M) | λ > 0} > 0. Suppose now that

inf{ηα ,λ (M) | λ > 0} = σ > 0,

and let N �
√

23α+5

Γ(α +1)σ
. For every p,q ∈ N∗ , let

Ip,q =
{
(a,x) ∈ [0,+∞[×[0,+∞[ | N2p � a < N2p+1, N2q � x < N2q+1} ,

then for every λ > 0, we have

R2
+ = λKN

⋃( +∞⋃
p,q=1

λ Ip,q

)
.

Therefore, we have

σ � ηα ,λ (M)

=
∫ +∞

0

∫ +∞

0
χM(a,x)Dλ (Ψα)(a,x)dνα (a,x)

=
∫∫

λKN

χM(a,x)Dλ (Ψα)(a,x)dνα (a,x)

+
+∞

∑
p,q=1

∫∫
λ Ip,q

χM(a,x)Dλ (Ψα)(a,x)dνα(a,x)

=
∫∫

λKN

χM(a,x)ψα

( a
λ

)
ψα(λx)dνα (a,x)

+
+∞

∑
p,q=1

∫∫
λ Ip,q

χM(a,x)ψα

( a
λ

)
ψα(λx)dνα(a,x)

�
∫∫

λKN

χM(a,x)dνα (a,x)

+
+∞

∑
p,q=1

∫∫
λ Ip,q

χM(a,x)ψα

( a
λ

)
ψα(λx)dνα(a,x)

� να(M∩λKN)+
+∞

∑
p,q=1

ψα(N2p)ψα(N2q)
∫∫

λ Ip,q

χM(a,x)dνα(a,x)
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= να(M∩λKN)+
∞

∑
p,q=1

1

(1+N222p)α+ 3
2

1

(1+N222q)α+ 3
2

να(M∩λ Ip,q)

� να(M∩λKN)+
1

N4α+6

∞

∑
p,q=1

1

(22p)α+ 3
2

1

(22q)α+ 3
2

να(Ip,q)

= να(M∩λKN)+
(22α+2−1)2

N2Γ(α +1)(α +1)22α+2

∞

∑
p,q=1

1
2p

1
2q

� να(M∩λKN)+
23α+4

N2Γ(α +1)

� να(M∩KN)+
σ
2

.

Hence,

να (M∩λKN) � σ
2

,

in particular M is
(σ

2
,N
)

-dense. �
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