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Abstract. In this note we present corrected versions of some results in [1], due to an error in
Lemma 3.6 of [1]. We also provide changes in the proof of Proposition 4.6.

This paper provides a corrigendum to some results caused by an error in Lemma
3.6 of [1] which can fairly be repaired. This error affected Theorems 3.1 and 4.1,
Corollary 4.3 and Theorem 5.1. We also correct the proof of Proposition 4.6 in the case
2: r = 0. Below we go through the listed results and prove their corrected versions.

For Lemma 3.6, the correction is straightforward: we replace the false formula
ind(G′) = ind(G) by the right one ind(G) � ind(G′) and ind(R+G) = ind(G) . Here-
with a corrected version of Lemma 3.6:

LEMMA 3.6. We have ind(R+G) = ind(G) and ind(G) � ind(G′) .

(1) In Theorem 3.1, a corrected statement of it is as follows.

THEOREM 3.1. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r+2s. Then the following are equivalent:

(i) G is supercyclic,

(ii) uη is a supercyclic vector for G,

(iii) g2
η(uη)+Ruη is dense in Rn and ind(RG) = r .

The proof of Theorem 3.1 doesn’t use Lemmas 3.3, 3.7 and 3.9. However, we
need the following lemmas.

We denote by
• R+G := {λA : A ∈ G, λ ∈ R+}
• g+

η = exp−1(R+G)∩Kη(R) .

LEMMA 0.1. We have g+
η = gη +RIn .
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Proof. The proof is similar to that of Lemma 3.2. �

The proof of Lemma 3.4 should be changed and may be proved simply as follows:

Proof of Lemma 3.4. This follows from the fact that

g′η ⊂ 1
2
(g′η)2 and (g′η)2 ⊂ g′η . �

LEMMA 0.2. ([3], Lemma 4.2) Let G be an abelian sub-semigroup of Kη (R)
and g∗η = exp−1(G∗)∩Kη(R) . Then gη = g∗η .

Proof of Theorem 3.1. The proof follows from Theorem 2.3, Lemmas 3.4 and
0.1. �

(2) A corrected version of Theorem 4.1 is:

THEOREM 4.1. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r + 2s. Assume that G is generated by p matrices
A1, . . . ,Ap ( p � 1 ) and let B1, . . . ,Bp ∈ gη such that A2

1 = eB1 , . . . ,A2
p = eBp . Then

G is supercyclic if and only if

p

∑
k=1

NBkuη +
s

∑
l=1

2πZ f (l)
η +Ruη

is dense in Rn and ind(RG) = r .

In Lemma 4.2, the reference “([3], Proposition 4.6)” should read “([3], Proposition
5.2)”.

Proof of Theorem 4.1. The proof follows from Theorem 3.1, Lemmas 0.2 and
4.2. �

(3) Now we give a correct version of Corollary 4.3.

COROLLARY 4.3. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r+2s.

(1) If G is a group and R+ -supercyclic, then it is hypercyclic if and only if it has a
somewhere dense orbit.

(2) If G is R+ -supercyclic and generated by p matrices A1, . . . ,Ap ( p � 1 ) such
that A2

1 = eB1 , . . . ,A2
p = eBp , where B1, . . . ,Bp ∈ gη , then it is hypercyclic if and

only if
p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η is dense in Rn .

Before the proof, we notice the following changes.
Lemma 3.8 should be changed as follows.
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LEMMA 3.8. ([2], Proposition 4.3) Let G be an abelian subgroup of K ∗
η (R) ,

where η has length r+2s. Then the following properties are equivalent:

(i) G(uη) = Rn ,

(ii) G(uη) has non-empty interior and ind(G) = r .

Theorem 2.2, 1., (iii) should read “somewhere dense in Rn ” instead of “dense in
Rn ” Similarly in Lemma 3.9, (iii).

Proof of Corollary 4.3. If G is R+ -supercyclic, then by Theorem 3.1 and Lemma
3.6, ind(G) = r . So Assertion (1) follows from Lemma 3.8 and Assertion (2) follows
from Theorems 2.2 and 2.3. �

(4) Theorem 5.1 and its proof need to be modified as follows.

THEOREM 5.1. Let G be be an abelian sub-semigroup of Mn(R) and P∈GL(n,R)
such that P−1GP ⊂ Kη (R) , where η has length r + 2s, n ∈ N , n � 1 . Then the fol-
lowing are equivalent:

(i) G is R+ -supercyclic,

(ii) G is supercyclic and ind(G) = r .

Proof. We may assume that G is an abelian sub-semigroup of Kη(R) , for some
partition η of n of length r + 2s , by taking P−1GP . (i) ⇒ (ii) follows from Theo-
rem 2.3 and Lemma 3.6. Let us prove (ii) ⇒ (i) . Suppose that G is supercyclic and
ind(G) = r . So by Theorem 3.1, g2

η(uη) + Ruη is dense in Rn and by Lemma 3.6,
ind(R+G) = r . As g2

η(uη) ⊂ gη(uη) and by Lemma 0.1, g+
η = gη + RIn , it follows

that g+
η (uη) is dense in Rn . Hence by Theorem 2.3, R+G(uη) is dense in Rn and so

G is R+ -supercyclic. The proof is complete. �
According to these corrections,
− The sentence in the abstract: “Furthemore, we show that supercyclicity and

R+ - supercyclicity are equivalent” should be “Furthemore, we investigate the relation
between supercyclicity and R+ - supercyclicity”.

− In page 856, at the end of the introduction:
“Third, we prove that supercyclicity and positive (or R+ )-supercyclicity are equiv-

alent” should be “Third, we investigate the relation between supercyclicity and positive
(or R+ )-supercyclicity)”

“In Section 5, we prove the equivalence between supercyclicity and positive super-
cyclicity” should be “In Section 5, we investigate the relation between supercyclicity
and positive supercyclicity.”

− In page 864, at the first paragraph, “Actually we prove the same conclusion
holds for any abelian semigroup of Mn(R)” should be “Actually for any abelian semi-
group of Mn(R) , we have the following.”

(5) Now we give a correct version of the proof of Proposition 4.6 in the case 2:
r = 0. There is an elementary mistake in the computation of (n− 1)− s + 1 in the



780 S. HERZI AND H. MARZOUGUI

previous proof; it is in fact (n−1)− (s−1)+1 = n− s+1 matrices which is not the
required value n− s . Thus the proof given in the paper must be changed. For this, we
distinguish two cases:

− If mj � 2, for some 1 � j � s , say for example m1 � 2, then η0 = (1,m1 −
1,m2, . . . ,ms) is a partition of n− 1 of length 1 + 2s . By Lemma 4.7, there exist
(n− 1)− s + 1 = n− s matrices A′

1, . . . ,A
′
n−s in K ∗

η0
(R) that generate a hypercyclic

abelian semigroup G′ . Set Aj =
[
1 O
O A′

j

]
, j = 1, . . . ,n− s and let G be the semigroup

generated by A1, . . . ,An−s . It is clear that G is an abelian semigroup of K ∗
η ′(R) , where

η ′ = (1,1,m1−1,m2, . . . ,ms) is a partition of n of length 2+2s .
Let x′ ∈ Rn−1 so that G′x′ is dense in Rn−1 and set x = [1,x′]T . By the same way

as in Case 1, x is a supercyclic vector for G .
− Assume now that mj = 1, for all 1 � j � s . In this case, η = (1,1, . . . ,1) is a

partition of n = 2s of length 2s , and so f (l)
η = e2l , l = 1, . . . ,s and uη = e1 +e3 + . . .+

en−1 . We shall construct a supercyclic abelian semigroup G of K ∗
η (R) by applying

Theorem 4.1.

CLAIM. There exist n− s vectors u1, . . . ,un−s of Rn such that

n−s

∑
k=1

Nuk +
s

∑
l=1

2πZe2l +R(e1 + e3 + . . .+ en−1)

is dense in Rn .

Proof. Let α1, . . . ,αn be negative real numbers such that 1,α1, . . . ,αn are linearly
independent over Q . Define the matrix S by

Sek =

{
2πe2k, if k = 1, . . . ,s,

eik , if k = s+1, . . . ,n.

where eis+1 = e1,eis+2 = e3, . . . ,ein = en−1 . We see that S ∈ GL(n;R) and S(es+1 +
es+2 + . . .+ en) = e1 + e3 + . . .en−1 . Set u = [α1, . . . ,αn]T and define

uk :=

{
Ses+k, if k = 1, . . . ,n− s−1,

Su, if k = n− s.

We let

H :=
n−s−1

∑
k=1

Nes+k +Nu+
s

∑
l=1

Zel +R(es+1 + es+2 + . . .+ en).

We then have that

S(H) =
n−s−1

∑
k=1

Nuk +Nun−s +
s

∑
l=1

2πZe2l +R(e1 + e3 + . . .+ en−1)

=
n−s

∑
k=1

Nuk +
s

∑
l=1

2πZe2l +R(e1 + e3 + . . .+ en−1)
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Observe that Nn +Nu ⊂ H . By Kronecker’s theorem (cf. [3]), Nn +Nu is dense in Rn

and thus so is S(H) . This proves the claim. �

Now set uk = [y(k)
1,1,−y′(k)1,1 , . . . ,y(k)

s,1 ,−y′(k)s,1 ]T , k = 1, . . . ,n−s and let B1, . . . ,Bn−s ∈
Kη(R) be defined by Bk = diag(C(k)

1,1, . . . ,C
(k)
s,1 ) , with

C(k)
l,1 =

[
y(k)
l,1 y′(k)l,1

−y′(k)l,1 y(k)
l,1

]
, 1 � k � n− s, 1 � l � s.

Let G be the sub-semigroup of K ∗
η (R) generated by A1, . . . ,An−s , where

Ak = diag

(
e

1
2C(k)

1,1 , . . . ,e
1
2C(k)

s,1

)
, k = 1, . . . ,n− s.

Then G is abelian and we have A2
j = eBj , j = 1, . . . ,n− s . Moreover Bkuη = uk .

Therefore

S(H) =
n−s

∑
k=1

Nuk +
s

∑
l=1

2πZ f (l)
η +Ruη =

n−s

∑
k=1

NBkuη +
s

∑
l=1

2πZ f (l)
η +Ruη

is dense in Rn . As ind(RG) = 0, then from Theorem 4.1, G is supercyclic.

There are three further minor typographical corrections:
− The reference [15] in Lemma 4.7 should be replaced by [3].
− In the statement of Proposition 4.6, add after “1+ r+2s”, “2+2s , 2s”.
− In the proof of Theorem 4.9, replace “length 2+2(s−1)” by “length 2s”.
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