CORRIGENDUM TO: ON SUPERCYCLICITY FOR ABELIAN SEMIGROUPS OF MATRICES ON \mathbb{R}^n OPER. MATRICES 12 (2018), NO. 3, 855–865

SALAH HERZI AND HABIB MARZOUGUI

(Communicated by M. Omladič)

Abstract. In this note we present corrected versions of some results in [1], due to an error in Lemma 3.6 of [1]. We also provide changes in the proof of Proposition 4.6.

This paper provides a corrigendum to some results caused by an error in Lemma 3.6 of [1] which can fairly be repaired. This error affected Theorems 3.1 and 4.1, Corollary 4.3 and Theorem 5.1. We also correct the proof of Proposition 4.6 in the case 2: r = 0. Below we go through the listed results and prove their corrected versions.

For Lemma 3.6, the correction is straightforward: we replace the false formula $\operatorname{ind}(G') = \operatorname{ind}(G)$ by the right one $\operatorname{ind}(G) \leq \operatorname{ind}(G')$ and $\operatorname{ind}(\mathbb{R}_+G) = \operatorname{ind}(G)$. Herewith a corrected version of Lemma 3.6:

LEMMA 3.6. We have $\operatorname{ind}(\mathbb{R}_+G) = \operatorname{ind}(G)$ and $\operatorname{ind}(G) \leq \operatorname{ind}(G')$.

(1) In Theorem 3.1, a corrected statement of it is as follows.

THEOREM 3.1. Let $n \in \mathbb{N}$, $n \ge 1$ and let G be an abelian sub-semigroup of $\mathscr{K}_{\eta}(\mathbb{R})$, where η has length r+2s. Then the following are equivalent:

- (i) G is supercyclic,
- (ii) u_n is a supercyclic vector for G,
- (iii) $g_n^2(u_n) + \mathbb{R}u_n$ is dense in \mathbb{R}^n and $ind(\mathbb{R}G) = r$.

The proof of Theorem 3.1 doesn't use Lemmas 3.3, 3.7 and 3.9. However, we need the following lemmas.

We denote by

- $\mathbb{R}_+G := \{\lambda A : A \in G, \ \lambda \in \mathbb{R}_+\}$ $g_\eta^+ = \exp^{-1}(\mathbb{R}_+G) \cap \mathscr{K}_\eta(\mathbb{R}).$

LEMMA 0.1. We have $g_{\eta}^+ = g_{\eta} + \mathbb{R}I_n$.

Mathematics subject classification (2020): 47A16, 47A15.

© EEN, Zagreb Paper OaM-15-53

Keywords and phrases: Supercyclic, hypercyclic, matrices, dense orbit, somewhere dense, positive supercyclic, semigroup, abelian semigroup, supercyclic vector.

Proof. The proof is similar to that of Lemma 3.2. \Box

The proof of Lemma 3.4 should be changed and may be proved simply as follows: *Proof of Lemma 3.4.* This follows from the fact that

$$\mathbf{g}_{\eta}^{\prime}\subset rac{1}{2}(\mathbf{g}_{\eta}^{\prime})^2 ext{ and } (\mathbf{g}_{\eta}^{\prime})^2\subset \mathbf{g}_{\eta}^{\prime}. \quad \Box$$

LEMMA 0.2. ([3], Lemma 4.2) Let G be an abelian sub-semigroup of $\mathscr{K}_{\eta}(\mathbb{R})$ and $g_{\eta}^* = \exp^{-1}(G^*) \cap \mathscr{K}_{\eta}(\mathbb{R})$. Then $g_{\eta} = g_{\eta}^*$.

Proof of Theorem 3.1. The proof follows from Theorem 2.3, Lemmas 3.4 and 0.1. \Box

(2) A corrected version of Theorem 4.1 is:

THEOREM 4.1. Let $n \in \mathbb{N}$, $n \ge 1$ and let G be an abelian sub-semigroup of $\mathscr{K}_{\eta}(\mathbb{R})$, where η has length r + 2s. Assume that G is generated by p matrices A_1, \ldots, A_p ($p \ge 1$) and let $B_1, \ldots, B_p \in g_{\eta}$ such that $A_1^2 = e^{B_1}, \ldots, A_p^2 = e^{B_p}$. Then G is supercyclic if and only if

$$\sum_{k=1}^p \mathbb{N}B_k u_\eta + \sum_{l=1}^s 2\pi \mathbb{Z}f_\eta^{(l)} + \mathbb{R}u_\eta$$

is dense in \mathbb{R}^n and $\operatorname{ind}(\mathbb{R}G) = r$.

In Lemma 4.2, the reference "([3], Proposition 4.6)" should read "([3], Proposition 5.2)".

Proof of Theorem 4.1. The proof follows from Theorem 3.1, Lemmas 0.2 and 4.2. \Box

(3) Now we give a correct version of Corollary 4.3.

COROLLARY 4.3. Let $n \in \mathbb{N}$, $n \ge 1$ and let G be an abelian sub-semigroup of $\mathscr{K}_{\eta}(\mathbb{R})$, where η has length r+2s.

- (1) If G is a group and \mathbb{R}_+ -supercyclic, then it is hypercyclic if and only if it has a somewhere dense orbit.
- (2) If G is \mathbb{R}_+ -supercyclic and generated by p matrices A_1, \ldots, A_p ($p \ge 1$) such that $A_1^2 = e^{B_1}, \ldots, A_p^2 = e^{B_p}$, where $B_1, \ldots, B_p \in g_\eta$, then it is hypercyclic if and only if $\sum_{k=1}^p \mathbb{N}B_k u_\eta + \sum_{l=1}^s 2\pi \mathbb{Z} f_\eta^{(l)}$ is dense in \mathbb{R}^n .

Before the proof, we notice the following changes. Lemma 3.8 should be changed as follows. LEMMA 3.8. ([2], Proposition 4.3) Let G be an abelian subgroup of $\mathscr{K}_{\eta}^{*}(\mathbb{R})$, where η has length r + 2s. Then the following properties are equivalent:

- (*i*) $\overline{G(u_{\eta})} = \mathbb{R}^n$,
- (ii) $\overline{G(u_n)}$ has non-empty interior and $\operatorname{ind}(G) = r$.

Theorem 2.2, 1., (iii) should read "somewhere dense in \mathbb{R}^n " instead of "dense in \mathbb{R}^n " Similarly in Lemma 3.9, (iii).

Proof of Corollary 4.3. If *G* is \mathbb{R}_+ -supercyclic, then by Theorem 3.1 and Lemma 3.6, $\operatorname{ind}(G) = r$. So Assertion (1) follows from Lemma 3.8 and Assertion (2) follows from Theorems 2.2 and 2.3. \Box

(4) Theorem 5.1 and its proof need to be modified as follows.

THEOREM 5.1. Let G be be an abelian sub-semigroup of $M_n(\mathbb{R})$ and $P \in GL(n,\mathbb{R})$ such that $P^{-1}GP \subset \mathscr{K}_{\eta}(\mathbb{R})$, where η has length r + 2s, $n \in \mathbb{N}$, $n \ge 1$. Then the following are equivalent:

- (i) G is \mathbb{R}_+ -supercyclic,
- (ii) G is supercyclic and ind(G) = r.

Proof. We may assume that *G* is an abelian sub-semigroup of $\mathscr{H}_{\eta}(\mathbb{R})$, for some partition η of *n* of length r + 2s, by taking $P^{-1}GP$. $(i) \Rightarrow (ii)$ follows from Theorem 2.3 and Lemma 3.6. Let us prove $(ii) \Rightarrow (i)$. Suppose that *G* is supercyclic and $\operatorname{ind}(G) = r$. So by Theorem 3.1, $g_{\eta}^{2}(u_{\eta}) + \mathbb{R}u_{\eta}$ is dense in \mathbb{R}^{n} and by Lemma 3.6, $\operatorname{ind}(\mathbb{R}_{+}G) = r$. As $g_{\eta}^{2}(u_{\eta}) \subset g_{\eta}(u_{\eta})$ and by Lemma 0.1, $g_{\eta}^{+} = g_{\eta} + \mathbb{R}I_{n}$, it follows that $g_{\eta}^{+}(u_{\eta})$ is dense in \mathbb{R}^{n} . Hence by Theorem 2.3, $\mathbb{R}_{+}G(u_{\eta})$ is dense in \mathbb{R}^{n} and so *G* is \mathbb{R}_{+} -supercyclic. The proof is complete. \Box

According to these corrections,

- The sentence in the abstract: "Furthemore, we show that supercyclicity and \mathbb{R}_+ - supercyclicity are equivalent" should be "Furthemore, we investigate the relation between supercyclicity and \mathbb{R}_+ - supercyclicity".

- In page 856, at the end of the introduction:

"Third, we prove that supercyclicity and positive (or \mathbb{R}_+)-supercyclicity are equivalent" should be "Third, we investigate the relation between supercyclicity and positive (or \mathbb{R}_+)-supercyclicity)"

"In Section 5, we prove the equivalence between supercyclicity and positive supercyclicity" should be "In Section 5, we investigate the relation between supercyclicity and positive supercyclicity."

– In page 864, at the first paragraph, "Actually we prove the same conclusion holds for any abelian semigroup of $M_n(\mathbb{R})$ " should be "Actually for any abelian semigroup of $M_n(\mathbb{R})$, we have the following."

(5) Now we give a correct version of the proof of Proposition 4.6 in the case 2: r = 0. There is an elementary mistake in the computation of (n-1) - s + 1 in the

previous proof; it is in fact (n-1) - (s-1) + 1 = n - s + 1 matrices which is not the required value n - s. Thus the proof given in the paper must be changed. For this, we distinguish two cases:

- If $m_j \ge 2$, for some $1 \le j \le s$, say for example $m_1 \ge 2$, then $\eta_0 = (1, m_1 - 1, m_2, \dots, m_s)$ is a partition of n-1 of length 1+2s. By Lemma 4.7, there exist (n-1)-s+1=n-s matrices A'_1, \dots, A'_{n-s} in $\mathscr{K}^*_{\eta_0}(\mathbb{R})$ that generate a hypercyclic abelian semigroup G'. Set $A_j = \begin{bmatrix} 1 & O \\ O & A'_j \end{bmatrix}$, $j = 1, \dots, n-s$ and let G be the semigroup generated by A_1, \dots, A_{n-s} . It is clear that G is an abelian semigroup of $\mathscr{K}^*_{\eta'}(\mathbb{R})$, where $\eta' = (1, 1, m_1 - 1, m_2, \dots, m_s)$ is a partition of n of length 2+2s.

Let $x' \in \mathbb{R}^{n-1}$ so that G'x' is dense in \mathbb{R}^{n-1} and set $x = [1, x']^T$. By the same way as in Case 1, x is a supercyclic vector for G.

- Assume now that $m_j = 1$, for all $1 \le j \le s$. In this case, $\eta = (1, 1, ..., 1)$ is a partition of n = 2s of length 2s, and so $f_{\eta}^{(l)} = e_{2l}$, l = 1, ..., s and $u_{\eta} = e_1 + e_3 + ... + e_{n-1}$. We shall construct a supercyclic abelian semigroup G of $\mathscr{K}_{\eta}^*(\mathbb{R})$ by applying Theorem 4.1.

CLAIM. There exist n - s vectors u_1, \ldots, u_{n-s} of \mathbb{R}^n such that

$$\sum_{k=1}^{n-s} \mathbb{N}u_k + \sum_{l=1}^{s} 2\pi \mathbb{Z}e_{2l} + \mathbb{R}(e_1 + e_3 + \ldots + e_{n-1})$$

is dense in \mathbb{R}^n .

Proof. Let $\alpha_1, \ldots, \alpha_n$ be negative real numbers such that $1, \alpha_1, \ldots, \alpha_n$ are linearly independent over \mathbb{Q} . Define the matrix *S* by

$$Se_{k} = \begin{cases} 2\pi e_{2k}, & \text{if } k = 1, \dots, s, \\ e_{i_{k}}, & \text{if } k = s+1, \dots, n \end{cases}$$

where $e_{i_{s+1}} = e_1, e_{i_{s+2}} = e_3, \dots, e_{i_n} = e_{n-1}$. We see that $S \in GL(n; \mathbb{R})$ and $S(e_{s+1} + e_{s+2} + \dots + e_n) = e_1 + e_3 + \dots + e_{n-1}$. Set $u = [\alpha_1, \dots, \alpha_n]^T$ and define

$$u_k := \begin{cases} Se_{s+k}, & \text{if } k = 1, \dots, n-s-1, \\ Su, & \text{if } k = n-s. \end{cases}$$

We let

$$H := \sum_{k=1}^{n-s-1} \mathbb{N}e_{s+k} + \mathbb{N}u + \sum_{l=1}^{s} \mathbb{Z}e_l + \mathbb{R}(e_{s+1} + e_{s+2} + \ldots + e_n).$$

We then have that

$$S(H) = \sum_{k=1}^{n-s-1} \mathbb{N}u_k + \mathbb{N}u_{n-s} + \sum_{l=1}^{s} 2\pi \mathbb{Z}e_{2l} + \mathbb{R}(e_1 + e_3 + \dots + e_{n-1})$$
$$= \sum_{k=1}^{n-s} \mathbb{N}u_k + \sum_{l=1}^{s} 2\pi \mathbb{Z}e_{2l} + \mathbb{R}(e_1 + e_3 + \dots + e_{n-1})$$

Observe that $\mathbb{N}^n + \mathbb{N}u \subset H$. By Kronecker's theorem (cf. [3]), $\mathbb{N}^n + \mathbb{N}u$ is dense in \mathbb{R}^n and thus so is S(H). This proves the claim. \Box

Now set $u_k = [y_{1,1}^{(k)}, -y_{1,1}^{(k)}, \dots, y_{s,1}^{(k)}]^T$, $k = 1, \dots, n-s$ and let $B_1, \dots, B_{n-s} \in \mathscr{K}_{\eta}(\mathbb{R})$ be defined by $B_k = \text{diag}(C_{1,1}^{(k)}, \dots, C_{s,1}^{(k)})$, with

$$C_{l,1}^{(k)} = \begin{bmatrix} y_{l,1}^{(k)} & y_{l,1}^{(k)} \\ -y_{l,1}^{\prime(k)} & y_{l,1}^{(k)} \end{bmatrix}, \ 1 \leqslant k \leqslant n-s, \ 1 \leqslant l \leqslant s.$$

Let G be the sub-semigroup of $\mathscr{K}_n^*(\mathbb{R})$ generated by A_1, \ldots, A_{n-s} , where

$$A_k = \operatorname{diag}\left(e^{\frac{1}{2}C_{1,1}^{(k)}}, \dots, e^{\frac{1}{2}C_{s,1}^{(k)}}\right), \ k = 1, \dots, n-s.$$

Then G is abelian and we have $A_j^2 = e^{B_j}$, j = 1, ..., n-s. Moreover $B_k u_{\eta} = u_k$. Therefore

$$S(H) = \sum_{k=1}^{n-s} \mathbb{N}u_k + \sum_{l=1}^{s} 2\pi \mathbb{Z}f_{\eta}^{(l)} + \mathbb{R}u_{\eta} = \sum_{k=1}^{n-s} \mathbb{N}B_k u_{\eta} + \sum_{l=1}^{s} 2\pi \mathbb{Z}f_{\eta}^{(l)} + \mathbb{R}u_{\eta}$$

is dense in \mathbb{R}^n . As $ind(\mathbb{R}G) = 0$, then from Theorem 4.1, G is supercyclic.

There are three further minor typographical corrections:

- The reference [15] in Lemma 4.7 should be replaced by [3].
- In the statement of Proposition 4.6, add after "1 + r + 2s", "2 + 2s, 2s".
- In the proof of Theorem 4.9, replace "length 2+2(s-1)" by "length 2s".

REFERENCES

- S. HERZI AND H. MARZOUGUI, On supercyclicity for abelian semigroups of matrices on ℝⁿ, Oper. Matrices 12 (2018), no. 3, 855–865.
- [2] A. AYADI AND H. MARZOUGUI, *Dense orbits for abelian subgroups of GL* (n, \mathbb{C}) , Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47–69.
- [3] A. AYADI AND H. MARZOUGUI, *Hypercyclic abelian semigroups of matrices on* \mathbb{R}^n , Topology Appl, **210** (2016), 29–45.

(Received May 26, 2020)

Salah Herzi University of Carthage Bizerte Preparatory Engineering Institute, Tunisia e-mail: herzisalah@yahoo.fr

Habib Marzougui University of Carthage, Faculty of Science of Bizerte (UR17ES21), "Dynamical systems and their applications" 7021, Jarzouna, Tunisia e-mail: habib.marzougui@fsb.rnu.tn