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NEST ALGEBRAS IN AN ARBITRARY VECTOR SPACE

D. W. HADWIN AND K. J. HARRISON

(Communicated by H. Radjavi)

Abstract. We examine the properties of algebras of linear transformations that leave invariant all
subspaces in a totally ordered lattice of subspaces of an arbitrary vector space. We compare our
results with those that apply for the corresponding algebras of bounded operators that act on a
Hilbert space.

1. Introduction

The study of triangular forms for operators has long been an important part of
the theory of non-self-adjoint operators and operator algebras. See [1] for a detailed
account. In [5] Ringrose introduced the terms ‘nest’ and ‘nest algebra’. For Ringrose
a nest N is a complete, totally ordered sublattice of the lattice of all closed subspaces
of a Hilbert space H that contains the trivial subspaces {0} and H . The corresponding
nest algebra AlgN is the algebra of all operators on H that leave invariant each of
the subspaces in N . For closed subspaces of a Hilbert space the lattice operations are:
∧ = ∩ and ∨ = closed linear span of the union.

In this paper we examine totally ordered lattices of linear subspaces of an arbi-
trary vector space and the associated operator algebras. Here a nest N in a vector space
X is a totally ordered sublattice of the lattice of all subspaces of X that contains the
trivial subspaces {0} and X , and is complete as a lattice, that is, N contains the meet
(intersection) and join (span of the union) of any family of subspaces in N . The cor-
responding nest algebra AlgN is the algebra of all linear transformations on X that
leave invariant each of the subspaces in N . We obtain results concerning the finite rank
operators in AlgN that mirror those that apply in the Hilbert space case and some that
do not. We also examine the Jacobson radical of AlgN and obtain a simple charac-
terization when the nest satisfies a descending chain condition. We also show that the
same characterization of the Jacobson radical holds for other types of nest algebras.
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1.1. Completely join irreducible elements

The lattice operations ∧ and ∨ in S (X) , the lattice of all subspaces of the vector
space X , are intersection and linear span of the union. In particular, if M and N are
subspaces of X , M ∨N = span{M ,N } = {x+ y : x ∈ M ,y ∈ N } . However in a
totally ordered sublattice the lattice operations are simply the set operations ∩ and ∪ .
So any nest N is completely distributive (see [1]).

Suppose that N is a nest in X . For each 0 �= x ∈ X we define

N(x) =
⋂
{M ∈ N : x ∈ M } and N(x)− =

⋃
{M ∈ N : x /∈ M }. (1)

It follows easily from (1) that

x ∈ N ⇐⇒ N(x) ⊆ N and x /∈ N ⇐⇒ N ⊆ N(x)− (2)

An nonzero element a of a lattice L is completely join irreducible if and only if,
whenever a = ∨i∈Iai implies a = ai for some i ∈ I .

LEMMA 1. The completely join-irreducible elements of N are the subspaces of
the form N(x) where x is any non-zero vector in X .

Proof. Suppose that x �= 0, and that N(x) =
⋃{N : N ∈ N#} where N# ⊆ N .

Then x ∈ ⋃{N : N ∈ N#} by (2). So x ∈ N for some N ∈ N# , and it follows from (2)
that N(x) = N . So N(x) is completely join-irreducible.

Suppose now that N is a completely join-irreducible subspace in N . Clearly N =⋃{N(x) : x ∈ N}, and so N = N(x) for some x ∈ N . �
The completely join-irreducible subspaces ‘separate’ the subspaces in N , in the

following sense.

LEMMA 2. If M1 and M2 are subspaces in N and M1 ⊂ M2 , then

M1 ⊆ N(x)− ⊂ N(x) ⊆ M2,

for some x ∈ X .

Proof. Choose any x ∈ M2 \M1 , and now apply (2). �
The existence of completely join irreducible elements distinguishes the vector

space case from the Hilbert space case. Some of the most interesting nests of closed
subspaces of a Hilbert space are ‘continuous’, have no completely join-irreducible ele-
ments.

EXAMPLE 3. Let L 2(R) denote the set of all (equivalence classes of) square-
integrable complex-valued functions defined on the real line R . For each α ∈ R , let
Nα = { f ∈L 2(R) : f (x) = 0 a.e. on ( α,∞)} , and let N = {0}∪⋃α∈R Nα ∪L 2(R) .
Then N is a (complete) nest of closed subspaces of the Hilbert space L 2(R) . It is
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‘continuous’, in the sense that Nα =
∨

β<α Nβ for each α ∈ R, and hence there are
no join-irreducible elements.

However N is not complete as a lattice of (not necessarily closed) linear sub-
spaces, because it is not closed under arbitrary unions. Let Mα =

⋃
β<α Nβ , for

each α ∈ R, and let M∞ =
⋃

β∈R Nβ . Thus f ∈ Mα ⇐⇒ f (x) = 0 a.e. on (β ,∞)
for some β < α , and f ∈ M∞ ⇐⇒ f (x) = 0 a.e. on (β ,∞) for some β ∈ R . Let
N# = N∪⋃α∈R Mα ∪M∞ . Then N# is a complete nest of linear subspaces of L 2(R) .
The subspaces in N# are ordered as follows:

{0} ⊂ Mα ⊂ Nα ⊂ Mβ ⊂ Nβ ⊂ M∞ ⊂ L 2(R) for all α < β

The completely join-irreducible elements of N# are the subspaces Nα ,α ∈ R ,
and L 2(R) itself, and each subspace in N# is a join of join-irreducibles.

2. Finite rank operators

The rank of an operator in L (X) is the linear dimension of its range. In this sec-
tion we examine the properties of operators in a nest algebra A = AlgN whose ranks
are finite. Let R denote the set of finite-rank operators in L (X) . Various authors have
investigated the properties of R∩A in the Hilbert space context. For example, Erdos
proved [2] that if N is a nest of closed subspaces of a Hilbert space then the closure
of R∩A in the strong operator topology is A .

Rank-one operators also have an important role. Let R1 denote the set of all rank-
one operators in L (X) . For each T ∈ R1 , there exist x ∈ X and ϕ ∈ X′ , where X′
denotes the algebraic dual of X , such that Ty = ϕ(y)x for each y ∈ X . We write T =
x⊗ϕ .

A simple calculation shows that (x1 ⊗ϕ1)(x2 ⊗ϕ2) = ϕ1(x2)(x1 ⊗ϕ2) . So x⊗ϕ
is idempotent if and only if ϕ(x) = 1.

The following lemma characterizes the rank-one operators in A .

LEMMA 4. Suppose that x ∈ X and ϕ ∈ X ′. Then x⊗ϕ ∈ R1∩A if and only
if N−(x) ⊆ kerϕ .

Proof. First suppose that x⊗ϕ ∈R1∩A , and that y∈N−(x) . Since N−(x)∈N,
(x⊗ϕ)(y) = ϕ(y)x ∈ N−(x) . Since x /∈N−(x) it follows that ϕ(y) = 0. So N−(x) ⊆
kerϕ .

Now suppose that N−(x) ⊆ kerϕ and that N ∈ N . If N ⊂ N(x) then N ⊆ N−(x)
and (x⊗ ϕ)N = {0} ⊆ N . If N(x) ⊆ N then (x⊗ ϕ)N ⊆ spanx ⊆ N(x) ⊆ N. So
x⊗ϕ ∈ R1∩A . �

2.1. Reflexivity of N

For any subset of A of L (X) let Lat A denote the sublattice of S (X) consisting
of all subspaces of X that are invariant under each of the operators in A . We shall show
that

N = Lat(R1∩A ), (3)
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from which it follows that N is reflexive, i.e., N = LatAlgN. Longstaff shows [4] that
(3) holds in the Hilbert space context.

The following lemma will be used to establish the reflexivity of N .

LEMMA 5. If x and y are non-zero vectors in X and y ∈ N(x) , then there exists
R ∈ R1∩A such that Rx = y.

Proof. Since y ∈ N(x), N(y)− ⊂ N(y) ⊆ N(x). So x /∈ N(y)− , and hence there
exists ϕ ∈ X ′ such that ϕ(x) = 1 and N(y) ⊆ kerϕ . Then R = ϕ ⊗ y ∈ R1 ∩A and
Rx = ϕ(x)y = y. �

THEOREM 6. N is reflexive.

Proof. We shall show that N = Lat(R1 ∩A ) . Clearly, N ⊆ Lat(R1 ∩A ) . For
the reverse inclusion, suppose that N ∈ Lat(R1∩A ) .

Suppose that x and y are non-zero vectors in N and N(x) respectively. So, by
Lemma 5, there exists R ∈ R1 ∩A such that Rx = y. Since N ∈ Lat(R1 ∩A ) , it
follows that y ∈ N , and hence N(x) ⊆ N .

Thus
N ⊆

⋃
{N(x) : x ∈ N} ⊆ N.

Hence N =
⋃{N(x) : x ∈ N} ∈ N . �

2.2. Finite rank idempotents

The following lemma concerning rank-one idempotents in A will be useful.

LEMMA 7. Suppose that M is a finite-dimensional subspace of X . Then M =
ranP for some idempotent P ∈ A . Furthermore, P is the sum of n rank-one idempo-
tents in A , where n = dimM.

Proof. The proof is by induction on dimM . First suppose that dimM = 1, and
choose a non-zero vector x∈M . Now choose ϕ ∈X′ such that N(x)− ⊆ kerϕ and ϕ(x)
= 1. Such a ϕ exists because x /∈ N(x)− .Then x⊗ϕ is the required idempotent.

Now suppose that n = dimM > 1 and that the result is true for all subspaces of X
with dimension less than n . Choose a non-zero vector y ∈ M and a subspace M#

of M such that M# and spany are complementary subspaces of M , i.e., M# + spany =
M and M# ∩ spany = {0} . By the induction hypothesis there exists an idempotent
P# ∈ A such that ranP# = M# , and rank-one idempotents P1,P2, · · · ,Pn−1 in A such
that P# = P1+P2+ · · ·+Pn−1 . Let x = y−P#y . Then 0 �= x∈M and P#x = 0. Assume,
via contradiction, that x = u+v , with u∈N(x)− and v∈M# . Then P#x = P#u+P#v ,
i.e., 0 = P#u+v , since M# = ranP# and P# is idempotent. So x = u−P#u . Since P# ∈
A , and 1−P# ∈ A and u ∈ N(x)− it follows that

x = u−P#u ∈ N(x)−,
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which is a contradiction. So x /∈ N(x)− +M# = N(x)− + ranP# , and hence there ex-
ists ϕ ∈ X′ such that

ϕ(x) = 1, and N(x)− + ranP# ⊆ kerϕ

Let Pn = x⊗ϕ . Then Pn is idempotent since ϕ(x)= 1, and Pn ∈A since N(x)− ⊆
kerϕ . Furthermore, P#Pn = P#x⊗ϕ = 0, and PnP# = x⊗ϕP# = 0 since ranP# ⊆
kerϕ . Now let P = P# +Pn . Then

P2 = (P#)2 +P#Pn +PnP
# +P2

n = P# +Pn = P,

and ranP = ranP# + ranPn = M# + spanx = M , as required. �

2.3. Rank decomposition

Lemma 7 provides an easy proof of a rank-decomposition property of finite rank
operators in the nest algebra A .

THEOREM 8. Suppose that T is a finite rank operator in A . Then T is the sum
of n rank-one operators in A , where n = rankT.

Proof. By Lemma 7, ranT = ranP for some idempotent P in A . Furthermore
P = P1 +P2 + · · ·+Pn where each Pk is a rank-one idempotent in A . Let Tk = PkT for
1 � k � n . Then Tk ∈ A and rankTk � 1 for each k . Furthermore,

T = PT =
n

∑
k=1

PkT =
n

∑
k=1

Tk.

This is the required decomposition. �

2.4. Density

Lemma 7 also provides an easy proof of a density property of the linear span of
rank-one operators in A . First we introduce a special topology on L (X) .

DEFINITION 9. The set of all subsets of L (X) of the form

U (T,x) = {S ∈ L (X) : Sx = Tx },

where x ∈ X and T ∈ L (X) , is a set of subbasic neighborhoods of T for the strict
topology on L (X)

THEOREM 10. The span of the rank-one operators in A is strictly dense in A .
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Proof. Suppose that T ∈A and that F is a finite subset of X . Let R#
1 ∩A

denote the span of R1 ∩A . We need to show that there exists S ∈ R#
1 ∩A such

that Sx = Tx for all x ∈ F .
By Lemma 7 spanF = ranP for some idempotent P ∈ A . Furthermore, P is

the sum of n rank-one idempotents in A , where n = dimspanF . Let Tk = TPk for
1 � k � n . Then Tk ∈ A and rankTk � 1 for each k . So S = ∑n

k=1 Tk ∈ R#
1 ∩A .

Furthermore, for each x ∈ spanF ,

Tx = TPx =
n

∑
k=1

TPkx = Sx,

as required. �

3. Dual nests

For any subset M of X , let M⊥ denote the annihilator of M , i.e.,

M⊥ = {ϕ : ϕ ∈ X′ and M ⊆ kerϕ}
Suppose that N is a nest of subspaces of X, and that N⊥ = {M⊥ : M ∈ N} . We
call N⊥ the dual of the nest N . Since the map M �→ M⊥ is order reversing, i.e., M1 ⊆
M2 ⇐⇒ M⊥

1 ⊇ M⊥
2 , N⊥ is a linearly ordered family of subspaces of X′ that is anti-

order isomorphic to N .
We are interested in the issue of completeness of N⊥ .

LEMMA 11. For any family {Mα : α ∈ Ψ} of subspaces in N ,

⋂
α∈Ψ

M⊥
α =

( ⋃
α∈Ψ

Mα

)⊥
and

⋃
α∈Ψ

M⊥
α ⊆

( ⋂
α∈Ψ

Mα

)⊥

Proof. Suppose that ϕ ∈ X′ . It is easy to see that

ϕ ∈
⋂

α∈Ψ
M⊥

α ⇐⇒ Mα ⊆ kerϕ for all α ∈ Ψ ⇐⇒ ϕ ∈
( ⋃

α∈Ψ
Mα

)⊥
.

Similarly, if ϕ ∈ ⋃α∈Ψ M⊥
α then Mα# ⊆ kerϕ for some α# ∈ Ψ . It follows

that
⋂

α∈Ψ Mα ⊆ kerϕ , i.e., ϕ ∈ (
⋂

α∈Ψ Mα)⊥ . �

COROLLARY 12. N⊥ is complete if and only if
⋃

α∈Ψ M⊥
α = (

⋂
α∈Ψ Mα)⊥ for

each family {Mα : α ∈ Ψ} of subspaces in N .

Proof. By Lemma 11 it is sufficient to show that if {Mα : α ∈ Ψ} is a family of
subspaces in N and N⊥ is complete, then (

⋂
α∈Ψ Mα)⊥ ⊆⋃α∈Ψ M⊥

α .
If N⊥ is complete,

⋃
α∈Ψ M⊥

α = M⊥
# for some M# ∈ N . Suppose that α0 ∈ Ψ .

Then M⊥
α0

⊆ ⋃α∈Ψ M⊥
α = M⊥

# , and so M# ⊆ Mα0 . Therefore M# ⊆ ⋂α∈Ψ Mα , and so

(
⋂

α∈Ψ Mα)⊥ ⊆ M⊥
# =

⋃
α∈Ψ M⊥

α , as required. �
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EXAMPLE 13. Suppose that X = c00(N) , the vector space of all finitely non-
zero F-valued sequences. Then X′ can be regarded as the vector space of all F-valued
sequences. If f = ( f (k))∞

k=1 ∈X and ϕ = (ϕ(k))∞
k=1 ∈X′ , then ϕ( f ) = ∑∞

k=1 ϕ(k) f (k).
This sum converges because only finitely many of the numbers f (k) : k ∈ N are non-
zero.

For each n∈N , let Mn = { f ∈X : supp f ⊆{1,2,3, · · · ,n}} , where supp( f (k))∞
k=1

= {k : f (k) �= 0} , and let

N = {{0},M1,M2,M3, · · · ,X}.

Then N is a complete, totally ordered family of subspaces of X, i.e., N is a nest.
Note that M⊥

n = {ϕ ∈ X′ : suppϕ ⊆ {n+1,n+2,n+3, · · ·}. It is easy to see that
N⊥ = {X′,M⊥

1 ,M⊥
2 ,M⊥

3 , · · · ,{0}} is a complete, totally ordered family of subspaces
of X′, i.e., N⊥ is a nest.

EXAMPLE 14. Suppose that X = c00(N) as in Example 13, and let

N# = {X,M#
1 ,M

#
2 ,M#

3 , · · · ,{0}},

where M#
n = { f ∈ X : supp f ⊆ {n+1,n+2,n+3, · · ·} for each n ∈ N . Then N# is a

complete, totally ordered family of subspaces of X, i.e., N# is a nest.
Note that (M#

n )⊥ = Mn = {ϕ ∈X′ : suppϕ ⊆{1,2,3, · · · ,n}} as in Example 13. So
(M#

1)⊥,(M#
2 )⊥,(M#

3 )⊥, · · · is a strictly increasing sequence in (N#)⊥ , and
⋃∞

n=1(M
#
n )⊥ =

X /∈ (N#
)⊥

. So (N#)⊥ is not complete.

The nest N# in Example 14 has a strictly decreasing, infinite sequence of sub-
spaces, i.e., it is not well-ordered. The following lemma shows that this is the key to the
incompleteness of (N#)⊥ .

LEMMA 15. Suppose that N is a complete nest of subspaces of a vector space
X . Then N⊥ is complete if and only if N is well-ordered.

Proof. First suppose that N is well-ordered, and that {Mα : α ∈ Ψ} is a family of
subspaces in N . In the light of Corollary 12 it is sufficient to show that (

⋂
α∈Ψ Mα)⊥ ⊆⋃

α∈Ψ M⊥
α .

Since N is well-ordered, ∩α∈ΨMα = Mα# for some α# ∈ Ψ . So

( ⋂
α∈Ψ

Mα

)⊥
= M⊥

α# ⊆
⋃

α∈Ψ
M⊥

α , as required.

Now suppose that N is not well-ordered, and that M1,M2,M3, · · · is a strictly de-
creasing infinite sequence of subspaces in N . For each n∈N choose xn such that xn =
Mn\Mn+1 . Then {x1,x2,x3, · · ·} is a linearly independent set and span{x1,x2,x3, · · ·}∩
M∞ = {0} , where M∞ = ∩∞

n=1Mn . So there exists ϕ ∈ X′ such that

ϕ(xn) = 1 for each n ∈ N and M∞ ⊆ kerϕ (4)



790 D. W. HADWIN AND K. J. HARRISON

It follows easily from (4) that ϕ ∈ M⊥
∞ \ (⋃∞

n=1 M⊥
n

)
. So

∞⋃
n=1

M⊥
n ⊂ M⊥

∞ (5)

Suppose that
⋃∞

n=1 M⊥
n ∈N⊥ , i.e.,

⋃∞
n=1 M⊥

n = M⊥ for some M ∈N . Then M⊥
n ⊆

M⊥ and M ⊆ Mn for each n ∈ N . So M ⊆ M∞, and hence M⊥
∞ ⊆ M⊥ . But this

contradicts (5), and so there is no such subspace M in N. So N⊥ is not complete. �

4. The Jacobson radical

Suppose that R is a ring with identity 1. The Jacobson radical RadR is the
intersection of all maximal left ideals of R . It is also the intersection of all maximal
right ideals of R . See ([3]). A more useful characterization of RadR is the following:

PROPOSITION 16. Suppose that T ∈ R . The following are equivalent:
1. T ∈ RadR
2. 1−AT is invertible in R for each A ∈ A
3. 1−TA is invertible in R for each A ∈ A

DEFINITION 17. Suppose that N is a nest on X and that A = AlgN . The strictly
triangular ideal A− is defined by

A− = {T : T ∈ A and Tx ∈ N(x)− for all x ∈ X}

LEMMA 18. Suppose that N is a nest on X and that A = AlgN . Then

RadA ⊆ A−.

Proof. Suppose that T ∈ A \A−. Then Tx /∈ N(x)− for some x ∈ X . Choose
ϕ ∈ X ′ such that ϕ(Tx) = 1 and N(x)− ⊆ kerϕ . It follows from (4) that x⊗ϕ ∈ A .

Now (1− (x⊗ϕ)T )x = x−ϕ(Tx)x = 0. So 1− (x⊗ϕ)T is not invertible and so
T /∈ RadA by Proposition 16. �

EXAMPLE 19. Suppose that X = c00(N) , and that N is the nest of subspaces
of X , as defined in Example 13. Then AlgN and AlgN− can be identified with,
respectively, the set of all upper triangular, and the set of all strictly upper triangular,
F−valued matrices. It is a simple exercise in matrix algebra to show that if T is any
strictly upper triangular matrix, and A is upper triangular, then there a strictly upper
triangular matrix B such that I +B = (I−AT)−1 . So for this nest RadA = A−.

EXAMPLE 20. Suppose that X = c00(N) , and that N# is the nest of subspaces
of X , as defined in Example 14. Then AlgN can be identified with the set of all
lower triangular, column-finite, matrices. That is, A = (ai j)(i, j)∈N×N ∈ AlgN# if and
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only if ai j = 0 if i < j and for each j ∈ N , ai j = 0 if j is sufficiently large. Sim-
ilarly, AlgN− can be identified with the set of all strictly lower triangular, column-
finite, matrices. Let

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

that is, T ( f (1), f (2), f (3), · · ·) = (0, f (1), f (2), f (3), · · ·) for all f = ( f (k))∞
k=1 . It is

easy to check that I − T has no column-finite lower triangular inverse. So for this
nest RadA �= A−.

We now seek conditions which are either necessary or sufficient for the equality of
the radical RadA and the strictly triangular ideal A− The notion of local nilpotence
will be useful.

DEFINITION 21. We say that T ∈ L (X) is nilpotent at x ∈ X if Tnx = 0 for
sufficiently large n . We say that T is locally nilpotent if it is nilpotent at each x ∈ X .

LEMMA 22. If each T ∈ A− is locally nilpotent, then RadA = A− .

Proof. Suppose that T ∈A− and that A∈A . Then AT ∈A− and hence is locally
nilpotent by assumption.

Let S = 1 + ∑∞
n=1(AT )n . The sum S is well-defined as an operator in L (X) ,

because the local nilpotence of AT ensures that for each x ∈ X the series ∑∞
n=1(AT )nx

has only finitely many non-zero terms. If x ∈ M for some M ∈ N , it is clear that
Sx ∈ M . So S ∈ A . Furthermore, it is easy to see that S(1−AT) = (1−AT )S = 1. So
S is the inverse of 1−AT in A , and hence T ∈ RadA . �

LEMMA 23. If N is well-ordered then each T ∈ A− is locally nilpotent.

Proof. Suppose that T ∈A− is not locally nilpotent. Then there exists x∈X such
that Tnx �= 0 for all n ∈ N. Since T ∈ A− , we see that Tn+1x ∈ N(Tnx)− ; hence for
each n ∈ N,

N(Tn+1x) ⊆ N(Tnx)− ⊂ N(Tnx).

So N(Tnx) : n = 1,2,3, · · · is a strictly decreasing, infinite sequence of subspaces in N ,
and hence N is not well-ordered. �

COROLLARY 24. If N is well-ordered then RadA = A−.

The following result shows that for dual nests, well-ordering is not essential for
the equality of the radical and the strictly triangular ideal.

THEOREM 25. Suppose that N is a nest of subspaces of a vector space X whose
order type is ω , the first infinite ordinal. Then N⊥ is a nest of subspaces of X′ , whose
order type is anti-isomorphic to ω , and (AlgN⊥)− = Rad(AlgN⊥).
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Proof. In view of Lemma 15 it is sufficient to show that A− = RadA , where
A = AlgN⊥.

Let M0 = {0} , and for each n > 0 let Mn denote the immediate successor
of Mn−1 in N . Since the order type of N is ω ,

⋃∞
n=1 Mn = X .

Suppose that T ∈ A− and that ϕ ∈M⊥
n . Then Tϕ ∈ N⊥(ϕ)− ⊂ N⊥(ϕ)⊆ M⊥

n .
Since M⊥

n+1 is the immediate predecessor of M⊥
n in N⊥ , it follows that Tϕ ∈ Mn+1 ,

and so T (M⊥
n ) ⊆ M⊥

n+1.

Suppose that A ∈ A . Then AT ∈ A− and so AT (M⊥
n ) ⊆ M⊥

n+1 for each n � 0
and so (AT )n(X′) = (AT )n(M⊥

0 ) ⊆ M⊥
n for each n � 0.

Let S = 1 + ∑∞
n=1(AT )n . The sum S is well-defined as an operator in L (X′)

because, for each x ∈ X and each ϕ ∈ X′ , the series ∑∞
n=1((AT )n)(ϕ)(x) has only

finitely many non-zero terms. (To see this note that x ∈ Mn# for some n# � 0, and
((AT )nϕ)(x) = 0 if n � n#.) Furthermore, S(1−AT)ϕ(x) = (1−AT)Sϕ(x) = ϕ(x) ,
and so S = (1−AT )−1 . Finally, it is easy to check that S(M⊥

n ) ⊆ M⊥
n for each n � 0

and so S ∈A . Thus T ∈ RadA , and hence A− ⊆RadA . It follows from Lemma 18
that A− = RadA . �

4.1. Examples

The nest N defined in Example 13 satisfies the conditions of Theorem 25, and
so (AlgN⊥)− = Rad(AlgN⊥).

Note that N⊥ is not well-ordered. It does, however, satisfy the ascending chain
condition, i.e., each subset of N⊥ contains a maximal element.

DEFINITION 26. Suppose that X1 and X2 are vector spaces over the same field F ,
and that Nk is a nest of subspaces of Xk for k ∈ {1,2} . The ordinal sum N1 �N2 is
a nest of subspaces of X = X1⊕X2 defined by

N1 �N2 = {N1⊕{0} : N1 ∈ N1}∪{X1⊕N2 : N2 ∈ N2}

Let A = Alg(N1 �N2) and let Ak = AlgNk for k ∈ {1,2}. Every T in L (X)
has an operator matrix,

T =
(

A1 B
C A2

)

relative to the decomposition X = X1⊕X2 . It is easy to check that

T ∈ A if and only if Ak ∈ Ak for k ∈ {1,2} and C = 0, and (6)

T ∈ A− if and only if Ak ∈ (Ak)− for k ∈ {1,2} and C = 0. (7)

LEMMA 27. With the above notation and C = 0,

T ∈ RadA if and only if Ak ∈ RadAk for k ∈ 1,2}, and (8)

RadA = A− if and only if Rad Ak = (Ak)− for k ∈ {1,2} (9)



NEST ALGEBRAS IN AN ARBITRARY VECTOR SPACE 793

Proof. A simple matrix computation shows that if

(
D E
0 F

)
=
(

A1 B
0 A2

)−1

if and

only if D = A−1
1 , F = A−1

2 and E = −A−1
1 BA−1

2 . So

(
A1 B
0 A2

)−1

∈ A if and only

if A−1
1 ∈ A1 and A−1

2 ∈ A2 . Statement (8) is now obvious. Statement (9) follows
from (7)and (8). �

EXAMPLE 28. Let X = Y⊕X , where Y is the vector space of all F-valued
sequences and X = c00(N) . So Y = X′. Let

N1 = {Y,M⊥
1 ,M⊥

2 ,M⊥
3 , · · · ,{0}}

where M⊥
n = {ϕ ∈ Y : suppϕ ⊆ {n+1,n+2,n+3, · · ·}, as in Example 13, and let

N2 = {{0},(M#
1)

⊥,(M#
2 )⊥,(M#

3 )⊥, · · · ,X}

where (M#
n)⊥ = {ϕ ∈ X : suppϕ ⊆ {1,2, · · · ,n}}, as in Example 14.

Note that N1 = N⊥ , where N is as defined in Example 13, and sine N is well-
ordered with order type ω , it follows from Theorem 25 that RadA1 = (A1)−. Note
also that N2 satisfies the descending chain condition, so we know from Corollary 24
RadA2 = (A2)− . So by Lemma 27 Rad(N1 �N2) = (N1 �N2)− .

But N1 � N2 satisfies neither the ascending chain condition nor the descending
chain condition. Its order type is 1+ ω∗ + ω + 1, i.e., the order type of {−∞}∪Z∪
{∞} , where Z denote the set of integers, and it contains both strictly decreasing and
strictly increasing infinite sequences of subspaces.
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