NEST ALGEBRAS IN AN ARBITRARY VECTOR SPACE

D. W. HADWIN AND K. J. HARRISON

(Communicated by H. Radjavi)

Abstract. We examine the properties of algebras of linear transformations that leave invariant all subspaces in a totally ordered lattice of subspaces of an arbitrary vector space. We compare our results with those that apply for the corresponding algebras of bounded operators that act on a Hilbert space.

1. Introduction

The study of triangular forms for operators has long been an important part of the theory of non-self-adjoint operators and operator algebras. See [1] for a detailed account. In [5] Ringrose introduced the terms 'nest' and 'nest algebra'. For Ringrose a nest \mathfrak{N} is a complete, totally ordered sublattice of the lattice of all closed subspaces of a Hilbert space \mathfrak{H} that contains the trivial subspaces {0} and \mathfrak{H} . The corresponding nest algebra Alg \mathfrak{N} is the algebra of all operators on \mathfrak{H} that leave invariant each of the subspaces in \mathfrak{N} . For closed subspaces of a Hilbert space the lattice operations are: $\wedge = \cap$ and $\vee = closed$ linear span of the union.

In this paper we examine totally ordered lattices of linear subspaces of an arbitrary vector space and the associated operator algebras. Here a nest \mathfrak{N} in a vector space \mathfrak{X} is a totally ordered sublattice of the lattice of all subspaces of \mathfrak{X} that contains the trivial subspaces $\{0\}$ and \mathfrak{X} , and is complete as a lattice, that is, \mathfrak{N} contains the meet (intersection) and join (span of the union) of any family of subspaces in \mathfrak{N} . The corresponding nest algebra Alg \mathfrak{N} is the algebra of all linear transformations on \mathfrak{X} that leave invariant each of the subspaces in \mathfrak{N} . We obtain results concerning the finite rank operators in Alg \mathfrak{N} that mirror those that apply in the Hilbert space case and some that do not. We also examine the Jacobson radical of Alg \mathfrak{N} and obtain a simple characterization when the nest satisfies a descending chain condition. We also show that the same characterization of the Jacobson radical holds for other types of nest algebras.

Mathematics subject classification (2020): Primary 47A15 15A04; Secondary 47D25. *Keywords and phrases*: Nest, invariant subspace, strict toplogy.

1.1. Completely join irreducible elements

The lattice operations \land and \lor in $\mathscr{S}(\mathfrak{X})$, the lattice of all subspaces of the vector space \mathfrak{X} , are intersection and linear span of the union. In particular, if \mathscr{M} and \mathscr{N} are subspaces of \mathfrak{X} , $\mathscr{M} \lor \mathscr{N} = \operatorname{span} \{\mathscr{M}, \mathscr{N}\} = \{x + y : x \in \mathscr{M}, y \in \mathscr{N}\}$. However in a totally ordered sublattice the lattice operations are simply the set operations \cap and \cup . So any nest \mathfrak{N} is completely distributive (see [1]).

Suppose that \mathfrak{N} is a nest in \mathfrak{X} . For each $0 \neq x \in \mathfrak{X}$ we define

$$\mathfrak{N}(x) = \bigcap \{ \mathscr{M} \in \mathfrak{N} : x \in \mathscr{M} \} \text{ and } \mathfrak{N}(x)_{-} = \bigcup \{ \mathscr{M} \in \mathfrak{N} : x \notin \mathscr{M} \}.$$
(1)

It follows easily from (1) that

$$x \in \mathcal{N} \iff \mathfrak{N}(x) \subseteq \mathcal{N} \text{ and } x \notin \mathcal{N} \iff \mathcal{N} \subseteq \mathfrak{N}(x)_{-}$$
 (2)

An nonzero element *a* of a lattice \mathscr{L} is *completely join irreducible* if and only if, whenever $a = \bigvee_{i \in I} a_i$ implies $a = a_i$ for some $i \in I$.

LEMMA 1. The completely join-irreducible elements of \mathfrak{N} are the subspaces of the form $\mathfrak{N}(x)$ where x is any non-zero vector in \mathfrak{X} .

Proof. Suppose that $x \neq 0$, and that $\mathfrak{N}(x) = \bigcup \{N : N \in \mathfrak{N}^{\#}\}$ where $\mathfrak{N}^{\#} \subseteq \mathfrak{N}$. Then $x \in \bigcup \{N : N \in \mathfrak{N}^{\#}\}$ by (2). So $x \in N$ for some $N \in \mathfrak{N}^{\#}$, and it follows from (2) that $\mathfrak{N}(x) = N$. So $\mathfrak{N}(x)$ is completely join-irreducible.

Suppose now that N is a completely join-irreducible subspace in \mathfrak{N} . Clearly $N = \bigcup \{\mathfrak{N}(x) : x \in N\}$, and so $N = \mathfrak{N}(x)$ for some $x \in N$. \Box

The completely join-irreducible subspaces 'separate' the subspaces in \mathfrak{N} , in the following sense.

LEMMA 2. If \mathcal{M}_1 and \mathcal{M}_2 are subspaces in \mathfrak{N} and $\mathcal{M}_1 \subset \mathcal{M}_2$, then

 $\mathcal{M}_1 \subseteq \mathfrak{N}(x)_- \subset \mathfrak{N}(x) \subseteq \mathcal{M}_2,$

for some $x \in \mathfrak{X}$.

Proof. Choose any $x \in \mathcal{M}_2 \setminus \mathcal{M}_1$, and now apply (2). \Box

The existence of completely join irreducible elements distinguishes the vector space case from the Hilbert space case. Some of the most interesting nests of closed subspaces of a Hilbert space are 'continuous', have no completely join-irreducible elements.

EXAMPLE 3. Let $\mathscr{L}^2(\mathbb{R})$ denote the set of all (equivalence classes of) squareintegrable complex-valued functions defined on the real line \mathbb{R} . For each $\alpha \in \mathbb{R}$, let $\mathscr{N}_{\alpha} = \{f \in \mathscr{L}^2(\mathbb{R}) : f(x) = 0 \text{ a.e. on } (\alpha, \infty)\}$, and let $\mathfrak{N} = \{0\} \cup \bigcup_{\alpha \in \mathbb{R}} \mathscr{N}_{\alpha} \cup \mathscr{L}^2(\mathbb{R})$. Then \mathfrak{N} is a (complete) nest of closed subspaces of the Hilbert space $\mathscr{L}^2(\mathbb{R})$. It is 'continuous', in the sense that $\mathcal{N}_{\alpha} = \bigvee_{\beta < \alpha} \mathcal{N}_{\beta}$ for each $\alpha \in \mathbb{R}$, and hence there are no join-irreducible elements.

However \mathfrak{N} is not complete as a lattice of (not necessarily closed) linear subspaces, because it is not closed under arbitrary unions. Let $\mathcal{M}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{N}_{\beta}$, for each $\alpha \in \mathbb{R}$, and let $\mathcal{M}_{\infty} = \bigcup_{\beta \in \mathbb{R}} \mathcal{N}_{\beta}$. Thus $f \in \mathcal{M}_{\alpha} \iff f(x) = 0$ a.e. on (β, ∞) for some $\beta < \alpha$, and $f \in \mathcal{M}_{\infty} \iff f(x) = 0$ a.e. on (β, ∞) for some $\beta \in \mathbb{R}$. Let $\mathfrak{N}^{\#} = \mathfrak{N} \cup \bigcup_{\alpha \in \mathbb{R}} \mathcal{M}_{\alpha} \cup \mathcal{M}_{\infty}$. Then $\mathfrak{N}^{\#}$ is a complete nest of linear subspaces of $\mathscr{L}^{2}(\mathbb{R})$. The subspaces in $\mathfrak{N}^{\#}$ are ordered as follows:

$$\{0\} \subset \mathscr{M}_{\alpha} \subset \mathscr{N}_{\alpha} \subset \mathscr{M}_{\beta} \subset \mathscr{N}_{\beta} \subset \mathscr{M}_{\infty} \subset \mathscr{L}^{2}(\mathbb{R}) \text{ for all } \alpha < \beta$$

The completely join-irreducible elements of $\mathfrak{N}^{\#}$ are the subspaces $\mathscr{N}_{\alpha}, \alpha \in \mathbb{R}$, and $\mathscr{L}^{2}(\mathbb{R})$ itself, and each subspace in $\mathfrak{N}^{\#}$ is a join of join-irreducibles.

2. Finite rank operators

The *rank* of an operator in $\mathscr{L}(\mathfrak{X})$ is the linear dimension of its range. In this section we examine the properties of operators in a nest algebra $\mathscr{A} = \operatorname{Alg}\mathfrak{N}$ whose ranks are finite. Let \mathscr{R} denote the set of finite-rank operators in $\mathscr{L}(\mathfrak{X})$. Various authors have investigated the properties of $\mathscr{R} \cap \mathscr{A}$ in the Hilbert space context. For example, Erdos proved [2] that if \mathscr{N} is a nest of closed subspaces of a Hilbert space then the closure of $\mathscr{R} \cap \mathscr{A}$ in the strong operator topology is \mathscr{A} .

Rank-one operators also have an important role. Let \mathscr{R}_1 denote the set of all rankone operators in $\mathscr{L}(\mathfrak{X})$. For each $T \in \mathscr{R}_1$, there exist $x \in \mathfrak{X}$ and $\varphi \in \mathfrak{X}'$, where \mathfrak{X}' denotes the algebraic dual of \mathfrak{X} , such that $Ty = \varphi(y)x$ for each $y \in \mathfrak{X}$. We write $T = x \otimes \varphi$.

A simple calculation shows that $(x_1 \otimes \varphi_1)(x_2 \otimes \varphi_2) = \varphi_1(x_2)(x_1 \otimes \varphi_2)$. So $x \otimes \varphi$ is idempotent if and only if $\varphi(x) = 1$.

The following lemma characterizes the rank-one operators in \mathscr{A} .

LEMMA 4. Suppose that $x \in \mathscr{X}$ and $\varphi \in \mathscr{X}'$. Then $x \otimes \varphi \in \mathscr{R}_1 \cap \mathscr{A}$ if and only if $\mathfrak{N}_{-}(x) \subseteq \ker \varphi$.

Proof. First suppose that $x \otimes \varphi \in \mathscr{R}_1 \cap \mathscr{A}$, and that $y \in \mathfrak{N}_-(x)$. Since $\mathfrak{N}_-(x) \in \mathfrak{N}$, $(x \otimes \varphi)(y) = \varphi(y)x \in \mathfrak{N}_-(x)$. Since $x \notin \mathfrak{N}_-(x)$ it follows that $\varphi(y) = 0$. So $\mathfrak{N}_-(x) \subseteq \ker \varphi$.

Now suppose that $\mathfrak{N}_{-}(x) \subseteq \ker \varphi$ and that $N \in \mathfrak{N}$. If $N \subset \mathfrak{N}(x)$ then $N \subseteq \mathfrak{N}_{-}(x)$ and $(x \otimes \varphi)N = \{0\} \subseteq N$. If $\mathfrak{N}(x) \subseteq N$ then $(x \otimes \varphi)N \subseteq \operatorname{span} x \subseteq \mathfrak{N}(x) \subseteq N$. So $x \otimes \varphi \in \mathscr{R}_{1} \cap \mathscr{A}$. \Box

2.1. Reflexivity of M

For any subset of \mathfrak{A} of $\mathscr{L}(\mathfrak{X})$ let Lat \mathfrak{A} denote the sublattice of $\mathscr{S}(\mathfrak{X})$ consisting of all subspaces of \mathfrak{X} that are invariant under each of the operators in \mathfrak{A} . We shall show that

$$\mathfrak{N} = \operatorname{Lat}(\mathscr{R}_1 \cap \mathscr{A}),\tag{3}$$

from which it follows that \mathfrak{N} is reflexive, i.e., $\mathfrak{N} = \text{LatAlg}\mathfrak{N}$. Longstaff shows [4] that (3) holds in the Hilbert space context.

The following lemma will be used to establish the reflexivity of \mathfrak{N} .

LEMMA 5. If x and y are non-zero vectors in \mathfrak{X} and $y \in \mathfrak{N}(x)$, then there exists $R \in \mathscr{R}_1 \cap \mathscr{A}$ such that Rx = y.

Proof. Since $y \in \mathfrak{N}(x)$, $\mathfrak{N}(y)_{-} \subset \mathfrak{N}(y) \subseteq \mathfrak{N}(x)$. So $x \notin \mathfrak{N}(y)_{-}$, and hence there exists $\varphi \in X'$ such that $\varphi(x) = 1$ and $\mathfrak{N}(y)_{-} \subseteq \ker \varphi$. Then $R = \varphi \otimes y \in \mathscr{R}_{1} \cap \mathscr{A}$ and $Rx = \varphi(x)y = y$. \Box

THEOREM 6. \mathfrak{N} is reflexive.

Proof. We shall show that $\mathfrak{N} = \operatorname{Lat}(\mathscr{R}_1 \cap \mathscr{A})$. Clearly, $\mathfrak{N} \subseteq \operatorname{Lat}(\mathscr{R}_1 \cap \mathscr{A})$. For the reverse inclusion, suppose that $N \in \operatorname{Lat}(\mathscr{R}_1 \cap \mathscr{A})$.

Suppose that x and y are non-zero vectors in N and $\mathfrak{N}(x)$ respectively. So, by Lemma 5, there exists $R \in \mathscr{R}_1 \cap \mathscr{A}$ such that Rx = y. Since $N \in \operatorname{Lat}(\mathscr{R}_1 \cap \mathscr{A})$, it follows that $y \in N$, and hence $\mathfrak{N}(x) \subseteq N$.

Thus

$$N \subseteq \bigcup \{\mathfrak{N}(x) : x \in N\} \subseteq N.$$

Hence $N = \bigcup \{ \mathfrak{N}(x) : x \in N \} \in \mathfrak{N}$. \Box

2.2. Finite rank idempotents

The following lemma concerning rank-one idempotents in \mathscr{A} will be useful.

LEMMA 7. Suppose that M is a finite-dimensional subspace of \mathfrak{X} . Then $M = \operatorname{ran} P$ for some idempotent $P \in \mathscr{A}$. Furthermore, P is the sum of n rank-one idempotents in \mathscr{A} , where $n = \dim M$.

Proof. The proof is by induction on dim M. First suppose that dim M = 1, and choose a non-zero vector $x \in M$. Now choose $\varphi \in \mathfrak{X}'$ such that $\mathfrak{N}(x)_- \subseteq \ker \varphi$ and $\varphi(x) = 1$. Such a φ exists because $x \notin \mathfrak{N}(x)_-$. Then $x \otimes \varphi$ is the required idempotent.

Now suppose that $n = \dim M > 1$ and that the result is true for all subspaces of \mathfrak{X} with dimension less than n. Choose a non-zero vector $y \in M$ and a subspace $M^{\#}$ of M such that $M^{\#}$ and span y are complementary subspaces of M, i.e., $M^{\#} + \operatorname{span} y = M$ and $M^{\#} \cap \operatorname{span} y = \{0\}$. By the induction hypothesis there exists an idempotent $P^{\#} \in \mathscr{A}$ such that $\operatorname{ran} P^{\#} = M^{\#}$, and rank-one idempotents P_1, P_2, \dots, P_{n-1} in \mathscr{A} such that $P^{\#} = P_1 + P_2 + \dots + P_{n-1}$. Let $x = y - P^{\#}y$. Then $0 \neq x \in M$ and $P^{\#}x = 0$. Assume, via contradiction, that x = u + v, with $u \in \mathfrak{N}(x)_-$ and $v \in M^{\#}$. Then $P^{\#}x = P^{\#}u + P^{\#}v$, i.e., $0 = P^{\#}u + v$, since $M^{\#} = \operatorname{ran} P^{\#}$ and $P^{\#}$ is idempotent. So $x = u - P^{\#}u$. Since $P^{\#} \in \mathscr{A}$, and $1 - P^{\#} \in \mathscr{A}$ and $u \in \mathfrak{N}(x)_-$ it follows that

$$x = u - P^{\#}u \in \mathfrak{N}(x)_{-},$$

which is a contradiction. So $x \notin \mathfrak{N}(x)_- + M^{\#} = \mathfrak{N}(x)_- + \operatorname{ran} P^{\#}$, and hence there exists $\varphi \in \mathfrak{X}'$ such that

$$\varphi(x) = 1$$
, and $\mathfrak{N}(x)_{-} + \operatorname{ran} P^{\#} \subseteq \ker \varphi$

Let $P_n = x \otimes \varphi$. Then P_n is idempotent since $\varphi(x) = 1$, and $P_n \in \mathscr{A}$ since $\mathfrak{N}(x)_- \subseteq \ker \varphi$. Furthermore, $P^{\#}P_n = P^{\#}x \otimes \varphi = 0$, and $P_nP^{\#} = x \otimes \varphi P^{\#} = 0$ since $\operatorname{ran} P^{\#} \subseteq \ker \varphi$. Now let $P = P^{\#} + P_n$. Then

$$P^{2} = (P^{\#})^{2} + P^{\#}P_{n} + P_{n}P^{\#} + P_{n}^{2} = P^{\#} + P_{n} = P,$$

and ran $P = \operatorname{ran} P^{\#} + \operatorname{ran} P_n = M^{\#} + \operatorname{span} x = M$, as required. \Box

2.3. Rank decomposition

Lemma 7 provides an easy proof of a rank-decomposition property of finite rank operators in the nest algebra \mathscr{A} .

THEOREM 8. Suppose that T is a finite rank operator in \mathscr{A} . Then T is the sum of n rank-one operators in \mathscr{A} , where $n = \operatorname{rank} T$.

Proof. By Lemma 7, ran $T = \operatorname{ran} P$ for some idempotent P in \mathscr{A} . Furthermore $P = P_1 + P_2 + \cdots + P_n$ where each P_k is a rank-one idempotent in \mathscr{A} . Let $T_k = P_k T$ for $1 \le k \le n$. Then $T_k \in \mathscr{A}$ and rank $T_k \le 1$ for each k. Furthermore,

$$T = PT = \sum_{k=1}^{n} P_k T = \sum_{k=1}^{n} T_k.$$

This is the required decomposition. \Box

2.4. Density

Lemma 7 also provides an easy proof of a density property of the linear span of rank-one operators in \mathscr{A} . First we introduce a special topology on $\mathscr{L}(\mathfrak{X})$.

DEFINITION 9. The set of all subsets of $\mathscr{L}(\mathfrak{X})$ of the form

$$\mathscr{U}(T,x) = \{ S \in \mathscr{L}(\mathfrak{X}) : Sx = Tx \},\$$

where $x \in \mathfrak{X}$ and $T \in \mathscr{L}(\mathfrak{X})$, is a set of subbasic neighborhoods of T for the strict topology on $\mathscr{L}(\mathfrak{X})$

THEOREM 10. The span of the rank-one operators in \mathscr{A} is strictly dense in \mathscr{A} .

Proof. Suppose that $T \in \mathscr{A}$ and that \mathscr{F} is a finite subset of \mathfrak{X} . Let $\mathscr{R}_1^{\#} \cap \mathscr{A}$ denote the span of $\mathscr{R}_1 \cap \mathscr{A}$. We need to show that there exists $S \in \mathscr{R}_1^{\#} \cap \mathscr{A}$ such that Sx = Tx for all $x \in \mathscr{F}$.

By Lemma 7 span $\mathscr{F} = \operatorname{ran} P$ for some idempotent $P \in \mathscr{A}$. Furthermore, P is the sum of n rank-one idempotents in \mathscr{A} , where $n = \operatorname{dim} \operatorname{span} \mathscr{F}$. Let $T_k = TP_k$ for $1 \leq k \leq n$. Then $T_k \in \mathscr{A}$ and $\operatorname{rank} T_k \leq 1$ for each k. So $S = \sum_{k=1}^n T_k \in \mathscr{R}_1^{\#} \cap \mathscr{A}$. Furthermore, for each $x \in \operatorname{span} \mathscr{F}$,

$$Tx = TPx = \sum_{k=1}^{n} TP_k x = Sx,$$

as required. \Box

3. Dual nests

For any subset M of \mathfrak{X} , let M^{\perp} denote the annihilator of M, i.e.,

 $M^{\perp} = \{ \varphi : \varphi \in \mathfrak{X}' \text{ and } M \subseteq \ker \varphi \}$

Suppose that \mathfrak{N} is a nest of subspaces of \mathfrak{X} , and that $\mathfrak{N}^{\perp} = \{M^{\perp} : M \in \mathfrak{N}\}$. We call \mathfrak{N}^{\perp} the dual of the nest \mathfrak{N} . Since the map $M \mapsto M^{\perp}$ is order reversing, i.e., $M_1 \subseteq M_2 \iff M_1^{\perp} \supseteq M_2^{\perp}$, \mathfrak{N}^{\perp} is a linearly ordered family of subspaces of \mathfrak{X}' that is anti-order isomorphic to \mathfrak{N} .

We are interested in the issue of completeness of \mathfrak{N}^{\perp} .

LEMMA 11. For any family $\{M_{\alpha} : \alpha \in \Psi\}$ of subspaces in \mathfrak{N} ,

$$\bigcap_{\alpha \in \Psi} M_{\alpha}^{\perp} = \left(\bigcup_{\alpha \in \Psi} M_{\alpha}\right)^{\perp} and \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp} \subseteq \left(\bigcap_{\alpha \in \Psi} M_{\alpha}\right)^{\perp}$$

Proof. Suppose that $\varphi \in \mathfrak{X}'$. It is easy to see that

$$\varphi \in \bigcap_{\alpha \in \Psi} M_{\alpha}^{\perp} \iff M_{\alpha} \subseteq \ker \varphi \text{ for all } \alpha \in \Psi \iff \varphi \in \left(\bigcup_{\alpha \in \Psi} M_{\alpha}\right)^{\perp}.$$

Similarly, if $\varphi \in \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp}$ then $M_{\alpha^{\#}} \subseteq \ker \varphi$ for some $\alpha^{\#} \in \Psi$. It follows that $\bigcap_{\alpha \in \Psi} M_{\alpha} \subseteq \ker \varphi$, i.e., $\varphi \in (\bigcap_{\alpha \in \Psi} M_{\alpha})^{\perp}$.

COROLLARY 12. \mathfrak{N}^{\perp} is complete if and only if $\bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp} = (\bigcap_{\alpha \in \Psi} M_{\alpha})^{\perp}$ for each family $\{M_{\alpha} : \alpha \in \Psi\}$ of subspaces in \mathfrak{N} .

Proof. By Lemma 11 it is sufficient to show that if $\{M_{\alpha} : \alpha \in \Psi\}$ is a family of subspaces in \mathfrak{N} and \mathfrak{N}^{\perp} is complete, then $(\bigcap_{\alpha \in \Psi} M_{\alpha})^{\perp} \subseteq \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp}$.

If \mathfrak{N}^{\perp} is complete, $\bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp} = M_{\#}^{\perp}$ for some $M_{\#} \in \mathfrak{N}$. Suppose that $\alpha_0 \in \Psi$. Then $M_{\alpha_0}^{\perp} \subseteq \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp} = M_{\#}^{\perp}$, and so $M_{\#} \subseteq M_{\alpha_0}$. Therefore $M_{\#} \subseteq \bigcap_{\alpha \in \Psi} M_{\alpha}$, and so $(\bigcap_{\alpha \in \Psi} M_{\alpha})^{\perp} \subseteq M_{\#}^{\perp} = \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp}$, as required. \Box EXAMPLE 13. Suppose that $\mathfrak{X} = c_{00}(\mathbb{N})$, the vector space of all finitely nonzero \mathbb{F} -valued sequences. Then \mathfrak{X}' can be regarded as the vector space of all \mathbb{F} -valued sequences. If $f = (f(k))_{k=1}^{\infty} \in \mathfrak{X}$ and $\varphi = (\varphi(k))_{k=1}^{\infty} \in \mathfrak{X}'$, then $\varphi(f) = \sum_{k=1}^{\infty} \varphi(k)f(k)$. This sum converges because only finitely many of the numbers $f(k) : k \in \mathbb{N}$ are nonzero.

For each $n \in \mathbb{N}$, let $M_n = \{f \in \mathfrak{X} : \operatorname{supp} f \subseteq \{1, 2, 3, \dots, n\}\}$, where $\operatorname{supp}(f(k))_{k=1}^{\infty} = \{k : f(k) \neq 0\}$, and let

$$\mathfrak{N} = \{\{0\}, M_1, M_2, M_3, \cdots, \mathfrak{X}\}.$$

Then \mathfrak{N} is a complete, totally ordered family of subspaces of \mathfrak{X} , i.e., \mathfrak{N} is a nest.

Note that $M_n^{\perp} = \{\varphi \in \mathfrak{X}' : \operatorname{supp} \varphi \subseteq \{n+1, n+2, n+3, \cdots\}$. It is easy to see that $\mathfrak{N}^{\perp} = \{\mathfrak{X}', M_1^{\perp}, M_2^{\perp}, M_3^{\perp}, \cdots, \{0\}\}$ is a complete, totally ordered family of subspaces of \mathfrak{X}' , i.e., \mathfrak{N}^{\perp} is a nest.

EXAMPLE 14. Suppose that $\mathfrak{X} = c_{00}(\mathbb{N})$ as in Example 13, and let

$$\mathfrak{N}^{\#} = \{\mathfrak{X}, M_1^{\#}, M_2^{\#}, M_3^{\#}, \cdots, \{0\}\},\$$

where $M_n^{\#} = \{f \in \mathfrak{X} : \operatorname{supp} f \subseteq \{n+1, n+2, n+3, \cdots\}$ for each $n \in \mathbb{N}$. Then $\mathfrak{N}^{\#}$ is a complete, totally ordered family of subspaces of \mathfrak{X} , i.e., $\mathfrak{N}^{\#}$ is a nest.

Note that $(M_n^{\#})^{\perp} = M_n = \{\varphi \in \mathfrak{X}' : \operatorname{supp} \varphi \subseteq \{1, 2, 3, \dots, n\}\}$ as in Example 13. So $(M_1^{\#})^{\perp}, (M_2^{\#})^{\perp}, (M_3^{\#})^{\perp}, \dots$ is a strictly increasing sequence in $(\mathfrak{N}^{\#})^{\perp}$, and $\bigcup_{n=1}^{\infty} (M_n^{\#})^{\perp} = \mathfrak{X} \notin (\mathfrak{N}^{\#})^{\perp}$. So $(\mathfrak{N}^{\#})^{\perp}$ is not complete.

The nest $\mathfrak{N}^{\#}$ in Example 14 has a strictly decreasing, infinite sequence of subspaces, i.e., it is not well-ordered. The following lemma shows that this is the key to the incompleteness of $(\mathfrak{N}^{\#})^{\perp}$.

LEMMA 15. Suppose that \mathfrak{N} is a complete nest of subspaces of a vector space \mathfrak{X} . Then \mathfrak{N}^{\perp} is complete if and only if \mathfrak{N} is well-ordered.

Proof. First suppose that \mathfrak{N} is well-ordered, and that $\{M_{\alpha} : \alpha \in \Psi\}$ is a family of subspaces in \mathfrak{N} . In the light of Corollary 12 it is sufficient to show that $(\bigcap_{\alpha \in \Psi} M_{\alpha})^{\perp} \subseteq \bigcup_{\alpha \in \Psi} M_{\alpha}^{\perp}$.

Since \mathfrak{N} is well-ordered, $\cap_{\alpha \in \Psi} M_{\alpha} = M_{\alpha^{\#}}$ for some $\alpha^{\#} \in \Psi$. So

$$\left(\bigcap_{\alpha\in\Psi}M_{\alpha}\right)^{\perp}=M_{\alpha^{\#}}^{\perp}\subseteq\bigcup_{\alpha\in\Psi}M_{\alpha}^{\perp}, \text{ as required.}$$

Now suppose that \mathfrak{N} is not well-ordered, and that M_1, M_2, M_3, \cdots is a strictly decreasing infinite sequence of subspaces in \mathfrak{N} . For each $n \in \mathbb{N}$ choose x_n such that $x_n = M_n \setminus M_{n+1}$. Then $\{x_1, x_2, x_3, \cdots\}$ is a linearly independent set and $\operatorname{span}\{x_1, x_2, x_3, \cdots\} \cap M_{\infty} = \{0\}$, where $M_{\infty} = \bigcap_{n=1}^{\infty} M_n$. So there exists $\varphi \in \mathfrak{X}'$ such that

$$\varphi(x_n) = 1 \text{ for each } n \in \mathbb{N} \text{ and } M_{\infty} \subseteq \ker \varphi$$
(4)

It follows easily from (4) that $\varphi \in M_{\infty}^{\perp} \setminus \left(\bigcup_{n=1}^{\infty} M_n^{\perp} \right)$. So

$$\bigcup_{n=1}^{\infty} M_n^{\perp} \subset M_{\infty}^{\perp} \tag{5}$$

Suppose that $\bigcup_{n=1}^{\infty} M_n^{\perp} \in \mathfrak{N}^{\perp}$, i.e., $\bigcup_{n=1}^{\infty} M_n^{\perp} = M^{\perp}$ for some $M \in \mathfrak{N}$. Then $M_n^{\perp} \subseteq M^{\perp}$ and $M \subseteq M_n$ for each $n \in \mathbb{N}$. So $M \subseteq M_{\infty}$, and hence $M_{\infty}^{\perp} \subseteq M^{\perp}$. But this contradicts (5), and so there is no such subspace M in \mathfrak{N} . So \mathfrak{N}^{\perp} is not complete. \Box

4. The Jacobson radical

Suppose that \mathscr{R} is a ring with identity 1. The Jacobson radical Rad \mathscr{R} is the intersection of all maximal left ideals of \mathscr{R} . It is also the intersection of all maximal right ideals of \mathscr{R} . See ([3]). A more useful characterization of Rad \mathscr{R} is the following:

PROPOSITION 16. Suppose that $T \in \mathcal{R}$. The following are equivalent:

1. $T \in \operatorname{Rad} \mathscr{R}$

2. 1 - AT is invertible in \mathcal{R} for each $A \in \mathcal{A}$

3. 1 - TA is invertible in \mathscr{R} for each $A \in \mathscr{A}$

DEFINITION 17. Suppose that \mathfrak{N} is a nest on \mathfrak{X} and that $\mathscr{A} = \operatorname{Alg} \mathfrak{N}$. The strictly triangular ideal \mathscr{A}_{-} is defined by

$$\mathscr{A}_{-} = \{T : T \in \mathscr{A} \text{ and } Tx \in \mathfrak{N}(x)_{-} \text{ for all } x \in \mathfrak{X}\}$$

LEMMA 18. Suppose that \mathfrak{N} is a nest on \mathfrak{X} and that $\mathscr{A} = \operatorname{Alg} \mathfrak{N}$. Then

Rad $\mathscr{A} \subseteq \mathscr{A}_{-}$.

Proof. Suppose that $T \in \mathscr{A} \setminus \mathscr{A}_-$. Then $Tx \notin \mathfrak{N}(x)_-$ for some $x \in \mathfrak{X}$. Choose $\varphi \in X'$ such that $\varphi(Tx) = 1$ and $\mathfrak{N}(x)_- \subseteq \ker \varphi$. It follows from (4) that $x \otimes \varphi \in \mathscr{A}$.

Now $(1 - (x \otimes \varphi)T)x = x - \varphi(Tx)x = 0$. So $1 - (x \otimes \varphi)T$ is not invertible and so $T \notin \text{Rad} \mathscr{A}$ by Proposition 16. \Box

EXAMPLE 19. Suppose that $\mathfrak{X} = c_{00}(\mathbb{N})$, and that \mathfrak{N} is the nest of subspaces of \mathfrak{X} , as defined in Example 13. Then Alg \mathfrak{N} and Alg \mathfrak{N}_{-} can be identified with, respectively, the set of all upper triangular, and the set of all strictly upper triangular, \mathbb{F} -valued matrices. It is a simple exercise in matrix algebra to show that if *T* is any strictly upper triangular matrix, and *A* is upper triangular, then there a strictly upper triangular matrix *B* such that $I + B = (I - AT)^{-1}$. So for this nest Rad $\mathscr{A} = \mathscr{A}_{-}$.

EXAMPLE 20. Suppose that $\mathfrak{X} = c_{00}(\mathbb{N})$, and that $\mathfrak{N}^{\#}$ is the nest of subspaces of \mathfrak{X} , as defined in Example 14. Then Alg \mathfrak{N} can be identified with the set of all lower triangular, column-finite, matrices. That is, $A = (a_{ij})_{(i,j) \in \mathbb{N} \times \mathbb{N}} \in \text{Alg} \mathfrak{N}^{\#}$ if and

790

only if $a_{ij} = 0$ if i < j and for each $j \in \mathbb{N}$, $a_{ij} = 0$ if j is sufficiently large. Similarly, Alg \mathfrak{N}_{-} can be identified with the set of all strictly lower triangular, column-finite, matrices. Let

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix},$$

that is, $T(f(1), f(2), f(3), \dots) = (0, f(1), f(2), f(3), \dots)$ for all $f = (f(k))_{k=1}^{\infty}$. It is easy to check that I - T has no column-finite lower triangular inverse. So for this nest Rad $\mathscr{A} \neq \mathscr{A}_{-}$.

We now seek conditions which are either necessary or sufficient for the equality of the radical Rad \mathscr{A} and the strictly triangular ideal \mathscr{A}_{-} The notion of local nilpotence will be useful.

DEFINITION 21. We say that $T \in \mathscr{L}(\mathfrak{X})$ is nilpotent at $x \in \mathfrak{X}$ if $T^n x = 0$ for sufficiently large *n*. We say that *T* is locally nilpotent if it is nilpotent at each $x \in \mathfrak{X}$.

LEMMA 22. If each $T \in \mathscr{A}_{-}$ is locally nilpotent, then $\operatorname{Rad} \mathscr{A} = \mathscr{A}_{-}$.

Proof. Suppose that $T \in \mathcal{A}_{-}$ and that $A \in \mathcal{A}$. Then $AT \in \mathcal{A}_{-}$ and hence is locally nilpotent by assumption.

Let $S = 1 + \sum_{n=1}^{\infty} (AT)^n$. The sum *S* is well-defined as an operator in $\mathscr{L}(\mathfrak{X})$, because the local nilpotence of *AT* ensures that for each $x \in \mathfrak{X}$ the series $\sum_{n=1}^{\infty} (AT)^n x$ has only finitely many non-zero terms. If $x \in M$ for some $M \in \mathfrak{N}$, it is clear that $Sx \in M$. So $S \in \mathscr{A}$. Furthermore, it is easy to see that S(1 - AT) = (1 - AT)S = 1. So *S* is the inverse of 1 - AT in \mathscr{A} , and hence $T \in \operatorname{Rad} \mathscr{A}$. \Box

LEMMA 23. If \mathfrak{N} is well-ordered then each $T \in \mathscr{A}_{-}$ is locally nilpotent.

Proof. Suppose that $T \in \mathscr{A}_{-}$ is not locally nilpotent. Then there exists $x \in \mathfrak{X}$ such that $T^{n}x \neq 0$ for all $n \in \mathbb{N}$. Since $T \in \mathscr{A}_{-}$, we see that $T^{n+1}x \in \mathfrak{N}(T^{n}x)_{-}$; hence for each $n \in \mathbb{N}$,

$$\mathfrak{N}(T^{n+1}x) \subseteq \mathfrak{N}(T^nx)_- \subset \mathfrak{N}(T^nx).$$

So $\mathfrak{N}(T^n x): n = 1, 2, 3, \cdots$ is a strictly decreasing, infinite sequence of subspaces in \mathfrak{N} , and hence \mathfrak{N} is not well-ordered. \Box

COROLLARY 24. If \mathfrak{N} is well-ordered then $\operatorname{Rad} \mathscr{A} = \mathscr{A}_{-}$.

The following result shows that for dual nests, well-ordering is not essential for the equality of the radical and the strictly triangular ideal.

THEOREM 25. Suppose that \mathfrak{N} is a nest of subspaces of a vector space \mathfrak{X} whose order type is ω , the first infinite ordinal. Then \mathfrak{N}^{\perp} is a nest of subspaces of \mathfrak{X}' , whose order type is anti-isomorphic to ω , and $(\operatorname{Alg} \mathfrak{N}^{\perp})_{-} = \operatorname{Rad}(\operatorname{Alg} \mathfrak{N}^{\perp})$.

Proof. In view of Lemma 15 it is sufficient to show that $\mathscr{A}_{-} = \operatorname{Rad} \mathscr{A}$, where $\mathscr{A} = \operatorname{Alg} \mathfrak{N}^{\perp}$.

Let $\mathcal{M}_0 = \{0\}$, and for each n > 0 let \mathcal{M}_n denote the immediate successor of \mathcal{M}_{n-1} in \mathfrak{N} . Since the order type of \mathfrak{N} is $\omega, \bigcup_{n=1}^{\infty} \mathcal{M}_n = \mathfrak{X}$.

Suppose that $T \in \mathscr{A}_{-}$ and that $\varphi \in \mathscr{M}_{n}^{\perp}$. Then $T\varphi \in \mathfrak{N}^{\perp}(\varphi)_{-} \subset \mathfrak{N}^{\perp}(\varphi) \subseteq \mathscr{M}_{n}^{\perp}$. Since $\mathscr{M}_{n+1}^{\perp}$ is the immediate predecessor of \mathscr{M}_{n}^{\perp} in \mathfrak{N}^{\perp} , it follows that $T\varphi \in \mathscr{M}_{n+1}$, and so $T(\mathscr{M}_{n}^{\perp}) \subseteq \mathscr{M}_{n+1}^{\perp}$.

Suppose that $A \in \mathscr{A}$. Then $AT \in \mathscr{A}_{-}$ and so $AT(\mathscr{M}_{n}^{\perp}) \subseteq \mathscr{M}_{n+1}^{\perp}$ for each $n \ge 0$ and so $(AT)^{n}(\mathfrak{X}') = (AT)^{n}(\mathscr{M}_{0}^{\perp}) \subseteq \mathscr{M}_{n}^{\perp}$ for each $n \ge 0$.

Let $S = 1 + \sum_{n=1}^{\infty} (AT)^n$. The sum *S* is well-defined as an operator in $\mathscr{L}(\mathfrak{X}')$ because, for each $x \in \mathfrak{X}$ and each $\varphi \in \mathfrak{X}'$, the series $\sum_{n=1}^{\infty} ((AT)^n)(\varphi)(x)$ has only finitely many non-zero terms. (To see this note that $x \in \mathscr{M}_{n^\#}$ for some $n^\# \ge 0$, and $((AT)^n \varphi)(x) = 0$ if $n \ge n^\#$.) Furthermore, $S(1 - AT)\varphi(x) = (1 - AT)S\varphi(x) = \varphi(x)$, and so $S = (1 - AT)^{-1}$. Finally, it is easy to check that $S(\mathscr{M}_n^{\perp}) \subseteq \mathscr{M}_n^{\perp}$ for each $n \ge 0$ and so $S \in \mathscr{A}$. Thus $T \in \operatorname{Rad} \mathscr{A}$, and hence $\mathscr{A}_- \subseteq \operatorname{Rad} \mathscr{A}$. It follows from Lemma 18 that $\mathscr{A}_- = \operatorname{Rad} \mathscr{A}$. \Box

4.1. Examples

The nest \mathfrak{N} defined in Example 13 satisfies the conditions of Theorem 25, and so $(\operatorname{Alg} \mathfrak{N}^{\perp})_{-} = \operatorname{Rad}(\operatorname{Alg} \mathfrak{N}^{\perp})$.

Note that \mathfrak{N}^{\perp} is not well-ordered. It does, however, satisfy the ascending chain condition, i.e., each subset of \mathfrak{N}^{\perp} contains a maximal element.

DEFINITION 26. Suppose that \mathfrak{X}_1 and \mathfrak{X}_2 are vector spaces over the same field \mathbb{F} , and that \mathfrak{N}_k is a nest of subspaces of \mathfrak{X}_k for $k \in \{1,2\}$. The ordinal sum $\mathfrak{N}_1 + \mathfrak{N}_2$ is a nest of subspaces of $\mathfrak{X} = \mathfrak{X}_1 \oplus \mathfrak{X}_2$ defined by

$$\mathfrak{N}_1 \dotplus \mathfrak{N}_2 = \{ \mathscr{N}_1 \oplus \{0\} : \mathscr{N}_1 \in \mathfrak{N}_1 \} \cup \{ \mathfrak{X}_1 \oplus \mathscr{N}_2 : \mathscr{N}_2 \in \mathfrak{N}_2 \}$$

Let $\mathscr{A} = \operatorname{Alg}(\mathfrak{N}_1 + \mathfrak{N}_2)$ and let $\mathscr{A}_k = \operatorname{Alg}\mathfrak{N}_k$ for $k \in \{1, 2\}$. Every *T* in $\mathscr{L}(\mathfrak{X})$ has an operator matrix,

$$T = \begin{pmatrix} A_1 & B \\ C & A_2 \end{pmatrix}$$

relative to the decomposition $\mathfrak{X} = \mathfrak{X}_1 \oplus \mathfrak{X}_2$. It is easy to check that

 $T \in \mathscr{A}$ if and only if $A_k \in \mathscr{A}_k$ for $k \in \{1, 2\}$ and C = 0, and (6)

 $T \in \mathscr{A}_{-}$ if and only if $A_k \in (\mathscr{A}_k)_{-}$ for $k \in \{1, 2\}$ and C = 0. (7)

LEMMA 27. With the above notation and C = 0,

$$T \in \operatorname{Rad} \mathscr{A} \text{ if and only if } A_k \in \operatorname{Rad} \mathscr{A}_k \text{ for } k \in 1, 2\}, \text{ and}$$
(8)

Rad
$$\mathscr{A} = \mathscr{A}_{-}$$
 if and only if Rad $\mathscr{A}_{k} = (\mathscr{A}_{k})_{-}$ for $k \in \{1, 2\}$ (9)

Proof. A simple matrix computation shows that if $\begin{pmatrix} D & E \\ 0 & F \end{pmatrix} = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}^{-1}$ if and only if $D = A_1^{-1}$, $F = A_2^{-1}$ and $E = -A_1^{-1}BA_2^{-1}$. So $\begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}^{-1} \in \mathscr{A}$ if and only if $A_1^{-1} \in \mathscr{A}_1$ and $A_2^{-1} \in \mathscr{A}_2$. Statement (8) is now obvious. Statement (9) follows from (7) and (8). \Box

EXAMPLE 28. Let $\mathfrak{X} = \mathfrak{Y} \oplus \mathfrak{X}$, where \mathfrak{Y} is the vector space of all \mathbb{F} -valued sequences and $\mathfrak{X} = c_{00}(\mathbb{N})$. So $\mathfrak{Y} = \mathfrak{X}'$. Let

$$\mathfrak{N}_1 = \{\mathfrak{Y}, M_1^\perp, M_2^\perp, M_3^\perp, \cdots, \{0\}\}$$

where $M_n^{\perp} = \{ \varphi \in \mathfrak{Y} : \operatorname{supp} \varphi \subseteq \{n+1, n+2, n+3, \cdots \}$, as in Example 13, and let

$$\mathfrak{N}_2 = \{\{0\}, (M_1^{\#})^{\perp}, (M_2^{\#})^{\perp}, (M_3^{\#})^{\perp}, \cdots, \mathfrak{X}\}$$

where $(M_n^{\#})^{\perp} = \{ \varphi \in \mathfrak{X} : \operatorname{supp} \varphi \subseteq \{1, 2, \dots, n\} \}$, as in Example 14.

Note that $\mathfrak{N}_1 = \mathfrak{N}^{\perp}$, where \mathfrak{N} is as defined in Example 13, and sine \mathfrak{N} is wellordered with order type ω , it follows from Theorem 25 that $\operatorname{Rad} \mathscr{A}_1 = (\mathscr{A}_1)_-$. Note also that \mathfrak{N}_2 satisfies the descending chain condition, so we know from Corollary 24 $\operatorname{Rad} \mathscr{A}_2 = (\mathscr{A}_2)_-$. So by Lemma 27 $\operatorname{Rad}(\mathfrak{N}_1 + \mathfrak{N}_2) = (\mathfrak{N}_1 + \mathfrak{N}_2)_-$.

But $\mathfrak{N}_1 \neq \mathfrak{N}_2$ satisfies neither the ascending chain condition nor the descending chain condition. Its order type is $1 + \omega^* + \omega + 1$, i.e., the order type of $\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}$, where \mathbb{Z} denote the set of integers, and it contains both strictly decreasing and strictly increasing infinite sequences of subspaces.

Acknowledgement. We with to thank the referee for very careful readings of the manuscript and many very helpful suggestions.

REFERENCES

[1] K. R. DAVIDSON, Nest Algebras, Pitman, Research Notes in Mathematics Series, (1988).

[2] J. A. ERDOS, Operators of finite rank in Nest Algebras, J. London Math. Soc. 43 (1968) 391–397.

[3] I. M. ISAACS, Algebra, a graduate course, (1st ed.), Brooks/Cole Publishing Company (1993).

[4] W. E. LONGSTAFF, Strongly reflexive lattices, Bull. Amer. Math. Soc., 80 (1974) 875-878.

[5] J. R. RINGROSE, On some algebras of operators, Proc. London. Math. Soc., 15 (1965) 61-83.

(Received February 28, 2019)

D. W. Hadwin University of New Hampshire NH, USA

> K. J. Harrison Murdoch University WA, Australia

Operators and Matrices www.ele-math.com oam@ele-math.com