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THE SPECTRUM OF q–CESÀRO MATRICES ON c AND ITS

VARIOUS SPECTRAL DECOMPOSITION FOR 0 < q < 1

NUH DURNA AND MERVE ESRA TÜRKAY

(Communicated by B. Jacob)

Abstract. One of q -analogs of the Cesáro matrix of order one is the triangular matrix with

nonzero entries cnk = qn−k

1+q+···+qn , 0 � k � n , where q ∈ [0,1] . In this article, we will determine
the spectrum of this matrix on the space of convergent sequences c . We will also obtain the fine
spectral decomposition in the sense of Goldberg and a non-discrete spectral decomposition of
the obtained spectrum.

1. Introduction

This section is devoted firstly to make a brief introduction to symbols of q -mathe-
matics and q -Cesàro matrices. The subject of q -mathematics has many applications
in mathematics, and the beginnings of q -mathematics date back to time of Euler. The
q -analogue of the integer n , is defined by

[n]q =
1−qn

1−q
(q �= 1). (1.1)

Then, the q -analog of the factorial, i.e q -factorial, is defined as

[n]q! =

{
q−1
q−1

q2−1
q−1 . . . qn−1

q−1 , n = 1,2, . . . ..

1 , n = 0.
(1.2)

and then q -binomial coefficients are defined as[
n
k

]
q
=

[n]q!
[n− k]q![k]q!

. (1.3)

Note that, as q → 1, the q -binomial coefficients approach the usual binomial coeffi-
cients.
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An ordinary Hausdorff matrix H has the representation H = δ μδ , where μ is the
diagonal matrix with diagonal entries

δnk = (−1)k
[

n
k

]
. (1.4)

The matrix δ is its own inverse.
A q -Hausdorff matrix Hq can be written in the form

Hq = δqμ (δq)
−1 (1.5)

where μ is again the diagonal matrix with entries μk , and

(δq)nk = (−1)k
[

n
k

]
q

(1.6)

For Hq matrices, δq is not its own inverse. However, as is the case for ordinary Haus-
dorff matrices, the row sum of every q -Hasudorff matrix is μ0 .

Cesàro matrix, C1 is defined by

cnk =
{ 1

n+1 , 0 � k � n
0 , k > n

. (1.7)

For 0 < q < 1, C1 (q) , the q -Hausdorff analog of C1 which is the lower triangular
matrix, has nonzero entries

C1 (q) =
qn−k (1−q)

1−qn+1 , 0 � k � n. (1.8)

For q > 1, entries of Cq which is the lower triangular matrix, have nonzero entries

C1 (q) =
qk (q−1)
qn+1−1

, 0 � k � n. (1.9)

Also, if we take the limit for q → 1− in (1.6), then the Cesàro matrix C1 is obtained.
A remarkable production of research involving q -series and q -differences in [28]

has seen in the last thirty years.
Akgün and Rhoades show that the C1 (q) matrices, the q -Hausdorff analogs of the

Cèsaro matrix of order 1, are all equivalent to convergence, and that the same is true of
the q -Hölder matrices in [5].

The Fourier theory containing specific q -analogs of trigonometric functions was
first discussed in [12] and [14]. A complete development of q -Fourier theory should
include a suitable summability theory. An introduction was made to q -Fourier theory
using the q -analog of the Cesàro summability in [13].

Recently, there are many studies on q -analogs of matrix methods such as Cesàro,
Hölder, Euler and Hausdorff methods [5], [13], [42], [10]. There are also new studies
such as q -density and q -statistical convergence [3], [16].
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1.1. The spectrum

Let X and Y be the Banach spaces, and L : X → Y also be a bounded linear
operator. By R(L) , we denote the range of L , i.e.,

R(L) = {y ∈ Y : y = Lx, x ∈ X} .

By B(X) , we also denote the set of all bounded linear operators on X into itself. If X is
any Banach space and L ∈ B(X) then the adjoint L∗ of L is a bounded linear operator
on the dual X∗ of X defined by (L∗ f ) (x) = f (Lx) for all f ∈ X∗ and x ∈ X .

Let L : D(L) → X be a linear operator, defined on D(L) ⊂ X , where D(L) denote
the domain of L and X is a complex normed linear space. For L ∈ B(X) we associate
a complex number α with the operator (αI−L) denoted by Lα defined on the same
domain D(L) , where I is the identity operator. The inverse (αI−L)−1 , denoted by
L−1

α is known as the resolvent operator of L .
A regular value of L is a complex number α of L such that L−1

α exists, is bounded
and, is defined on a set which is dense in X .

The resolvent set of L is the set of all such regular values of L , denoted by
ρ(L,X) . Its complement is given by C \ ρ(L;X) in the complex plane C is called
the spectrum of L , denoted by σ(L,X) . Thus the spectrum σ(L,X) consist of those
values of α ∈ C , for which Lα is not invertible.

The spectrum σ(L,X) is union of three disjoint sets as follows: The point (dis-
crete) spectrum σp(L,X) is the set such that L−1

α does not exist. Further α ∈ σp(L,X)
is called the eigenvalue of L . We say that α ∈ C belongs to the continuous spec-
trum σc(L,X) of L if the resolvent operator L−1

α is defined on a dense subspace of X
and is unbounded. Furthermore, we say that α ∈ C belongs to the residual spectrum
σr(L,X) of L if the resolvent operator L−1

α exists, but its domain of definition (i.e.
the range R(αI −L) of αI −L ) is not dense in X ; in this case L−1

α may be bounded
or unbounded. Together with the point spectrum, these two subspectra form a disjoint
subdivision

σ(L,X) = σp(L,X)∪σc(L,X)∪σr(L,X) (1.10)

of the spectrum of L.

1.2. Subdivision of the spectrum

The spectrum σ(L,X) is partitioned into three sets which are not necessarily dis-
joint as follows:

If there exists a sequence (xn) in X such that ‖xn‖ = 1 and ‖Lxn‖→ 0 as n → ∞
then (xn) is called Weyl sequence for L .

We call the set

σap(L,X) := {α ∈ C : there exists a Weyl sequence for αI−L} (1.11)

as the approximate point spectrum of L . Moreover, the set

σδ (L,X) := {α ∈ σ(L,X) : αI−L is not surjective} (1.12)
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is called defect spectrum of L . Finally, the set

σco(L,X) = {α ∈ C : R(αI−L) �= X} (1.13)

is called compression spectrum in the literature.
The following Proposition is quietly useful for calculating the separation of the

spectrum of linear operator in Banach spaces.

PROPOSITION 1.1. ([4], Proposition 1.3) The spectra and subspectra of an oper-
ator L ∈ B(X) and its adjoint L∗ ∈ B(X∗) are related by the following relations:

(a) σ(L∗,X∗) = σ(L,X) , (b) σc(L∗,X∗) ⊆ σap(L,X) ,
(c) σap(L∗,X∗) = σδ (L,X) , (d) σδ (L∗,X∗) = σap(L,X) ,
(e) σp(L∗,X∗) = σco(L,X) , (f) σco(L∗,X∗) ⊇ σp(L,X) ,
(g) σ(L,X) = σap(L,X)∪σp(L∗,X∗) = σp(L,X)∪σap(L∗,X∗) .

1.3. Goldberg’s classification of spectrum

If T ∈ B(X) , then there are three cases for R(T ) :
(I ) R(T ) = X , (II ) R(T ) = X , but R(T ) �= X , (III ) R(T ) �= X and three cases

for T−1 :
(1) T−1 exists and continuous, (2) T−1 exists but discontinuous, (3) T−1 does

not exist.
If these cases are combined in all possible ways, nine different states are created.

These are labelled by: I1 , I2 , I3 , II1 , II2 , II3 , III1 , III2 , III3 (see [29]).
σ(L,X) can be divided into subdivisions I2σ(L,X)= /0 , I3σ(L,X) , II2σ(L,X) ,

II3σ(L,X) , III1σ(L,X) , III2σ(L,X) , III3σ(L,X) . For example, if T = αI−L
is in a given state, III2 (say), then we write α ∈ III2σ(L,X) .

By the definitions given above, we can write following table

1 2 3
L−1

α exists L−1
α exists L−1

α
and is bounded and is unbounded does not exists

α ∈ σp(L,X)
I R(αI−L) = X α ∈ ρ(L,X) – α ∈ σap(L,X)

α ∈ σc(L,X) α ∈ σp(L,X)
II R(αI−L) = X α ∈ ρ(L,X) α ∈ σap(L,X) α ∈ σap(L,X)

α ∈ σδ (L,X) α ∈ σδ (L,X)
α ∈ σr(L,X) α ∈ σr(L,X) α ∈ σp(L,X)

III R(αI−L) �= X α ∈ σδ (L,X) α ∈ σap(L,X) α ∈ σap(L,X)
α ∈ σδ (L,X) α ∈ σδ (L,X)

α ∈ σco(L,X) α ∈ σco(L,X) α ∈ σco(L,X)
Table 1: Subdivision of the spectrum

The spectrum of matrix transformations on sequence spaces has also been found
by various authors in [11], [15], [37].
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The discrete spectral decomposition of the spectrum of bounded linear operators
(in the sense of Goldberg classification or residual, point and continuous spectra) has
been made by many authors to this day in [1], [24], [26], [27], [30], [31], [32], [34],
[35], [38], [39], [40], [41], [43], [46], [49]. Durna and Yildirim gave the table above
in [19] and [20]. After this date, many authors have used this table to perform spectral
decomposition of the spectrum of bounded linear operators (in terms of approximate
point spectrum, defect spectrum and compression spectrum) in [2], [6], [7], [8], [9],
[17], [18], [21], [22], [23], [25], [33], [44], [45], [47] and [48].

2. Generalized

In this section, boundedness, spectra, fine spectra and various spectral separations
of spectrum of C1 (q) = (ank (q)) on the sequence space c have been determined.

The following theorem gives us necessary and sufficient condition to have a bounded
linear transformation of an infinite matrix A = (ank) on c .

THEOREM 2.1. (Kojima-Schur (Maddox [36, p. 166])) A = (ank) ∈ B(c) if and
only if i) ‖A‖= supn ∑k |ank|< ∞ and ii) for each p∈N there exists limn→∞ ∑∞

k=p ank =
ap .

Let us now show that the q -analog of the Cesàro operator has a bounded linear
transformation on c :

LEMMA 2.2. C1 (q) ∈ B(c) and ‖C1 (q)‖ = 1 .

Proof. For each k

lim
n→∞

∞
∑

k=p
cnk = lim

n→∞

n
∑

k=p

qn−k

1+q+···+qn

= lim
n→∞

1
1+q+···+qn

n
∑

k=p
qn−k

= limn→∞

1−qn−p+1

1−q

1−qn+1

1−q

=

{(
1
q

)p
,q > 1

1 ,0 < q < 1

and

‖C1 (q)‖ = sup
n

∞
∑

k=0
|cnk| = supn

{
1

1+q+···+qn

n
∑

k=0
qn−k

}
= 1.

From the above statements and Theorem 2.1, the desired result is obtained. �

It can be easily seen that there are two different matrices for states 0 < q < 1 and
q > 1.
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Throughout this article we will cover the matrix obtained with case 0 < q < 1, the
matrix obtained with case q > 1 can be further studied in another study.

We need the following Lemma:

LEMMA 2.3. [50, p. 267] If T : c → c is a linear transformation and T ∗ :
�1 → �1 , T ∗g = g ◦T , g ∈ c∗ ∼= �1 , then T and T ∗ have matrix representations, also
T ∗ : �1 → �1 is given by

T ∗ = A∗ =
(

χ (limA) (ϑn)
∞
n=0

(ak)
∞
k=0 At

)

=

⎛
⎜⎜⎜⎜⎜⎝

χ (limA) ϑ0 ϑ1 ϑ2 · · ·
a0 a00 a10 a20 · · ·
a1 a01 a11 a21 · · ·
a2 a02 a12 a22 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where
ak = lim

n
ank

χ (A) = limAe−
∞

∑
k=0

limAek = lim
n ∑

k

ank −∑
k

lim
n

ank

ϑn = χ (Pn ◦T ) = (Pn ◦T )e−∑
k

ank,

ank = Pn (T (ek)) = (T (ek))n .

If 0 < q < 1, then one can get the following result from the above lemma for
q -Cesàro matrix.

Making use of the relations given above and Lemma 2.3, we easily arrive at the
following Lemma:

LEMMA 2.4. The adjoint of C1 (q) on c is given by

C∗
1 (q) =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0
0
...

Ct
1 (q)

⎞
⎟⎟⎟⎠ . (2.1)

Proof. Since 0 < q < 1, we have

ck = lim
n

cnk = lim
n→∞

qn−k (1−q)
1−qn+1 = q−k (1−q) lim

n→∞

qn

1−qn+1 = 0

and

n

∑
k=0

cnk =
(1−q)
1−qn+1

n

∑
k=0

qn−k =
(1−q)
1−qn+1

n

∑
k=0

qk =
(1−q)
1−qn+1

1−qn+1

(1−q)
= 1.
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Hence
χ (C1 (q)) = lim

n ∑
k

cnk −∑
k

lim
n

cnk = 1.

Also, since

(Pn ◦C1 (q))e =

{
n

∑
k=0

cnkxk

}
x=e

=
n

∑
k=0

cnk = 1,

we have

ϑn = (Pn ◦C1 (q))e−
n

∑
k=0

cnk = 1−1 = 0

Hence, by Lemma 2.3, we have

C∗
1 (q) =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0
0
...

Ct
1 (q)

⎞
⎟⎟⎟⎠ .

This proves Lemma. �
In the following theorems, let’s calculate σp (C1 (q) ,c) , σp (C∗

1 (q) , �1) , σ (C1 (q) ,c)
and σr (C1 (q) ,c) , respectively.

THEOREM 2.5. σp (C1 (q) ,c) = {1} .

Proof. Let σp (C1 (q) ,c) �= /0 . Then, in this case there is 0 �= x ∈ c, such that
C1 (q)x = αx. Hence

x0 = αx0
1

1+q
(qx0 + x1) = αx1

1
1+q+q2

(
q2x0 +qx1 + x2

)
= αx2

...
1

1+q+q2+ · · ·+qn

(
qnx0 +qn−1x1 + · · ·+qxn−1 + xn

)
= αxn

...

the above equalities are obtained. If xm, m � 1 is the first component that is different
from zero of sequence (xn) = x , then

α =
1

1+q+ · · ·+qm

is obtained. Furthermore, the statement

xm+1 =
1+q+ · · ·+qm

qm xm
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is provided. Similarly we obtain

xm+2 =
(1+q+···+qm)(1+q+···+qm+1)

q2m(1+q) xm,

xm+3 =
(1+q+···+qm)(1+q+···+qm+1)(1+q+···+qm+2)

q3m(1+q)(1+q+q2) xm,

xm+4 =
(1+q+···+qm)(1+q+···+qm+1)(1+q+···+qm+2)(1+q+···+qm+3)

q4m(1+q)(1+q+q2)(1+q+q2+q3) xm.

If we continue in this way then we have

xn =
(1+q+ · · ·+qm)

(
1+q+ · · ·+qm+1

) · · ·(1+q+ · · ·+qn−1
)

q(n−m)m (1+q)(1+q+q2) · · · (1+q+ · · ·+qn−m−1)
(2.2)

is obtained for n > m with 0 < q < 1, so qm > qn . Thereby for n > m , 1−qm < 1−qn

and so 1−qn

1−qm > 1. In that case, from (2.2)

xn =
1−qm+1

1−q
1−qm+2

1−q · · · 1−qn

1−q

q(n−m)m 1−q2

1−q
1−q3

1−q · · · 1−qn−m

1−q

=

(
1−qm+1

)(
1−qm+2

) · · · (1−qn)
(1−q2)(1−q3) · · ·(1−qn−m)

1

q(n−m)m

=
1−qm+1

1−q
1−qm+2

1−q2 · · · 1−qn

1−qn−m

1−q

q(n−m)m

� 1−q

q(n−m)m → ∞, n → ∞.

That is, x = (xn) /∈ c . Also, for α = 1, C1 (q)x = αx with x = (1,1,1, . . .) ∈ c . This
indicates that σp (C1 (q) ,c) = {1} . �

THEOREM 2.6. σp (C∗
1 (q) , �1) =

{
α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

}
∪{1} .

Proof. Let x �= 0 and C∗
1 (q)x = αx .

Then, the below equalities are obtained

x0 = αx0

x1 +
q

1+q
x2 +

q2

1+q+q2x3 +
q3

1+q+q2+q3 x4 + · · · = αx1

1
1+q

x2 +
q

1+q+q2x3 +
q2

1+q+q2+q3 x4 + · · · = αx2

...
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Thus

xn =
x1

qn

n

∏
k=1

(
1− 1−q

1−qk

1
α

)
, n = 2,3, . . . .

Suppose α ∈
{

1,
1

1+q
,

1
1+q+q2 , . . .

}
.

If α = 1, then x = (x0,x1,0, . . .) �= 0 and C∗
1 (q)x = x are obtained so 1∈σp(C∗

1(q),
�1) .

If α =
1

1+q
, then x = (x0,x1,−x1,0,0, . . .) �= 0 and C∗

1 (q)x =
1

1+q
x so

1
1+q

∈
σp (C∗

1 (q) , �1) .

If α =
1

1+q+q2 , then x = (x0,x1,−(1+q)x1,qx1,0,0, . . .) �= 0 and C∗
1 (q)x =

1
1+q+q2x hence

1
1+q+q2 ∈ σp (C∗

1 (q) , �1) .

In a similar way,

{
1

1+q+q2+q3 ,
1

1+q+q2 +q3 +q4 , . . .

}
⊂ σp (C∗

1 (q) , �1) is

obtained. Is there any eigenvalues other than

{
1,

1
1+q

,
1

1+q+q2 , . . .

}
?

Now, let us accept α /∈
{

1,
1

1+q
,

1
1+q+q2 , . . .

}
. By the ratio test

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣= lim
n→∞

1
q

∣∣∣∣1− 1−q
1−qn+1

1
α

∣∣∣∣= 1
q

∣∣∣∣1− 1−q
α

∣∣∣∣
is obtained. Move from here

1
q

∣∣∣∣1− 1−q
α

∣∣∣∣< 1 ⇔
∣∣∣∣1− 1−q

α

∣∣∣∣< q

Take α = λ + iμ in the above equation we get

⇔
∣∣∣∣1− 1−q

λ 2 + μ2 λ +
1−q

λ 2 + μ2 μ i

∣∣∣∣< q

⇔ 1− 2(1−q)
λ 2 + μ2 λ +

(1−q)2

λ 2 + μ2 < q2

⇔ 1−q2 < (1−q)
(

2λ
λ 2 + μ2 −

1−q
λ 2 + μ2

)

⇔ 1+q <
2λ

λ 2 + μ2 −
1−q

λ 2 + μ2

⇔ λ 2 + μ2 <
2λ

1+q
− 1−q

1+q

⇔
(

λ − 1
1+q

)2

+ μ2 <
1

(1+q)2
− 1−q

1+q
=

q2

(1+q)2
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⇔
∣∣∣∣α − 1

1+q

∣∣∣∣< q
1+q

has the same meaning. So from ratio test, if

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

then σp (C∗
1 (q) , �1) ={

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

}
∪{1} with xn ∈ �1 is obtained. �

σ (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣� q
1+q

}

0.5 1.0

-1

1

x

y

0.5 1.0

-1

1

x

y

0.5 1.0

-1

1

x

y

0.5 1.0

-1

1

x

y

q = 0.99 q = 0.5 q = 0.1 q = 0.05

Table 2: Spectrum of q-Cesàro matrices

THEOREM 2.7. σ (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣� q
1+q

}
.

Proof. We will show the proof of Theorem by showing that complex numbers α

with

∣∣∣∣α − 1
1+q

∣∣∣∣> q
1+q

are present in ρ (C1 (q) ,c) . From Theorem 2.5, αI−C1 (q)

is one to one. Let us now show that (αI−C1 (q))−1 ∈ B(c) for complex numbers α

with

∣∣∣∣α − 1
1+q

∣∣∣∣> q
1+q

.

From the equality (αI−C1 (q))x = y ,

xn =
1

α − 1
1+q+ . . .+qn

yn +
1

1+q+ . . .+qn

n−1

∑
k=0

yk

q
1

α2

n

∏
i=k

αq

α − 1
1+q+ . . .+qn

is obtained. Now we have to find the value of

lim
n→∞

xn

= lim
n→∞

⎡
⎢⎢⎣ 1

α − 1
1+q+ . . .+qn

yn +
1

1+q+ . . .+qn

n−1

∑
k=0

yk

q
1

α2

n

∏
i=k

αq

α − 1
1+q+ . . .+qi

⎤
⎥⎥⎦

= lim
n→∞

1

α − 1
1+q+ . . .+qn

yn + lim
n→∞

1
1+q+ . . .+qn

n−1

∑
k=0

yk

q
1

α2

n

∏
i=k

αq

α − 1−q
1−qi+1
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=
�

α +q−1
+ lim

n→∞

1−q
1−qn+1

n−1

∑
k=0

yk

q
1

α2

n

∏
i=k

αq

α − 1−q
1−qi+1

=
�

α +q−1
+ lim

n→∞
αn−1 1−q

1−qn+1

n−1

∑
k=0

yk

n

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

(αq)k(
1
q

)n

where � = lim
n→∞

yn for yn ∈ c .

Let an =
n
∑

k=0

yk

n

∏
i=k

1−q
1−q−α(1−qi+1)

qk and bn =
(

1
q

)n
. That is; let

xn =
an

bn
. (2.3)

So, since

an+1−an =
n

∑
k=0

yk

n+1

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

(αq)k −
n−1

∑
k=0

yk

n

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

(αq)k

=
yn

(
1−qn+1

)
α (1−qn+1)− (1−q)

(
1−qn+2

)
α (1−qn+2)− (1−q)

(αq)n

+
n−1
∑

k=0

(
1−qn+2

)
α (1−qn+2)− (1−q)

yk

n

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

qk

−
n−1

∑
k=0

yk

n

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

(αq)k

=
yn

(
1−qn+1

)
α (1−qn+1)− (1−q)

(
1−qn+2

)
α (1−qn+2)− (1−q)

(αq)n

+
n−1
∑

k=0

⎡
⎣

(
1−qn+2

)
α (1−qn+2)− (1−q)

−1

⎤
⎦yk

n

∏
i=k

(
1−qi+1

)
α (1−qi+1)− (1−q)

qk

=
yn

(
1−qn+1

)
α (1−qn+1)− (1−q)

(
1−qn+2

)
α (1−qn+2)− (1−q)

(αq)n

+
(1−α)

(
1−qn+2

)
+(1−q)

α (1−qn+2)− (1−q)
an
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we get

an+1−an

bn+1−bn

=

yn

(
1−qn+1

)
α (1−qn+1)− (1−q)

(
1−qn+2

)
α (1−qn+2)− (1−q)

(αq)n +
(1−α)

(
1−qn+2

)
+(1−q)

α (1−qn+2)− (1−q)
an

1
qn+1 − 1

qn

=
yn+1

1−q−α (1−qn+2)
+

q
1−q

[
α
(
1−qn+2

)
1−q−α (1−qn+2)

]
an

bn
. (2.4)

From (bn) increasing and Stolz theorem, lim
n→∞

an+1−an

bn+1−bn
= lim

n→∞

an

bn
is valid. Let’s ap-

prove lim
n→∞

an

bn
= L . Also, lim

n→∞
yn = � with y ∈ c . In (2.4), if we switch to the limit for

n → ∞

L =
�

1−q−α
+

q
1−q

[
α

1−q−α

]
L

is obtained. Because of the fact that α �= 1−q and α �= (1−q)2 for complex numbers

α with

∣∣∣∣α − 1
1+q

∣∣∣∣> q
1+q

L =
(1−q)�

(1−q)2 −α

is given. In (2.4), if we switch to the limit for n → ∞

lim
n→∞

xn = lim
n→∞

an

bn
=

(1−q)�

(1−q)2 −α

is valid. So, for complex numbers α with

∣∣∣∣α − 1
1+q

∣∣∣∣ > q
1+q

, x = (xn) ∈ c is ob-

tained. Now let’s find ‖xn‖c . Since y ∈ c , ‖xn‖c is bounded. Hence, for each k ∈ N ,
|yk| � M with M > 0. Also,

∣∣∣∣α − 1
1+q

∣∣∣∣> q
1+q

⇔ 1
|α (1+q)−1| <

1
q

⇔
∣∣∣∣ (1−q)q
α (1−qi+1)− (1−q)

∣∣∣∣< 1

the above is the equivalent

∣∣∣∣ (1−q)q
α (1−qi+1)− (1−q)

∣∣∣∣= pi with 0 < pi < 1. If, we choose
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p :=
n

max
k=0

pk , then

‖xn‖c0
= supn |xn| = supn

∣∣∣∣∣
n

∑
k=0

yk

q

n

∏
i=k

(1−q)q
α (1−qi+1)− (1−q)

∣∣∣∣∣
� M

q
supn

n

∑
k=0

n

∏
i=k

∣∣∣∣ (1−q)q
α (1−qi+1)− (1−q)

∣∣∣∣
� M

q
supn

n

∑
k=0

n

∏
i=k

∣∣∣∣ (1−q)q
α (1−qi+1)− (1−q)

∣∣∣∣
� M

q
supn

n

∑
k=0

n

∏
i=k

p =
M
q

sup
n

n

∑
k=0

pn−k+1

� Mp
(1−p)q supn

(
1− pn+1

)
=

Mp
q

is obtained so (αI−C1 (q))−1 ∈ B(c) . Consequently from equality σ (C1 (q) ,c) =
C\ρ (C1 (q) ,c) , the proof is completed. �

REMARK 2.8. As shown in Table 1, σ (C1 (q1) ,c) ⊂ σ (C1 (q2) ,c) is valid for
0 < q1 < q2 < 1. Also

lim
q→1−

σ (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
2

∣∣∣∣� 1
2

}

is valid and this is equal to the set of σ (C1,c) from [37]. Moreover, let’s note that
lim

q→0+
σ (C1 (q) ,c) = {1} . So the spectrum collapses for q → 0+ .

THEOREM 2.9. σr (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

}
∪{1} .

Proof. Since σr(C1 (q) ,c) = σp(C∗
1 (q) , �1)\σp(C1 (q) ,c) , Theorems 2.5 and 2.6

give us required result. �
Next, we appoint the two parts III3σ (C1 (q) ,c) and III2σ (C1 (q) ,c) ; it gives

a finer subdivision of the spectrum. For this, we need the following lemmas.

LEMMA 2.10. (Golberg [29, p. 60]) T has a bounded inverse if and only if T ∗ is
onto.

LEMMA 2.11. ([29], Theorem II 3.7) A linear operator T has a dense range if
and only if the adjoint operator T ∗ is one to one.

THEOREM 2.12. III2σ (C1 (q) ,c) =
{

1
1+q

,
1

1+q+q2 , . . .

}
.
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Proof. From Theorem 2.9,

{
1

1+q
,

1
1+q+q2 , . . .

}
⊆ σr (C1 (q) ,c) is valid and

it is clearly known that

{
1

1+q
,

1
1+q+q2 , . . .

}
⊆ III , where III is in Table1.

Now we have to show whether this cluster belongs to (1) or (2). For this we will
use the Lemma 2.10.

For every y ∈ �1, is there x ∈ �1 such that (C1 (q)−αI)∗ x = y?

Let (C1 (q)−αI)∗ x = y . In this case

(1−α)x0 = y0

(1−α)x1 +
q

1+q
x2 +

q2

1+q+q2x3 +
q3

1+q+q2+q3 x4 + · · · = y1

(
1

1+q
−α

)
x2 +

q
1+q+q2x3 +

q2

1+q+q2+q3 x4 + · · · = y2

...

is obtained. If we take xn from this equation system,

x0 = 1
1−α y0

x2 =
1

qα
[(α −1)x1 + y1−qy2]

x3 =
1

qα

[
1

αq
(α −1)

(
α − 1

1+q

)
x1 +

1
αq

(
α − 1

1+q

)
y1 +

1
α (1+q)

y1 −qy2

]

x4 =
1

qα

[
1

(αq)2 (α −1)
(

α − 1
1+q

)(
α − 1

1+q+q2

)
x1

+
1

(αq)2

(
α − 1

1+q

)(
α − 1

1+q+q2

)
y1

+
1

αq

(
α − 1

1+q+q2

)
1

α (1+q)
y2

+
(

1− 1
α

(
α − 1

1+q+q2

))
y2 −qy3

]
...
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are obtained. So, for x0 = 1
1−α y0 and n = 1,2, . . .

xn+1 =
x1

(qα)n

n

∏
v=0

(
α − 1

v
∑

k=0
qk

)
+

y1

(qα)n

n

∏
v=1

(
α − 1

v
∑

k=0
qk

)

+
n

∑
i=1+1

1

α
i

∑
k=0

qk

yi

(qα)n−1

n

∏
v=i+1

(
α − 1

v
∑

k=0
qk

)
− 1

α
yn+1

(2.5)

is obtained. If α ∈
{

1
1+q

,
1

1+q+q2 , . . .

}
, then xn+1 = − 1

α yn+1 with x ∈ �1 . This

means that the operator (C1 (q)−αI)∗ is onto. So, from Lemma 2.10, when

α ∈
{

1
1+q

,
1

1+q+q2 , . . .

}
,

C1 (q)−αI has bounded inverse and so{
1

1+q
,

1
1+q+q2 , . . .

}
⊆ (2)σ (C1 (q) ,c)

is obtained, where (2) is n , Table 1.
Let us accept

α /∈
{

1
1+q

,
1

1+q+q2 , . . .

}
.

In this case, considering that y ∈ �1 from (2.5), sequence of (xn) is convergent if and
only if infinite product

∞

∏
v=0

(
α − 1

v
∑

k=0
qk

)

is convergent. The limit of the general term of this product is as follows

lim
v→∞

(
α − 1

v
∑

k=0
qk

)
= α − 1

1
1−q

= α −1+q

with α − 1+ q �= 1, that is, if α �= 2− q then the infinite product becomes divergent.
Hence, if α �= 2−q , then x /∈ c and so also x /∈ �1 . This is, when

α /∈
{

1
1+q

,
1

1+q+q2 , . . .

}
∪{2−q},

it means that (C1 (q)−αI)∗ is not onto operator. So from Lemma 2.10, when

α /∈
{

1
1+q

,
1

1+q+q2 , . . .

}
∪{2−q},



810 N. DURNA AND M. E. TÜRKAY

C1 (q)−αI has not bounded inverse. Thus,{
1

1+q
,

1
1+q+q2 , . . .

}
⊆ (2)σ (C1 (q) ,c) ⊆

{
1

1+q
,

1
1+q+q2 , . . .

}
∪{2−q}

is obtained. Finally, let’s accept that α = 2− q . From (2.5), the first component of
sequence (xn) which is

x1

(q(2−q))n

n

∏
v=0

(
α − 1

v
∑

k=0
qk

)
,

infinite product, even if bounded, must be
1

(q(2−q))n → ∞ . However, we know that

0 < q < 1, so 0 < q(2−q) < 1 is valid. Hence, (q(2−q))n → 0 that happens if
α = 2−q, x /∈ c and so also x /∈ �1 . Hence, when α = 2−q , it means that the operator
of (C1 (q)−αI)∗ is not onto. Thus, from Lemma 2.10, when α = 2− q , C1 (q)−αI
has not bounded inverse. Thus

III2σ (C1 (q) ,c) =
{

1
1+q

,
1

1+q+q2 , . . .

}

is obtained. �

COROLLARY 2.13.

III1σ (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

}
\
{

1
1+q

,
1

1+q+q2 , . . .

}
.

Proof. Since σr(C1 (q) ,c)= III1σ (C1 (q) ,c)∪III2σ (C1 (q) ,c) , Theorems 2.9
and 2.12 give us required result. �

THEOREM 2.14. III3σ (C1 (q) ,c) = {1} .

Proof. Since {1} = σp (C1 (q) ,c) = I3σ (C1 (q) ,c) ∪ II3σ (C1 (q) ,c) ∪
III3σ (C1 (q) ,c) from Table 1 and Theorem 2.5, III3σ (C1 (q) ,c) ⊆ {1} . Also,
from (2.5), we know that

ker(C1 (q)− I)∗ = {(x0,x1,0,0, . . .) : x0,x1 ∈ R} �= {(0,0, . . .)} ,

so this means that the operator of (C1 (q)− I)∗ is not one to one. From Lemma 2.11, the
operator of C1 (q)−αI does not have intense image. Consequently, III3σ (C1 (q) ,c)
= {1} is obtained. �

COROLLARY 2.15. I3σ (C1 (q) ,c) = II3σ (C1 (q) ,c) = /0.
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Proof. Since

σp (C1 (q) ,c) = I3σ (C1 (q) ,c)∪II3σ (C1 (q) ,c)∪III3σ (C1 (q) ,c)

from Table 1, the required result is obtained from Theorems 2.5 and 2.14. �
In the theorems below, σc, σap , σδ , σco spectrum types of C1 (q) spectral oper-

ator on c will be examined in order.

THEOREM 2.16. σc (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣= q
1+q

}
\ {1} .

Proof. Since σc (C1 (q) ,c) = σ (C1 (q) ,c) \ [σr (C1 (q) ,c)∪σp (C1 (q) ,c)] from
Table 1, the required result is obtained from Theorems 2.5, 2.7 ve 2.9. �

THEOREM 2.17. The following statements are hold

(a)σap (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣= q
1+q

}
∪
{

1
1+q

,
1

1+q+q2 , . . .

}
,

(b) σδ (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣� q
1+q

}
,

(c) σco (C1 (q) ,c) =
{

α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣< q
1+q

}
∪{1} .

Proof. (a) Since

σap (C1 (q) ,c) = σ (C1 (q) ,c)\III1σ (C1 (q) ,c)

from Table 1, give us required result Theorem 2.7 and Corollary 2.13.
(b) Since

σδ (C1 (q) ,c) = σ (C1 (q) ,c)\I1σ (C1 (q) ,c)

from Table 1, give us required result Theorem 2.7 and Corollary 2.15.
(c) Since

σco (C1 (q) ,c) = σr (C1 (q) ,c)∪III3σ (C1 (q) ,c)

from Table 1, give us required result Theorem 2.9 and Corollary 2.15. �

COROLLARY 2.18. (a) σap (C∗
1 (q) , �1) =

{
α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣� q
1+q

}
,

(b) σδ (C∗
1 (q) , �1)=

{
α ∈ C :

∣∣∣∣α − 1
1+q

∣∣∣∣= q
1+q

}
∪
{

1,
1

1+q
,

1
1+q+q2 , . . .

}
.

Proof. Using Proposition 1.1 (c) and (d), we have

σap(C∗
1 (q) , �1) = σδ (C1 (q) ,c)

and
σδ (C∗

1 (q) , �1) = σap(C1 (q) ,c).

Using Theorem 2.17 (a) and (b) we get the required results. �
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[6] F. BAŞAR, N. DURNA AND M. YILDIRIM, Subdivisions of the spectra for genarilized difference
operator Δν on the sequence space �1 , AIP Conf. Proc. 1309, (2010), 254–260.
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[9] F. BAŞAR, N. DURNA AND M. YILDIRIM, Subdivision of the spectra for difference operator over
certain sequence space, Malays. J. Math. Sci. 6, (2012), 151–165.

[10] Ş. BEKAR, q-Matrix Summability Methods, Eastern Mediterranean University, Ph. D. Dissertation,
2010.

[11] D. W. BOYD, The spectrum of the Cesaro operator, Acta Sci. Math. 29, (1968), 31–34.
[12] J. BUSTOZ AND J. L. CARDOSO, Basic Analog of Fourier Series on a q-Linear Grid, J. Approx.

Theory 112, (2001), 134–157.
[13] J. BUSTOZ, L. GORDILLO AND F. LUIS, q-Hausdorff summability, J. Comput. Anal. Appl. 7, 1

(2005), 135–48.
[14] J. BUSTOZ AND S. K. SUSLOV, Basic Analog of Fourier Series on a q-Quadratic Grid, Methods

Appl. Anal. 4, (1998), 1–38.
[15] J. M. CARDLIDGE, Weighted Mean Matrices as operator on �p , Indiana University, Ph. D. Thesis

1978.
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[48] M. YILDIRIM, M. MURSALEEN AND Ç. DOĞAN, The Spectrum and fine spectrum of generalized
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