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ESSENTIAL NORM OF WEIGHTED COMPOSITION
FOLLOWED AND PROCEEDED BY DIFFERENTIATION
OPERATOR FROM BLOCH-TYPE INTO BERS-TYPE SPACES

HAMID VAEZI AND MOHAMAD NAGHLISAR*

(Communicated by G. Misra)

Abstract. We consider the weighted composition followed and proceeded by differentiation op-
erator DCyD from Bloch-type space BY into Bers-type space HE’. First, we give necessary
and sufficient conditions for boundedness and compactness of this operator. Then, we obtain the
essential norm estimate of such an operator in terms of x and ¢@.

1. Introduction

Denote by H(D) the space of all analytic functions on open unit disc D in the
complex plane. An analytic function f on D belongs to the Bloch-type space B*,
(0 < o <o) if

[1/113e = sup(L—[w*)*|f ()] < .
weD

The norm || f|| = ||f||s= + |f(0)| makes B* into a Banach space.
Let B§ be the subspace of B* which consisting of all f € B* satisfying

(1= w)*|f' (w)| =0 as  |w|— L.

This space is called the little Bloch-type space.
The Bers-type space Hy is the space of all f € H (D), (0 < B < o) such that

11l = sup(1— WP | (w)]| <o
weD

Let HEO be the subspace of Hl‘;" which consisting of all f € HBO satisfying

(1= [wP)P|f(w)| =0 as  |w|— L

This space is called the little Bers-type space.
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Given a function u € H(ID) and a nonconstant analytic self-map ¢ on D, we de-
fine a linear operator Cg on H(DD) by Cg(f) =u-(fop) =u-f(¢). If u =1, then,
Cy is called the composition operator. For more information about these operators,
see [2, 16]. In 2013, S. Yamaji [19] considered composition operators on the Bergman
spaces. The weighted composition operators acting on various spaces of analytic func-
tions has been studied by many authors. For example, C,, was studied by Sh. Ohno,
K. Stroethoff and R. Zhao in [12], where they have studied the boundedness and com-
pactness of Cy between Bloch-type spaces. X.-C. Guo and Z.-H. Zhou provide new
characterizations for the boundedness and compactness of the weighted composition
operator from Zygmund-type spaces to Bloch-type spaces in [3]. M. Hassanlou, H.
Vaezi and M. Wang in [4] characterized the bounded and the compact weighted com-
poition operators on weak vector-valued Bergman spaces and Hardy spaces. For more
results in this context we refer to [1, 6, 14, 22].

The weighted composition followed by differentiation operator DCy, is defined by

DCy(f) = (u-f(@)) =u'-f(@) +u-f(p) ¢,

where Cg and D are weighted composition and differentiation operators respectively.
The operator DC,, was first studied by R. A. Hibschweiler and N. Portnoy in [5],
where the boundedess and compactness of DC, between Hardy and Bergman spaces
are investigated. S. Li and S. Stevic in [7] characterized the boundedness and compact-
ness of DC,, between Bloch-type spaces.
We define a linear operator CzD on H(D) by

CoD(f) =u-(f'og) =u-f'(g).

This operator is called weighted composition proceeded by differentation operator. The
operator CyD between Hardy spaces was studied in [11] by S. Ohno. J. S. Man-
has and R. Zhao in [10] characterized the boundedness and compactness of C(‘,‘,D be-
tween weighted Banach spaces of analytic functions and weighted Zygmund spaces or
weighted Bloch spaces.

We define a linear operator DC,D on H(D) by

DCiDf =DChf' =u' - f'(@) +u-f'(9)-¢.

We called this operator, weighted composition followed and proceeded by differenti-
ation operator. Boundedness and compactness of the operator DCy,D from Zygmund
spaces to Bloch-type spaces were described by J. Long, C. Qiu and P. Wu in [8].
Recall that the essential norm ||T||, of a bounded operator T between Banach
spaces X and Y is defined as the distance from T to the compact operators, that is

[|T||e = inf{||T — K|| : K is compact}.

Notic that ||T'||. = 0 if and only if T is compact. The essential norm of the composition
operator on Bloch spases was studied by A. Montes-Rodriguez in [13]. R. Zhao in [20]
give estimates for the essential norms of the composition operators between Bloch-type
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spaces. Essential norms of the weighted composition operators between Bloch-type
spaces are investigated by B. D. Macculuer and R. Zhao in [9]. In [17], S. Stevic,
estimate essential norms of the weighted composition operators from Bloch-type spaces
to a weighted-type space on the unit ball, and A. H. Sanatpour and M. Hassanlou in [15]
were proved the lower and upper bound of the essential norms of weighted composition
operators between Zygmund-type spaces and Bloch-type spaces.

In this article we characterize the boundedness and compactness of DCy,D : B% —
Hp in section 2, and boundedness and compactness of this operator from Bf into HE:O
in section 3. Finally we give lower and upper bounds for the essential norm of the
operator DCgD : B* — Hp in section 4.

We denote the constants by C which will differ from one appearance to the an-
other. If there exists a positive constant C such that A < CB then, we write A < B. If
A =X B and B < A we denote by A ~ B.

2. Boundedness and compactness of DCy,D : B* — HE’

The boundedness and compactness criteria for the operator DCyD : B% — Hl‘;’ will
be given in this section.

THEOREM 1. For a fixed u € H(D), ¢ an analytic self-map on D and o and P
positive real numbers, the operator DCyD : B% — HE’ is bounded if and only if

(1= [w[2)B [ (w)]
ey (1= |p(w)P)*

< oo (1)

and

(1= [w2)B[u(w)]| @ (w)]
v (1= ]@(w)P)ot

< oo, 2)

Proof. First, we prove sufficiency. For a function f € B*,
(1= [w»P|DCyDf (W) = (1—|w*)F|DCy £ (w)]
< (1= WPl w)lIf (@(w)))]
(1= WP luw)lIf" (@(w))] @' (w)]
(1= )Pl (w)l
T—Toempy /e
(1= wP)Plu(w)[|¢'(w)|
(1= lp(w)[2)ot!
= C||fll5e-

We have used the following characterization of Bloch-type functions (see [7, Theorem
1] and [21, Proposition 8]):

sup(1—[w[?)*|f'(w)| ~ £ (0)] + Slel%(l — (W) (w)l,

weD

1f1]5e
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in the last inequality.
Using conditions (1) and (2) it follows that the operator DCZ,D :B% — HE’ is
bounded. Now, suppose that DCyD : B* — HE’ is bounded. Taking f(w) = w and

f(w) = w? respectively, we obtain

sup (1 — [w[*)P i (w)| < o 3)

weD

and
sup (1 — [w|)P 26 (W) p(w) + 2u(w) @' (w)| < oo,

weD

Using these facts and the boundedness of the function ¢@(w), we have
sup (1 — [w[*)P [u(w)l|g' ()] < eo. )
weD

For fixed w, € D, consider the function f, defined by

£y = QD@D lowo)?) alet D1-low))? o
(1 =wo(w,))* (1= we(w,))o+!

for w € D. Then,

_a(a+1)(a+2)0wo) (1~ [e(wo)[*) e+ 1)*0(wo) (1 —[9(wo)[*)

— )

(1= we(w,))**! (1—=we(w,))*+2

for w € D. Hence,

oo+ 1)(a+2)(1—[(wo)*) | alo+1)*(1—[g(wo)*)?
(1= |we(w,)|)*+! (1= we(wo)])*+2

o+ 1)(a+2)(1—[e(wo)*) | alo+1)*(1—[p(wo)*)?

S (L= wh( = (wo)]) (1= w)*(1=[p(wo)])?

c 20(a+D(at2) 2Pa(a+1)?  2a(a+1)(3o+4)

S (= wpe (1—whe (1 —[w[)*
2a+3a(a+1)2

S (=)

[fow)| <

for all w € D. So, it follows that f, € B*. We also have

a0+ 1)2(a+2)p0wo) (1—|o(w,)P)
(1 =wo(w,))**?
a2 (et 2)90w) (1 |p(w,) P>
(1 - W(P(W()))a+3

o (w) =

~—
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for w € D. It can be shown that

a(a+1)e(w,)

T Jomgpe 24 Jo(00w)=0.

folo(wo)) =
Then, for w, € D,

o(o+ 1)|@(wo)|(1 = [wol*)P i (wo )|
(1= lp(wo)[?)*

= (1—|wo )P |(DCYDS,) ()]
< [DCoDfolly < Cllfollpe < oo
Since, w, is arbitrary, hence, for any w € D,

@)1 — [wP)P|u' (w)]
(1=lo(w)[)*

Forany &, 0 < 8 < 1, by (6), we have

< oo,

(L= [Pl ow)|
s (—lptmP) =

For w € D, such that |@(w)| < &,

(L= Pl o)l _ (1= [wP)Pud (w)]
I=lpw)P* = (1-8%)

From (3) and (8), it follows that

(1= [w[2)BJ (w)]
Su < oo,
ot (L lo(w)P)

Hence, (7) and (9) implies that

(1= w2)B [ (w)]
v (1= e(w)P)e

< oo,

Therefore, (1) holds.
Now, for fixed w, € D consider the function g, defined by

go(w) = =100 P)2  (et D1~ o))
(1 —=we(w,))*t! (1 —weo(w,))® ’

for w € D. Then,

gh(w) = oo+ 1)p(w,) (1 — |(P(W())‘2)2 - oo+ 1) e(wy)(1— |(p(w(,)\2)

(1—we(w,))+2 (1 — wg(wy)) @+

857

(6)

(7

®)

€))

(10)
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for w € D. Hence,
a(a+ 1) (1=[ew,)[*)?*  alo+1)(1—|p(wo))

80 S Tl @ Ow))Z T (1= W1~ p0wo)]
2Z2a(a+1) 2a(a+1)  2°Fa(a+1)
STowhe T a-e S - wp)e
for all w € D. So, it follows that g, € B*. We also have
a0+ 1)(a+2)90m,) (1— |o(w,) )
))a+3
1_‘(P(W0)‘ )
(I_W(P( ()))a+2

g (w) =

)

for w € D. It can be shown that

(o +1)g(w,)
(1= lg(wo) )T

2(@(w,)) =0 and gy ((w,)) =

Then, for w, € D,

oo+ 1)[@(wo) [2(1 = ol )P [u(wo) || (wo)| = (1—|w |2)ﬁ|(DC”Dg )(wo)
o (0] o o

(1= To(u) )

< HDCZ)DgOHHE < Cllgol|pe < oo

Since, w, is arbitrary, hence, for any w € D,

9 (w)I* (1= [w*)P lu(w)[| 9" (w)]

< oo
(I—|p(w)[2)ott
Forany 6, 0< 8 < 1,by (11), we have
1— 2\ !
wp (L=l )] _

owy=s (1= |@(w)[)o+!
For w € D such that |p(w)| < 8,
(L= PP luw) @' )] _ (1= )P |u(w)[|@' (w)]
(I=lp(w)Pyott = (1—62)t! '
From (4) and (13), it follows that
(L= )P lu(w)||¢’ (w)]

sup < oo
o< (L= |pw)2)ot!
Hence, (12) and (14) implies that
1— 2\ /
sy L= PP OOl )] _

web (1= |@(w)[?)*+!

(1)

(12)

13)

(14)

This show that the condition (2) holds and the proof of the theorem is completed. []
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THEOREM 2. For a fixed u € H(D), ¢ an analytic self-map on D and o and B
positive real numbers, if DCyD : B* — HE’ is bounded, then, it is compact if and only

if
(1= WPl (w)]

li =0 15
oot (1 [p(w) )@ ()
and
_ 2\ /
L (PPl )] 6

lpow)[—1 (1 —[@(w)[?)o+!

Proof. Since, DCZ‘,D :B* — HBO is bounded, from Theorem 1 (relations (3) and
(4)), we have

L=sup(l—[wP)Plu/(w)| <o and M =sup(1—w*)P[u(w)]|@/ ()| < o.
weD weD

Now, suppose that (15) and (16) are true. Then, for every € > 0, there exists a 6 €
(0,1), such that

(1= PPl w)| e
T~ [o(mP)* =2 a7
and
(1= WP Pluw)lle' )] _ e
I JemPert <2 (19

whenever 6 < |p(w)| < 1.

To prove the compactness of DC,D, assume that ( fk) ey 18 @ bounded sequence

in B*, such that ||f||p« < 1 and converges to zero uniformly on compact subsets of
D. From Weak Convergence Theorem in [16, Section 2.4, Page 29] it is sufficient to
show that HDC(’;,kaHHE —0.

If |@(w)| > &, then, by (17) and (18),

IDCyDfil 1z = sup(1—[w*)P [DCyDfi(w)]
B weD

< sup(L— )Pl ()1 fi (@ (w))

weD
+s1§[))(1 — w2 lu(w)ll" W)L (@(w))]
(1= [wP)Plud (w)]
\\ig% (1—|p(w)P)e |[fi]| e

(1= [w2)P Ju(w)]|¢/ ()
T T U= jpwR)e

€ €
< §\|fk\|Ba+§\|fk\|Ba = &||fil|p= <&,

|
|1kl
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in which we have used the following relation between the first and second derivative of
f:
sup (1 — [w|)*|f (w)] ~ | f'(0)| + Sug(l — W) ().

we

weD

Now, consider the case |@(w)| < 6,
IDCDfillrs < Sug(l — PP 1 )| £ (@ (w))]
we
+ Sug(l — WP luw)lI A (9 (w))lle' (w)]
we

<L omax [fi(@w)|+M max |f(¢(w))].
lp(w)[<6 lp(w)[<d
So, HDC(L;)kaHHE —0.
Now, we are going to prove that (15) and (16) are also necessary conditions for
compactness of DCyD.
Suppose that (wy), . is a sequence in I such that [@(w,)| — 1 as k — oo. Con-
sider the functions f; defined by

fi(w) = (a+ 1)(a+2)(;\(p(wk)|2) B a(a+1)(1— |(P(Wk)\2)2
(1= wo(wi))® (1—wo(wy)) o+

for w e D. Clearly f; — O uniformly on compact subsets of ID. Since,

aa+1)(o+2)p(wi) (1~ [9(wi)*)

fit) = (1~ wp(w)) !
_afe+ 120 (L= lp(w))?
(1= w(w))e+2
and
1) — 2ot D20+ 2)00n) (1= o))

(1—wo(we))+2
oot DX+ 2)p0m) (1 [@(w) P>
(1—wo(we)e+3

for w € DD, hence, it can be shown that,

203 oo+ 1)?

‘flé(w)‘ < (1—|W|2)a

So, the (|| /||« )ren is uniformly bounded. It is clear that,

oo+ 1) (wi)

T Jomgpe 24 f(@tw))=0.

filo(wy)) =
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Since, DCyD is compact, it follows that, HDC(”/‘,D il He = 0. Hence,

oo+ 1) [@(we) (1 = [wel)P [’ (i)
(1= lo(we)[*)

= (1= [wi[»PIDCy D fic(wi)|
< HDCf;kaHHE-
So,
(1 — |wi )P [’ (wy)|
(1= |o(wi)[>)

Thus, the condition (15) holds.
Next, consider the functions g; defined by

2e(w) = a(l—lewdl?)*  (e+1)(1—|pwil*)
(1—=wo(w))*+! (1 =we(wi))*

for w € D. Clearly gx — 0 uniformly on compact subsets of ID. Since,

—0 as k— oo,

o) = oo+ l)w(W& PO 2?  ale+ Dol (1= lpOw) 2
' (I —wo(w;))*+2 (1— we(wy))®+!

and

oo+ 1) (04 2)p(we) (1~ |@(wi) )’ _ oot 20w (1 - lp(w) )
(1= we(wg))*+3 (1—=we(we))*+2

for w € D, hence, it can be shown that,

g(w) =

, 293 g(a + 1)
09 < = pormy

So, the (||gk||ge )ren is uniformly bounded. It is clear that,

a(a+ Do)
T Jo(we)B)orT

Since, DCyD is compact, then, HDC(L/‘,ngH H = 0. Hence,

g(ew)) =0 and  g{(p(wi)) = (

o(oc+1)|@(wi) P(L— [we*)Plu(wi) [ @' (we)|
(1=l (wi)[?) !

= (1= |w[?)P |DCoDgi(wr)|
< HDCZ)ngHHEW
So,

(1= Jwi )P lu(wi) || @' ()|

(1=[@(we) )t
Thus, the condition (16) holds and the proof is completed. []

—0 as k— oo,
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3. Boundedness and compactness of DCy,D : B§ — H[;O

The boundedness and compactness criteria for the operator DCyD : B§ — HE’O
will be given in this section.

THEOREM 3. For a fixed u € H(D), ¢ an analytic self-map on D and o and
B positive real numbers, the operator DCyD : B§ — Hﬁ o is bounded if and only if

DCyD : B* — HE’ is bounded and v',u¢p’ € H 13 0
Proof. Suppose that DCy,D maps B boundedly into H ﬁ o- First, taking f(w) =
w € B¢, since DC” Df belongs to H ﬁ 0> We obtain

’r_ u oo
u = DCq)Dw € Hﬁﬂ,

S0,

m — W ﬁu = U.
lll_d(l WPl (w)] =0

Next, taking f(w) = w? € B¥, we obtain

|vlvi|131(l — [w*)P 26 (w)p(w) + 2u(w)@’ ()| = 0.
Thus,
lim (1~ [w] )P u(w)||¢"(w)] =0,

[w]—
then, u¢’ € H[";O. For fixed w, € I, the functions defined in (5) and (10) are in fact
in Bg‘, so, the proof of Theorem 1 shows that, if DC:,‘,D maps B bundedly into H ﬁ 0’
then,
(1= w[»P | (w)]

sup < oo
wen  (1=[@(w)[?)

sy (L= PP ) ')
wen  (1=lo(w)[?)oH!
Thus, again from Theorem 1, DC(’Z,D :B% — HE’ is bounded.
Conversely, suppose that u and ¢ are such that u’,u¢p’ € H 13 o and DCyD : B* —
HE’ is bounded. We will show that DC,D : B§ — HE:O is bounded. We only need to
prove that DCyDf € Hg' , forany f € B%.
Since, DCZ‘,D : B% — HZ is bounded then, Theorem 1 shows that

B
(1= [wP)Plu (w)]
ey (= Jp(w)P)e

and

< oo

=C

and

(1= PPl (w)]
S T T ) I R



ESSENTIAL NORM 863

Let f € BY, then, there exists 0 € (0,1), such that

[

€

(1= lomw)P)*|f (p(w))| < 7 as 6 <|pw)| <1
and e
(1= low)P)* " (@(w)] < 2 as 6 <[p(w)| <L

We consider two cases, 8 < [@(w)| < 1 and |p(w)| < 5.
First, consider & < |@(w)| < 1. Then,
(1= wPPIDCyDf(w)] = (1= |w[*)PIDCyf' (w)]

< (L= WPl w)[If (9(w))]
+(1= WP uw)[1 7" (@(w)llg’ (w)]

PO o o

= ST (L= lotnP)If (o)
L= WP lu(w)ll¢’ (w)]

(1= p(w)[?)or!

(1= lo))* " (@(w))]

So, DCyDf € H[";O. Next, consider |@(w)| < &. Then,
(1= wHPIDCEDf (W) < (1= |w)Plu/ (w)[|f ((w))

|
(L= wl)Plu(w)lLf" (@ w)llg" (w)]

(o(
(1= [wP)Blu(w)||¢ (w)]
' (1—|ow)?)et! || f]|pe

< (et

(1 )P () ! (w)] e

( 1— 52)a+1 :
Taking the limit from both sides of the above inequality, since #',u¢’ € Hg . so,
lim (1— |w|?)P|DC4Df(w)| =0.
[wl—1
Thus, it follows from the Closed Graph Theorem that, DCy, D maps B boundedly into
HZ,. O
B.0

Next, we characterize the compactness of DCyD : B§ — HE’O. For this purpose
we need the following Lemma.

LEMMA 1. [18, Lemma 2.1] Let B > 0. A closed set K in HE’O is compact if
and only if it is bounded and satisfies '
lim sup(1 — |w|*)P|(w)| = 0.

fek

[w—1
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THEOREM 4. For a fixed u € H(D), @ an analytic self-map on D and o and B
positive real numbers, if DCyD : B§ — IO;-O is bounded, then, it is compact if and only

if
(1= |w[?)P|u (w)]

li =0 19
W T Tp(mP)e )

and

(= PPl )]
N P T e R

Proof. Assume that (19) and (20) are true, then, we prove that DC(”/‘,D :Bf — HBOO
is compact. Suppose that f € B is such that |[f||ge < 1, then,

(1= WP IDCDIW)] < (1— (w2l () (o)
(1= P ) |0 () L ()
(1~ )P )]
S T lpmmpe Ml
L (1 PPl ()
SCE

(20)

|1l
Thus,

sup{(1—w[*)PIDCyDf(w)| : f € BE,||flpe < 1}

(1= WP 0)] (1= wP)Pluw)] ¢ ()
ST-lemP® T U-lemP)eT

It follows that

lim sup{(1— pwf2)? [DCGDF ()] - € B, | Fllw < 1) =0,

s0, by Lemma 1, DC@D : Bf — Hy , is compact.
Conversely, suppose that DC, D is compact, then, the set

{DCZ)Df:fGBOvaHB“\ }

has compact closure in HE’O and with using Lemma 1,

‘li‘ml sup{(1 — [w*)PIDCyDf (w)| : f € BE, ||fl[p= < C} =0, 2n
w|—

for some C > 0. If (21) is satisfied, then, it followes by the proof of the Theorem 1
and the fact that the functions given in (5) and (10) are in Bg‘ and have norms bounded
independently of w, that (19) and (20) are true and the proof of the theorem is com-
pleted. [

Putting u = 1, theorems 1 and 2, implies the following corollaries about the bound-
edness and compactness of the operator DC,D : B* — Hl‘;’.
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COROLLARY 1. For an analytic self-map @ on D and o and B positive real
numbers, the operator DCyD : B* — HE’ is bounded if and only if

(1= W) o/ ()]
e = TpwPerT =7

COROLLARY 2. For an analytic self-map @ on D and o and B positive real
numbers. If DCyD : B* — HBO is bounded, then, it is compact if and only if

e =Pl ()

—0.
lp(w)[—1 (1 —[@(w)[?)o+!

4. Essential norm of DC(‘;,D :B% — Hl‘;’

The essential norm estimate of the operator DCyD : B% — Hl‘;" will be given in
this section. We begin with the following two Lemmas.

LEMMA 2. [20, Lemma 2.2] Let o >0, n € N, 0<x <1 and Hyq(x) =
X" 1(1 —x?)*. Then, Hy o has the following properties.

(1)
1, as n=1
H, =H, (1) = -~ nl
012;2‘1 a(x) () ( 20 >0¢< n—1 )2 as n>2
n—14+2a n—14+2a
where
0, as n=1
I'n = n—1 %
_— > 2.
(n—1—|—2a> P

(ii) For n> 1, H, ¢ is increasing on [0, r,) and decreasing on [ry,1].
(iii) For n > 1, Hy o is decreasing on [ry,ry+1] and so,
(n—1)

20 o n 2
in Hiol) =Hieln) = (752) (7750)
i a(x) a(rng1) 20) \nr2a

Consequently,
200\«
limn%* min H,W(x):(—) :

n—eo  x€[rp,rpt1] e

We need the following Lemma to obtain the upper estimates of essential norm. For
re (0,1), let K.f(w) = f(rw). Then, K, is a compact operator on the space B* (or
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B{) for any positive number o (see for example [6, 9, 20]), with ||K;|| < 1. Indeed,
K, f(w) = f(rw) implies that

K| = sup [IKfll = sup (sup (1= [wf*)"|rf' () |+ K £ (O)])
[IflI<1 I£]|<1 weD

< sup (sup (1= [rw’) £ (rw) r+ £(0)])
Ifll<1 web

< sup ||f]| =1
lIFlI<t

LEMMA 3. [20, Lemma 4.1] Let 0 < o < 1. Then, there is a sequence {r},
n

1
0 < ry <1, tending to 1, such that the compact operator L,, = — E K, on Bf satisfies
n
k=1

(i) Forany 1€ (0,1), lim sup sup |((I—Ly)f) (w)|=0.

| Fllpe < wl<s

(ii) lim sup sup|(I—L,)f(w)|=0.

1% ||| go <1 weD

(iii) limsup||[I —Ly|| < 1.
n—soo

THEOREM 5. For a fixed u € H(D), ¢ an analytic self-map on D, o and B
positive real numbers with 0 < oo < 1 and DCg’f)D :B* — HE’ is bounded, then,

- u(w)[|@’ (w)|(1 — |w]?)P
DCyD||, =1lim sup .
PGPl =l s = Tolw) et

Proof. We first give the lower estimate. Let n € N, consider the function w", by
Lemma 2,

n—1

20 « n—1 T
n n—1 2\o
HW HB gleaﬁ n|w| ( ‘W‘ ) n n—142a n—142o

where the maximum is attained at any point on the circle with radius

( n—1 )%
m=—m—)".
n—14+2a

1
. Then, ||fy||p« = — and f,, — 0 weakly in B*. This follows
n

1

Let fn(W) = nHW}’ZHBa

since a bounded sequence contained in Bf which tends to O uniformly on compact
subsets of D converges weakly to 0 in B%. In particular, if K is any compact operator
from B” to Hj, then, limn_mHKanHEo =0.
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Let A, ={weD:

rn < |w| < ryp1}- Then,
. (= 1)|w|" 2

1 1—Iwl2)® = (n 1 — w2\
gvglAri\fn(W)l( Iwl|%) e (I—=1wl%)
_(n—l)(n—l—i—Za)a( n )”—5—2<n—1+2a>”—5—1
o n n+2a n+22o n—1

Simple calculation shows that this minimum tends to 1 as n — . For any compact
operator K from B to H7,

IDCyD — 1| > lim sup||(DCAD — K) f g

Thus, for DC”D B% — HY

'B b
IDCyD|e > hmsupHDC(’;DanHw

> lim sup||DCyD ful| -
n—oo B

> limsup sup (1 — |w| )ﬁ|DC”Dfn( )|

n—oo  wel)

L — [wl2)B
> tim sup Ju(w)|'(w)] — D)

—~ V17 (1= w o+l .y W
"% o(w)eAn (1—|¢(W)\2)0‘+1(1 lew)I")" 1S (@(w))]
—lim sup [ (w)|(1 = )P £ ((w))].

P(w)EA,

We know that ' € H, then, for 0 < o < 1

lim  sup [ (w)|(1 = [w])P| £ (@(w))]

o(w)ea,

< |lu'l| g lim o [fa(@(w))]

An

n—1

< nZ) 2
_ - n+2o
|M|Hﬁnlﬂ}f}°( 2a >a< n—1 )%
n
n—14+2a n—14+2a
=0.

When oo = 1, we have

lim sup |’ (w)|(1 = [w*)P| £ (9(w))| < C lim
n~>oo(P( n—

sup (1= [(w)")*|f1(0(w))|
w)EA,

“o(w)ed,

C

< = lim sup (1—|p(w)*)*=0.
2 n=> 4 (w)eAn

Therefore, for 0 < o < 1,

—wl2)B
IDCADIL > lim sup [u(w)] g (w)] —— L
e o(w)€A, (1 - ‘(p(W)| )

x min (1= |ow)P) " £ (ew))],
o(w)eA,
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where the minimum is attained at anypoint on the circle with radius r, 1| . Because

lim sup  min (1—|o(w))* 15 (@(w)] =1,

=% 0 (w)Edn o(w)eA,

we get

IDC4DIL. > lim sup |M(W)|\<P/(W)|(1—\W|2)ﬁ.
Lo (L=[@(w)[?)*+!

Now, we are going to give the upper estimate. Let {L,} be the sequence of operators
given in Lemma 3. Since each L, is compact as an operator from B* to B, DCyDL, :
B* — HE’ is also compact and we have

IDCGDle < |[DCGD — DCyDLy|| = [[DCGD(I — Ly )|
= sup HDCZ,D(I—L,,)fHHE

Ilfllper <1

< supsuplu/ (w)||((1 = La)f) (@(w)|(1 — [w]*)P
[lfllper <t weD

+sup supu(w)||((I—La) £)" (9(w))]@" (w)| (1 = wl*)P,
[lfllper <t weD

using Lemma 3,

sup sup [u'(w)|| (I = La)f)' (@(w))| (1 = [w]*)P = 0.

[1fllpe <1 weD

Now, we need only consider the term

sup sup [u(w)||((1 = Lu).£)" (9 (w)) 1@ (w)| (1 = [w]*)P .

[1f1por <TweD

For arbitrary 0 < ¢ < 1, consider

sup sup fu(w)|(1 = [w)P|((=La)f)" (@(w))l@ ()] 22)

f 1o <ToOw)[<t

and

sup sup [u(w)|(1 = W) (7= La))" (@(w))]9' (w)]. (23)

[[£1lgoe <L[@(w)[>t
Since, DC“D is bounded from BY into Hﬁ , by Theorem 1,

sy (L PP u0) ')

< oo,
web (1= @(w)[?)*+!

Hence,
sul?D(l — WP u(w)]|@ (w)] < .
we
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Thus, from (22) and using Cauchy’s estimate in proof of Lemma 3,

sup sup [u(w)|(1= WP [((T=La)f)" (o(w))[|@'(w)| =0.  (24)

[1£]]go <1 (w)|<t
From (23),
sup sup Ju(w)|(1— [wP)P|((Z=La)f)" (@(w))ll¢ (w)]
[1£]]go <T@ (w)|>
(1= w)Ple'(w)|
< | —Lyl| sup |u(w .
W= tall sup WO oyt
Thus, by (iii) of Lemma 3,

limsup sup  sup (1-— |w|2)ﬁ|((I—L,,)f)/((P(W))HQD/(Wﬂ

n=ee || fllgoe <tg(w)[>1

(1 ‘W|2)ﬁ‘(/)/(w)|
< su . 25
|(P(SW)I|)>t‘u(W)| (1 |(P(W)|2)a+l )

By using (24) and (25) as n — o, we obtain

[u(w)[lg’ (w)](1 — [w])P
L=low)P)ert

IDCLDIl < sup
o> (

Since, ¢t was arbitrary, so,

Ju(w)[[ @ (w)| (1 — w]*)P
. :

||IDCe DIl < lim  sup
¢ —lp(w)?)e+!

=g (

The proof of the theorem is completed. [J
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