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ESSENTIAL NORM OF WEIGHTED COMPOSITION
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OPERATOR FROM BLOCH–TYPE INTO BERS–TYPE SPACES

HAMID VAEZI AND MOHAMAD NAGHLISAR ∗

(Communicated by G. Misra)

Abstract. We consider the weighted composition followed and proceeded by differentiation op-
erator DCu

ϕD from Bloch-type space Bα into Bers-type space H∞
β . First, we give necessary

and sufficient conditions for boundedness and compactness of this operator. Then, we obtain the
essential norm estimate of such an operator in terms of u and ϕ .

1. Introduction

Denote by H(D) the space of all analytic functions on open unit disc D in the
complex plane. An analytic function f on D belongs to the Bloch-type space Bα ,
(0 < α < ∞) if

|| f ||Bα = sup
w∈D

(1−|w|2)α | f ′(w)| < ∞.

The norm || f || = || f ||Bα + | f (0)| makes Bα into a Banach space.
Let Bα

0 be the subspace of Bα which consisting of all f ∈ Bα satisfying

(1−|w|2)α | f ′(w)| → 0 as |w| → 1.

This space is called the little Bloch-type space.
The Bers-type space H∞

β is the space of all f ∈ H(D) , (0 < β < ∞) such that

|| f ||H∞
β

= sup
w∈D

(1−|w|2)β | f (w)| < ∞.

Let H∞
β ,0 be the subspace of H∞

β which consisting of all f ∈ H∞
β satisfying

(1−|w|2)β | f (w)| → 0 as |w| → 1.

This space is called the little Bers-type space.
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Given a function u ∈ H(D) and a nonconstant analytic self-map ϕ on D , we de-
fine a linear operator Cu

ϕ on H(D) by Cu
ϕ( f ) = u · ( f oϕ) = u · f (ϕ) . If u ≡ 1, then,

Cϕ is called the composition operator. For more information about these operators,
see [2, 16]. In 2013, S. Yamaji [19] considered composition operators on the Bergman
spaces. The weighted composition operators acting on various spaces of analytic func-
tions has been studied by many authors. For example, Cu

ϕ was studied by Sh. Ohno,
K. Stroethoff and R. Zhao in [12], where they have studied the boundedness and com-
pactness of Cu

ϕ between Bloch-type spaces. X.-C. Guo and Z.-H. Zhou provide new
characterizations for the boundedness and compactness of the weighted composition
operator from Zygmund-type spaces to Bloch-type spaces in [3]. M. Hassanlou, H.
Vaezi and M. Wang in [4] characterized the bounded and the compact weighted com-
poition operators on weak vector-valued Bergman spaces and Hardy spaces. For more
results in this context we refer to [1, 6, 14, 22].

The weighted composition followed by differentiation operator DCu
ϕ is defined by

DCu
ϕ( f ) = (u · f (ϕ))′ = u′ · f (ϕ)+u · f ′(ϕ) ·ϕ ′,

where Cu
ϕ and D are weighted composition and differentiation operators respectively.

The operator DCϕ was first studied by R. A. Hibschweiler and N. Portnoy in [5],
where the boundedess and compactness of DCϕ between Hardy and Bergman spaces
are investigated. S. Li and S. Stevic in [7] characterized the boundedness and compact-
ness of DCϕ between Bloch-type spaces.

We define a linear operator Cu
ϕD on H(D) by

Cu
ϕD( f ) = u · ( f ′oϕ) = u · f ′(ϕ).

This operator is called weighted composition proceeded by differentation operator. The
operator CϕD between Hardy spaces was studied in [11] by S. Ohno. J. S. Man-
has and R. Zhao in [10] characterized the boundedness and compactness of Cu

ϕD be-
tween weighted Banach spaces of analytic functions and weighted Zygmund spaces or
weighted Bloch spaces.

We define a linear operator DCu
ϕD on H(D) by

DCu
ϕDf = DCu

ϕ f ′ = u′ · f ′(ϕ)+u · f ′′(ϕ) ·ϕ ′.

We called this operator, weighted composition followed and proceeded by differenti-
ation operator. Boundedness and compactness of the operator DCu

ϕD from Zygmund
spaces to Bloch-type spaces were described by J. Long, C. Qiu and P. Wu in [8].

Recall that the essential norm ||T ||e of a bounded operator T between Banach
spaces X and Y is defined as the distance from T to the compact operators, that is

||T ||e = inf{||T −K|| : K is compact}.

Notic that ||T ||e = 0 if and only if T is compact. The essential norm of the composition
operator on Bloch spases was studied by A. Montes-Rodriguez in [13]. R. Zhao in [20]
give estimates for the essential norms of the composition operators between Bloch-type
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spaces. Essential norms of the weighted composition operators between Bloch-type
spaces are investigated by B. D. Macculuer and R. Zhao in [9]. In [17], S. Stevic,
estimate essential norms of the weighted composition operators from Bloch-type spaces
to a weighted-type space on the unit ball, and A. H. Sanatpour and M. Hassanlou in [15]
were proved the lower and upper bound of the essential norms of weighted composition
operators between Zygmund-type spaces and Bloch-type spaces.

In this article we characterize the boundedness and compactness of DCu
ϕD : Bα →

H∞
β in section 2, and boundedness and compactness of this operator from Bα

0 into H∞
β ,0

in section 3. Finally we give lower and upper bounds for the essential norm of the
operator DCu

ϕD : Bα → H∞
β in section 4.

We denote the constants by C which will differ from one appearance to the an-
other. If there exists a positive constant C such that A � CB then, we write A � B . If
A � B and B � A we denote by A ∼ B .

2. Boundedness and compactness of DCu
ϕD : Bα → H∞

β

The boundedness and compactness criteria for the operator DCu
ϕD : Bα →H∞

β will
be given in this section.

THEOREM 1. For a fixed u ∈ H(D) , ϕ an analytic self-map on D and α and β
positive real numbers, the operator DCu

ϕD : Bα → H∞
β is bounded if and only if

sup
w∈D

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞ (1)

and

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞. (2)

Proof. First, we prove sufficiency. For a function f ∈ Bα ,

(1−|w|2)β |DCu
ϕDf (w)| = (1−|w|2)β |DCu

ϕ f ′(w)|
� (1−|w|2)β |u′(w)|| f ′(ϕ(w))|

+(1−|w|2)β |u(w)|| f ′′(ϕ(w))||ϕ ′(w)|

� (1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α || f ||Bα

+
(1−|w|2)β |u(w)||ϕ ′(w)|

(1−|ϕ(w)|2)α+1 || f ||Bα

= C|| f ||Bα .

We have used the following characterization of Bloch-type functions (see [7, Theorem
1] and [21, Proposition 8]):

sup
w∈D

(1−|w|2)α | f ′(w)| ∼ | f ′(0)|+ sup
w∈D

(1−|w|2)α+1| f ′′(w)|,
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in the last inequality.
Using conditions (1) and (2) it follows that the operator DCu

ϕD : Bα → H∞
β is

bounded. Now, suppose that DCu
ϕD : Bα → H∞

β is bounded. Taking f (w) = w and

f (w) = w2 respectively, we obtain

sup
w∈D

(1−|w|2)β |u′(w)| < ∞ (3)

and
sup
w∈D

(1−|w|2)β |2u′(w)ϕ(w)+2u(w)ϕ ′(w)| < ∞.

Using these facts and the boundedness of the function ϕ(w) , we have

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)| < ∞. (4)

For fixed wo ∈ D , consider the function fo defined by

fo(w) =
(α +1)(α +2)(1−|ϕ(wo)|2)

(1−wϕ(wo))α
− α(α +1)(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+1
, (5)

for w ∈ D . Then,

f ′o(w) =
α(α +1)(α +2)ϕ(wo)(1−|ϕ(wo)|2)

(1−wϕ(wo))α+1
− α(α +1)2ϕ(wo)(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+2
,

for w ∈ D . Hence,

| f ′o(w)| � α(α +1)(α +2)(1−|ϕ(wo)|2)
(1−|wϕ(wo)|)α+1

+
α(α +1)2(1−|ϕ(wo)|2)2

(1−|wϕ(wo)|)α+2

� α(α +1)(α +2)(1−|ϕ(wo)|2)
(1−|w|)α(1−|ϕ(wo)|) +

α(α +1)2(1−|ϕ(wo)|2)2

(1−|w|)α(1−|ϕ(wo)|)2

� 2α(α +1)(α +2)
(1−|w|)α +

22α(α +1)2

(1−|w|)α =
2α(α +1)(3α +4)

(1−|w|)α

� 2α+3α(α +1)2

(1−|w|2)α ,

for all w ∈ D . So, it follows that fo ∈ Bα . We also have

f ′′o (w) =
α(α +1)2(α +2)ϕ(wo)

2
(1−|ϕ(wo)|2)

(1−wϕ(wo))α+2

−α(α +1)2(α +2)ϕ(wo)
2
(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+3
,
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for w ∈ D . It can be shown that

f ′o(ϕ(wo)) =
α(α +1)ϕ(wo)
(1−|ϕ(wo)|2)α and f ′′o (ϕ(wo)) = 0.

Then, for wo ∈ D ,

α(α +1)|ϕ(wo)|(1−|wo|2)β |u′(wo)|
(1−|ϕ(wo)|2)α = (1−|wo|2)β |(DCu

ϕDfo)(wo)|
� ||DCu

ϕDfo||H∞
β

� C|| fo||Bα < ∞.

Since, wo is arbitrary, hence, for any w ∈ D ,

|ϕ(w)|(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞. (6)

For any δ , 0 < δ < 1, by (6), we have

sup
|ϕ(w)>δ

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞. (7)

For w ∈ D , such that |ϕ(w)| � δ ,

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α � (1−|w|2)β |u′(w)|

(1− δ 2)α . (8)

From (3) and (8), it follows that

sup
|ϕ(w)�δ

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞. (9)

Hence, (7) and (9) implies that

sup
w∈D

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞.

Therefore, (1) holds.
Now, for fixed wo ∈ D consider the function go defined by

go(w) =
α(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+1
− (α +1)(1−|ϕ(wo)|2)

(1−wϕ(wo))α
, (10)

for w ∈ D . Then,

g′o(w) =
α(α +1)ϕ(wo)(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+2
− α(α +1)ϕ(wo)(1−|ϕ(wo)|2)

(1−wϕ(wo))α+1
,
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for w ∈ D . Hence,

|g′o(w)| � α(α +1)(1−|ϕ(wo)|2)2

(1−|w|)α(1−|ϕ(wo)|)2 +
α(α +1)(1−|ϕ(wo)|2)
(1−|w|)α(1−|ϕ(wo)|)

� 22α(α +1)
(1−|w|)α +

2α(α +1)
(1−|w|)α � 2α+3α(α +1)

(1−|w|2)α ,

for all w ∈ D . So, it follows that go ∈ Bα . We also have

g′′o(w) =
α(α +1)(α +2)ϕ(wo)

2
(1−|ϕ(wo)|2)2

(1−wϕ(wo))α+3

−α(α +1)2ϕ(wo)
2
(1−|ϕ(wo)|2)

(1−wϕ(wo))α+2
,

for w ∈ D . It can be shown that

g′o(ϕ(wo)) = 0 and g′′o(ϕ(wo)) =
α(α +1)ϕ(wo)

2

(1−|ϕ(wo)|2)α+1 .

Then, for wo ∈ D ,

α(α +1)|ϕ(wo)|2(1−|wo|2)β |u(wo)||ϕ ′(wo)|
(1−|ϕ(wo)|2)α+1 = (1−|wo|2)β |(DCu

ϕDgo)(wo)|
� ||DCu

ϕDgo||H∞
β

� C||go||Bα < ∞.

Since, wo is arbitrary, hence, for any w ∈ D ,

|ϕ(w)|2(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞. (11)

For any δ , 0 < δ < 1, by (11), we have

sup
|ϕ(w)>δ

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞. (12)

For w ∈ D such that |ϕ(w)| � δ ,

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 � (1−|w|2)β |u(w)||ϕ ′(w)|

(1− δ 2)α+1 . (13)

From (4) and (13), it follows that

sup
|ϕ(w)�δ

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞. (14)

Hence, (12) and (14) implies that

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞.

This show that the condition (2) holds and the proof of the theorem is completed. �
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THEOREM 2. For a fixed u ∈ H(D) , ϕ an analytic self-map on D and α and β
positive real numbers, if DCu

ϕD : Bα → H∞
β is bounded, then, it is compact if and only

if

lim
|ϕ(w)|→1

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α = 0 (15)

and

lim
|ϕ(w)|→1

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 = 0. (16)

Proof. Since, DCu
ϕD : Bα → H∞

β is bounded, from Theorem 1 (relations (3) and
(4)), we have

L = sup
w∈D

(1−|w|2)β |u′(w)| < ∞ and M = sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)| < ∞.

Now, suppose that (15) and (16) are true. Then, for every ε > 0, there exists a δ ∈
(0,1) , such that

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α <

ε
2

(17)

and

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 <

ε
2
, (18)

whenever δ < |ϕ(w)| < 1.
To prove the compactness of DCu

ϕD , assume that
(
fk

)
k∈N

is a bounded sequence
in Bα , such that || fk||Bα � 1 and converges to zero uniformly on compact subsets of
D . From Weak Convergence Theorem in [16, Section 2.4, Page 29] it is sufficient to
show that ||DCu

ϕDfk||H∞
β
→ 0.

If |ϕ(w)| > δ , then, by (17) and (18),

||DCu
ϕDfk||H∞

β
= sup

w∈D

(1−|w|2)β |DCu
ϕDfk(w)|

� sup
w∈D

(1−|w|2)β |u′(w)|| f ′k(ϕ(w))

+ sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|| f ′′k (ϕ(w))|

� sup
w∈D

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α || fk||Bα

+ sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 || fk||Bα

� ε
2
|| fk||Bα +

ε
2
|| fk||Bα = ε|| fk||Bα � ε,
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in which we have used the following relation between the first and second derivative of
f :

sup
w∈D

(1−|w|2)α | f ′(w)| ∼ | f ′(0)|+ sup
w∈D

(1−|w|2)α+1| f ′′(w)|.

Now, consider the case |ϕ(w)| � δ ,

||DCu
ϕDfk||H∞

β
� sup

w∈D

(1−|w|2)β |u′(w)|| f ′k(ϕ(w))|

+ sup
w∈D

(1−|w|2)β |u(w)|| f ′′k (ϕ(w))||ϕ ′(w)|

� L max
|ϕ(w)|�δ

| f ′k(ϕ(w))|+M max
|ϕ(w)|�δ

| f ′′k (ϕ(w))|.

So, ||DCu
ϕDfk||H∞

β
→ 0.

Now, we are going to prove that (15) and (16) are also necessary conditions for
compactness of DCu

ϕD .
Suppose that

(
wk

)
k∈N

is a sequence in D such that |ϕ(wk)| → 1 as k → ∞ . Con-
sider the functions fk defined by

fk(w) =
(α +1)(α +2)(1−|ϕ(wk)|2)

(1−wϕ(wk))α
− α(α +1)(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+1
,

for w ∈ D . Clearly fk → 0 uniformly on compact subsets of D . Since,

f ′k(w) =
α(α +1)(α +2)ϕ(wk)(1−|ϕ(wk)|2)

(1−wϕ(wk))α+1

−α(α +1)2ϕ(wk)(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+2

and

f ′′k (w) =
α(α +1)2(α +2)ϕ(wk)

2
(1−|ϕ(wk)|2)

(1−wϕ(wk))α+2

−α(α +1)2(α +2)ϕ(wk)
2
(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+3

for w ∈ D , hence, it can be shown that,

| f ′k(w)| � 2α+3α(α +1)2

(1−|w|2)α .

So, the (|| fk||Bα )k∈N is uniformly bounded. It is clear that,

f ′k(ϕ(wk)) =
α(α +1)ϕ(wk)
(1−|ϕ(wk)|2)α and f ′′k (ϕ(wk)) = 0.
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Since, DCu
ϕD is compact, it follows that, ||DCu

ϕDfk||H∞
β
→ 0. Hence,

α(α +1)|ϕ(wk)|(1−|wk|2)β |u′(wk)|
(1−|ϕ(wk)|2)α = (1−|wk|2)β |DCu

ϕDfk(wk)|
� ||DCu

ϕDfk||H∞
β
.

So,
(1−|wk|2)β |u′(wk)|

(1−|ϕ(wk)|2)α → 0 as k → ∞.

Thus, the condition (15) holds.
Next, consider the functions gk defined by

gk(w) =
α(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+1
− (α +1)(1−|ϕ(wk)|2)

(1−wϕ(wk))α
,

for w ∈ D . Clearly gk → 0 uniformly on compact subsets of D . Since,

g′k(w) =
α(α +1)ϕ(wk)(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+2
− α(α +1)ϕ(wk)(1−|ϕ(wk)|2)

(1−wϕ(wk))α+1

and

g′′k (w) =
α(α +1)(α +2)ϕ(wk)

2
(1−|ϕ(wk)|2)2

(1−wϕ(wk))α+3
− α(α +1)2ϕ(wk)

2
(1−|ϕ(wk)|2)

(1−wϕ(wk))α+2

for w ∈ D , hence, it can be shown that,

|g′k(w)| � 2α+3α(α +1)
(1−|w|2)α .

So, the (||gk||Bα )k∈N is uniformly bounded. It is clear that,

g′k(ϕ(wk)) = 0 and g′′k (ϕ(wk)) =
α(α +1)ϕ(wk)

2

(1−|ϕ(wk)|2)α+1 .

Since, DCu
ϕD is compact, then, ||DCu

ϕDgk||H∞
β
→ 0. Hence,

α(α +1)|ϕ(wk)|2(1−|wk|2)β |u(wk)||ϕ ′(wk)|
(1−|ϕ(wk)|2)α+1 = (1−|wk|2)β |DCu

ϕDgk(wk)|
� ||DCu

ϕDgk||H∞
β
.

So,
(1−|wk|2)β |u(wk)||ϕ ′(wk)|

(1−|ϕ(wk)|2)α+1 → 0 as k → ∞.

Thus, the condition (16) holds and the proof is completed. �
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3. Boundedness and compactness of DCu
ϕD : Bα

0 → H∞
β ,0

The boundedness and compactness criteria for the operator DCu
ϕD : Bα

0 → H∞
β ,0

will be given in this section.

THEOREM 3. For a fixed u ∈ H(D) , ϕ an analytic self-map on D and α and
β positive real numbers, the operator DCu

ϕD : Bα
0 → H∞

β ,0 is bounded if and only if

DCu
ϕD : Bα → H∞

β is bounded and u′,uϕ ′ ∈ H∞
β ,0

Proof. Suppose that DCu
ϕD maps Bα

0 boundedly into H∞
β ,0 . First, taking f (w) =

w ∈ Bα
0 , since DCu

ϕDf belongs to H∞
β ,0 , we obtain

u′ = DCu
ϕDw ∈ H∞

β ,o,

so,
lim
|w|→1

(1−|w|2)β |u′(w)| = 0.

Next, taking f (w) = w2 ∈ Bα
0 , we obtain

lim
|w|→1

(1−|w|2)β |2u′(w)ϕ(w)+2u(w)ϕ ′(w)| = 0.

Thus,
lim
|w|→1

(1−|w|2)β |u(w)||ϕ ′(w)| = 0,

then, uϕ ′ ∈ H∞
β ,0 . For fixed wo ∈ D , the functions defined in (5) and (10) are in fact

in Bα
0 , so, the proof of Theorem 1 shows that, if DCu

ϕD maps Bα
0 bundedly into H∞

β ,0 ,
then,

sup
w∈D

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α < ∞

and

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞.

Thus, again from Theorem 1, DCu
ϕD : Bα → H∞

β is bounded.
Conversely, suppose that u and ϕ are such that u′,uϕ ′ ∈ H∞

β ,0 and DCu
ϕD : Bα →

H∞
β is bounded. We will show that DCu

ϕD : Bα
0 → H∞

β ,0 is bounded. We only need to
prove that DCu

ϕDf ∈ H∞
β ,o for any f ∈ Bα

o .
Since, DCu

ϕD : Bα → H∞
β is bounded then, Theorem 1 shows that

sup
w∈D

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α = C

and

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 = C.
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Let f ∈ Bα
o , then, there exists δ ∈ (0,1) , such that

(1−|ϕ(w)|2)α | f ′(ϕ(w))| < ε
2C

as δ < |ϕ(w)| < 1

and
(1−|ϕ(w)|2)α+1| f ′′(ϕ(w))| < ε

2C
as δ < |ϕ(w)| < 1.

We consider two cases, δ < |ϕ(w)| < 1 and |ϕ(w)| � δ .
First, consider δ < |ϕ(w)| < 1. Then,

(1−|w|2)β |DCu
ϕDf (w)| = (1−|w|2)β |DCu

ϕ f ′(w)|
� (1−|w|2)β |u′(w)|| f ′(ϕ(w))|

+(1−|w|2)β |u(w)|| f ′′(ϕ(w))||ϕ ′(w)|

=
(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α (1−|ϕ(w)|2)α | f ′(ϕ(w))|

+
(1−|w|2)β |u(w)||ϕ ′(w)|

(1−|ϕ(w)|2)α+1 (1−|ϕ(w)|2)α+1| f ′′(ϕ(w))|

< C · ε
2C

+C · ε
2C

= ε.

So, DCu
ϕDf ∈ H∞

β ,0 . Next, consider |ϕ(w)| � δ . Then,

(1−|w|2)β |DCu
ϕDf (w)| � (1−|w|2)β |u′(w)|| f ′(ϕ(w))|

+(1−|w|2)β |u(w)|| f ′′(ϕ(w))||ϕ ′(w)|

+
(1−|w|2)β |u(w)||ϕ ′(w)|

(1−|ϕ(w)|2)α+1 || f ||Bα

� (1−|w|2)β |u′(w)| || f ||Bα

(1− δ 2)α

+(1−|w|2)β |u(w)||ϕ ′(w)| || f ||Bα

(1− δ 2)α+1 .

Taking the limit from both sides of the above inequality, since u′,uϕ ′ ∈ H∞
β ,0 , so,

lim
|w|→1

(1−|w|2)β |DCu
ϕDf (w)| = 0.

Thus, it follows from the Closed Graph Theorem that, DCu
ϕD maps Bα

0 boundedly into
H∞

β ,0 . �
Next, we characterize the compactness of DCu

ϕD : Bα
0 → H∞

β ,0 . For this purpose
we need the following Lemma.

LEMMA 1. [18, Lemma 2.1] Let β > 0 . A closed set K in H∞
β ,0 is compact if

and only if it is bounded and satisfies

lim
|w|→1

sup
f∈K

(1−|w|2)β | f (w)| = 0.
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THEOREM 4. For a fixed u ∈ H(D) , ϕ an analytic self-map on D and α and β
positive real numbers, if DCu

ϕD : Bα
0 →H∞

β ,0 is bounded, then, it is compact if and only
if

lim
|w|→1

(1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α = 0 (19)

and

lim
|w|→1

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 = 0. (20)

Proof. Assume that (19) and (20) are true, then, we prove that DCu
ϕD : Bα

0 →H∞
β ,0

is compact. Suppose that f ∈ Bα
0 is such that || f ||Bα � 1, then,

(1−|w|2)β |DCu
ϕDf (w)| � (1−|w|2)β |u′(w)|| f ′(ϕ(w))|

+(1−|w|2)β |u(w)||ϕ ′(w)|| f ′′(ϕ(w))|

� (1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α || f ||Bα

+
(1−|w|2)β |u(w)||ϕ ′(w)

(1−|ϕ(w)|2)α+1 || f ||Bα .

Thus,

sup{(1−|w|2)β |DCu
ϕDf (w)| : f ∈ Bα

0 , || f ||Bα � 1}

� (1−|w|2)β |u′(w)|
(1−|ϕ(w)|2)α +

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 .

It follows that

lim
|w|→1

sup{(1−|w|2)β |DCu
ϕDf (w)| : f ∈ Bα

0 , || f ||Bα � 1} = 0,

so, by Lemma 1, DCu
ϕD : Bα

0 → H∞
β ,0 is compact.

Conversely, suppose that DCu
ϕD is compact, then, the set

{DCu
ϕDf : f ∈ Bα

0 , || f ||Bα � 1}
has compact closure in H∞

β ,0 and with using Lemma 1,

lim
|w|→1

sup{(1−|w|2)β |DCu
ϕDf (w)| : f ∈ Bα

0 , || f ||Bα � C} = 0, (21)

for some C > 0. If (21) is satisfied, then, it followes by the proof of the Theorem 1
and the fact that the functions given in (5) and (10) are in Bα

0 and have norms bounded
independently of w , that (19) and (20) are true and the proof of the theorem is com-
pleted. �

Putting u≡ 1, theorems 1 and 2, implies the following corollaries about the bound-
edness and compactness of the operator DCϕD : Bα → H∞

β .
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COROLLARY 1. For an analytic self-map ϕ on D and α and β positive real
numbers, the operator DCϕD : Bα → H∞

β is bounded if and only if

sup
w∈D

(1−|w|2)β |ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞.

COROLLARY 2. For an analytic self-map ϕ on D and α and β positive real
numbers. If DCϕD : Bα → H∞

β is bounded, then, it is compact if and only if

lim
|ϕ(w)|→1

(1−|w|2)β |ϕ ′(w)|
(1−|ϕ(w)|2)α+1 = 0.

4. Essential norm of DCu
ϕD : Bα → H∞

β

The essential norm estimate of the operator DCu
ϕD : Bα → H∞

β will be given in
this section. We begin with the following two Lemmas.

LEMMA 2. [20, Lemma 2.2] Let α > 0 , n ∈ N , 0 � x � 1 and Hn,α(x) =
xn−1(1− x2)α . Then, Hn,α has the following properties.

(i)

max
0�x�1

Hn,α(x) = Hn,α(rn) =

⎧⎨
⎩

1 , as n = 1( 2α
n−1+2α

)α( n−1
n−1+2α

) n−1
2

, as n � 2

where

rn =

⎧⎨
⎩

0 , as n = 1( n−1
n−1+2α

) 1
2

, as n � 2.

(ii) For n � 1 , Hn,α is increasing on [0,rn] and decreasing on [rn,1] .

(iii) For n � 1 , Hn,α is decreasing on [rn,rn+1] and so,

min
x∈[rn,rn+1]

Hn,α(x) = Hn,α(rn+1) =
( 2α

n+2α

)α( n
n+2α

) (n−1)
2

.

Consequently,

lim
n→∞

nα min
x∈[rn,rn+1]

Hn,α(x) =
(2α

e

)α
.

We need the following Lemma to obtain the upper estimates of essential norm. For
r ∈ (0,1) , let Kr f (w) = f (rw) . Then, Kr is a compact operator on the space Bα (or
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Bα
0 ) for any positive number α (see for example [6, 9, 20]), with ||Kr|| � 1. Indeed,

Kr f (w) = f (rw) implies that

||Kr|| = sup
|| f ||�1

||Kr f || = sup
|| f ||�1

(sup
w∈D

(1−|w|2)α |r f ′(rw)|+ |Kr f (0)|)

� sup
|| f ||�1

(sup
w∈D

(1−|rw|2)α | f ′(rw)|r+ | f (0)|)

� sup
|| f ||�1

|| f || = 1.

LEMMA 3. [20, Lemma 4.1] Let 0 < α � 1 . Then, there is a sequence {rk} ,

0 < rk < 1 , tending to 1, such that the compact operator Ln =
1
n

n

∑
k=1

Krk on Bα
0 satisfies

(i) For any t ∈ [0,1) , lim
n→∞

sup
|| f ||Bα �1

sup
|w|�t

|((I−Ln) f
)′(w)| = 0 .

(ii) lim
n→∞

sup
|| f ||Bα �1

sup
w∈D

|(I−Ln) f (w)| = 0 .

(iii) lim
n→∞

sup ||I−Ln|| � 1 .

THEOREM 5. For a fixed u ∈ H(D) , ϕ an analytic self-map on D , α and β
positive real numbers with 0 < α � 1 and DCu

ϕD : Bα → H∞
β is bounded, then,

||DCu
ϕD||e = lim

t→1
sup

|ϕ(w)|>t

|u(w)||ϕ ′(w)|(1−|w|2)β

(1−|ϕ(w)|2)α+1 .

Proof. We first give the lower estimate. Let n ∈ N , consider the function wn , by
Lemma 2,

||wn||Bα = max
w∈D

n|w|n−1(1−|w|2)α = n
( 2α

n−1+2α

)α( n−1
n−1+2α

) n−1
2

,

where the maximum is attained at any point on the circle with radius

rn =
( n−1

n−1+2α

) 1
2
.

Let fn(w) =
wn

n||wn||Bα
. Then, || fn||Bα =

1
n

and fn → 0 weakly in Bα . This follows

since a bounded sequence contained in Bα
0 which tends to 0 uniformly on compact

subsets of D converges weakly to 0 in Bα . In particular, if K is any compact operator
from Bα to H∞

β , then, limn→∞ ||K fn||H∞
β

= 0.
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Let An = {w ∈ D : rn � |w| � rn+1} . Then,

min
w∈An

| f ′′n (w)|(1−|w|2)α = min
w∈An

(n−1)|w|n−2

||wn||Bα
(1−|w|2)α

=
(n−1

n

)(n−1+2α
n+2α

)α( n
n+2α

) n−2
2

(n−1+2α
n−1

) n−1
2

.

Simple calculation shows that this minimum tends to 1 as n → ∞ . For any compact
operator K from Bα to H∞

β ,

||DCu
ϕD−K||� lim

n→∞
sup ||(DCu

ϕD−K) fn||H∞
β

� lim
n→∞

sup ||DCu
ϕDfn||H∞

β
.

Thus, for DCu
ϕD : Bα → H∞

β ,

||DCu
ϕD||e � limsup

n→∞
||DCu

ϕDfn||H∞
β

� limsup
n→∞

sup
w∈D

(1−|w|2)β |DCu
ϕDfn(w)|

� lim
n→∞

sup
ϕ(w)∈An

|u(w)||ϕ ′(w)| (1−|w|2)β

(1−|ϕ(w)|2)α+1 (1−|ϕ(w)|2)α+1| f ′′n (ϕ(w))|

− lim
n→∞

sup
ϕ(w)∈An

|u′(w)|(1−|w|2)β | f ′n(ϕ(w))|.

We know that u′ ∈ H∞
β , then, for 0 < α < 1,

lim
n→∞

sup
ϕ(w)∈An

|u′(w)|(1−|w|2)β | f ′n(ϕ(w))|

� ||u′||H∞
β

lim
n→∞

sup
ϕ(w)∈An

| f ′n(ϕ(w))|

= ||u′||H∞
β

lim
n→∞

( n
n+2α

)n−1
2

n
( 2α

n−1+2α

)α( n−1
n−1+2α

) n−1
2

= 0.

When α = 1, we have

lim
n→∞

sup
ϕ(w)∈An

|u′(w)|(1−|w|2)β | f ′n(ϕ(w))| � C lim
n→∞

sup
ϕ(w)∈An

(1−|ϕ(w)|2)α | f ′n(ϕ(w))|

� C
2

lim
n→∞

sup
ϕ(w)∈An

(1−|ϕ(w)|2)α = 0.

Therefore, for 0 < α � 1,

||DCu
ϕD||e � lim

n→∞
sup

ϕ(w)∈An

|u(w)||ϕ ′(w)| (1−|w|2)β

(1−|ϕ(w)|2)α+1

× min
ϕ(w)∈An

(1−|ϕ(w)|2)α+1| f ′′n (ϕ(w))|,
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where the minimum is attained at anypoint on the circle with radius rn+1 . Because

lim
n→∞

sup
ϕ(w)∈An

min
ϕ(w)∈An

(1−|ϕ(w)|2)α+1| f ′′n (ϕ(w))| = 1,

we get

||DCu
ϕD||e � lim

t→1
sup

|ϕ(w)|>t

|u(w)||ϕ ′(w)|(1−|w|2)β

(1−|ϕ(w)|2)α+1 .

Now, we are going to give the upper estimate. Let {Ln} be the sequence of operators
given in Lemma 3. Since each Ln is compact as an operator from Bα to Bα , DCu

ϕDLn :
Bα → H∞

β is also compact and we have

||DCu
ϕD||e � ||DCu

ϕD−DCu
ϕDLn|| = ||DCu

ϕD(I−Ln)||
= sup

|| f ||Bα �1
||DCu

ϕD(I−Ln) f ||H∞
β

� sup
|| f ||Bα �1

sup
w∈D

|u′(w)||((I −Ln) f )′(ϕ(w))|(1−|w|2)β

+ sup
|| f ||Bα �1

sup
w∈D

|u(w)||((I−Ln) f )′′(ϕ(w))||ϕ ′(w)|(1−|w|2)β ,

using Lemma 3,

sup
|| f ||Bα �1

sup
w∈D

|u′(w)||((I−Ln) f )′(ϕ(w))|(1−|w|2)β = 0.

Now, we need only consider the term

sup
|| f ||Bα �1

sup
w∈D

|u(w)||((I−Ln) f )′′(ϕ(w))||ϕ ′(w)|(1−|w|2)β .

For arbitrary 0 < t < 1, consider

sup
|| f ||Bα �1

sup
|ϕ(w)|�t

|u(w)|(1−|w|2)β |((I−Ln) f
)′′(ϕ(w))||ϕ ′(w)| (22)

and
sup

|| f ||Bα �1
sup

|ϕ(w)|>t
|u(w)|(1−|w|2)β |((I−Ln) f

)′′(ϕ(w))||ϕ ′(w)|. (23)

Since, DCu
ϕD is bounded from Bα into H∞

β , by Theorem 1,

sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)|
(1−|ϕ(w)|2)α+1 < ∞.

Hence,
sup
w∈D

(1−|w|2)β |u(w)||ϕ ′(w)| < ∞.
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Thus, from (22) and using Cauchy’s estimate in proof of Lemma 3,

sup
|| f ||Bα �1

sup
|ϕ(w)|�t

|u(w)|(1−|w|2)β |((I−Ln) f
)′′(ϕ(w))||ϕ ′(w)| = 0. (24)

From (23),

sup
|| f ||Bα �1

sup
|ϕ(w)|>t

|u(w)|(1−|w|2)β |((I−Ln) f
)′′(ϕ(w))||ϕ ′(w)|

� ||I−Ln|| sup
|ϕ(w)|>t

|u(w)| (1−|w|2)β |ϕ ′(w)|
(1−|ϕ(w)|2)α+1 .

Thus, by (iii) of Lemma 3,

limsup
n→∞

sup
|| f ||Bα �1

sup
|ϕ(w)|>t

(1−|w|2)β |((I−Ln) f
)′(ϕ(w))||ϕ ′(w)|

� sup
|ϕ(w)|>t

|u(w)| (1−|w|2)β |ϕ ′(w)|
(1−|ϕ(w)|2)α+1 . (25)

By using (24) and (25) as n → ∞ , we obtain

||DCu
ϕD||e � sup

|ϕ(w)|>t

|u(w)||ϕ ′(w)|(1−|w|2)β

(1−|ϕ(w)|2)α+1 .

Since, t was arbitrary, so,

||DCu
ϕD||e � lim

t→1
sup

|ϕ(w)|>t

|u(w)||ϕ ′(w)|(1−|w|2)β

(1−|ϕ(w)|2)α+1 .

The proof of the theorem is completed. �
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