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Abstract. In the 1980s, Campbell proposed a problem to find an expression of the Drazin inverse

for the block matrix

(
A B
−I 0

)
to research on singular differential equations. In this paper,

some characterizations and detail representations for the Drazin inverse of anti-triangular block

operator matrices M =
(

A B
I 0

)
with ind(M) = 1 ( resp. ind(M) = 2) are given.

1. Introduction

Let H and K be infinite dimensional complex Hilbert spaces. We denote the set
of all bounded linear operators from H into K by B(H ,K ) and by B(H ) when
H = K . For A ∈ B(H ,K ) , let A∗ , R(A) and N (A) be the adjoint, the range
and the null space of A , respectively. An operator A ∈ B(H ,K ) is regular if there
is an operator X ∈ B(K ,H ) such that AXA = A . It is well-know that A is regular if
and only if A has closed range. The notation of ⊕ is used in this paper with following
means. For any Hilbert spaces H1 and H2 , we let

H1 ⊕H2 =
{(

x1

x2

)
|xi ∈ Hi, i = 1,2

}
.

The Moore-Penrose inverse of A∈B(H ,K ) is the operator X ∈B(K ,H ) (unique
when it exists) satisfying the following equations:

(i) AXA = A, (ii) XAX = X , (iii) (AX)∗ = AX , (iv) (XA)∗ = XA.

Denote byA† = X and A† exists if and only if R(A) is closed. An operator A ∈
B(H ) is called Drazin invertible, if there exist X ∈ B(H ) and non-negative integer
k satisfying:

(i) XAX = X , (ii) AX = XA, (iii) Ak+1X = Ak.
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The index of A , denoted by ind(A) , is the smallest k such that Ak+1AD = Ak , in the
case when such k exists. ind(A) = 0 if and only if A is invertible. The Drazin inverse
X of A is unique (if it exists) and is denoted by X =AD [2]. When ind(A) = 1, the
Drazin inverse X is called the group inverse of A and is denoted by X=A# .

The Drazin inverse has widely applications in many fields such as singular dif-
ferential equations, singular difference equations, Markov chains, iterative methods,
structured matrices and perturbation bounds for the relative eigenvalue problem can be
found in [2–7, 11, 15, 17, 21, 28].

In 1979, Campbell and Meyer in [5] proposed an open problem to find an explicit

expression for the Drazin inverse of block matrix

(
A B
C D

)
, where the blocks A and

D are assumed to be square. But until now this open problem has not been solved yet
even for the case D = 0. Owing to the difficulty of the problem itself, there were few
results given with some conditions by many authors, In 2005, Castro-González in [8]
gave a representation of (A+B)D with ADB = 0, ABD = 0 and BπABAπ = 0. Castro-

González and Dopazo in [9] gave the expression of the Drazin inverse for

(
I I
E 0

)

with E square. Deng and Wei in [14] gave some results on the Drazin inverse of an
anti-triangular matrix on Banach spaces. In 2011, Bu et al. [3] gave a representation of

Drazin inverse of

(
E F
I 0

)
under the condition that EF = FE. In 2018, Xu et al. [27]

gave the expression of the Drazin inverse of M =
(

A B
I 0

)
with B having closed range

and ind(M) � 2. It is very difficult to give the representations of MD with ind(M) � k .
In this paper, we only consider the cases that ind(M) = 1 or ind(M) = 2. We used

the methods of space decomposition to obtain the necessary and sufficient conditions
for the existence of MD and obtain the detail expressions of MD . The main results of
the paper are Theorems 2.4, 2.6, 3.1 and 3.2. Let

M =
(

A B
I 0

)
∈ B(H ⊕H ), (1)

where A,B ∈ B(H ) and I being the identity operator on B(H ) .

2. Some lemmas and basic propositions

LEMMA 2.1. If A ∈ B(H ,K ) has closed range, then by considering

H = R(A∗)⊕N (A), K = R(A)⊕N (A∗),

we obtain

A =
(

A1 0
0 0

)
:

(
R(A∗)
N (A)

)
→

(
R(A)

N (A∗)

)
, (2)

where A1 : R(A∗) → R(A) is invertible. Therefore, the Moore-Penrose inverse of A
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can be represented as

A† =
(

A−1
1 0
0 0

)
:

(
R(A)

N (A∗)

)
→

(
R(A∗)
N (A)

)
. (3)

LEMMA 2.2. [1, Proposition 2.3] Let A,B,S and T ∈ B(H ) such that S,T are
invertible and A = SBT . Then the following assertions hold.

(i) R(A) is closed ⇐⇒ R(B) is closed.

(ii) N (A) = N (BT ) and R(A) = R(SB) .

(iii) dimN (A) = dimN (B) , codimR(A) = codimR(B) and ind(A) = ind(B).

(iv) A is injective (resp. surjective) ⇐⇒ B is injective (resp. surjective).

THEOREM 2.1. Let M be defined by (1). If M# exists, then R(B) is closed. If

M is Drazin invertible with ind(M) � 2 , then the range of T =:

(
B 0
A B

)
is closed. If

R(B) is closed, then R(T ) is closed if and only if R((I−BB†)A(I−B†B)) is closed.

Proof. If M# exists, then R(M) is closed. Since
(

0 I
I −A

)(
A B
I 0

)
=

(
I 0
0 B

)
,

by Lemma 2.2, we know that R(M) is closed if and only if R(B) is closed. If MD

exists with ind(M) � 2, then R(M2) is closed. Since

(
I −A
0 I

)(
A B
I 0

)2

=
(

I −A
0 I

)(
A2 +B AB

A B

)
=

(
B 0
A B

)
,

by Lemma 2.2, we know that R(M2) is closed if and only if R

((
B 0
A B

))
is closed.

If R(B) is closed, then B† exists. Similarly, it is easy to get R(M2) is closed if and
only if R

(
(I−BB†)A(I−B†B)

)
is closed. �

Theorem 2.1 shows that R(B) is closed, which is a necessary condition for exis-
tence of group inverse of operator M . Hence, we always suppose that R(B) is closed
in further research. The following result can be verified directly.

THEOREM 2.2. Let M be defined by (1) , s,t,x,y ∈ H . Then the following
statements hold:

(i) (x y)T ∈ N (M3) if and only if

B(Ax+By) = 0, A(Ax+By)+Bx = 0. (4)

(ii) (x y)T ∈ N (M2) if and only if

Bx = 0, Ax+By = 0. (5)
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(iii) M3(s t)T = M2(x y)T if and only if

B(As+Bt) = Bx, A(As+Bt)+Bs = Ax+By. (6)

Let

N =
(

A I
B 0

)
∈ B(H ⊕H ), (7)

where A,B ∈ B(H ) and I being the identity operator on B(H ) .

THEOREM 2.3. Let M and N be defined by (1) and (7) , respectively. Then M
is Drazin invertible if and only if N is Drazin invertible. In this case, ind(M) = ind(N)
and

ND =
(

I 0
0 B

)(
MD

)2 (
A I
I 0

)
.

Proof. Clearly,

M =
(

A I
I 0

)(
I 0
0 B

)
, N =

(
I 0
0 B

)(
A I
I 0

)
.

By Cline formula [12], if M (resp. N ) is Drazin invertible, then N (resp. M ) is Drazin
invertible and

ND =
(

I 0
0 B

)(
MD

)2 (
A I
I 0

)
(resp. MD =

(
A I
I 0

)(
ND

)2 (
I 0
0 B

)
).

If ind(M) = k , then

Nk+2ND = Nk+2
(

I 0
0 B

)(
MD

)2 (
A I
I 0

)
=

(
I 0
0 B

)
Mk+2

(
MD

)2 (
A I
I 0

)

=
(

I 0
0 B

)
Mk

(
A I
I 0

)
= Nk+1.

Hence, ind(N) � k+1. Note that

M

(
A I
I 0

)
=

(
A I
I 0

)
N =

(
A2 +B A

A I

)
.

M and N are similar and ind(M) = ind(N) = k . �

Let M be defined by (1) . It is clear that M is invertible if B is invertible.

THEOREM 2.4. Let M be defined by (1) with B being not invertible. Then
ind(M) = 1 if and only if R(B) is closed,

N (B) = R
(
(I−B†B)A∗) and N (B∗) = R

(
(I−BB†)A

)
.
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Proof. Necessity. By Theorems 2.1 and 2.3, if ind(M) = 1, then R(B) is closed
and M,N are group invertible simultaneously. The group invertibility of N implies that

R(N) = R(N2) = R

(
N

(
I 0
0 B

)(
A I
I 0

))
= R

(
N

(
I 0
0 B

))

= R

((
A B
B 0

))
= R

((
A I
B 0

)(
I 0
0 B

))
⊂ R(N).

Thus,

R(N) = R

((
A B
B 0

))
= R

((
B A
0 B

))
= R(B)⊕R

(
(I−BB†)A

)⊕R(B).

Note that

R(N) = R

(
N

(
0 I
I −A

))
= R

((
I 0
0 B

))
= H ⊕R(B)

and H = R(B)⊕N (B∗) one derives that N (B∗) = R
(
(I−BB†)A

)
. By the same

way one can show that N (B) = R
(
(I−B†B)A∗) .

Sufficiency. By first step, if N (B∗) = R
(
(I−BB†)A

)
, then

R(N) = R

((
A B
B 0

))
= R

(
N

(
I 0
0 B

))
.

Hence,

R(M) = R

(
M

(
A I
I 0

))
= R

((
A I
I 0

)
N

)
=

(
A I
I 0

)
R (N)

=
(

A I
I 0

)
R

(
N

(
I 0
0 B

))
= R

(
M2

)
.

On the other hand,

R(M∗) = R

(
M∗

(
0 I
I −A∗

))
= R

((
I 0
0 B∗

))
= H ⊕R(B∗)

and

R

(
M∗

(
I 0
0 B∗

))
= R

((
A∗ B∗
B∗ 0

))
= R

((
B∗ A∗
0 B∗

))

= R(B∗)⊕R
(
(I−B†B)A∗)⊕R(B∗).

If N (B) = R
(
(I−B†B)A∗) , then

R(M∗) = R

(
M∗

(
I 0
0 B∗

))
=

(
I 0
0 B∗

)
R(N∗)

=
(

I 0
0 B∗

)
R

(
N∗

(
A∗ I
I 0

))
= R((M∗)2).
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Thus N (M) = R(M∗)⊥ = R((M∗)2)⊥ = N (M2) which implies ind(M) � 1. Since
B is not invertible, M is not invertible and ind(M) = 1. �

Let M be defined by (1) such that R(B) is closed. For convenience, put

F = (I−BB†)A+B, F2 = (I−BB†)A(I−B†B)+B,
F1 = A(I−B†B)+B, F3 = (I−BB†)A(I−B†B),
R = [BB†A− (I−BB†)](I−F†F).

(8)

If M is Drazin invertible with ind(M) � 2, then we denote MD by

MD =
(

P Q
X Y

)
(9)

and

MDM =
(

PA+Q PB
XA+Y XB

)
=

(
AP+BX AQ+BY

P Q

)
= MMD. (10)

From M2(MDM) = M2 ( ind(M) � 2) and M2M# = M ( ind(M) = 1) one gets⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A2 +B

)
(PA+Q)+ABP = A2 +B,(

A2 +B
)
PB+ABQ = AB,

A(PA+Q)+BP = A,

APB+BQ = B

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A2 +B

)
P+ABX = A,(

A2 +B
)
Q+ABY = B,

AP+BX = I,

AQ+BY = 0,

(11)

respectively. From MDMMD = MD one gets
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(PA+Q)P+PBX = P,

(PA+Q)Q+PBY = Q,

P2 +QX = X ,

PQ+QY = Y.

(12)

THEOREM 2.5. Let A,B ∈ B(H ,K ) and B have closed range, let F , F1and
F2 be defined by (8) . Then the following statements are equivalent:

(i) F is invertible (resp. has closed range),

(ii) F1 is invertible (resp. has closed range),

(iii) F2 is invertible (resp. has closed range).

Proof. Since B ∈ B(H ) has closed range, by (2) , B has following form:

B =
(

B1 0
0 0

)
:

(
R(B∗)
N (B)

)
→

(
R(B)

N (B∗)

)
, (13)

where B1 : R(B∗) → R(B) is invertible. Let

A =
(

A1 A2

A3 A4

)
:

(
R(B∗)
N (B)

)
→

(
R(B)

N (B∗)

)
. (14)
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Then

F =
(

B1 0
A3 A4

)
, F1 =

(
B1 A2

0 A4

)
, F2 =

(
B1 0
0 A4

)
. (15)

Obviously, F is invertible (resp. has closed range) is equivalent to A4 is invertible
(resp. has closed range). Therefore, (i) ⇐⇒ (ii) ⇐⇒ (iii). �

Let V1 and V2 be orthogonal projections. We say V1 � V2 if V1V2 = V2V1 = V1 .

THEOREM 2.6. Let M be defined by (1) such that R(B) is closed and MD exists,
let F , F3 and MD be defined as (8) and (9) , respectively.

(i) If ind(M) = 1 , then BP = PB = QP = 0 , BQ = B and Q2 = Q.

(ii) If ind(M) � 2 , then APB = BPA, BPB = 0 , R(F3) and R(F) are closed. More-
over,

I−F†F = (I−B†B)(I−F†
3 F3) = (I−F†

3 F3)(I−B†B) � I−B†B

and

(P−QB†A)(I−F†F) = 0, (X −YB†A)(I−F†F) = 0,

Q(I−B†B) = 0, Y (I−B†B) = 0.

Proof. (i) If ind(M) = 1, from MM# = M#M and M2M# = M , we get AP+BX =
I , PB = AQ+BY = 0 by (10) and (11) . So,

(A2 +B)P+ABX = A ⇐⇒ A(AP+BX)+BP = A ⇐⇒ BP = 0

and
(A2 +B)Q+ABY = B ⇐⇒ A(AQ+BY)+BQ = B ⇐⇒ BQ = B.

Thus, by (10) ,
QP = XBP = 0, Q2 = XBQ = XB = Q.

(ii) If ind(M) � 2, by (10) and (11) , one derives

{(
A2 +B

)
PB+ABQ = AB

APB+BQ = B
⇒ BPB = 0

and ⎧⎨
⎩

(
A2 +B

)
(PA+Q)+ABP = A2 +B
A(PA+Q)+BP = A

APB+BQ = B
⇒ APB = BPA.

Since R(B) is closed and ind(M) � 2, by Theorem 2.1, one gets F3 = (I−BB†)A(I−
B†B) has closed range. Hence, R(F) is also closed by Theorem 2.5. Using [13,
Theorem 6],

F† =
(

ΔB∗
1 ΔA∗

3(I−A4A
†
4)

−A†
4A3ΔB∗

1 A†
4−A†

4A3ΔA∗
3(I−A4A

†
4)

)
,
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where Δ = [B∗
1B1 +A∗

3(I−A4A
†
4)A3]−1. Thus

I−F†F =
(

0 0
0 I−A†

4A4

)
= (I−B†B)(I−F†

3 F3) = (I−F†
3 F3)(I−B†B) � I−B†B.

By (10) one derives that Q = XB = XBB†B = QB†B and AQ+BY = PB . We get

BY (I−B†B) = (PB−AQ)(I−B†B) = 0, QY (I−B†B) = QB†BY (I−B†B) = 0.

Since PQ+QY = Y by (12), one has Y (I−B†B) = 0. Note that B(I−F†F) = 0 and
(I−BB†)A(I−F†F) = 0 implies A(I−F†F) = BB†A(I−F†F) , hence, by (10),

P(I−F†F)= (XA+Y)(I−F†F)= XA(I−F†F)= XBB†A(I−F†F)= QB†A(I−F†F)

and

QYB†A(I−F†F) = QB†BYB†A(I−F†F) = QB†(PB−AQ)B†A(I−F†F)

=QB†PA(I−F†F)−QB†AP(I−F†F) = QB†(BX −Q)(I−F†F)

=QX(I−F†F).

Hence, applying (12), we get

YB†A(I−F†F) = (PQ+QY)B†A(I−F†F)

= (P2 +QX)(I−F†F) = X(I−F†F). �

Let B and A be given by (13) and (14) , respectively. Then

BB†A(I−F†F) =
(

0 A2(I−A†
4A4)

0 0

)
.

By (8), we know BB†R = BB†A(I−F†F) . Suppose that

R =
(

0 A2(I−A†
4A4)

R3 R4

)
:

(
R (B∗)
N (B)

)
→

(
R (B)
N (B∗)

)
.

Observing that

R = R(I−F†F) =
(

0 A2(I−A†
4A4)

R3 R4

)(
0 0
0 I−A†

4A4

)
=

(
0 A2(I−A†

4A4)
0 R4(I−A†

4A4)

)

one gets

R =
(

0 A2(I−A†
4A4)

0 R4(I−A†
4A4)

)
, F +R =

(
B1 A2(I−A†

4A4)
A3 A4 +R4(I−A†

4A4)

)
. (16)
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THEOREM 2.7. Let M (defined by (1)) be Drazin invertible with R(B) closed
and ind(M) � 2 , let F and R be defined by (8) . If F +R is invertible, then

PB = (I−F†F)(F +R)−1B, PA+Q = I +(I−F†F)(F +R)−1(I−BB†).

Proof. According to (16) and Banachiewicz-Schur form we obtain

(F +R)−1 =
(

B−1
1 +B−1

1 A2(I−A†
4A4)J−1A3B

−1
1 −B−1

1 A2(I−A†
4A4)J−1

−J−1A3B
−1
1 J−1

)
,

where J = A4 +R4(I−A†
4A4)−A3B

−1
1 A2(I−A†

4A4) is Schur complement of B1. If M
is Drazin invertible with R(B) closed and ind(M) � 2, then P and Q in (9) are unique.
Let

P =
(

P1 P2

P3 P4

)
:

(
R (B)
N (B∗)

)
→

(
R (B∗)
N (B)

)
.

Then Pi are unique, i = 1,2,3,4. By Theorem 2.6, BPB = 0 and BPA = APB imply
that P1 = 0 and

(
B1 0
0 0

)(
0 P2

P3 P4

)(
A1 A2

A3 A4

)
=

(
A1 A2

A3 A4

)(
0 P2

P3 P4

)(
B1 0
0 0

)
,

i.e., (
B1P2A3 B1P2A4

0 0

)
=

(
A2P3B1 0
A4P3B1 0

)
.

Thus B1P2A3 = A2P3B1. From (11) and Theorem 2.6, one has

(BQB† +BP)(F +R) = BPA+BQ = B

and so
BQ = BQB†B = B(F +R)−1B, BP = B(F +R)−1(I−BB†).

By BP = B(F +R)−1(I−BB†) , one gets

P2 = −B−1
1 A2(I−A†

4A4)J−1.

So, A2P3B1 = B1P2A3 = −A2(I−A†
4A4)J−1A3. Since P3 is unique,

P3 = −(I−A†
4A4)J−1A3B

−1
1 .

Therefore,

PB =
(

0 0
P3B1 0

)
=

(
0 0

−(I−A†
4A4)J−1A3 0

)
= (I−F†F)(F +R)−1B.

By (10) and (11) , we obtain A(PA+Q) = A−BP and B(PA+Q) = (PA+Q)B = B .
So we might suppose

PA+Q = I +(I−B†B)α(I−BB†), for some α ∈ B(H ).
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Thus,

A(PA+Q) = A+A(I−B†B)α(I−BB†) = A−BP = A−B(F +R)−1(I−BB†)

implies
A(I−B†B)α(I−BB†) = −B(F +R)−1(I−BB†).

Let

α =
(

α1 α2

α3 α4

)
:

(
R (B)
N (B∗)

)
→

(
R (B∗)
N (B)

)
.

By above the equation, we deduce that

(
0 A2α4

0 A4α4

)
=

(
0 A2(I−A†

4A4)J−1

0 0

)
.

Obviously, α4 = (I−A†
4A4)J−1 satisfies the above equation and

(I−B†B)α(I−BB†) =
(

0 0
0 (I−A†

4A4)J−1

)
= (I−F†F)(F +R)−1(I−BB†).

So,
PA+Q = I +(I−F†F)(F +R)−1(I−BB†). �

3. The case of ind(M) = 1 and ind(M) = 2

It is obvious that M in (1) is invertible ( ind(M) = 0) if and only if B is invertible
( ind(B) = 0) . In [26, Theorem 2.5], the authors had proved that M# exists if and only
if B∈B(H ) has closed range and F is invertible. The following result give a different
proof and obtain the detail representation of M# . First we give the detail representation
of M# .

THEOREM 3.1. Let F, F1 and M be defined by (8) and (1) , respectively. Then
ind(M) = 1 if and only if B ∈ B(H ) is not invertible with closed range and F is
invertible. In this case,

M# =
(

P Q
X Y

)
, (17)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P = F−1(I−BB†),

Q = F−1B,

X = P2 +QF−1
1 ,

Y = P−XA.
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Proof. ⇒ Applying Theorem 2.1, if M# exists, then B† exists and there are

unique P , Q , X , Y such that M# =
(

P Q
X Y

)
. According to (11) , we know AP+BX =

I. Multiplying the equation from left by I −BB† , we get (I −BB†)AP = I −BB†. By
Theorem 2.6, BP = 0, we get

FP = [(I−BB†)A+B]P = I−BB†.

By Theorem 2.4, R(F) = R((I −BB†)A + B) = R(B)⊕N (B∗) = H . Similarly,
R(F∗) = H . So, F is invertible and the unique solution P has the form

P = F−1(I−BB†).

Similarly, by AQ+BY = 0 and BQ = B , it imply that

FQ = [(I−BB†)A+B]Q = B.

So Q has the form
Q = F−1B.

Let A,B be given by (14),(13) , respectively. Put

X =
(

X1 X2

X3 X4

)
:

(
R(B)

N (B∗)

)
→

(
R(B∗)
N (B)

)
. (18)

Note that

P = F−1(I−BB†) =
(

0 0
0 A−1

4

)
:

(
R (B)
N (B∗)

)
→

(
R (B∗)
N (B)

)
(19)

and

Q = F−1B =
(

I 0
−A−1

4 A3 0

)
:

(
R (B∗)
N (B)

)
→

(
R (B∗)
N (B)

)
. (20)

From XB = Q in (10) we get

(
X1 X2

X3 X4

)(
B1 0
0 0

)
=

(
I 0

−A−1
4 A3 0

)
. Comparing the

two sides of the above equation, we obtain X1 = B−1
1 and X3 = −A−1

4 A3B
−1
1 . From

AP+BX = I in (11) one has(
A1 A2

A3 A4

)(
0 0
0 A−1

4

)
+

(
B1 0
0 0

)(
B−1

1 X2

−A−1
4 A3B

−1
1 X4

)
=

(
I 0
0 I

)
,

which implies that X2 = −B−1
1 A2A

−1
4 . Thus

QXA(I−B†B)

=
(

I 0
−A−1

4 A3 0

)(
B−1

1 −B−1
1 A2A

−1
4

−A−1
4 A3B

−1
1 X4

)(
A1 A2

A3 A4

)(
0 0
0 I

)

=
(

I 0
−A−1

4 A3 0

)(
0 0
0 −A−1

4 A3B
−1
1 A2 +X4A4

)

=0.
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Since QXB = Q2 = Q by Theorem 2.6, QXF1 = QX [A(I−B†B)+B] = Q and QX =
QF−1

1 . From (12) , P2 +QX = X . So,

X = P2 +QF−1
1 .

At last, by (10) , one has Y = P−XA.

⇐ It is clear. �

REMARK. Let

E =
(

A B
C 0

)
∈ B(H1 ⊕H2).

T = (I − BB†)A(I −C†C) and G = [BB†A− (I − BB†)](I − B†B)(I − T †T ). In [26,
Theorem 2.5], the authors state that, if R(B) , R(C) and R(T ) are closed, then E is
group invertible ⇐⇒ F +G is invertible.

In fact, in the case of C = I (this moment H1 = H2 and G = T = 0), according
to Theorem 2.1, M# exists is the sufficient condition of R(B) is closed. Moreover,
compare Theorem 3.1 with the results of the [26, Theorem 2.5], we can see that our
result is more concisely than the expression of [26, Theorem 2.5] under the condition
of C = I . Appling Theorem 2.5, one has a different representation of M# .

COROLLARY 3.1. Let M and F2 be defined by (1) and (8) , respectively. Then
ind(M) = 1 if and only if B ∈ B(H ) is not invertible with closed range and F2 is
invertible. In this case,

M# =
(

P Q
X Y

)
,

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P = F−1
2 (I−BB†),

Q = F−1
2 [B− (I−BB†)AB†B],

X = P2 +QF−1
2 ,

Y = P−XA.

Next we give the detail representation of MD with ind(M) � 2.

THEOREM 3.2. Let M be defined by (1) such that R(B) is closed, let F,F3 and
R be defined by (8) . Then ind(M) � 2 if and only if R(F) is closed and F + R is
invertible. In this case,

MD =
(

P Q
X Y

)
,
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = (I−F†F)(F +R)−1B,

Δ2 = I +(I−F†F)(F +R)−1(I−BB†),

P = [Δ2 + Δ1B
†(I−F†F −A)](F +R)−1(I−BB†)+ Δ1B

†,

Q = [Δ2 + Δ1B
†(I−F†F −A)](F +R)−1B,

X = [P+QB†(I−F†F −A)](F +R)−1(I−BB†)+QB†,

Y = P−XA.

Proof. =⇒ By Theorem 2.6, R(F3) and R(F) are closed, we first prove that
F +R is invertible.

Injection If x ∈ N (F +R) , we need to prove that x = 0. Assume x = (x1 x2)T ∈
(R(B∗) N (B))T . Since (BQB† +BP)(F +R) = B, Bx = 0 implies x1 = 0. By (16)
one derives

(F +R)x =
(

B1 A2(I−A†
4A4)

A3 A4 +R4(I−A†
4A4)

)(
0
x2

)
=

(
A2(I−A†

4A4)x2

[A4 +R4(I−A†
4A4)]x2

)
= 0. Hence,

A(I−F†F)x =
(

A1 A2

A3 A4

)(
0 0
0 I−A†

4A4

)(
0
x2

)
=

(
A2(I−A†

4A4)x2

0

)
= 0 implies

(F +R)x = (I−BB†)Ax− (I−BB†)(I−F†F)x

= Ax+B[B†(I−F†F)−B†A]x− (I−F†F)x
= 0.

Let y = [B†(I − F†F)− B†A]x. We observe that (x y)T satisfy (4) , i.e., (x y)T

∈ N (M3) . Since ind(M) � 2, (x y)T ∈ N (M2) and then Ax + By = 0 by (5) .
Therefore, (I−F†F)x = 0 and yield (I−A†

4A4)x2 = 0. By [A4 +R4(I−A†
4A4)]x2 = 0

we get A4x2 = 0 and so x2 = 0, i.e., x = 0.
Surjection (see the proof in [27]) Since ind(M) � 2, R(M2)=R(M3). Thus for

any x,y ∈ H , there exists s,t ∈ H such that (6) holds. From B(As+Bt) = Bx one
has h ∈ H such that

As+Bt = (I−B†B)h+ x. (21)

So, Ax+By = A(As+Bt)+Bs = A[(I−B†B)h+ x]+Bs . One gets

A(I−B†B)h = By−Bs. (22)

Multiplying (22) from left by (I−BB†) , we get F3h = (I−BB†)A(I−B†B)h = 0. So,
there exists m ∈ H such that

h = (I−F†
3 F3)m. (23)

Note that I−F†F = (I−B†B)(I−F†
3 F3) . We combine (21) and (23) to get As+Bt =

(I−F†F)m+ x . Multiplying the equation from left by (I−BB†) , we obtain

(I−BB†)As− (I−BB†)(I−F†F)m = (I−BB†)x. (24)
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Similarly, by (22) and (23) we obtain

Bs+BB†A(I−F†F)m = By. (25)

By (24) and (25) , we get

By+(I−BB†)x = Fs+Rm = (F +R)[F†Fs+(I−F†F)m].

Notice that x,y are arbitrary and H = {By + (I−BB†)x : ∀x,y ∈ H }. So F + R is
surjective. In conclusion, F +R is invertible.

We now giving the expression of MD . Denote

Δ1 = PB = (I−F†F)(F +R)−1B,

Δ2 = PA+Q = I +(I−F†F)(F +R)−1(I−BB†).

By Theorem 2.6 one has

[P(I−BB†)+QB†](F +R)

=P(I−BB†)A−P(I−BB†)(I−F†F)+Q+QB†A(I−F†F)

=PA+Q+PBB†(I−F†F −A).

Therefore,

P =[PA+Q+PBB†(I−F†F −A)](F +R)−1(I−BB†)+PBB†

=[Δ2 + Δ1B
†(I−F†F −A)](F +R)−1(I−BB†)+ Δ1B

†

and
Q = QB†B

= [PA+Q+PBB†(I−F†F −A)](F +R)−1B

= [Δ2 + Δ1B
†(I−F†F −A)](F +R)−1B.

Similarly,

[X(I−BB†)+YB†](F +R)

=X(I−BB†)A−X(I−BB†)(I−F†F)+Y +YB†A(I−F†F)

=XA+Y +XBB†(I−F†F −A)

=P+QB†(I−F†F −A).

Therefore,

X = [P+QB†(I−F†F −A)](F +R)−1(I−BB†)+QB†.

By MMD = MDM , we have that

Y = P−XA.
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⇐= It is clear. �

REMARK. Let R(B) be closed. By Theorem 3.2, the necessary and sufficient
conditions of the MD exists with ind(M) � 2 and the expression of MD can be ob-
tained. In[27, Theorem 3.1], authors didn’t observe that R(F3) is closed if ind(M)� 2.
If F is invertible, then I −F†F = 0 and R = 0. Therefore, F +R is invertible. But
ind(M) = 1. The necessary and sufficient conditions of the MD exists ind(M) = 2 and
expression of MD can be given directly following.

THEOREM 3.3. Let M be defined by (1) such that R(B) is closed, let F and R
be defined by (8) . Then ind(M) = 2 if and only if R(F) is closed, F +R is invertible
but F is not invertible. In this case,

MD =
(

P Q
X Y

)
,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = (I−F†F)(F +R)−1B,

Δ2 = I +(I−F†F)(F +R)−1(I−BB†),

P = [Δ2 + Δ1B
†(I−F†F −A)](F +R)−1(I−BB†)+ Δ1B

†,

Q = [Δ2 + Δ1B
†(I−F†F −A)](F +R)−1B,

X = [P+QB†(I−F†F −A)](F +R)−1(I−BB†)+QB†,

Y = P−XA.

COROLLARY 3.2. Let M be defined by (1) such that R(B) is closed, let B,A
and R4 be defied by (13) , (14) and (16) , respectively. Then the following statements
are equivalent:

(i) M is Drazin invertible such that ind(M) � 2 ,

(ii) R(A4) is closed,

(
R4−A3B

−1
1 A2 A4

I 0

)
is group invertible.

Proof. Obviously, (i) ⇐⇒ R(F) is closed and F +R is invertible ⇐⇒ R(A4)
is closed and J is invertible ⇐⇒ (ii). �

We give two examples that illustrate the correctness of Theorem 3.1 and Theorem
3.3.

EXAMPLE 1. Let

M =
(

A B
I 0

)
=

⎛
⎜⎜⎝

0 1 0 0
0 1 1 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .
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By computation, we obtain

B† =
(

0 1
2

0 1
2

)
, F = (I−BB†)A+B =

(
0 1
1 1

)

is invertible. So

F−1 = [(I−BB†)A+B]−1 =
(−1 1

1 0

)
,

F−1
1 = [A(I−B†B)+B]−1 =

(− 3
2

1
2

1
2

1
2

)
.

Thus

P = F−1(I−BB†) =
(−1 0

1 0

)
, Q = F−1B =

(
1 1
0 0

)
,

X = P2 +QF−1
1 =

(
0 1
−1 0

)
, Y = P−XA =

(−1 −1
1 1

)
.

Therefore,

M# =

⎛
⎜⎜⎝

−1 0 1 1
1 0 0 0
0 1 −1 −1

−1 0 1 1

⎞
⎟⎟⎠ .

EXAMPLE 2. Let

M =
(

A B
I 0

)
=

⎛
⎜⎜⎝

0 −2 0 1
0 2 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

By computation, we obtain

F = (I−BB†)A+B =
(

0 −1
0 3

)
is not invertible,

R = [BB†A− (I−BB†)](I−F†F) =
(− 1

2 0
1
2 0

)

and

F +R =
(− 1

2 −1
1
2 3

)
is invertible imply ind(M) = 2.

Using Theorem 3.3,

Δ1 =
(

0 −4
0 0

)
, Δ2 =

(
0 1
0 1

)
, P =

(
0 −4
0 0

)
, Q =

(
0 9
0 1

)
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and

X =
(

0 9
0 1

)
, Y =

(
0 −22
0 −2

)
.

Hence,

MD =

⎛
⎜⎜⎝

0 −4 0 9
0 0 0 1
0 9 0 −22
0 1 0 −2

⎞
⎟⎟⎠ .
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