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SPECTRA OF INFINITE GRAPHS: TWO METHODS OF COMPUTATION

LEONID GOLINSKII

(Communicated by M. Omladič)

Abstract. Two methods for computation of the spectra of certain infinite graphs are suggested.
The first one can be viewed as a reversed Gram–Schmidt orthogonalization procedure. It relies
heavily on the spectral theory of Jacobi matrices. The second method is related to the Schur
complement for block matrices. A number of examples including finite graphs with tails, chains
of cycles and ladders are worked out in detail.
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1. Introduction

We begin with some rudiments of the graph theory. For the sake of simplicity
we restrict ourselves with simple, connected, undirected, finite or infinite (countable)
weighted graphs, although the main result holds for weighted multigraphs and graphs
with loops as well. We will primarily label the vertex set V (Γ) by positive integers
N = {1,2, . . .} , {v}v∈V = { j}ω

j=1 , ω � ∞ . The symbol i ∼ j means that the vertices i
and j are incident, i.e., {i, j} belongs to the edge set E (Γ) . A graph Γ is weighted if
a positive number di j (weight) is assigned to each edge {i, j} ∈ E (Γ) . When di j = 1
for all i, j , the graph is unweighted.

The degree (valency) of a vertex v ∈ V (Γ) is a number γ(v) of edges emanat-
ing from v . A graph Γ is said to be locally finite, if γ(v) < ∞ for all v ∈ V (Γ) ,
and uniformly locally finite, if supV γ(v) < ∞ . The latter will be the case in all our
considerations below.

The spectral graph theory deals with the study of spectra and spectral properties of
certain matrices related to graphs (more precisely, operators generated by such matrices
in the standard basis {ek}k∈N and acting in the corresponding Hilbert spaces Cn , �2 =
�2(N) , or, more generally, �2(V (Γ)) . One of the most notable of them is the adjacency
matrix A(Γ)

A(Γ) = ‖ai j‖ω
i j=1, ai j =

{
di j, {i, j} ∈ E (Γ);
0, otherwise.

(1.1)

The corresponding adjacency operator will be denoted by the same symbol. It acts as

A(Γ)ek = ∑
j∼k

a jk e j, k ∈ N. (1.2)

Clearly, A(Γ) is a symmetric, densely-defined linear operator, whose domain is the set
of all finite linear combinations of the basis vectors. The operator A(Γ) is bounded and
selfadjoint in �2 , as long as the graph Γ is uniformly locally finite.

Under the spectrum σ(Γ) (resolvent set ρ(Γ)) of the graph we always mean the
spectrum (the resolvent set) of its adjacency operator A(Γ) . We stick to the follow-
ing classification for the parts of the spectrum (one of the most confusing notions in
the spectral theory). Under the discrete spectrum σd(Γ) we mean the set of all iso-
lated eigenvalues of A(Γ) of finite multiplicity. The essential spectrum σess(Γ) is
the complement σ(Γ)\σd(Γ) . If HΓ{(a,b)} is the spectral subspace of A(Γ) for
the interval (a,b) , a point λ ∈ σess(Γ) if and only if for each ε > 0 the dimension
dimHΓ{(λ − ε,λ + ε)} = +∞ . We denote by σp(Γ) the point spectrum of Γ , i.e.,
the set of all eigenvalues of A(Γ) . Sometimes we use a notation σh(Γ) for the set of
eigenvalues of A(Γ) , lying on the essential spectrum (the so-called hidden spectrum).
We will observe the situation, when σh(Γ) �= /0 in a number of subsequent examples.

The underlying Hilbert space, wherein the adjacency operator A(Γ) acts, is �2 as
soon as we use the set N to enumerate the vertex set V (Γ) . But sometimes it is more
convenient to use another set of indices. In general, the underlying Hilbert space �2(Γ)
is the set of all square summable sequences defined on V (Γ) . The standard basis in
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this space is {ev(·)}v∈V (Γ) with

ev(w) =
{

1, w = v;
0, w �= v.

Relation (1.2) (for unweighted graphs) looks as

(A(Γ)ev)(w) = ∑
u∼v

eu(w), u,v ∈ V (Γ). (1.3)

Whereas the spectral theory of finite graphs is very well established (see, e.g.,
[1, 5, 6, 7]), the corresponding theory for infinite graphs is in its youth. We refer to
[24, 25, 33] for the basics of this theory. In contrast to the general consideration in [25],
the goal of these notes is to carry out a complete spectral analysis for certain classes of
infinite graphs.

We suggest two methods of computation of spectra for such graphs. The first one
applies to the graphs which can be called “finite graphs with tails attached to them”
and some other closely related graphs. It is pursued in two stages. At the first one,
we construct a canonical model for the adjacency operators of such graphs, which is
an orthogonal sum of a finite dimensional operator and a Jacobi operator of finite rank
(finite and Jacobi components of the graph). At the second stage, the spectrum of the
Jacobi component is computed by means of the Jost solution for the corresponding
recurrence relation, and the spectrum of the finite component by the standard means of
linear algebra.

To be precise, we define first an operation of coupling well known for finite graphs
(see, e.g., [7, Theorem 2.12]).

DEFINITION 1.1. Let Γk , k = 1,2, be two weighted graphs with no common
vertices, with the vertex sets and edge sets V (Γk) and E (Γk) , respectively, and let
vk ∈ V (Γk) . A weighted graph Γ = Γ1 + Γ2 will be called a coupling by means of the
bridge {v1,v2} of weight d if

V (Γ) = V (Γ1)∪V (Γ2), E (Γ) = E (Γ1)∪E (Γ2)∪{v1,v2}. (1.4)

So, we join Γ2 to Γ1 by a new edge of weight d between v2 and v1 .

If the graph Γ1 is finite, V (Γ1) = {1,2, . . . ,n} , and V (Γ2) = { j}ω
j=n+1 , we can

with no loss of generality put v1 = n , v2 = n+1, so the adjacency matrix A(Γ) can be
written as a block matrix

A(Γ) =
[
A(Γ1) Ed

E∗
d A(Γ2)

]
, Ed =

⎡⎢⎢⎢⎣
0 0 0 . . .
...

...
...

0 0 0 . . .
d 0 0 . . .

⎤⎥⎥⎥⎦ , (1.5)

the matrix with n rows and one nonzero entry. If Γ2 = P∞{ai} , the one-sided weighted
infinite path, ai = di,i+1 , we can view the coupling Γ = Γ1 +P∞{ai} as a finite graph
with the tail. This is the class of graphs we will primarily be dealing with here.



988 L. GOLINSKII

��
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Γ1
� � �n n+1 n+2 � � �

A special class of infinite matrices will play a crucial role in what follows.
Under Jacobi or tridiagonal matrices we mean here semi-infinite matrices of the

form

J = J({bi},{ai})i∈N =

⎡⎢⎢⎢⎢⎣
b1 a1

a1 b2 a2

a2 b3
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎦ , bi ∈ R, ai > 0. (1.6)

They generate linear operators (called the Jacobi operators) on the Hilbert space �2(N) .
The matrix

J0 :=

⎡⎢⎢⎢⎣
0 1 0 0
1 0 1 0
0 1 0 1

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎦ (1.7)

known as a discrete Laplacian or a free Jacobi matrix, is of particular interest in the
sequel. We denote by J0,m a m×m-matrix, which is a principal block of order m of J0

(the discrete Laplacian of order m).
The Jacobi matrices arise in the spectral graph theory because of relation to the

adjacency matrix A(P∞{ai}) of the weighted path

A(P∞({ai})) := J({0},{ai}). (1.8)

In the case of the unweighted path, that is, ai ≡ 1, we have

A(P∞) = J0. (1.9)

The spectrum of J0 is σ(J0) = [−2,2] .
Similarly, the discrete Laplacian of order m is the adjacency matrix of the path Pm

with m vertices, J0,m = A(Pm) . It is well known [5, Section 1.4.4] that the spectrum

σ(J0,m) =
{

2cos
π j

m+1

}m

j=1
. (1.10)

Sometimes two-sided Jacobi matrices J = J({bi},{ai})i∈Z , acting on the Hilbert
space �2(Z) , show up in our consideration. The discrete Laplacian is

J = J0(Z) = J({0},{1})i∈Z, σ(J0(Z)) = [−2,2]. (1.11)
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It follows from (1.5) that for an arbitrary finite weighted graph G

A(G+P∞{ai}) =
[
A(G) Ed

E∗
d J({0},{ai})

]
. (1.12)

To proceed further, let us recall the notions of truncation and extension for Jacobi
matrices.

Given two Jacobi matrices Jk = J
(
{b(k)

i },{a(k)
i }

)
i∈N

, k = 1,2, the matrix J2 is

called a truncation of J1 (and J1 is an extension of J2 ) if

b(2)
i = b(1)

i+q, a(2)
i = a(1)

i+q, i ∈ N,

for some q ∈ N . In other words, J2 is obtained from J1 by deleting the first q rows
and columns. The term q-stripped matrix is also in common usage. If the discrete
Laplacian J0 is the truncation of a Jacobi matrix J1 , the latter is called a Jacobi matrix
of finite rank or an eventually free Jacobi matrix.

For Jacobi matrices J of finite rank, it is well known that

σ(J) = σess(J)∪σd(J) = [−2,2]∪σd(J), (1.13)

the discrete spectrum σd(J) is finite, and the union is disjoint.
We suggest a “canonical” form for the block matrices (1.12) and the algorithm of

their reduction to this form.

THEOREM 1.2. Let A be a selfadjoint operator on �2 , given by a block matrix

A =
[
A Ed

E∗
d J

]
, Ed =

⎡⎢⎢⎢⎣
0 0 0 . . .
...

...
...

0 0 0 . . .
d 0 0 . . .

⎤⎥⎥⎥⎦ , d > 0, (1.14)

where A is a real, symmetric matrix of order n, J = J({bi},{ai}) a Jacobi matrix.
Then there is a unitary operator U on �2 such that

U−1AU =

[
Â

Ĵ

]
= Â ⊕ Ĵ, (1.15)

where Â is a real, symmetric matrix of order at most n− 1 , and the Jacobi matrix Ĵ
is the extension of J .

The proof of Theorem 1.2 in [12] is somewhat cumbersome. An alternative,
“coordinate-free” proof due to Kozhan [18] is based on a canonical representation of an
arbitrary real, symmetric (and even Hermitian) matrix as an orthogonal sum of finite,
Jacobi matrices. Precisely, given such n×n matrix A , there is a unitary matrix V on
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Cn so that

V−1A V = Ĵn =

⎡⎢⎢⎢⎢⎣
b̂1 â1

â1 b̂2
. . .

. . .
. . . ân−1

ân−1 b̂n

⎤⎥⎥⎥⎥⎦ , b̂i ∈ R, âi � 0.

Moreover,
Ven = V−1en = en, (1.16)

en is the n -th standard basis vector in Cn , and if

dimspan{A ken, k � 0} = m � n, (1.17)

then
âi > 0, i = n−m+1, . . .,n−1, ân−m = 0.

To prove Theorem 1.2, put

U =
[
V

I

]
,

V as above, so

U−1AU =
[

Ĵn V−1Ed

E∗
dV J

]
.

In view of (1.16), V−1Ed = Ed , E∗
dV = E∗

d , and hence

U−1AU =
[

Ĵn Ed

E∗
d J

]
=

[
Â

Ĵ

]
,

where the matrix Â of order n−m is the orthogonal sum of finite, Jacobi matrices,

Ĵ = J({b̂n−m+1, . . . , b̂n,b1,b2, . . .},{ân−m+1, . . . , ân−1,d,a1,a2, . . .})
is the extension of J , as claimed.

COROLLARY 1.3. Given a finite weighted graph G, the adjacency operator of
the coupling Γ = G+P∞{ai} is unitarily equivalent to the orthogonal sum

U−1A(Γ)U = F(Γ)⊕ J(Γ) (1.18)

of a finite-dimensional operator F(Γ) and a Jacobi operator J(Γ) , which is an exten-
sion of J({0},{ai}) .

The matrix J(Γ) is of finite rank, as long as P∞ is unweighted. We call F(Γ) a
finite-dimensional component of the coupling Γ , and J(Γ) its Jacobi component.

Note that in this situation the vectors en and A(G)en are linearly independent, so
m � 2 in (1.17), and the dimension of the finite-dimensional component F(Γ) is at
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most n−2. We observe the both extreme cases dimF(Γ) = n−2 in Example 3.1, and
dimF(Γ) = 0 (the finite component is missing) in Example 3.3 below.

It follows from the above canonical form that the spectrum of Γ is

σ(Γ) = σ(F(Γ))
⋃

σ(J(Γ)).

Hence, to compute the spectrum of Γ , we apply the spectral result of Damanik and
Simon for Jacobi matrices of finite rank, based on the Jost solution. The eigenvalues
of the finite-dimensional component are the roots of the corresponding characteristic
polynomial.

REMARK 1.4. Given a finite graph G , one can attach p � 1 copies of the infinite
path P∞ to some vertex v ∈ V (G) . Although the graph Γ thus obtained is not exactly
the coupling in the sense of Definition 1.1, its adjacency operator acts similarly to one
for the coupling. Indeed, it is not hard to see that

A(Γ) =
[
A(G) Ed

E∗
d J0

]⊕(p−1⊕
i=1

J0

)
, d :=

√
p. (1.19)

Hence, Theorem 1.2 applies, and the spectral analysis of such graph can be carried out.

Surprisingly enough, the case, when p � 1 infinite rays are attached to each vertex
of a finite graph G , is easy to work out, and the spectrum of such graph can be found
explicitly in terms of the spectrum of G . Denote such graph by G∞(p) .

THEOREM 1.5. Given a finite graph G of order n with σ(G) = {λ j}n
j=1 , let

Γ = G∞(p) , p ∈ N . Denote by J(λ j,
√

p) the Jacobi matrices of rank 1

J(λ j,
√

p) := J({λ j,0,0, . . .},{√p,1,1, . . .}). (1.20)

Then the adjacency operator A(Γ) is unitarily equivalent to the orthogonal sum

A(Γ) �
n⊕

j=1

J(λ j,
√

p)
⊕((p−1)n⊕

i=1

J0

)
. (1.21)

The spectrum of Γ is

σ(Γ) = [−2,2]
⋃(

n⋃
j=1

σd
(
J(λ j,

√
p)

))
. (1.22)

For the proof see [12, Theorem 1.6].

The spectral theory of infinite graphs with one or several rays attached to certain
finite graphs was initiated in [20, 21, 22, 26] wherein several particular examples of
unweighted (background) graphs are examined. The spectral analysis of similar graphs
appeared earlier in the study of thermodynamical states on complex networks [9, 10].
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We argue in the spirit of [3, 4, 31] and supplement to the list of examples. The general
canonical form for the adjacency matrices of such graphs and the algorithm of their
reducing to this form suggested in the paper apply to a wide class of couplings (not
only the graphs with tails), and also to Laplacians on graphs of such type.

The second method, which can be called the “Schur complement method”, is based
on this well-known notion from the algebra of block matrices. The method is applied
to wider classes of infinite graphs, as well as to some other operators (Laplacians) on
graphs, see [13].

Let

A =
[
A11 A12

A21 A22

]
(1.23)

be a block operator matrix which acts on the orthogonal sum H1 ⊕H2 of two Hilbert
spaces. If A11 is invertible, the matrix A can be factorized as

A =
[

I 0
A21A

−1
11 I

][
A11 0
0 C22

][
I A−1

11 A12

0 I

]
, (1.24)

I is the unity operator on the corresponding Hilbert space. Similarly, if A22 is invert-
ible, one can write

A =
[
I A12A

−1
22

0 I

][
C11 0
0 A22

][
I 0

A−1
22 A21 I

]
. (1.25)

Here
C22 := A22−A21A

−1
11 A12, C11 := A11−A12A

−1
22 A21 (1.26)

are usually referred to as the Schur complements [29], [15, Section 0.8.5]. Both equali-
ties can be checked by direct multiplication.

The result below follows immediately from the formulae (1.24) and (1.25).

PROPOSITION 1.6. Given a block operator matrix A (1.23) , let A22 (A11) be
invertible. Then A is invertible if and only if so is C11 (C22) .

Note that in the premises of Proposition 1.6 the inverse A −1 takes the form

A −1 =
[

C−1
11 −C−1

11 A12A
−1
22

−A−1
22 A21C

−1
11 A−1

22 +A−1
22 A21C

−1
11 A12A

−1
22

]
and, respectively,

A −1 =
[
A−1

11 +A−1
11 A12C

−1
22 A21A

−1
11 −A−1

11 A12C
−1
22

−C−1
22 A21A

−1
11 C−1

22

]
.

Denote by ρ(T ) the resolvent set of a bounded, linear operator T , i.e., the set of
complex numbers λ so that λ I−T is boundedly invertible. We apply the latter result
to the block matrix

λ I−A =
[

λ I−A11 −A12

−A21 λ I−A22

]
, λ ∈ C, (1.27)

to obtain



SPECTRA OF INFINITE GRAPHS 993

PROPOSITION 1.7. Given a block operator matrix A (1.23) , let λ ∈ ρ(A22)(
λ ∈ ρ(A11)

)
. Then λ ∈ ρ(A ) if and only if the operator

C11(λ ) = λ I−A11−A12(λ I−A22)−1 A21

(C22(λ ) = λ I−A22−A21(λ I−A11)−1 A12)
(1.28)

is invertible.

We proceed as follows. An exposition of the spectral theory for certain classes
of Jacobi matrices in Section 2 gives a chance to experts in the graph theory to get
acquainted with this fascinating topic, and makes the reasoning self-contained. In the
next two sections we collect a number of illuminating examples, the graphs with infinite
tails (Section 3) and ladders and chains of cycles (Section 4). We construct explicitly
the canonical bases and find the spectra of the corresponding graphs. In Section 5 we
discuss the second method based on the Schur complement.

2. Spectral analysis for classes of Jacobi matrices

2.1. Perturbation determinants and Jost functions

A basic object known as the perturbation determinant [11] is a key ingredient of
perturbation theory.

Given bounded linear operators T0 and T on the Hilbert space such that T −T0 is
a trace class operator, the perturbation determinant is defined as

L(λ ;T,T0) := det(I +(T −T0)R(λ ,T0)), R(λ ,T0) := (T0 −λ )−1 (2.1)

is the resolvent of the operator T0 , an analytic operator-function on the resolvent set
ρ(T0) .

The perturbation determinant is designed for the spectral analysis of the perturbed
operator T , once the spectral analysis for the unperturbed one T0 is available. In partic-
ular, the essential spectra of T and T0 agree, and the discrete spectrum of T is exactly
the zero set of the analytic function L on ρ(T0) , at least if the latter is a domain, i.e., a
connected, open set in the complex plane.

In the simplest case, rank(T − T0) < ∞ , the perturbation determinant reduces to
the standard finite-dimensional determinant. Indeed, now

(T −T0)h =
p

∑
k=1

〈h,ϕk〉ψk, (T −T0)R(λ ,T0)h =
p

∑
k=1

〈h,R∗(λ ,T0)ϕk〉ψk,

so L can be computed by the formula (see, e.g., [11, Section IV.1.3])

L(λ ;T,T0) = det[δi j + 〈R(λ ,T0)ψi,ϕ j〉]pi, j=1. (2.2)

Our particular concern is T0 = J0 , the free Jacobi matrix. The matrix of its resol-
vent in the standard basis in �2 is given by (see, e.g., [16])

R(λ ,J0) = [ri j(z)]∞i, j=1, ri j(z) =
z|i− j| − zi+ j

z− z−1 , λ = z+
1
z
, z ∈ D. (2.3)
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If T = J is a Jacobi matrix of finite rank p , we end up with computation of the ordinary
determinant (2.2) of order p .

It is instructive for the further usage computing two simplest perturbation determi-
nants for rank(J− J0) = 1 and 2.

EXAMPLE 2.1. Let

J = J({bi},{1}) : bi = 0, i �= q,

so J− J0 = 〈·,eq〉bqeq . By (2.3) and (2.2),

L̂(z) := L
(
z+

1
z

;J,J0

)
= 1+bqrqq(z) = 1−bqz

z2q −1
z2 −1

. (2.4)

Similarly, let
J = J({0},{ai}) : ai = 1, i �= q,

so J− J0 = 〈·,eq〉(aq −1)eq+1 + 〈·,eq+1〉(aq −1)eq , and again

L̂(z) =
∣∣∣∣1+(aq−1)rq,q+1(z) (aq−1)rqq(z)
(aq−1)rq+1,q+1(z) 1+(aq−1)rq+1,q(z)

∣∣∣∣
= 1+(1−a2

q)z
2 z2q −1

z2 −1
.

(2.5)

In the Jacobi matrices setting there is yet another way of computing perturbation
determinants based on the so-called Jost solution and Jost function (see, e.g., [33, Sec-
tion 3.7]).

Consider the basic recurrence relation for the Jacobi matrix J

an−1yn−1 +bnyn +anyn+1 =
(
z+

1
z

)
yn, z ∈ D, n ∈ N, a0 = 1, (2.6)

see, e.g., [16, formula (1.26)]. Its solution yn = un(z) is called the Jost solution if

lim
n→∞

z−nun(z) = 1, z ∈ D. (2.7)

In this case the function u = u0(z) is called the Jost function.
The Jost solution certainly exists for finite rank Jacobi matrices. The Jost function

is now an algebraic polynomial, called the Jost polynomial. Indeed, let

bq+1 = bq+2 = . . . = 0, aq+1 = aq+2 = . . . = 1. (2.8)

One can put uk(z) = zk , k � q+ 1, and then determine uq,uq−1, . . . ,u0 consecutively
from (2.6). So,

aq uq(z) =
(
z+

1
z

)
zq+1− zq+2 = zq,

aq−1aq uq−1(z) =
(
z+

1
z

)
zq −bqz

q −a2
qz

q+1

= (1−a2
q)zq+1 −bqz

q + zq−1,

(2.9)
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and so on. The algorithm shows that under conditions (2.8), the Jost polynomial is a
real polynomial of degree at most 2q . In particular, if α j := 1−a2

j , j = 1,2, we have
for q = 1

a1 u(z) = α1 z2 −b1z+1, (2.10)

and for q = 2

a1a2 u(z) = α2 z4− (b2 +b1α2)z3 +(α1 + α2 +b1b2)z2 − (b1 +b2)z+1. (2.11)

The relation between the perturbation determinant and the Jost function is given
by

u(z) =
∞

∏
i=1

a−1
i · L̂(z), (2.12)

see [16], and such recursive way of computing perturbation determinants is sometimes
far easier than computing ordinary determinants (2.2), especially for large enough ranks
of perturbation. On the other hand, for small ranks of perturbation (as in Example 2.1)
with large q it is much easier applying formula (2.2).

EXAMPLE 2.2. Let J = J({bi},{ai}) be a Jacobi matrix such that

bi = 0, i �= 1; ai = 1, i �= q.

We have uq+ j(z) = zq+ j , j = 1,2 . . . ,

aquq(z) = zq, aquq−1(z) = αq zq+1 + zq−1,

aquq−2 = αq (zq+2 + zq)+ zq−2,

and, by induction,

aquq−k(z) = αq zq−k+2 z2k −1
z2 −1

, k = 1,2, . . . ,q−1. (2.13)

Next, for q = 1 we have exactly (2.10), so let q � 2. The recurrence relation (2.6)
with n = 1 gives

aqu(z)+b1aqu1(z)+aqu2(z) =
(
z+

1
z

)
aqu1(z),

and so we come to the following expression for the Jost polynomial

aqu(z)(z2 −1) = αq (z−b1)z2q+1 −b1a
2
qz

3 +a2
qz

2 +b1z−1. (2.14)

Similarly, for the Jacobi matrix J = J({bi},{ai}) with

bi = 0, i �= q; ai = 1, i �= 1

one has

a1u(z) = −bq
z2q+1 + α1z2q−1−α1z3− z

z2−1
+ α1z

2 +1. (2.15)
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For the Jacobi matrix J = J({0},{ai}) with ai = 1, i �= 1, q , the Jost polynomial is
given by

a1aqu(z) = αq
z2q+2 + α1z2q−α1z4 − z2

z2 −1
+ α1z

2 +1. (2.16)

For the Jacobi matrices of finite rank a complete spectral analysis is available at
the moment, see [8, 17]. The spectral theorem of Damanik and Simon [8] provides a
complete description of the spectral measure for such matrices.

THEOREM. (Damanik–Simon). Let J = J({bi},{ai})i∈N be a Jacobi matrix of
finite rank

aq+1 = aq+2 = . . . = 1, bq+1 = bq+2 = . . . = 0,

and u = u0(J) be its Jost polynomial. Then

• u is a real polynomial of degree degu � 2q, degu = 2q if and only if aq �= 1 .

• All roots of u in the unit disk D are real and simple, u(0) �= 0 . A number λ j is
an eigenvalue of J if and only if

λ j = z j +
1
z j

, z j ∈ (−1,1), u(z j) = 0. (2.17)

• The spectral measure σ(J) is of the form

σ(J,dx) = σac(J,dx)+ σd(J,dx) = w(x)dx+
N

∑
j=1

σ jδ (λ j), (2.18)

where

w(x) :=

√
4− x2

2π |u(eit)|2 , x = 2cost, σ j =
z j(1− z−2

j )2

u′(z j)u(1/z j)
.

Note that |u(eit)|2 = Q(x) , x = 2cost , Q is a real polynomial of the same degree as
the Jost polynomial u.

The algebraic equations which we encounter later on cannot in general be solved
explicitly. By means of the following well-known result [27, p. 41], we can determine
how many roots (if any) they have in (−1,1) .

THEOREM. (Descarte’s rule). Let a(x) = a0xn + . . . + an be a real polynomial.
Denote by μ(a) the number of its positive roots, and ν(a) the number of the sign
changes in the sequence {a0, . . . ,an} of its coefficients (the zero coefficients are not
taken into account). Then ν(a)− μ(a) is a nonnegative even number.
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2.2. Weyl function and transfer matrix

Let us go back to the basic recurrence relations (2.6)

an−1yn−1(λ )+bnyn(λ )+anyn+1(λ ) = λ yn, n ∈ N, a0 = 1, (2.19)

and consider its two solutions

yn(λ ) = pn(λ ) : p0 = 0, p1 = 1; yn(λ ) = qn(λ ) : q0 = −1, q1 = 0.

The polynomials pn (qn) are called the first (second) kind polynomials for the Jacobi
matrix J . We have

p2(λ ) =
λ −b1

a1
, p3(λ ) =

(λ −b2)(λ −b1)
a1a2

− a1

a2
, . . . (2.20)

so deg pk = k−1.
Recall that 1-stripped matrix J1 for J is given by J1 = J({bi+1},{ai+1}) . The

stripping formula [33, formula (3.2.16)] relates the second kind polynomials qn for J

and the first kind ones p(1)
n for J1

qn(λ ) =
1
a1

p(1)
n−1(λ ), n ∈ N, (2.21)

so degqk = k−2.

EXAMPLE 2.3. “Chebyshev polynomials”.
We compute the 1st (2nd) kind polynomials for two particular Jacobi matrices.

Recall the notion of Chebyshev polynomials of the 1st and 2nd kind

Tn(cosθ ) = cosnθ , Un(cosθ ) =
sin(n+1)θ

sinθ
, n = 0,1, . . . (2.22)

so T0 = U0 = 1,

T1(λ ) = λ , T2(λ ) = 2λ 2−1, T3(λ ) = 4λ 3−3λ , T4(λ ) = 8λ 4−8λ 2 +1;

U1(λ ) = 2λ , U2(λ ) = 4λ 2−1, U3(λ ) = 8λ 3−4λ U4(λ ) = 16λ 4−12λ 2 +1.

The general expressions as the products are

Tn(λ ) = 2n−1
n

∏
k=1

(
λ − cos

(2k−1)π
2n

)
, Un(λ ) = 2n

n

∏
k=1

(
λ − cos

kπ
n+1

)
,

The standard equalities

cos(n−1)θ + cos(n+1)θ = 2cosθ cosnθ ,

sin(n−1)θ + sin(n+1)θ = 2cosθ sinnθ
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lead to

Tn−1(λ )+Tn+1(λ ) = 2λ Tn(λ ),
Un−1(λ )+Un+1(λ ) = 2λ Un(λ ), n ∈ N.

It is clear now that the 1st kind polynomials for J = J0 are

p0(J0) = 0, pn(λ ,J0) = Un−1

(λ
2

)
, n = 1,2, . . . ,

and 1st kind polynomials for J = J′0 = J({0},{√2,1,1, . . .}) are

p0(J′0) = 0, p1(λ ,J′0) = 1, pn(λ ,J′0) =
√

2Tn−1

(λ
2

)
, n = 2,3, . . . .

More generally, if b1 = b2 = . . . = 0, a1 = a2 = . . . = ak = 1, then

pn(λ ,J) = Un−1

(λ
2

)
, n = 1,2, . . . ,k+1. (2.23)

If b1 = b2 = . . . = 0, a1 =
√

2, a2 = . . . = ak = 1, then

pn(λ ,J) =
√

2Tn−1

(λ
2

)
, n = 2,3, . . . ,k+1. (2.24)

The matrix form of (2.19) is[
yn+1

anyn

]
= A(λ ;an,bn)

[
yn

an−1yn−1

]
, A(λ ;an,bn) =

[ λ−bn
an

− 1
an

an 0

]
. (2.25)

The product of the matrices in (2.25) produces the transfer matrix

Tn(λ ) := A(λ ;an,bn)A(λ ;an−1,bn−1) . . .A(λ ;a1,b1), n ∈ N. (2.26)

Precisely, [
pn+1

anpn

]
= Tn(λ )

[
1
0

]
,

[
qn+1

anqn

]
= Tn(λ )

[
0
−1

]
,

Tn(λ ) =
[
pn+1(λ ) −qn+1(λ )
anpn(λ ) −anqn(λ )

]
, n ∈ N.

(2.27)

Since detA(λ ;an,bn) = detTn(λ ) = 1, we see that for each n∈N and complex λ

an
(
pn(λ )qn+1(λ )− pn+1(λ )qn(λ )

)
= 1. (2.28)

Let μ be the spectral measure of the Jacobi operator J . The Weyl function is
defined by

m(λ ) = m(λ ,J) :=
∫

R

μ(dt)
t−λ

.
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For the initial data

v0(λ ) =
[
m(λ )
−1

]
the solution of (2.25) is

vn(λ ) = Tn(λ )v0(λ ) =
[

m(λ )pn+1(λ )+qn+1(λ )
an

(
m(λ )pn+1(λ )+qn+1(λ )

)] .

As is known, this solution is square summable for each λ ∈ ρ(J) . Denote wn :=
mpn+1 +qn+1 . The Weyl function for the k -stripped Jacobi matrix Jk can be expressed
in terms of wk as

m(λ ,Jk) = − wk(λ )
akwk−1(λ )

= −m(λ )pk+1(λ )+qk+1(λ )
ak

(
m(λ )pk(λ )+qk(λ )

) . (2.29)

In particular, for k = 1 we have [33, Theorem 3.2.4]

m(λ ,J) =
1

b1−λ −a2
1m(λ ,J1)

.

2.3. Periodic Jacobi matrices

See [35, Chapter 7], [33, Chapter 5] for an extensive exposition of the theory.
A Jacobi matrix J is called N -periodic, N ∈ N , if

an+N = an, bn+N = bn, n = 1,2, . . . .

In other word, J is N -periodic if and only if the N stripped matrix JN = J . Equality
(2.29) shows that the Weyl function satisfies the following quadratic equation

aN pN(λ )m2(λ )+
(
pN+1(λ )+aNqN(λ )

)
m(λ )+qN+1(λ ) = 0. (2.30)

In view of (2.28), the discriminant of this equation equals

D(λ ) =
(
pN+1(λ )+aNqN(λ )

)2−4aN pN(λ )qN+1(λ )

=
(
pN+1(λ )−aNqN(λ )

)2−4 = D2(λ )−4,
(2.31)

where the polynomial

D(λ ) := pN+1(λ )−aNqN(λ ) = pN+1(λ )− aN

a1
p(1)

N−1(λ ) (2.32)

is the well-known discriminant of the Jacobi matrix J , which plays a key role in the
spectral theory of periodic Jacobi matrices.

The “right” root of (2.30) for the Weyl function can be singled out from the con-
dition m(z) = O(z−1) , z → ∞ ,

m(λ ) =
−γN(λ )+

√
D2(λ )−4

2aN pN(λ )
, γN(λ ) := pN+1(λ )+

aN

a1
p(1)

N−1(λ ). (2.33)
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Let us now turn to the structure of the spectrum for a periodic Jacobi matrix. It
is well known, that the essential spectrum of a periodic Jacobi matrix has a banded
structure, i.e., it is a union of nondegenerate closed intervals, some of them may touch
each other. Precisely, let J be an N -periodic Jacobi matrix. Then [33, Section 5.4]

σess(J) = {x ∈ R : −2 � D(x) � 2} =
N⋃

j=1

[α j,β j],

α1 < β1 � α2 < β2 � . . . � αN < βN .

(2.34)

The open intervals GN− j := (β j,α j+1) , j = 1,2, . . . ,N−1, are called the spectral gaps.
The gap (β j,α j+1) is open as long as β j < α j+1 , and it is closed otherwise (it is
convenient counting closed gaps as the “genuine ones”). Note that enumeration of the
gaps (including the closed ones) goes from the right to the left, so G1 = (βN−1,αN) is
the rightmost gap.

We have

D(λ ) = 2 ⇔ λ = βN ,αN−1,βN−2, . . .

D(λ ) = −2 ⇔ λ = αN ,βN−1,αN−2, . . . .

The rest of the spectrum of J is the discrete spectrum, which consists of a finite
number of eigenvalues. The eigenvalues of J agree with the poles of the Weyl function
(2.33). So, the discrete spectrum σd(J) is a part of the zero set of the polynomial pN

(the denominator of (2.33)). It is known, that the closure of each spectral gap (including
the closed ones) contains exactly one root of pN . To specify those, which produce the
eigenvalues, we should first choose the roots inside the open gaps. If pN(λ0) = 0, and
λ0 lies inside the gap, we need the numerator in (2.33) be nonzero, so not to cancel the
root of the denominator. By (2.31),

D2(λ0)−4 = γ2
N(λ0) ⇒

√
D2(λ0)−4 = |γN(λ0)|,

so λ0 ∈ Gq is the eigenvalue of J if and only if

sgnγN(λ0) = (−1)q+1. (2.35)

So, to find the spectrum σ(J) = σess(J)∪σd(J) , we proceed in three steps.

Step 1. Find the 1st kind polynomials pN+1 for J and p(1)
N−1 for 1-stripped matrix J1 .

Compute the discriminant D(J) in (2.32) and the polynomial γN in (2.33).

Step 2. Find the essential spectrum by (2.34).

Step 3. Find all roots of the polynomial pN and choose those inside the gaps, for which
(2.35) holds.
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2.4. Right limits and eigenvalues

Our first topic here concerns the notion of a right limit, see [33, Chapter 7].
Let f = { fi}i∈N ∈ �∞(N) . A two-sided sequence ϕ = {ϕi}i∈Z is said to be the

right limit for f , ϕ ∈ RL( f ) , if there is a sequence of indices M = {mj} j∈N ⊂ N so
that

ϕi = lim
j→∞

fi+mj ∀i ∈ Z. (2.36)

Sometimes we write (2.36) as ϕi = limm∈M fi+m . Note that, although the individual
value fi+mj may be senseless for “large enough” negative i , the ϕi in (2.36) is well-
defined. We say that M generates the right limit ϕ .

A simple compactness argument implies the following result.

PROPOSITION 2.4. For an arbitrary f ∈ �∞(N) , the set RL( f ) is nonempty. More-
over, for each ϕ ∈ RL( f ) and each sequence of indices Λ ⊂ N there is a subsequence
M ⊂ Λ generating ϕ .

It is clear that the set RL( f ) is closed under the shift S

ϕ ∈ RL( f ) ⇔ Skϕ = {ϕi+k}i∈Z ∈ RL( f ) ∀k ∈ Z. (2.37)

It follows directly from the definition, that

lim
i→∞

fi = g ⇒ RL( f ) = {. . . ,g,g,g, . . .},

i.e., RL( f ) consists of a single, constant sequence. More generally,

lim
i→∞

( f̃i − fi) = 0 ⇒ RL( f̃ ) = RL( f ).

In particular, if f and f̃ agree from some point on, the sets of right limits are the same,
RL( f ) = RL( f̃ ) .

Denote by L( f ) ⊂ C the set of all limit points of f . It is clear that ϕ = {ϕi}i∈Z ∈
RL( f ) implies ϕi ∈ L( f ) for each i ∈ Z .

If f does not converge, the cardinality of L( f ) is at least 2 . It is easy to see from
the second statement of Proposition 2.4 that the following holds.

PROPOSITION 2.5. Given g1,g2 ∈L( f ) , g1 �= g2 , for each k∈Z there are ϕ( j)=
{ϕi( j)}i∈Z ∈ RL( f ) , j = 1,2 , which depend on k , so that

ϕk(1) = g1, ϕk(2) = g2.

In particular, uniqueness of the right limit yields the convergence of f .

EXAMPLE 2.6. Let f be an N -periodic sequence, fi+N = fi , i ∈ N . We extend
it to N -periodic, two-sided sequence ϕ = {ϕi}i∈Z

ϕi+N = ϕi, i ∈ Z, ϕi = fi, i ∈ N,
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so ϕ = {. . . , f1, f2, . . . , fN , f1, f2, . . .} . It is not hard to show that

RL( f ) = {Sqϕ}N−1
q=0 ,

so the right limits are exhausted by the shifts of ϕ .

There is another, opposite in a sense, situation when the set of right limits is avail-
able.

EXAMPLE 2.7. An increasing sequence of positive numbers Λ = {λi}i∈N is called
sparse, if

lim
i→∞

(λi+1−λi) = +∞.

Given a sparse sequence of indices Λ , put

b = {bi}i∈N, bi =
{

β1, i ∈ Λ;
β0, i /∈ Λ.

, β0,β1 ∈ C.

Our goal is to describe the set RL(b) .
We show first that the constant sequence b(0) = {. . . ,β0,β0,β0, . . .} is in RL(b) .

By the sparseness, there is j1 so that λ j+1−λ j � 3 for j � j1 . Define the sequence of
indices M0 = {mj}

mj := λ j1+ j +(−1) j, j ∈ N.

Then for each i ∈ Z we have i+mj /∈ Λ for all large enough j . Indeed, assume on the
contrary, that i+mj = λs( j) for an infinite number of j ’s, that is,

i+(−1) j = λs( j)−λ j1+ j

for such values of j . But the latter contradicts the sparseness of Λ . So, M0 generates
b(0) .

Next, note that β1 ∈ L(b) , i.e., β1 is the limit point of b . By Proposition 2.5, for
each k ∈ Z there is a right limit ϕ(k) ∈ RL(b) so that ϕk(k) = β1 . The latter means
that there is a sequence {ν j} j∈N (generating ϕ(k)), for which

bk+ν j = β1, ∼ k+nu j ∈ Λ,

for all large enough j .
We show that for any k′ �= k the relation k′+ν j /∈Λ for all large enough j . Indeed,

assume on the contrary, that

k′ + ν j ∈ Λ, k′ + ν j = λr( j)

for an infinite number of j ’s. But

k′ + ν j = k′ − k+ k+ ν j = k′ − k+ λt( j)

and so
k′ − k = λr( j)−λt( j)
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for such values of j , that contradicts the sparseness of Λ . Hence, ϕk′(k) = β0 for
k′ �= k , which means that

ϕ(k) = b(k,1) := {. . . ,β0,β0,β1,β0,β0, . . .}, k ∈ Z,

β1 occurs at k -th place. Finally,

RL(b) = {b(0);b(k,1), k ∈ Z}. (2.38)

In exactly the same way we can examine a union of two sparse sequences. Pre-
cisely, let R = {ri}i∈N , be a sparse sequence of positive integers, and assume for
simplicity, that ri+1 − ri is strictly increasing, and ri+1 − ri � 2. Consider the union
R̃ := {r1,r1 +1,r2,r2 +1, . . .} . Let

a = {ai}i∈N, ai =
{

α1, i ∈ R̃;
α0, i /∈ R̃.

,

The similar reasoning leads to the following conclusion

RL(a) = {a(0);a(k,2),k ∈ Z}, a(0) = {. . . ,α0,α0,α0, . . .},
a(k,2) : = {. . . ,α0,α0,α0,α1,α1,α0,α0,α0, . . .},

(2.39)

α1 occurs at the places k , k+1.

Going back to Jacobi matrices J = J({bi},{ai})i∈N , we say that a two-sided Jacobi
matrix

Jright = J
(
{b(r)

i },{a(r)
i }

)
i∈Z

is a right limit of J if for some sequence of indices {mj} j∈N

lim
j→∞

ai+mj = a(r)
i , lim

j→∞
bi+mj = b(r)

i , ∀i ∈ Z.

Dealing with certain sparse graphs, we will encounter the following Jacobi matri-
ces

J± = J({b±i },{1})i∈N, b±i =
{±1, i ∈ Λ;

0, i /∈ Λ.
(2.40)

and

J̃ = J({0},{ai})i∈N, ai =
{√

2, i ∈ R̃;
1, i /∈ R̃.

, (2.41)

Λ and R̃ being sparse sequences of indices above. The set of right limits in the first
case is given by

RL(J±) =
{
J0(Z);J({. . . ,0,0,±1,0,0, . . .},{1})}, (2.42)

±1 occurs at k -th place, k ∈ Z . In the second case

RL(J) =
{
J0(Z);J({0},{. . . ,1,1,1,

√
2,
√

2,1,1,1, . . .})}, (2.43)
√

2 occurs at the places k , k+1; k ∈ Z .

The following result of Last–Simon [19], [33, Theorem 7.2.1], plays a key role for
computations in Section 4.
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THEOREM. (Last–Simon). Let J = J({bi},{ai})i∈N be a Jacobi matrix with
bounded entries

a := sup
i

(|ai|+ |bi|) < ∞. (2.44)

Then

σess(J) =
⋃

Jright∈RL(J)

σ(Jright).

Our second topic here concerns the eigenvalues of Jacobi matrices, in particular,
a result of Simon–Stolz [34] which provides a condition for a real λ not to be an
eigenvalue of J (λ /∈σp(J)). The condition is given in terms of the asymptotic behavior
for the norms of the transfer matrices Tn (2.26).

Let J = J({bi},{ai})i∈N be a Jacobi matrix with bounded entries (2.44). Let
{pn}n�1 be the 1st kind polynomials for J . By definition, λ ∈ σp(J) is equivalent
to {pn}n�1 ∈ �2 .

THEOREM. (Simon–Stolz). A real number λ /∈ σp(J) as long as

∞

∑
n=1

‖Tn(λ )‖−2 = +∞. (2.45)

Here and in the rest of the paper under the norm ‖A‖ of a matrix A we always mean
its operator norm.

The argument is simple enough. Note first, that for an invertible 2× 2 matrix C
the following holds

‖C−1‖ =
‖C‖
|detC| , (2.46)

see, e.g., [32, Lemma 10.5.1]. Next, by (2.27) and (2.46) with detTn = 1,

1 � ‖T −1
n (λ )‖2 (p2

n+1(λ )+a2
np2

n(λ )) � ‖Tn(λ )‖2 (1+a2)(p2
n+1(λ )+ p2

n(λ )).

Hence,

1
1+a2

k

∑
n=1

‖Tn(λ )‖−2 � 2
k+1

∑
n=1

p2
n(λ ),

and we are done.
In some examples below the condition (2.45) can be employed.

3. Spectra of graphs with infinite tails

To obtain the canonical form for particular graphs one should apply the reversed
Gram–Schmidt algorithm by hand. Its efficiency strongly depends on complexity of the
graph in question.
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3.1. Trees with tails

The examples below are taken partially from [12, Section 4]. Some of them are
new.

EXAMPLE 3.1. “A weighted star”.
Let Sn(w) be a simple weighted star graph of order n + 1, n � 2, with vertices

1, . . . ,n of degree 1, and the vertex n+1 of degree n being a root. The weight of the
edge (i,n+1) equals wi , 1 � i � n . We consider the coupling Γ = Sn(w)+P∞ , where
the infinite ray is attached to the root.

The canonical basis {h j} j∈N looks as follows. We put

h j := e j, j � n+1 =⇒ A(Γ)h j = h j−1 +h j+1, j � n+2.

Next, let w := (w1,w2, . . . ,wn) , ‖w‖ =
√

w2
1 + . . .+w2

n , and let

hn :=
1

‖w‖
n

∑
j=1

wk e j .

Then
A(Γ)hn+1 = ‖w‖hn +hn+2, A(Γ)hn = ‖w‖hn+1.

So the Jacobi subspace and Jacobi component of Γ are

J (Γ) = span{h j} j�n, J(Γ) = J
({0},{‖w‖,1,1, . . .}). (3.1)

To find the finite-dimensional component, let ξ = [ξk j]nk, j=1 be a unitary matrix
with the specified last column

ξkn =
wk

‖w‖ , k = 1, . . . ,n. (3.2)

We construct an orthonormal basis in Cn

f j :=
n

∑
k=1

ξk jek(n), j = 1, . . . ,n, (3.3)

where {ek(n)}n
k=1 is the standard basis in Cn . Put

h j := { f j,0,0, . . .}, j = 1, . . . ,n. (3.4)

The orthogonality relations 〈hk,hn〉 = 0, 1 � k � n−1, give

A(Γ)hk =
n

∑
j=1

ξk jξkn ·hn+1 = 0. (3.5)

Hence the finite-dimensional component F(Γ) = On−1 on the subspace F (Γ) =
span{h j}n−1

j=1 of the dimension n−1 (note that the size of the star is now n+1). So the
canonical form is

A(Γ) � On−1

⊕
J
({0},{‖w‖,1,1, . . .}). (3.6)
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The Jost polynomial is now given by (2.10)

‖w‖u(x) = (1−‖w‖2)x2 +1.

Clearly, u > 0 for ‖w‖ � 1, and it has zeros inside (−1,1) if and only if ‖w‖ >
√

2.
In this case the spectrum is σ(Γ) = [−2,2]∪σd(Γ)∪σh(Γ) with the discrete spectrum
being a pair of eigenvalues off [−2,2] ,

σd(Sn(w)+P∞) =
{
±
(√

‖w‖2−1+
1√

‖w‖2−1

)}
, (3.7)

and the hidden spectrum σh(Γ) = {0n−1} , the zero eigenvalue of multiplicity n−1.
For the unweighted star Sn we have

σd(Sn +P∞) =
{
±
(√

n−1+
1√

n−1

)}
, σh(Sn +P∞) = 0n−1, n � 3,

σd(S2 +P∞) = /0, σh(S2 +P∞) = 01.

The spectrum σ(Sn +P∞) was found in [22].
Note that the unweighted star graph Sn is a complete bipartite graph, Sn = K1,n .

For the general complete bipartite graph Kp,n+1−p see [12, Example 5.6].

Although an explicit form of the matrix ξ = [ξk j]nk, j=1 in (3.2) is immaterial, it is

worth noting that in the unweighted case ξkn = n−1/2 , 1 � k � n , and one can take

ξ = Φn :=
1√
n

[
e

2πik j
n

]n
k, j=1, (3.8)

which is known as the Fourier matrix. Clearly, there is a number of other options
for ξ to be a real orthogonal matrix (rotation in Rn with appropriate Euler’s angles,
orthogonal polynomials etc.).

EXAMPLE 3.2. “A multiple star”.
Consider the unweighted star-like graph Sn,p with n rays, n � 2, each of which

contains p + 1 vertices, p � 2. The vertices along each ray (without the root) are
numbered as

{1,n+1, . . . ,(p−1)n+1}, {2,n+2, . . . ,(p−1)n+2}, . . . {n,2n, . . . , pn},
and the root is pn+ 1, so Sn,1 = Sn . Let Γ = Sn,p + P∞ , with the path attached to the
root. As above, we put h j := e j , j = pn+1, . . ., and

hp(n−1)+i :=
1√
n

n

∑
q=1

e(i−1)n+q, i = 1,2, . . . , p. (3.9)

Then A(Γ)h j = h j−1 +h j+1 , j = pn+2 . . . , and

A(Γ)hpn+1 =
√

nhpn +hpn+2, A(Γ)hpn = hpn−1 +
√

nhpn+1,

A(Γ)hpn = hpn−1 +
√

nhpn+1,

A(Γ)hp(n−1)+i = hp(n−1)+i−1 +hp(n−1)+i+1, i = 2, . . . , p−1,

A(Γ)hp(n−1)+1 = hp(n−1)+2,
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so the Jacobi subspace and Jacobi component of Γ are

J (Γ) = span{h j} j�p(n−1)+1,

J(Γ) = J({0},{a j}), a j =
{√

n, j = p;
1, j �= p.

(3.10)

To find the finite-dimensional component note that, by the construction, hp(n−1)+i ∈
span{e(i−1)n+1, . . . ,ein} . As in the above example, we supplement each hp(n−1)+i to the
basis in this subspace by means of the Fourier matrix (3.8)

f (k)
j :=

n

∑
q=1

ξq je(k−1)n+q, f (k)
n :=

n

∑
q=1

ξqne(k−1)n+q = hp(n−1)+k

for 1 � j � n−1, 1 � k � p . As in (3.5), we have

A(Γ) f (1)
j = f (2)

j , A(Γ) f (2)
j = f (1)

j + f (3)
j , . . . ,

A(Γ) f (p−1)
j = f (p−2)

j + f (p)
j , A(Γ) f (p)

j = f (p−1)
j .

(3.11)

Relations (3.11) mean that the subspace H j := span{ f (1)
j , . . . , f (p)

j } is A(Γ)-invariant,
and A(Γ)|H j = J0,p . There are exactly n− 1 such subspaces for j = 1, . . . ,n− 1.
Finally, we come to the following canonical form for the adjacency matrix

A(Γ) � F(Γ)
⊕

J(Γ), F(Γ) =
n−1⊕
j=1

J0,p. (3.12)

The Jost polynomial is computed in (2.5)

−√
nu(x) = (n−1)x2 x2p−1

x2−1
−1 = (n−1)(x2p + x2p−2 + . . .+ x2)−1.

It is easy to see that u has exactly a pair of symmetric roots ±x0(p,n) in (−1,1) ,
which have the spectral meaning. Hence

σ(Γ) = [−2,2]∪σd(Γ)∪σh(Γ)

with

σd(Γ) =
{
±
(
x0(p,n)+

1
x0(p,n)

)}
, σh(Γ) =

{
2cos

π j
p+1

}p

j=1
, (3.13)

the hidden spectrum comes from the finite component F(Γ) (3.12), see (1.10), and each
hidden eigenvalue has multiplicity n−1.

The problem becomes harder (in the sense of computation) if the original finite
star-like graph is nonsymmetric (the rays are different).
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EXAMPLE 3.3. “Tn,n−1,∞ ”.
Consider a finite path of order 2n with the vertices labeled

{1,2,4, . . . ,2n−2,2n,2n−1, . . .,5,3},
with the tail attached to the root 2n . So there are two finite rays of different length, n
and n−1, respectively. The graph Γ thus obtained is known as Tn,n−1,∞ -graph.

The canonical basis {h j} j�1 looks as follows: h j = e j for j � 2n ,

hn+i =
e2i + e2i+1√

2
, hn−i =

e2i− e2i+1√
2

, i = 1, . . . ,n−1,

and hn = e1 .
The adjacency operator A(Γ) acts on the basis vectors in a simple way:

A(Γ)h2n+ j = h2n+ j+1 +h2n+ j−1, j = 1,2, . . . ,

A(Γ)h2n = h2n+1 +
√

2h2n−1, A(Γ)h2n−1 =
√

2h2n +h2n−2,

A(Γ)h2n−k = h2n−k+1 +h2n−k−1, k = 2, . . . ,n−2.

� � � � � �

�
�����
�
�����
�

2n 2n+1

3

5

2n−1

1

2

2n−2

Tn,n−1,∞

Furthermore,

A(Γ)hn+1 =
e1 + e4 + e5√

2
= hn+2 +

1√
2

hn

A(Γ)hn = e2 =
hn+1 +hn−1√

2
, A(Γ)hn− j = hn− j+1 +hn− j−1, j = 2, . . . ,n−2,

A(Γ)hn−1 =
e1 + e4− e5√

2
=

1√
2

hn +hn−2, A(Γ)h1 = h2.

So, the finite-dimensional component is missing, and A(Γ) � J({0},{a j}) ,

a j = 1, j �= n−1,n,2n−1, an−1 = an =
1√
2

, a2n−1 =
√

2.
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The Jost polynomial can be found from the definition (2.6). For instance, for n = 3
we have

1√
2

u(x) = −ax10−2ax8−
(5

2
a−1

)
x6 −

(
2a+

3
2

)
x4−ax2 +1, a =

√
2−1.

Then u has a pair of symmetric roots ±x1 in (−1,1) , and so

σ(T3,2,∞) = [−2,2]∪σd(T3,2,∞), σd(T3,2,∞) = ±
(
x1 +

1
x1

)
. (3.14)

3.2. Graphs with cycles and tails

EXAMPLE 3.4. “The complete graph with tail”.
Let Kn be a complete graph of order n � 3, Γ = Kn + P∞ , the ray {n,n+ 1, . . .}

is attached to the vertex n . Put

h j = e j, j = n,n+1 . . . , hn−1 =
1√

n−1

n−1

∑
k=1

ek.

Since

A(Γ)ek = ∑
j �=k

e j = S− ek, S :=
n

∑
j=1

e j, k = 1,2, . . . ,n−1,

we see that

A(Γ)hn−1 =
1√

n−1

n−1

∑
k=1

(S− ek) =
√

n−1S− ên−1

=
√

n−1
(√

n−1hn−1 +hn
)−hn−1 =

√
n−1hn +(n−2)hn−1.

Hence, the Jacobi component is

J (Γ) = span{h j} j�n−1, J(Γ) = J({n−2,0,0, . . .},{√n−1,1,1, . . .}).

Next, put

hk =
n−2

∑
j=1

ξk je j, ξk,n−2 =
1√

n−2
, k = 1,2, . . . ,n−2,

[ξi j] is a unitary matrix of order n−2. Then,

A(Γ)hk =
n−2

∑
j=1

ξk j(S− e j) = S
n−2

∑
j=1

ξk j −hk = −hk, k = 1, . . . ,n−2.

So, the finite dimensional component is

F (Γ) = span{h j}n−2
j=1, F(Γ) = −In−2.
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The Jost polynomial, computed in (2.10)
√

n−1u(x) = −(n−2)x2− (n−2)x+1,

has one root x6 in (−1,1) ,

x6 =
1
2

(√n+2
n−2

−1
)

.

Hence,

σ(Γ) = [−2,2]∪
{
x6 +

1
x6

}
∪{(−1)n−2}.

EXAMPLE 3.5. “A cycle with two tails”.
Let Cm be a cycle of order m . The spectral analysis of the coupling Cm +P∞ was

carried out in [12, Proposition 1.4]. We consider here the graph Γ = C2n+1 +P∞ +P∞ ,
n � 2, with two tails,

{2n,2n+2 . . .}, {2n+1,2n+3, . . .},
attached to the adjacent vertices 2n and 2n + 1, respectively. Although Γ is not a
coupling in the sense of Definition 1.1, the method works in this situation as well.

Define a system of vectors h0 = en ,

h±k =
en+k ± en−k√

2
, k = 1,2, . . . ,n−1,

h±n+i =
e2n+2i± e2n+2i+1√

2
, i = 0,1, . . .

The system {h0,h
±
j } j�1 is the canonical orthonormal basis. The adjacency operator

A(Γ) acts as

A(Γ)h0 =
√

2h+
1 , A(Γ)h+

1 = h+
2 +

√
2h0,

A(Γ)h+
k = h+

k+1 +h+
k−1, k = 2, . . . ,n−1,

A(Γ)h+
n = h+

n+1 +h+
n +h+

n−1,

A(Γ)h+
k = h+

k+1 +h+
k−1, k � n+1.

So, the first Jacobi component is

J +(Γ) = span{h0,{h+
j }} j�1, J+(Γ) = J({b+

j },{a+
j })

with

b+
j =

{
0, j �= n+1;
1, j = n+1,

a+
j =

{
1, j �= 1;√
2, j = 1.

Next,

A(Γ)h−1 = h−2 , A(Γ)h−k = h−k+1 +h−k−1, k = 2, . . . ,n−1,

A(Γ)h−n = h−n+1−h−n +h−n−1,

A(Γ)h−k = h−k+1 +h−k−1, k � n+1.
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So, the second Jacobi component is

J −(Γ) = span{h−j } j�1, J−(Γ) = J({b−j },{a−j })
with

b−j =
{

0, j �= n;
−1, j = n,

a−j ≡ 1, j = 1,2, . . .

The canonical form of the adjacency operator is the orthogonal sum of two Jacobi
operators

A(Γ) � J+(Γ)
⊕

J−(Γ).

The Jost polynomial for J+(Γ) , given in (2.15) with q = n+1,
√

2u+(x) = −x2n+1− x2− x+1,

has one root x8 > 0 in (−1,1) . Similarly, the Jost polynomial for J−(Γ) , given in
(2.4),

−u(x) = 1+ x
x2n−1
x2 −1

,

has one root x9 < 0 in (−1,1) . Hence,

σ(Γ) = [−2,2]∪σd(Γ), σd(Γ) =
{

x8 +
1
x8

,x9 +
1
x9

}
.

The case of the cycle C2n+1 with two tails attached to the same vertex is studied
in [12, Example 5.1].

4. Ladders and chains of cycles

4.1. Canonical form and periodic structure

For certain infinite graphs (not necessarily finite graphs with tails) the canonical
basis arises in a natural way. The canonical form, distinct from (1.15), enables one to
describe explicitly the spectrum of the graph in question.

EXAMPLE 4.1. “A complete ladder”.

� � � � �
� � � � �

� � �
� � �

2 4 6 8 10

1 3 5 7 9

We define the canonical basis {h+
n , h−n }n�1 by the relations

h±n :=
e2n−1± e2n√

2
, n = 1,2, . . . .
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The subspaces J ± = span{h±n }n�1 are invariant for A(Γ) , �2 = J +⊕J − , and the
restrictions on these subspaces J±(Γ) = ±I + J0 . So, the canonical form of Γ is

A(Γ) �
[
I + J0

−I + J0

]
.

The spectrum is σ(Γ) = [−3,3] , with the interval [−1,1] of multiplicity 2.
Similarly, for the ladder below

� � � � �
� � � � �

� � �
� � �

2 4 6 8 10

3 5 7 9 11

��

��

�1

we define
h±n :=

e2n± e2n+1√
2

, n = 1,2, . . . , h+
0 = e1.

The adjacency operator A(Γ) acts as

A(Γ)h+
0 =

√
2h+

1 , A(Γ)h+
1 =

√
2h+

0 +h+
1 +h+

2 ,

A(Γ)h+
n = h+

n−1 +h+
n +h+

n+1, n = 2,3, . . . ,

A(Γ)h−1 = −h−1 +h−2 ,

A(Γ)h−n = h−n−1−h−n +h−n+1, n = 2,3, . . . .

Again, the subspaces J + = span{h+
n }n�0 and J − = span{h−n }n�1 are invariant

for A(Γ) , �2 = J + ⊕J − , and the canonical form of Γ is

A(Γ) �
[
I + J+

−I + J−

]
, (4.1)

where
J− = J0, J+ = J({−1,0,0, . . .},{

√
2,1,1, . . .}).

The Jost polynomial for J+ is computed in (2.10)
√

2u(x) = −x2 + x+1,

with the roots

x10,11 =
1±√

5
2

,

so x11 ∈ (−1,1) . Finally, σ(I + J+) = [−1,3]∪{1−√
5} , and

σ(Γ) = [−3,3]∪σh(Γ), σh(Γ) = {1−
√

5},
with the eigenvalue 1−√

5 ∈ [−2,−1] lying on the simple spectrum.



SPECTRA OF INFINITE GRAPHS 1013

EXAMPLE 4.2. “Simon’s ladder” [31].

� � � � � � �
� � � � � � �

� � �
� � �

2 4 6 8 10 12 14

1 3 5 7 9 11 13

Consider the complete ladder with some rungs missing. Precisely, let Λ = {λ j} j�1

⊂ N be a sequence of positive integers, λ1 = 1, and assume that the rungs {2n−
1,2n}n∈Λ are present, i.e., the vertices 2n−1 and 2n are incident. Put

χk :=
{

1, k ∈ Λ;
0, k /∈ Λ.

(χ1 = 1).

We define the canonical basis as in the case of the complete ladder. The subspaces
J ± = span{h±n }n�1 are invariant for A(Γ) , �2 = J + ⊕J − , and the adjacency op-
erator A(Γ) acts as

A(Γ)h+
1 = h+

1 +h+
2 , A(Γ)h+

n = h+
n−1 + χnh

+
n +h+

n+1, n = 2,3, . . . ,

A(Γ)h−1 = −h−1 +h−2 , A(Γ)h−n = h−n−1− χnh
−
n +h−n+1, n = 2,3, . . . .

So, the canonical form of Γ is

A(Γ) = J+
⊕

J−, J± = J({±χ1,±χ2, . . .},{1}). (4.2)

There is no hope computing the spectra of the above matrices J± explicitly. So we
will focus here on two particular cases with periodic structure, and on the sparse case
in the next section.

A periodic structure appears when Λ is an arithmetic progression. We consider
two simplest examples of such kind.

Let Λ = {1,3,5, . . .} (the infinite linear hexagon L∞ ). The terms in (4.2) are

J± = J({±1,0,±1,0, . . .},{1}),
so we have two 2-periodic Jacobi matrices.

A detailed computation is carried out for J+ . The discriminant (2.32) and the
polynomial γ2 in (2.33) are

D+(λ ) = λ (λ −1)−2, γ2(λ ) = λ (λ −1).

So,

D+(λ ) = 2 ∼ λ +
1,2 =

1±√
17

2
, D+(λ ) = −2 ∼ λ +

3,4 = 0,1.

The essential spectrum is

σess(J+) =
[1−√

17
2

,0
]⋃[

1,
1+

√
17

2

]
. (4.3)
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The only root of the polynomial p2 is 1 , which is at the edge of the gap. So, there
are no eigenvalues, and σ(J+) = σess(J+) .

The computation for J− is identical. Now the essential spectrum is

σess(J−) =
[−1−√

17
2

,−1
]⋃[

0,
−1+

√
17

2

]
, (4.4)

and again, there are no eigenvalues of J− . Finally

σ(Γ) = σess(Γ) =
[−1−√

17
2

,
1+

√
17

2

]
. (4.5)

Let now Λ = {1,4,7,10, . . .} (the infinite linear octagon), so the Jacobi compo-
nents are

J± = J({±1,0,0,±1,0,0, . . .},{1}),
and we have two 3-periodic Jacobi matrices. Again, a direct computation provides

D+(λ ) = λ 3−λ 2−3λ +1, γ3(λ ) = (λ −1)2(λ +1).

The endpoints of the gaps are

D+ = 2 ∼ λ +
1 = −1, λ +

2,3 = 1±
√

2;

D+ = −2 ∼ λ +
4 = 1, λ +

5,6 = ±
√

3,

so the essential spectrum is

σess(J+) =
[−√

3,−1
]∪ [

1−
√

2,1
]∪ [√

3,1+
√

2
]
.

Now the both roots of the polynomial p3(λ ) = λ 2−λ −1 lie inside the gaps

λ +
7 =

1+
√

5
2

∈ (
1,
√

3
)
, λ +

8 =
1−√

5
2

∈ (−1,1−
√

2
)
,

and γ(λ +
7,8) > 0. According to the “rule of signs” (2.35), the point λ +

7 is the eigenvalue
of J+ , and λ +

8 is not.
The computation for J− is identical. We have

σess(J−) =
[−1−

√
2,−

√
3
]∪ [−1,−1+

√
2
]∪ [

1,
√

3
]
,

and the only eigenvalue is (−1−√
5)/2. Finally,

σ(Γ) =
[−1−

√
2,1+

√
2
]⋃{

±1+
√

5
2

}
, (4.6)

and the spectrum has multiplicity 2 on [1−√
2,
√

2−1] .
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EXAMPLE 4.3. “Squares and cubes”.
Consider the simplest chain of squares

� � � �� � �
� � �

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� � � �

1 4 7 10

3 6 9

2 5 8

We define the canonical basis as

h3k−2 = e3k−2, h3k−1 =
e3k−1 + e3k√

2
, h3k =

e3k−1− e3k√
2

, k = 1,2, . . . .

The Hilbert space is decomposed as

�2 = H0 ⊕H1, H0 := span{h3k}k�1 , H1 := span{h3k−2,h3k−1}k�1,

both H0 , H1 are A(Γ) -invariant, and

A(Γ) = O∞
⊕√

2J0.

So the spectrum is σ(Γ) = {0∞}∪ [−2
√

2,2
√

2] .
A similar graph below is more delicate.

� � � �� � �
� � �

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� � � �

1 4 7 10

3 6 9

2 5 8

With the same canonical basis and decomposition of �2 we have now

A(Γ) = −I∞
⊕

J({0,1,0,1, . . .},{
√

2}). (4.7)

The second term is a 2-periodic Jacobi matrix. Its discriminant D in (2.32) and the
polynomial γ2 in (2.33) are

D(λ ) = p3(λ )− p(1)
1 (λ ) =

λ (λ −1)
2

−2, γ2(λ ) = p3(λ )+ p(1)
1 (λ ) =

λ (λ −1)
2

.

The essential spectrum is a union of two intervals (with the eigenvalue −1 of infinite
multiplicity on one of them)

σess(Γ) =
[1−√

33
2

,0
]⋃[

1,
1+

√
33

2

]
. (4.8)
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The polynomial p2 = λ/
√

2 has the only root λ0 = 0 which lies at the edge of the gap,
so there are no eigenvalues. The whole spectrum now is (4.8) along with the eigenvalue
−1 of infinite multiplicity.

We might equally well have considered cubes in R3 in place of squares, with one
common vertex for each pair of adjacent cubes.

Define an orthonormal sequence {hn}n�1 by the recipe

h3k+1 = e3k+1,

h3k+2 =
1√
3

(
e7k+2 + e7k+3 + e7k+4

)
,

h3k+3 =
1√
3

(
e7k+5 + e7k+6 + e7k+7

)
, k = 0,1, . . . .

It is easy to see that the subspace H := span{hk}k�0 is A(Γ) -invariant, and the matrix
of A(Γ) |H is a 3-periodic Jacobi matrix

A(Γ) |H ∼ J({0},{
√

3,2,
√

3, . . .}).
To complete the above system to an orthonormal basis, we put

h(1)
3k+2 =

1√
6

(
e7k+2 + e7k+3−2e7k+4

)
, h(2)

3k+2 =
1√
2

(
e7k+2− e7k+3

)
,

h(1)
3k+3 =

1√
6

(−e7k+5 +2e7k+6− e7k+7
)
, h(2)

3k+2 =
1√
2

(
e7k+5 − e7k+7

)
,

k = 0,1, . . . . The system thus obtained is complete, and

A(Γ)h(q)
3k+2 = h(q)

3k+3, A(Γ)h(q)
3k+3 = h(q)

3k+2, q = 1,2.

So, H
(q)

k := span{h(q)
3k+2,h

(q)
3k+3} are invariant subspaces of dimension 2, and

A(Γ) |H (q)
k ∼

[
0 1
1 0

]
.

Finally,

A(Γ) ∼ J({0},{
√

3,2,
√

3, . . .})
⊕( ∞⊕

n=1

)[
0 1
1 0

])
. (4.9)

For the Jacobi component we find

p4(λ ) =
λ 3 −7λ

6
, p(1)

2 (λ ) =
λ
2

,

D4(λ ) =
λ 3 −10λ

6
, γ4(λ ) =

λ 3 −4λ
6

,

and
σess(Γ) = [−1−

√
7,−2]∪ [1−

√
7,
√

7−1]∪ [2,1+
√

7]. (4.10)
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The denominator in (2.33)

p3(λ ) =
λ 2−3

2
√

3
, λ1,2 = ±

√
3

lie inside the gaps, and the rule of signs (2.35) says that there are no eigenvalues for Γ .
So, σ(Γ) = σess(Γ) (4.10) along with the eigenvalues ±1 of infinite multiplicity.

EXAMPLE 4.4. “A chain of cycles”.
Let {nJ} j�1 be a sequence of positive integers, n j � 2. Consider a sequence of

cycles {C2n j} j�1 of even orders |C2n j | = 2n j . We connect them in a chain in such a
way that two adjacent cycles have one vertex in common.

Put
mj := 2(n1 + . . .+n j)− j, m0 := 0.

The vertices of k -th cycle C2nk are enumerated with the numbers

{mk−1 +1, . . . ,mk +1},
so {mj−1 +1} j�1 are the vertices of valency 4.

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � �� � �

� � �
� � �
� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�� � �

� � �
� � �
� � �

1 m1 +1 m2 +1 m3 +1

2

3

4

5 m1

m1 +2

m1 +3 m2

m2 +2

m2 +3 m3

m3 +2

m3 +3

The canonical basis {hn}n�1 is defined by hmk+1 = emk+1 for k = 0,1, . . . ,

hmk+2 j =
1√
2

(
emk+2 j + emk+2 j+1

)
,

hmk+2 j+1 =
1√
2

(
emk+2 j − emk+2 j+1

)
, j−1,2, . . . ,nk+1−1.

Next, let

H + = span{hmk+1;hmk+2 j, j = 1, . . . ,nk+1 −1}∞
k=0,

H −
k = span{hmk+2 j+1, j = 1, . . . ,nk+1−1}, H − =

∞⊕
k=1

H −
k−1.

We come to decomposition �2 = H +⊕H − on two A(Γ) -invariant subspaces.
The action of the adjacency operator A(Γ) can be easily traced. First, put r j :=

n1 + . . .+n j , j ∈ N . The restriction of A(Γ) on H + is of the form

A(Γ) |H + = J({0},{a j} j�1), ai =
{√

2, i = 1,r1,r1 +1,r2,r2 +1, . . .;
1, othewise.
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Secondly, the restriction A(Γ) |H −
k−1 = J0,nk−1 , the discrete Laplacian of order nk −1.

So,

A(Γ) � J({0},{an})
⊕( ∞⊕

k=1

J0,nk−1

)
. (4.11)

There is no hope computing the spectrum of the above Jacobi matrix J explicitly.
So we will focus here on some particular cases with periodic structure, and on the sparse
case in the next section.

A periodic structure appears when, e.g., all cycles are identical: n j = N , j =
1,2, . . . . For N = 2 we have a simple chain of squares, so assume that N � 3. The
above Jacobi matrix is N -periodic with

{a1,a2, . . . ,aN−1,aN} = {
√

2,1,1 . . . ,1︸ ︷︷ ︸
N−2

,
√

2}.

The argument in Example 2.3 (see equations (2.23) and (2.24)) provides an explicit
expression for the discriminant

DN(λ ) = TN

(λ
2

)
−UN−2

(λ
2

)
.

Since we are unable to solve the equations DN = ±2 for an arbitrary N , we restrict
ourselves with the cases N = 3,4.

Let N = 4 (a chain of octagons). Then J is 4-periodic Jacobi matrix, and the
discriminant and γ4 in (2.33) are

D4(λ ) =
λ 4−6λ 2 +4

2
, γ4(λ ) =

λ 4−2λ 2

2
.

It is easy to solve D4 = ±2 and find the spectral bands and the essential spectrum

σess(J) = [−
√

6,−2]∪ [−
√

2,0]∪ [0,
√

2]∪ [2,
√

6].

Note that there is a closed gap at the origin.
The denominator p4 in (2.33) is now

p4(λ ) =
λ (λ 2−3)√

2
,

with the roots λ0 = 0, λ1,2 = ±√
3. The last two lie inside the gaps, and the rule of

signs (2.35) shows that both of them are the eigenvalues of J . So,

σ(J) = [−
√

6,−2]∪ [−
√

2,
√

2]∪ [2,
√

6]∪{±
√

3}. (4.12)

There is another part of the spectrum which comes from Laplacians of order nk −
1 = 3 in (4.11). By (1.10),

σ(J0,3) = {0,±
√

2}, (4.13)

each eigenvalue has infinite multiplicity.



SPECTRA OF INFINITE GRAPHS 1019

The same computation can be carried out for N = 3 (a chain of hexagons). Now

σ(Γ) = [−ω+,−ω−]∪ [−1,1]∪ [ω−,ω+]∪{±
√

2},

ω± :=
±1+

√
17

2
,

(4.14)

along with two eigenvalues ±1 of infinite multiplicity.

4.2. Sparse ladders and chains of cycles

One can gather some information about the spectrum of the graphs in Examples
4.3 and 4.5 in the situation opposite in a sense to one considered above. We assume
that the graph in question is sparse.

EXAMPLE 4.2. (cont.)
Simon’s ladder Γ is said to be sparse if the set Λ is sparse in the sense of Example

2.7
lim
i→∞

(λi+1−λi) = +∞.

The adjacency operator A(Γ) (4.2) is now the orthogonal sum of two sparse Jacobi ma-
trices J± (4.2). The sets of all right limits RL(J±) is available, see (2.42), so the Last–
Simon theorem applies for the description of their essential spectrum. The nonzero
right limits for J+ have the same spectrum. Take k = 0 and compute the spectrum of
J+
right (2.42) by using the perturbation determinant (2.2) with

T0 = J0(Z) = J({0},{1})n∈Z, T = J+
right , T −T0 = (·,e0)e0.

Note that the resolvent matrix is known [16]

(T0 −λ )−1 = ‖ri j(z)‖i, j∈Z, ri j(z) =
z|i− j|

z− z−1 , λ = z+
1
z
.

So,

L
(
z+

1
z
,J+

right

)
= 1+ r00(z) =

z2 + z−1
z2−1

, z± =
−1±√

5
2

are the roots of the perturbation determinant, and one of them, z+ , is in (0,1) . The
spectrum

σ
(
J+
right

)
= [−2,2]∪{

√
5}.

Similarly,
σ
(
J−right

)
= [−2,2]∪{−

√
5},

and so
σess(Γ) = [−2,2]∪{±

√
5}. (4.15)

We observe here two isolated points ±√
5 of the essential spectrum. As a Jacobi matrix

can not have multiple eigenvalues, those two are accumulation points for the eigenval-
ues. The endpoints ±2 can also attract some eigenvalues of Γ .
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The structure of the spectrum on [−2,2] is subtle. Note first, the all the Jacobi
matrices in our consideration are finite valued, that is, the diagonals {bn} , {an} take a
finite number of values (3 in the latter example). A result of Remling [28], [33, Theo-
rem 7.4.6] states that finite valued Jacobi matrices with nontrivial absolutely continuous
spectrum are eventually periodic

an+N = an, bn+N = bn, n � n0.

Clearly, finite valued and sparse Jacobi matrices can not be eventually periodic, so their
spectra are purely singular. Hence, the spectra of the sparse Simon’s ladders on [−2,2]
are purely singular.

Moreover, assume that a Simon’s ladder is strongly sparse:

limsup
j→∞

log(λ j+1−λ j)
j

= +∞. (4.16)

Now we can bound the norms of the transfer matrices T ±
n (2.26), so the Simon–Stolz

theorem applies. Indeed, the main diagonal of J± looks

{±1,0,0 . . . ,0︸ ︷︷ ︸
λ2−λ1−1

,±1,0,0 . . . ,0︸ ︷︷ ︸
λ3−λ3−1

,±1, . . .}.

Then

V±(λ ) := A±(λ ;an,bn) =
[

λ ∓1 −1
1 0

]
, n ∈ Λ,

V (λ ) := A±(λ ;an,bn) =
[

λ −1
1 0

]
, n /∈ Λ,

and so for n = λq

T ±
n (λ ) = A±(λ ;an,bn)A±(λ ;an−1,bn−1) . . .A±(λ ;a1,b1)

= V±(λ )V λq−λq−1−1(λ )V±(λ )V λq−1−λq−2−1(λ ) . . .V±(λ )V λ2−λ1−1(λ )V±(λ ).

The matrix V is diagonalizable. Indeed, for −2 < λ < 2

|V (λ )− zI2| = z2 −λ z+1 ⇒ z±(λ ) =
λ ± i

√
4−λ 2

2
∈ T,

the eigenvalues are unimodular. So, if

U(λ ) =
[
z+(λ ) z−(λ )

1 1

]
, U−1(λ ) =

1
z+(λ )− z−(λ )

[
1 −z−(λ )
−1 z+(λ )

]
,

we have

Vk(λ ) = U(λ )
[
zk
+(λ ) 0
0 zk−(λ )

]
U−1(λ ), k ∈ N.
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Hence, for each k ∈ N and λ ∈ (−2,2) the bounds

‖Vk(λ )‖ � ‖U(λ )‖‖U−1(λ )‖ � ‖U(λ )‖2
√

4−λ 2
= C1(λ )

hold. The latter gives the bound for the norm of the transfer matrices

‖T ±
λq

(λ )‖ � Cq−1
1 (λ )‖V±(λ )‖q,

‖T ±
j (λ )‖ � Cq

1(λ )‖V±(λ )‖q, j = λq +1, . . . ,λq+1−1,

so

λq+1−1

∑
j=λq+1

‖T ±
j (λ )‖−2 � C−q

2 (λ )(λq+1−λq−1),

∞

∑
q=1

λq+1−1

∑
j=λq+1

‖T ±
j (λ )‖−2 �

∞

∑
q=1

C−q
2 (λ )(λq+1−λq−1).

The series on the right side diverges in view of (4.16). By the Simon–Stolz theorem,
the matrices J± have no eigenvalues in (−2,2) , which means that the spectrum of the
strongly sparse Simon’s ladder is purely singular continuous on (−2,2) .

EXAMPLE 4.4. (cont.)
A chain of cycles Γ is said to be sparse if {nk}k�1 is sparse. The Jacobi compo-

nent of the adjacency operator A(Γ) (4.11) takes the form of the Jacobi matrix J in
Example 2.7. The sets of all right limits RL(J) is available, see (2.43), so the Last–
Simon theorem applies for the description of its essential spectrum. The nonzero right
limits for J have the same spectrum. Take k = 0 and compute the spectrum of Jright

(2.43) by using the perturbation determinant (2.2) with T0 = J0(Z) , T = Jright , and

T −T0 = (·,g1)h1 +(·,g2)h2, g1 = h2 = e1, g2 = h1 = (
√

2−1)(e0 + e2).

We have with κ =
√

2−1

L
(
z+

1
z
,Jright

)
=

∣∣∣∣1+ κ
(
r01(z)+ r12(z)

)
κ2

(
r00(z)+ r22(z)+ r02(z)+ r20(z)

)
r11(z) 1+ κ

(
r01(z)+ r21(z)

) ∣∣∣∣
=

(
1+2κ

z2

z2−1

)2 −2κ2z2 z2 +1
(z2 −1)2 =

3z2−1
z2−1

.

Now both roots

z± = ± 1√
3
∈ (−1,1),

so

σess(Γ) = [−2,2]∪
{
± 4√

3

}
. (4.17)

Again, two isolated points ± 4√
3

of the essential spectrum are accumulation points for
the eigenvalues. The endpoints ±2 can also attract some eigenvalues of Γ .
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Following the line of reasoning in the above example, we see that the spectrum of
the sparse chain of cycles is purely singular. Moreover, for strongly sparse chains of
cycles

limsup
j→∞

logn j

j
= +∞

the spectrum on (−2,2) is a combination of purely point one (from the finite compo-
nent) lying on a purely singular continuous spectrum of the Jacobi component.

4.3. Toeplitz graphs and a comb graph

EXAMPLE 4.5. “The Toeplitz graphs”.
We say that an infinite graph Γ is a Toeplitz graph if for some enumeration of the

vertex set with positive integers the adjacency matrix A(Γ) is Toeplitz, i.e.,

A(Γ) = [αi−k]i,k�1, α j = a− j = 0,1.

The simplest Toeplitz graph is the infinite path P∞ : A(P∞) = J0 , the discrete Laplacian.
Here is another, a bit more sophisticated, Toeplitz graph.

� � � � �
� � � � �

�
�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
� � � �

� � �
2 4 6 8 10

1 3 5 7 9

Clearly, its adjacency matrix is

A(Γ) = [αi−k]i,k�1, α j = α− j =
{

1, j = 1,2;
0, otherwise.

To find the spectrum of this matrix, we proceed in a standard way. Write the
symbol

ϕ(t) = t−2 + t−1 + t + t2 = p(cosθ ), p(x) = 4x2 +2x−2.

The Toeplitz operator A(Γ) is selfadjoint, so, by [2, Theorem 1.27], the spectrum is

σ(Γ) = p([−1,1]) =
[
−9

4
,4

]
.

PROBLEM 1. Describe all Toeplitz graphs.

EXAMPLE 4.6. “A complete comb graph”.
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� � � � �
� � � � �

� � �
The Hilbert space in question is �2(V (Γ)) = �2 ⊕ �2 , and the adjacency operator

in the block form looks

A(Γ) =
[
J0 I
I 0

]
.

Let us compute the resolvent R(A(Γ) ,z) = (A(Γ) − z)−1 . Clearly,[
J0− z I

I −zI

][
zI I
I z− J0

]
=

[
z(J0 − ζ (z))I 0

0 z(J0 − ζ (z))I

]
, ζ (z) = z− 1

z
,

and so

R(A(Γ) ,z) =
1
z

R(J0,ζ (z))
[
zI I
I z− J0

]
, z �= 0, ζ (z) /∈ [−2,2].

Since for z = 0 we have

A(Γ)−1 =
[
0 I
I −J0

]
,

the spectrum is

σ(Γ) = ζ (−1)[−2,2] = [−
√

2−1,−
√

2+1]∪ [
√

2−1,
√

2+1].

PROBLEM 2. As in Example 4.2, one can consider the complete comb graph with
some teeth missing. Analyze the spectral properties of such graphs.

For the description of the spectra of finite comb graphs with tails see [14].

5. Spectra of graphs via Schur complement

Our second method relies on the block representation (1.5) for the adjacency ma-
trix A(Γ) of the coupling Γ = Γ1 + Γ2 by means of the bridge of weight d . The
simplest case is |Γ1| = n , and d = 1

A(Γ) =
[
A(Γ1) E1

E∗
1 A(Γ2)

]
, E1 =

⎡⎢⎢⎢⎣
0 0 0 . . .
...

...
...

0 0 0 . . .
1 0 0 . . .

⎤⎥⎥⎥⎦ . (5.1)

Proposition 1.7 applies with A22 = A(Γ2) , A11 = A(Γ1) , so for λ /∈ σ(A(Γ2)) we have
λ ∈ σ(A(Γ)) if and only if the matrix (finite) C11(λ ) (1.28) is degenerate.
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Denote by P(·,F) the characteristic polynomial of a finite graph F

P(λ ,F) = det(λ −A(F)).

A key ingredient in the argument is the so-called spectral Green’s function

G1(λ ,Γ2) =
(
λ −A(Γ2)−1)

11, λ /∈ σ(A(Γ2)).

Given a graph F and a set of vertices V ⊂ V (F) , under F\V we mean the graph
induced by the vertices V (F)\V .

We come to the following result, see [13, Theorem 1].

PROPOSITION 5.1. Let Γ = Γ1 + Γ2 be the coupling of a finite graph Γ1 and an
arbitrary graph Γ2 by means of the bridge {n,n+1} , and let λ /∈ σ(Γ2) . The point λ
belongs to the spectrum of Γ if and only if it solves the equation

P(λ ,Γ1)−G1(λ ,Γ2)P(λ ,Γ1\{n}) = 0. (5.2)

The result in Proposition 5.1 is effective as long as both Green’s function and
characteristic polynomials are available. In the case of infinite tail attached to a finite
graph, we have Γ2 = P∞ , and, see (2.3) (and note the negative sign),

G1(λ ,P∞) = −r11(z) = z, λ = z+
1
z
.

The spectrum σ(Γ) in this case is

σ(Γ) = [−2,2]∪σd(Γ),

and the discrete spectrum agrees with the roots of the basic equation (5.2)

λ ∈ σd(Γ) ⇔ P(λ ,Γ1)− xP(λ ,Γ1\{n}) = 0, λ = x+
1
x

, x ∈ (−1,1). (5.3)

Let

σ(Γ1) := {λ1 � λ2 � . . . � λn}, σ(Γ1\{n}) := {μ1 � μ2 � . . . � μn−1}

be the spectra of Γ1 and Γ1\{n} , respectively. By the Cauchy interlacing theorem,

λ1 � μ1 � λ2 � . . . � λn−1 � μn−1 � λn, (5.4)

(as a matter of fact, the Perron–Frobenius theorem claims that λ1 > μ1 ). A quick anal-
ysis of the main equation (5.3), in view of (5.4), shows that each multiple eigenvalue of
Γ1 off [−2,2] solves (5.3), and so belongs to σd(Γ) . One can rewrite (5.3) for λ > 2
as

1
x

=
λ +

√
λ 2−4
2

=
P(λ ,Γ1\{n})

P(λ ,Γ1)
=

(
λ −A(Γ1))−1)

nn = Gn(λ ,Γ1), (5.5)
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the n -th spectral Green’s function of Γ1 . The function on the right side is monotone
decreasing on each interval of regularity. For instance, if the interlacing in (5.4) is strict,
i.e.,

λ1 > μ1 > λ2 > .. . > λn−1 > μn−1 > λn,

Gn is monotone decreasing on each interval (−∞,λn) , (λ j,λ j−1) , and (λ1,∞) . As-
sume that

λ1 > μ1 > λ2 > μ2 > .. . > μk−1 > λk > 2 > μk.

Then there is exactly one root of (5.5) on each interval (λ1,∞) , (λ j+1,λ j) , j = 1, . . . ,k−
1, and there is no such root on (2,λk) . Next, if

λ1 > μ1 > λ2 > μ2 > .. . > μk−1 > 2 > λk > μk,

then there is exactly one root of (5.5) on each interval (λ1,∞) , (λ j+1,λ j) , j = 1, . . . ,k−
2. The existence of the root on (λk,λk−1) depends on whether Gn(2,Γ1) > 1 (there is
a root) or Gn(2,Γ1) � 1 (there are no roots).

The situation for λ < −2 can be analyzed in exactly the same way.

To compute the characteristic polynomials in (5.3), the following result of Schwenk
[30], [7, Problem 2.7.9], proves helpful.

THEOREM. (Schwenk). For a given finite graph F and v ∈ V (F) , let C (v)
denote the set of all simple cycles Z containing v. Then

P(λ ,F) = λP(λ ,F\v)− ∑
v′∼v

P(λ ,F\{v′,v})−2 ∑
Z∈C (v)

P(λ ,F\Z).

EXAMPLE 5.2. “A flower with n petals” [13].
In this example Γ1 is composed of n � 2 cycles {C j}n

j=1 , glued together at one
common vertex (root) O . Put Γ = Γ1 + P∞ with the infinite path attached to the root
O . Assume that the cycle C j contains k j +1 � 3 vertices.

For the standard Chebyshev polynomial of the second kind Uk (2.22) we denote

Q(λ ,k) := Uk

(λ
2

)
= P(λ ,Pk), Q(λ ) :=

n

∏
j=1

Q(λ ,k j) = P(λ ,Γ1\O),

the characteristic polynomials of the finite path Pk and the graph Γ1\O , respectively.
The result of Schwenk applied to the flower graph gives

P(λ ,Γ1) = λP(λ ,Γ1\O)− ∑
v′∼O

P(λ ,Γ1\{v′,O})−2 ∑
Z∈C (O)

P(λ ,Γ1\Z).

Now

P(λ ,Γ1\O) =
n

∏
j=1

P(λ ,Pk j ) =
n

∏
j=1

Q(λ ,k j) = Q(λ ),

P(λ ,Γ1\{v′,O}) = Q(λ ,km −1) ∏
j �=m

Q(λ ,k j) = Q(λ )
Q(λ ,km −1)

Q(λ ,km)
,
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and so

∑
v′∼O

P(λ ,Γ1\{v′,O}) = 2Q(λ )
n

∑
j=1

Q(λ ,k j −1)
Q(λ ,k j)

(the factor 2 arises since each cycle enters twice). Next,

P(λ ,Γ1\Zm) = ∏
j �=m

Q(λ ,k j) =
Q(λ )

Q(λ ,km)
,

so
n

∑
m=1

P(λ ,Γ1\Zm) = Q(λ )
n

∑
j=1

1
Q(λ ,k j)

,

and finally,

P(λ ,Γ1) = Q(λ )
{

λ −2
n

∑
j=1

Q(λ ,k j −1)+1
Q(λ ,k j)

}
. (5.6)

Since Q �= 0 off [−2,2] , the main equation (5.3) looks

λ −2
n

∑
j=1

Q(λ ,k j −1)+1
Q(λ ,k j)

= x, λ = x+
1
x

or

2
n

∑
j=1

Q(λ ,k j −1)+1
Q(λ ,k j)

=
1
x

, x ∈ (−1,1). (5.7)

Let first x = e−t , t > 0. We have

Q(λ ,k) = Q
(
x+

1
x
,k

)
=Uk(cosh) =

sinh(k+1)t
sinhkt

,

so 1

ϕ1(t) := 2
n

∑
j=1

sinhk jt + sinht
sinh(k j +1)t

= et . (5.8)

Note that the functions

fs(t) :=
sinhat
sinhbt

, fc(t) :=
coshat
coshbt

, 0 < a < b

are monotone decreasing for t > 0. The latter can be seen, e.g., from the product
expansions

sinh t = t
∞

∏
k=1

(
1+

t2

k2π2

)
, cosh t =

∞

∏
k=0

(
1+

4t2

(2k+1)2π2

)
,

1There is a misprint in [13, formula (1.9)]
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(or by elementary calculus). Hence ϕ1 in (5.8) is monotone decreasing, vanishing at
infinity, and ϕ(+0) = 2n > 1, so (5.8) has a unique solution t+ > 0 with

λ+ = 2cosht+ ∈ σd(Γ). (5.9)

Similarly, for x = −e−t , t > 0, the main equation takes the form

ϕ2(t) := 2
n

∑
j=1

sinhk jt +(−1)k j+1 sinh t
sinh(k j +1)t

= et . (5.10)

As
sinhkt ± sinht
sinh(k+1)t

=
sinh k±1

2 t cosh k∓1
2 t

sinh k+1
2 t cosh k+1

2 t
,

the function ϕ2 in (5.10) is monotone decreasing (for whatever parity of k j ), vanishing
at infinity,

ϕ2(+0) � 2
n

∑
j=1

k j −1
k j +1

> 1,

and (5.10) has a unique solution t− > 0, so

λ− = −2cosht− ∈ σd(Γ). (5.11)

Thereby, the discrete spectrum consists of two points

σd(Γ) = {±2cosht±}. (5.12)

REMARK 5.3. The method of Section 3 does not seem to work properly in the
general situation of Example 5.2. However, the spectral theory of Jacobi matrices ap-
plies in some particular instances. For example, for n = 2, k1 = k2 (the propeller graph
with equal blades [23]), the spectrum is calculated in [12, Example 5.2]. For the case
n � 2, k1 = . . . = kn = 2, the finite rank Jacobi matrices are still effective, and the
spectrum is

σ(Γ) = [−2,2]∪
{
x− +

1
x−

, x+ +
1
x+

}
∪{(−1)n, 1n−1},

x± =
−1±√

1+4(2n−1)
2(2n−1)

, −1 < x− < 0 < x+ < 1.
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