ON m-QUASI-TOTALLY- (α, β)-NORMAL OPERATORS

R. Pradeep*, P. Maheswari Naik and Sid Ahmed Ould Ahmed Mahmoud

(Communicated by F. Kittaneh)

> Abstract. An operator \mathscr{S} acting on a Hilbert space is called m-quasi-totally- (α, β)-normal $(0 \leqslant \alpha \leqslant 1 \leqslant \beta)$ if
> $\alpha^{2} \mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m} \leqslant \mathscr{S}^{m *}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} \leqslant \beta^{2} \mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}$
for a natural number m and for all $\lambda \in \mathbb{C}$. m-quasi-totally- (α, β)-normal operator is equivalent to the study of mutual majorization between $(\mathscr{S}-\lambda) \mathscr{S}^{m}$ and $(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}$ for a natural number m and for all $\lambda \in \mathbb{C}$. This article aims to establish various inequalities between the operator norm and the numerical radius of m-quasi-totally- (α, β)-normal operators in Hilbert spaces. Further, this article analyzes spectral and algebraic properties of m-quasi-totally- (α, β) normal operators.

1. Introduction

One of the current trends in operator theory is studying natural generalization of normal operators. Let \mathscr{H} be a non zero complex Hilbert space and let $\mathscr{B}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H}. Let m be a natural number. An operator $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is called m-quasi-totally- (α, β)-normal $(0 \leqslant \alpha \leqslant 1 \leqslant \beta)$ if

$$
\begin{aligned}
\alpha^{2} \mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m} & \leqslant \mathscr{S}^{m *}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} \\
& \leqslant \beta^{2} \mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$. Then

$$
\begin{aligned}
\alpha^{2}\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m} x, x\right\rangle & \leqslant\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x, x\right\rangle \\
& \leqslant \beta^{2}\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m} x, x\right\rangle
\end{aligned}
$$

whence

$$
\begin{aligned}
\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\| & \leqslant\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\| \\
& \leqslant \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|
\end{aligned}
$$

Mathematics subject classification (2020): 47B15, 47B20, 47A15.
Keywords and phrases: m-quasi-totally- (α, β)-normal operators, mutual majorization, numerical radius, operator norm, single valued extension property.

* Corresponding author.
for all $\lambda \in \mathbb{C}$ and for all $x \in \mathscr{H}$.
In 1966, R. G. Douglas [12] proved an equivalence of factorization, range inclusion and majorization of operators, known as Douglas lemma. Inspired by the Douglas lemma, V. Manuilov, M. S. Moslehian, and Q. Xu [21] investigated the solvability of the operator equation $A X=C$ for operators on Hilbert C^{*}-modules. M.S. Moslehian, M. Kian, and Q. Xu [23] characterized the positivity of 2×2 block matrices of operators on Hilbert space. Note that m-quasi-totally- (α, β)-normal operator is equivalent to the study of mutual majorization between $(\mathscr{S}-\lambda) \mathscr{S}^{m}$ and $(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}$. It can be said that both $(\mathscr{S}-\lambda) \mathscr{S}^{m}$ majorizes $(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}$ and $(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}$ majorizes $(\mathscr{S}-\lambda) \mathscr{S}^{m}$ for a natural number m. Using Douglas' result, it is observed that \mathscr{S} is m-quasi-totally- (α, β)-normal if and only if $\operatorname{ran}\left((\mathscr{S}-\lambda) \mathscr{S}^{m}\right)=\operatorname{ran}\left((\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right)$ or equivalently $\operatorname{ker}\left((\mathscr{S}-\lambda) \mathscr{S}^{m}\right)=\operatorname{ker}\left((\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right)$. In particular (choose $\lambda=0$), an operator \mathscr{S} is called m-quasi- (α, β)-normal $(0 \leqslant \alpha \leqslant 1 \leqslant \beta)$ if

$$
\begin{aligned}
\alpha^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1} & \leqslant \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \\
& \leqslant \beta^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}
\end{aligned}
$$

Equivalently

$$
\begin{aligned}
\alpha\left\|\mathscr{S}^{m+1} x\right\| & \leqslant\left\|\mathscr{S}^{*} \mathscr{S}^{m} x\right\| \\
& \leqslant \beta\left\|\mathscr{S}^{m+1} x\right\|
\end{aligned}
$$

for all $x \in \mathscr{H}$.
The numerical radius $\omega(\mathscr{S})$ of an operator \mathscr{S} on $(\mathscr{H} ;\langle.,\rangle$.$) is given as$

$$
\omega(\mathscr{S})=\sup \{|\langle\mathscr{S} x, x\rangle|:\|x\|=1\} .
$$

S. S. Dragomir and M. S. Moslehian [10] studied various inequlities between the operator norm and the numerical radius of (α, β)-normal operators in Hilbert space. According to them, an operator \mathscr{S} is called (α, β)-normal $(0 \leqslant \alpha \leqslant 1 \leqslant \beta)$ if $\alpha^{2} \mathscr{S}^{*} \mathscr{S} \leqslant$ $\mathscr{S} \mathscr{S}^{*} \leqslant \beta^{2} \mathscr{S}^{*} \mathscr{S}$. It is true from the definition that, m-quasi-totally- (α, β)-normal operator coincides with (α, β)-normal operator if $m=0$ and $\lambda=0$. A. Benali and O. A. M. Sid Ahmed [4] studied structural properties of (α, β) - A-normal operators in semi-Hilbertian spaces.

EXAMPLE 1. It is obvious that m-quasi-hyponormal operators are m-quasi- (α, β) normal for some appropriate values of α and β. The following operator \mathscr{S} in $\mathscr{B}\left(\mathbb{C}^{2}\right)$ is 2 -quasi- (α, β)-normal for $\alpha=\sqrt{(15-\sqrt{221}) / 2}$ and $\beta=\sqrt{(15+\sqrt{221}) / 2}$, which is not normal, quasi-normal, hyponormal and quasi-hyponormal.

$$
\mathscr{S}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

2. Inequalities involving numerical radius and operator norm

In this section, the study of some inequalities concerning the numerical radius and norm of m-quasi-totally- (α, β)-normal operators form the substance. It is followed by several inequalities refer the articles $[6,7,8,9,11,13,14]$.

THEOREM 1. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator, then

$$
\begin{aligned}
&\left(1+\frac{\alpha^{2 r}}{\beta^{2 r}}\right)\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2} \\
& \leqslant \begin{cases}\frac{2}{\beta} \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]+\frac{r^{2}}{\beta^{2}}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m}-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{2} & \\
\frac{2}{\beta} \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]+\frac{1}{\beta^{2}}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m}-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{2} & \text { if } r \geqslant 1\end{cases} \\
& \text { if } r<1 .
\end{aligned}
$$

In particular,

$$
\left(1+\frac{\alpha^{2 r}}{\beta^{2 r}}\right)\left\|\mathscr{S}^{m+1}\right\|^{2} \leqslant\left\{\begin{array}{ll}
\frac{2}{\beta} \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]+\frac{r^{2}}{\beta^{2}}\left\|\beta \mathscr{S}^{m+1}-\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{2} \\
\frac{2}{\beta} \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]+\frac{1}{\beta^{2}}\left\|\beta \mathscr{S}^{m+1}-\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{2} & \text { if } r \geqslant 1
\end{array} \quad \text { if } r<1\right.
$$

Proof. We use the following inequality [14],

$$
\|a\|^{2 r}+\|b\|^{2 r}-2\|a\|^{r-1}\|b\|^{r-1} \cdot \operatorname{Re}\langle a, b\rangle \leqslant \begin{cases}r^{2}\|a\|^{2 r-2}\|a-b\|^{2} & \\ \|b\|^{2 r-2}\|a-b\|^{2} & \text { if } r \geqslant 1 \\ & \text { if } r<1\end{cases}
$$

provided $r \in \mathbb{R}$ and $a, b \in \mathscr{H}$ with $\|a\| \geqslant\|b\|$.
Assume that $r \geqslant 1$. Let $x \in \mathscr{H}$ with $\|x\|=1$. Applying the above inequality for the choices $a=\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x, b=(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ we get

$$
\begin{aligned}
& \left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2 r}+\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2 r} \\
\leqslant & r^{2}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2 r-2}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2} \\
& +2\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{r-1}\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{r-1} \\
& \times \operatorname{Re}\left\langle\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x,(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle
\end{aligned}
$$

for any $x \in \mathscr{H}$ with $\|x\|=1$ and $r \geqslant 1$.
Therefore

$$
\begin{aligned}
& \left(\alpha^{2 r}+\beta^{2 r}\right)\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2 r} \\
\leqslant & r^{2} \beta^{2 r-2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2 r-2}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m} x-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2} \\
& +2 \beta^{2 r-1}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2 r-2} \mid\left\langle\left(\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right| .
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$, we deduce

$$
\begin{aligned}
& \left(\alpha^{2 r}+\beta^{2 r}\right)\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2 r} \\
\leqslant & r^{2} \beta^{2 r-2}\left\|\beta(\mathscr{S}-\lambda) \mathscr{S}^{m}-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{2}+2 \beta^{2 r-1} \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right],
\end{aligned}
$$

which is the first inequality.
If $r<1$, then similar substitution yields the second inequality.
THEOREM 2. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator and if $k \in \mathbb{C}$, then
$\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2} \leqslant \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]+\frac{2 \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}-k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{2}}{(1+|k| \alpha)^{2}}$.
In particular,

$$
\alpha\left\|\mathscr{S}^{m+1}\right\|^{2} \leqslant \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]+\frac{2 \beta\left\|\mathscr{S}^{m+1}-k \mathscr{S}^{*} \mathscr{S}^{m}\right\|^{2}}{(1+|k| \alpha)^{2}}
$$

Proof. We use the following inequality [13],

$$
\|a\|\|b\| \leqslant|\langle a, b\rangle|+\frac{2\|a\|\|b\|\|a-b\|^{2}}{(\|a\|+\|b\|)^{2}} \text { for } a, b \in \mathscr{H} \backslash\{0\} .
$$

Take $a=(\mathscr{S}-\lambda) \mathscr{S}^{m} x$ and $b=k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ to get

$$
\begin{aligned}
& \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\| \\
\leqslant & \left|\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x, k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right| \\
+ & \frac{2\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}}{\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|+\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|\right)^{2}} .
\end{aligned}
$$

From this we deduce that

$$
\begin{aligned}
& \alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2} \\
\leqslant & \left|\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right|+\frac{2 \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}}{(1+|k| \alpha)^{2}} .
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$, we get the desired result.
THEOREM 3. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator and if $k \in \mathbb{C} \backslash\{0\}$, then

$$
\left[\alpha^{2}-\left(\frac{1}{|k|}+\beta\right)^{2}\right]\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{4} \leqslant \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]^{2}
$$

In particualr,

$$
\left[\alpha^{2}-\left(\frac{1}{|k|}+\beta\right)^{2}\right]\left\|\mathscr{S}^{m+1}\right\|^{4} \leqslant \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]^{2}
$$

Proof. We use the following inequality [9],

$$
\|a\|^{2}\|b\|^{2} \leqslant|\langle a, b\rangle|^{2}+\frac{1}{|k|^{2}}\|a\|^{2}\|a-k b\|^{2},
$$

provided $a, b \in \mathscr{H}$ and $k \in \mathbb{C} \backslash\{0\}$.
Choose $a=(\mathscr{S}-\lambda) \mathscr{S}^{m} x, b=(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$, to get

$$
\begin{aligned}
& \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2} \\
\leqslant & \left|\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x,(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right|^{2} \\
& +\frac{1}{|k|^{2}}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2} .
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \alpha^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{4}-\frac{1}{|k|^{2}}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{4}(1+|k| \beta)^{2} \\
\leqslant & \left|\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right|^{2} .
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$, we get the desired result.
THEOREM 4. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator, then $2 \omega\left[(\mathscr{S}-\lambda) \mathscr{S}^{m}\right] \omega\left[(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right] \leqslant \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2}+\omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]$. In particular,

$$
2 \omega\left[\mathscr{S}^{m+1}\right] \omega\left[\mathscr{S}^{*} \mathscr{S}^{m}\right] \leqslant \beta\left\|\mathscr{S}^{m+1}\right\|^{2}+\omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]
$$

Proof. We use the following inequality [6],

$$
2|\langle a, e\rangle\langle e, b\rangle| \leqslant\|a\|\|b\|+|\langle a, b\rangle|
$$

for any $a, b, e \in \mathscr{H}$ with $\|e\|=1$.
Let $x \in \mathscr{H}$ with $\|x\|=1$. Put $e=x, a=(\mathscr{S}-\lambda) \mathscr{S}^{m} x, b=(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ in the above inequality to get

$$
\begin{aligned}
& 2\left|\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x, x\right\rangle\left\langle x,(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right| \\
\leqslant & \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|+\left|\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x,(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 2\left|\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x, x\right\rangle\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda) x, x\right\rangle\right| \\
\leqslant & \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2}+\left|\left\langle\mathscr{S}^{m}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right| .
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$, we obtain the required inequality.

THEOREM 5. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator and if $p \geqslant 2$, then

$$
\begin{aligned}
& \left(1+\alpha^{p}\right)\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{p} \\
\leqslant & \frac{1}{2}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}+(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p}+\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p}\right) .
\end{aligned}
$$

In particular,

$$
\left(1+\alpha^{p}\right)\left\|\mathscr{S}^{m+1}\right\|^{p} \leqslant \frac{1}{2}\left(\left\|\mathscr{S}^{m+1}+\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{p}+\left\|\mathscr{S}^{m+1}-\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{p}\right)
$$

Proof. We use the following inequality [11],

$$
\|a\|^{p}+\|b\|^{p} \leqslant \frac{1}{2}\left(\|a+b\|^{p}+\|a-b\|^{p}\right)
$$

for any $a, b \in \mathscr{H}$ and $p \geqslant 2$.
Now, if we choose $a=(\mathscr{S}-\lambda) \mathscr{S}^{m} x, b=(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$, then we get

$$
\begin{aligned}
& \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{p}+\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p} \\
\leqslant & \frac{1}{2}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x+(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}+\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}\right) .
\end{aligned}
$$

Since \mathscr{S} is m-quasi-totally- (α, β)-normal operator, we have

$$
\begin{aligned}
& \left(1+\alpha^{p}\right)\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{p} \\
\leqslant & \frac{1}{2}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x+(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}+\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}\right) .
\end{aligned}
$$

Taking the supremum over $\|x\|=1$ in this inequality, we get the desired result.

THEOREM 6. If $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ is m-quasi-totally- (α, β)-normal operator. If $p \geqslant$ 2 , then

$$
\begin{aligned}
& \omega\left[\frac{\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}+\mathscr{S}^{m *}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}}{2}\right]^{\frac{p}{2}} \\
\leqslant & \frac{1}{4}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}+(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p}+\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p}\right) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& \omega\left[\frac{\mathscr{S}^{m+1 *} \mathscr{S}^{m+1}+\mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m}}{2}\right]^{\frac{p}{2}} \\
\leqslant & \frac{1}{4}\left(\left\|\mathscr{S}^{m+1}+\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{p}+\left\|\mathscr{S}^{m+1}-\mathscr{S}^{*} \mathscr{S}^{m}\right\|^{p}\right)
\end{aligned}
$$

Proof. We use the following elementary inequality,

$$
a^{q}+b^{q} \geqslant 2^{1-q}(a+b)^{q}
$$

for $a, b \geqslant 0$ and $q \geqslant 1$.
Substitute $a=\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}, b=\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}$ and $q=\frac{p}{2}$ to get,

$$
\begin{aligned}
& \left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}\right)^{\frac{p}{2}}+\left(\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}\right)^{\frac{p}{2}} \\
\geqslant & 2^{1-\frac{p}{2}}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}+\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{p}+\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p} \\
\geqslant & 2^{1-\frac{p}{2}}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}+\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2}\right)^{\frac{p}{2}} .
\end{aligned}
$$

Applying Theorem 5,

$$
\begin{aligned}
& \frac{1}{4}\left(\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x+(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}+\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x-(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}\right) \\
\geqslant & \left|\left\langle\left(\frac{\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}+\mathscr{S}^{m *}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}}{2}\right) x, x\right\rangle\right|^{\frac{p}{2}}
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$ gives the desired result.
THEOREM 7. Let $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ be an m-quasi-totally- (α, β)-normal operator. If $p \in(1,2)$ and if $k, l \in \mathbb{C}$, then

$$
\begin{aligned}
& (|k|+\beta|l|)^{p}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{p}+\max (\{|k|-|l| \beta, \alpha|l|-|k|\})\left\|\mathscr{S}-\lambda \mathscr{S}^{m}\right\|^{p} \\
\leqslant & \left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m}+l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p}+\left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m}-l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right\|^{p} .
\end{aligned}
$$

Proof. We use the following inequality [11],

$$
(\|a\|+\|b\|)^{p}+(\|a\|-\|b\|)^{p} \leqslant\|a+b\|^{p}+\|a-b\|^{p}
$$

for any $a, b \in \mathscr{H}$ and $p \in(1,2)$.
Put $a=k(\mathscr{S}-\lambda) \mathscr{S}^{m} x$ and $b=l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ to get

$$
\begin{aligned}
& \left(\left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|+\left\|l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|\right)^{p} \\
& +\left(\left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|-\left\|l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|\right)^{p} \\
\leqslant & \left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x+l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}+\left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x-l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p} .
\end{aligned}
$$

Since \mathscr{S} is m-quasi-totally- (α, β)-normal operator, it follows that

$$
\begin{aligned}
& {\left[(|k|+\beta|l|)^{p}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{p}+\max \{|k|-|l| \beta, \alpha|l|-|k|\}\right]\left\|\mathscr{S}-\lambda \mathscr{S}^{m} x\right\|^{p} } \\
\leqslant & \left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x+l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p}+\left\|k(\mathscr{S}-\lambda) \mathscr{S}^{m} x-l(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{p} .
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$ gives the desired result.

THEOREM 8. Let $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ be an m-quasi-totally- (α, β)-normal operator, $r \geqslant 0$ and $\lambda \in \mathbb{C} \backslash\{0\}$. If

$$
\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}-(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\| \leqslant r
$$

and

$$
\frac{r}{|k|} \leqslant \inf \left\{\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|:\|x\|=1\right\}
$$

then

$$
\alpha^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{4} \leqslant \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]^{2}+\frac{r^{2}}{|k|^{2}}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2}
$$

In particular,

$$
\alpha^{2}\left\|\mathscr{S}^{m+1}\right\|^{4} \leqslant \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]^{2}+\frac{r^{2}}{|k|^{2}}\left\|\mathscr{S}^{m+1}\right\|^{2}
$$

Proof. We use the following inequality [7],

$$
\|y\|^{2}\|a\|^{2} \leqslant[\operatorname{Re}\langle y, a\rangle]^{2}+r^{2}\|y\|^{2}
$$

provided $\|y-a\| \leqslant r \leqslant\|a\|$.
Setting $a=k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ and $y=(\mathscr{S}-\lambda) \mathscr{S}^{m} x$ to get,

$$
\begin{aligned}
& \left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2}\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\|^{2} \\
\leqslant & {\left[\operatorname{Re}\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x, k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right]^{2}+r^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2} . }
\end{aligned}
$$

Hence

$$
|k|^{2} \alpha^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{4} \leqslant|k|^{2}\left[\operatorname{Re}\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right]^{2}+r^{2}\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2} .
$$

Taking the supremum over $x \in \mathscr{H},\|x\|=1$, we get the desired result.
THEOREM 9. Let $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ be an m-quasi-totally- (α, β)-normal operator, $r \geqslant 0$ and $\lambda \in \mathbb{C} \backslash\{0\}$. If $\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}-(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\| \leqslant r$, then

$$
\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m}\right\|^{2} \leqslant \omega\left[\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m}\right]+\frac{r^{2}}{2|k|}
$$

In particular,

$$
\alpha\left\|\mathscr{S}^{m+1}\right\|^{2} \leqslant \omega\left[\mathscr{S}^{m *} \mathscr{S}^{m+2}\right]+\frac{r^{2}}{2|k|} .
$$

Proof. We use the following reverse of the Schwarz inequality [8],

$$
\|y\|\|a\| \leqslant[\operatorname{Re}\langle y, a\rangle]+\frac{r^{2}}{2}
$$

provided $\|y-a\| \leqslant r$.
Setting $a=k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x$ and $y=(\mathscr{S}-\lambda) \mathscr{S}^{m} x$ to get

$$
\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|\left\|k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\| \leqslant\left[\operatorname{Re}\left\langle(\mathscr{S}-\lambda) \mathscr{S}^{m} x, k(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\rangle\right]+\frac{r^{2}}{2}
$$

From this we obtain

$$
|k| \alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|^{2} \leqslant|k|\left|\operatorname{Re}\left\langle\mathscr{S}^{m *}(\mathscr{S}-\lambda)^{2} \mathscr{S}^{m} x, x\right\rangle\right|+\frac{r^{2}}{2} .
$$

Taking the supremum over $\|x\|=1$ in this inequality, we get the desired result.

3. Algebraic and spectral properties

The following theorem gives a characterization of m-quasi-totally- (α, β)-normal operators. Using this result we obtained several important properties of this class of operators.

THEOREM 10. Let $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ such that \mathscr{S}^{m} does not have a dense range, then the following statements are equivalent.
(1) \mathscr{S} is a m-quasi-totally- (α, β)-normal operator.
(2) $\mathscr{S}=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ on $\mathscr{H}=\overline{\operatorname{ran(\mathscr {S}^{m})}} \oplus \operatorname{ker}\left(\mathscr{S}^{* m}\right)$, where $A=\mathscr{S}_{\left\lvert\, \frac{\operatorname{ran}(\mathscr{S})}{}\right.}$ is a totally (α, β)-normal operator and $C^{m}=0$. Furthermore $\sigma(\mathscr{S})=\sigma(A) \cup\{0\}$.

Proof. (1) $\Rightarrow(2)$. Consider the matrix representation of \mathscr{S} with respect to the decomposition $\mathscr{H}=\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)} \oplus \operatorname{ker}\left(\mathscr{S}^{* m}\right): \mathscr{S}=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$. Let P be the projection onto $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}$. Then $\mathscr{S}=\left(\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right)=\mathscr{S} P=P \mathscr{S} P$. Since \mathscr{S} is an m-quasi totally(α, β)-normal operator, we have then

$$
\begin{aligned}
\alpha^{2} P\left(\mathscr{S}^{* m}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}\right) P & \leqslant P\left(\mathscr{S}^{* m}(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m}\right) P \\
& \leqslant \beta^{2} P\left(\mathscr{S}^{* m}(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda) \mathscr{S}^{m}\right) P
\end{aligned}
$$

That is

$$
\alpha^{2}(A-\lambda)^{*}(A-\lambda) \leqslant(A-\lambda)(A-\lambda)^{*} \leqslant \beta^{2}\left((A-\lambda)^{*}(A-\lambda)\right)
$$

for all $\lambda \in \mathbb{C}$. Hence A is a totally- (α, β)-normal.

On the other hand, let $x=x_{1}+x_{2} \in \mathscr{H}=\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)} \oplus \operatorname{ker}\left(\mathscr{S}^{* m}\right)$. A simple computation shows that

$$
\begin{aligned}
\left\langle C^{m} x_{2}, x_{2}\right\rangle & =\left\langle\mathscr{S}^{m}(I-P) x,(I-P) x\right\rangle \\
& =\left\langle(I-P) x, \mathscr{S}^{* m}(I-P) x\right\rangle=0 .
\end{aligned}
$$

So, $C^{m}=0$.
Since $\sigma(\mathscr{S}) \cup \mathscr{T}=\sigma(A) \cup \sigma(C)$, where \mathscr{T} is the union of the holes in $\sigma(\mathscr{S})$ which happen to be subset of $\sigma(A) \cap \sigma(C)$ by Corollary 7 of [16], and $\sigma(A) \cap \sigma(C)$ has no interior point and C is nilpotent, we have $\sigma(\mathscr{S})=\sigma(A) \cup\{0\}$.
$(2) \Rightarrow(1)$ Suppose that $\mathscr{S}=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ onto $\mathscr{H}=\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)} \oplus \operatorname{ker}\left(\mathscr{S}^{* m}\right)$, with

$$
\alpha^{2}(A-\lambda)^{*}(A-\lambda) \leqslant(A-\lambda)(A-\lambda)^{*} \leqslant \beta^{2}\left((A-\lambda)^{*}(A-\lambda)\right)
$$

for all $\lambda \in \mathbb{C}$ and $C^{m}=0$.
Since $\mathscr{S}^{m}=\left(\begin{array}{cc}A^{m} \sum_{j=0}^{m-1} A^{j} B C^{k-1-j} \\ 0 & 0\end{array}\right)$,

$$
(\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)=\left(\begin{array}{cc}
(A-\lambda)^{*}(A-\lambda) & (A-\lambda)^{*} B \\
B^{*}(A-\lambda) & B^{*} B+(C-\lambda)^{*}(C-\lambda)
\end{array}\right)
$$

and

$$
(\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*}=\left(\begin{array}{cc}
(A-\lambda)(A-\lambda)^{*} & B(A-\lambda)^{*} \\
(A-\lambda) B^{*} & B B^{*}+(C-\lambda)(C-\lambda) B^{*}
\end{array}\right) .
$$

Further

$$
\begin{aligned}
\mathscr{S}^{m} \mathscr{S}^{* m} & =\left(\begin{array}{cc}
A^{k} A^{* k}+\left(\sum_{j=0}^{m-1} A^{j} B C^{k-1-j}\right)\left(\sum_{j=0}^{m-1} A^{j} B C^{k-1-j}\right)^{*} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

where $D=A^{k} A^{* k}+\left(\sum_{j=0}^{m-1} A^{j} B C^{k-1-j}\right)\left(\sum_{j=0}^{m-1} A^{j} B C^{k-1-j}\right)^{*}=D^{*}$.

Hence for all $\lambda \in \mathbb{C}$ we have

$$
\begin{aligned}
& \alpha^{2} \mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m} \mathscr{S}^{* m} \\
= & \left(\begin{array}{cc}
\alpha^{2} D(A-\lambda)^{*}(A-\lambda) D & 0 \\
0 & 0
\end{array}\right) \\
\leqslant & \left(\begin{array}{cr}
D(A-\lambda)(A-\lambda)^{*} D & 0 \\
0 & 0
\end{array}\right)=\mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*}\right) \mathscr{S}^{m} \mathscr{S}^{* m} \\
\leqslant & \left(\begin{array}{cc}
\beta^{2} D(A-\lambda)^{*}(A-\lambda) D & 0 \\
0 & 0
\end{array}\right)=\beta^{2} \mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m} \mathscr{S}^{* m} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \alpha^{2} \mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m} \mathscr{S}^{* m} \\
\leqslant & \mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*}\right) \mathscr{S}^{m} \mathscr{S}^{* m} \\
\leqslant & \beta^{2} \mathscr{S}^{m} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m} \mathscr{S}^{* m} .
\end{aligned}
$$

This means that

$$
\begin{aligned}
\alpha^{2} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m} & \leqslant \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)(\mathscr{S}-\lambda)^{*}\right) \mathscr{S}^{m} \\
& \leqslant \beta^{2} \mathscr{S}^{* m}\left((\mathscr{S}-\lambda)^{*}(\mathscr{S}-\lambda)\right) \mathscr{S}^{m}
\end{aligned}
$$

on $\mathscr{H}=\operatorname{ran}\left(\mathscr{S}^{* m}\right) \oplus \operatorname{ker}\left(\mathscr{S}^{m}\right)$.
Consequently, \mathscr{S} is a m-quasi-totally- (α, β)-normal.
Corollary 1. Let $\mathscr{S} \in \mathscr{L}(\mathscr{H})$ be an m-quasi totally- (α, β)-normal operator. If $A=\mathscr{S} \frac{}{\frac{\text { ran }\left(\mathscr{S}^{m}\right)}{}}$ is invertible, then \mathscr{S} is similar to a direct sum of a totally- (α, β) normal operator and a nilpotent operator.

Proof. By Theorem 10 we write the matrix representation of \mathscr{S} on $\mathscr{H}=\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}$ $\oplus \operatorname{ker}\left(\mathscr{S}^{* m}\right)$ as follows $\mathscr{S}=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ where $A=\mathscr{S} \sqrt{\operatorname{ran}\left(\mathscr{S}^{m}\right)}$ is a totally- (α, β)-normal operator and $C^{m}=0$. Since A is invertible, we have $\sigma(A) \cap \sigma(C)=\emptyset$. Then there exists an operator X such that $A X-X C=B$. Hence

$$
\mathscr{S}=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\left(\begin{array}{ll}
I & X \\
0 & I
\end{array}\right)^{-1}\left(\begin{array}{cc}
A & 0 \\
0 & C
\end{array}\right)\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right) .
$$

We say that an operator \mathscr{S} doubly commutes with \mathscr{T} if \mathscr{S} commutes with \mathscr{T} and \mathscr{T}^{*}.

THEOREM 11. Let $\mathscr{S}_{1}, \mathscr{S}_{2} \in \mathscr{B}(\mathscr{H})$ are doubly commuting. If \mathscr{S}_{1} is an m -quasi- (α, β)-normal and \mathscr{S}_{2} is an m-quasi- $\left(\alpha^{\prime}, \beta^{\prime}\right)$-normal, then $\mathscr{S}_{1} \mathscr{S}_{2}$ is an m -quasi- $\left(\alpha \alpha^{\prime}, \beta \beta^{\prime}\right)$-normal

Proof.

$$
\begin{aligned}
\alpha \alpha^{\prime}\left\|\left(\mathscr{S}_{1} \mathscr{S}_{2}\right)^{m+1} x\right\| & =\alpha \alpha^{\prime}\left\|\mathscr{S}_{1}^{m+1} \mathscr{S}_{2}^{m+1} x\right\| \leqslant \alpha^{\prime}\left\|\mathscr{S}_{1}^{*} \mathscr{S}_{1}^{m} \mathscr{S}_{2}^{m+1} x\right\| \\
& \leqslant\left\|\mathscr{S}_{2}^{*} \mathscr{S}_{1}^{*} \mathscr{S}_{1}^{m} \mathscr{S}_{2}^{m} x\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\mathscr{S}_{2}^{*} \mathscr{S}_{2}^{m} \mathscr{S}_{1}^{*} \mathscr{S}_{1}^{m} x\right\| & \leqslant \beta^{\prime}\left\|\mathscr{S}_{2} \mathscr{S}_{2}^{m} \mathscr{S}_{1}^{*} \mathscr{S}_{1}^{m} x\right\|=\beta^{\prime}\left\|\mathscr{S}_{1}^{*} \mathscr{S}_{1}^{m} \mathscr{S}_{2} \mathscr{S}_{2}^{m} x\right\| \\
& \leqslant \beta \beta^{\prime} \mid\left\|\mathscr{S}_{1}^{m+1} \mathscr{S}_{2}^{m+1} x\right\| . \\
\alpha \alpha^{\prime}\left\|\left(\mathscr{S}_{1} \mathscr{S}_{2}\right)^{m+1} x\right\| & \leqslant\left\|\left(\mathscr{S}_{2} \mathscr{S}_{1}\right)^{*} \mathscr{S}_{1}^{m} \mathscr{S}_{2}^{m} x\right\| \leqslant \beta \beta^{\prime} \mid\left\|\mathscr{S}_{1}^{m+1} \mathscr{S}_{2}^{m+1} x\right\| .
\end{aligned}
$$

THEOREM 12. Let $(\alpha, \beta) \in \mathbb{R}^{2}$ such that $0<\alpha \leqslant 1 \leqslant \beta$ and let $\mathscr{S} \in \mathscr{B}(\mathscr{H})$ such that $\operatorname{ran}\left(\mathscr{S}^{m}\right)=\operatorname{ran}\left(\mathscr{S}^{* m}\right)$. If \mathscr{S} is an m-quasi- (α, β)-normal, then \mathscr{S}^{*} is m-quasi- $\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$-normal.

Proof. Since \mathscr{S} is m-quasi- (α, β)-normal, it follows that

$$
\alpha\left\|\mathscr{S} \mathscr{S}^{m} x\right\| \leqslant\left\|\mathscr{S}^{*} \mathscr{S}^{m} x\right\| \leqslant \beta\left\|\mathscr{S} \mathscr{S}^{m} x\right\|, \quad \forall x \in \mathscr{H}
$$

This means that

$$
\alpha\left\|\mathscr{S} \mathscr{S}^{* m} x\right\| \leqslant\left\|\mathscr{S}^{*} \mathscr{S}^{* m} x\right\| \leqslant \beta\left\|\mathscr{S} \mathscr{S}^{* m} x\right\|, \quad \forall x \in \mathscr{H}
$$

Combining these inequalities,

$$
\frac{1}{\beta}\left\|\mathscr{S}^{*} \mathscr{S}^{* m} x\right\| \leqslant\left\|\mathscr{S}^{* m} x\right\| \leqslant \frac{1}{\alpha}\left\|\mathscr{S}^{*} \mathscr{S}^{* m} x\right\|
$$

So, \mathscr{S}^{*} is m-quasi- $\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$-normal.
COROLLARY 2. Under the same conditions of Theorem 12, if $\alpha \beta=1$ then \mathscr{S} is m-quasi- (α, β)-normal if and only if \mathscr{S}^{*} is m-quasi- (α, β)-normal.

THEOREM 13. Let \mathscr{S} be an m-quasi-totally- (α, β)-normal operator. If \mathscr{S}^{m} has dense range, then \mathscr{S} is totally- (α, β)-normal.

Proof. Since \mathscr{S}^{m} has a dense range, it follows that $\overline{\operatorname{ran(\mathscr {S}^{m})}}=\mathscr{H}$. Let $y \in \mathscr{H}$. Then there exists a sequence $\left(x_{n}\right)$ in \mathscr{H} such that $\mathscr{S}^{m}\left(x_{n}\right) \rightarrow y$ as $n \rightarrow \infty$.

Since \mathscr{S} is m-quasi-totally- (α, β)-normal operator, we have

$$
\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\| \leqslant\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x\right\| \leqslant \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x\right\|
$$

for all $x \in \mathscr{H}$ and for all $\lambda \in \mathbb{C}$.

In particular,

$$
\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x_{n}\right\| \leqslant\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} x_{n}\right\| \leqslant \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} x_{n}\right\|
$$

for all $x_{n} \in \mathscr{H}$ and for all $\lambda \in \mathbb{C}$.
It follows that

$$
\alpha\|(\mathscr{S}-\lambda) y\| \leqslant\left\|(\mathscr{S}-\lambda)^{*} y\right\| \leqslant \beta\|(\mathscr{S}-\lambda) y\|
$$

for all $y \in \mathscr{H}$ and for all $\lambda \in \mathbb{C}$. Therefore \mathscr{S} is totally- (α, β)-normal operator.
Corollary 3. Let \mathscr{S} be an m-quasi-totally- (α, β)-normal operator. If $\mathscr{S}^{m} \neq$ 0 and if \mathscr{S} has no nontrivial \mathscr{S}^{m}-invariant closed subspace, then \mathscr{S} is totally- (α, β) normal.

Proof. Since \mathscr{S}^{m} has no nontrivial invariant closed subspace, it has no nontrivial hyperinvariant subspace. But $\operatorname{ker}\left(\mathscr{S}^{m}\right)$ and $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}$ are hyperinvariant subspaces, and $\mathscr{S}^{m} \neq 0$, hence $\operatorname{ker}\left(\mathscr{S}^{m}\right)=0$ and $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}=\mathscr{H}$. Therefore \mathscr{S} is totally(α, β) -normal operator.

Example 2. Let \mathscr{S} be the diagonal positive operator define on the Hilbert space $\mathscr{H}=\ell_{\mathbb{N}}^{2}(\mathbb{C})$ by $\mathscr{S} e_{j}=\frac{1}{j!} e_{j}, \forall j \in \mathbb{N}=\{1,2, \cdots\}$, where $\left\{e_{j}, J=1,2, \cdots\right\}$ denotes the canonical basis of $\ell_{\mathbb{N}}^{2}(\mathbb{C})$. It easily to show that \mathscr{S} is an m-quasi-totally- (α, β) normal operator.

By observing that $\mathscr{S}^{m} e_{j}-\left(\frac{1}{j!}\right)^{m} e_{j}$ and hence, $e_{j}=(j!)^{m} \mathscr{S}^{m} e_{j}$, for all $j \in \mathbb{N}$, it easily to see that $\operatorname{ran}\left(\mathscr{S}^{m}\right)$ contains the span of $\left\{e_{j}, j=1,2, \cdots,\right\}$ and

$$
\overline{\operatorname{span}\left\{e_{j}, j=1,2, \cdots,\right\}}=\ell_{\mathbb{N}}^{2}(\mathbf{C})
$$

However $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}=\ell_{\mathbb{N}}^{2}(\mathbb{C})$. Therefore \mathscr{S} is totally- (α, β)-normal.
Note that $\operatorname{ran}\left(\mathscr{S}^{m}\right)$ is not closed. In fact, by choosing $u_{0}=\left(\frac{1}{j^{m}}\right)_{j \geqslant 1} \in \ell_{\mathbb{N}}^{2}(\mathbb{C})$ and $x=\left(x_{j}\right)_{j \geqslant 1}$ such that $u_{0}=\mathscr{S}^{m} x$, we obtain $\frac{1}{j^{m}}=\frac{1}{j^{m}!} x_{j}$ and hence $x_{j}=\left(j^{m}-1\right)$! for $j=1,2, \cdots$. So $x \notin \ell_{\mathbb{N}}^{2}(\mathbb{C})$ and therefore \mathscr{S}^{m} is not surjective. Hence $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)} \neq$ $\operatorname{ran}\left(\mathscr{S}^{m}\right)$ i.e, $\operatorname{ran}\left(\mathscr{S}^{m}\right)$ is not closed. Since $\overline{\operatorname{ran}\left(\mathscr{S}^{m}\right)}=\ell_{\mathbb{N}}^{2}(\mathbb{C})$, it follows that \mathscr{S} has no nontrivial \mathscr{S}^{m}-invariant closed subspace.

Corollary 4. If \mathscr{S} is such that $a+b \mathscr{S}$ is m-quasi-totally- (α, β)-normal operator for all scalars a and b, then \mathscr{S} is totally- (α, β)-normal.

Proof. If \mathscr{S} is m-quasi-totally- (α, β)-normal operator but not totally- (α, β) normal operator, then \mathscr{S}^{m} is not invertible. It is possible to find scalars a and $b \neq 0$
such that $\mathscr{T}=a+b \mathscr{S}$ is invertible m-quasi-totally- (α, β)-normal operator. Therefore \mathscr{T} is totally- (α, β)-normal operators.

$$
\mathscr{T}=a+b \mathscr{S} \Rightarrow \mathscr{S}=\frac{1}{b}(\mathscr{T}-a)
$$

Therefore \mathscr{S} is also totally- (α, β)-normal.
Example 3. Let $\mathscr{S}=\left(\begin{array}{ccc}1 & 0 & 1 \\ \frac{1}{2} & 2 & 0 \\ 0 & 0 & 1\end{array}\right) \in \mathscr{B}\left(\mathbb{C}^{3}\right)$. Then it is 3-quasi- (α, β)-normal and (α, β)-normal for $\alpha=0.03$ and $\beta=1.8$.

EXAMPLE 4. Let $\mathscr{S}=\left(\begin{array}{cc}I & 0 \\ I & 0\end{array}\right) \in \mathscr{B}\left(l_{2} \oplus l_{2}\right)$. Then it is 1 -quasi- (α, β)-normal but not (α, β)-normal for $\alpha=0.5$ and $\beta=1.5$.

PROPOSITION 1. Let \mathscr{S} be an m-quasi-totally- (α, β)-normal operator. If a, b are non-zero eigenvalues of \mathscr{S} such that $a \neq b$, then $\operatorname{ker}(\mathscr{S}-a) \perp \operatorname{ker}(\mathscr{S}-b)$.

Proof. Let $x \in \operatorname{ker}(\mathscr{S}-a)$ and $y \in \operatorname{ker}(\mathscr{S}-b)$. Then $\mathscr{S} x=a x$ and $\mathscr{S} y=b y$. Therefore $a\langle x, y\rangle=b\langle x, y\rangle$, and so $(a-b)\langle x, y\rangle=0$. Hence $\operatorname{ker}(\mathscr{S}-a) \perp$ $\operatorname{ker}(\mathscr{S}-b)$.

THEOREM 14. Let \mathscr{S} be an m-quasi-totally- (α, β)-normal operator. If k is a complex number, then $\operatorname{ker}(\mathscr{S}-k)$ reduces \mathscr{S} and \mathscr{S} is normal on $\operatorname{ker}(\mathscr{S}-k)$.

Proof. We first prove that $\operatorname{ker}(\mathscr{S}-k) \subseteq \operatorname{ker}\left(\mathscr{S}^{*}-\bar{k}\right)$ for each $k \neq 0$.
Suppose $\mathscr{S} x=k x$. Since \mathscr{S} is m-quasi-totally- (α, β)-normal,

$$
\alpha\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} y\right\| \leqslant\left\|(\mathscr{S}-\lambda)^{*} \mathscr{S}^{m} y\right\| \leqslant \beta\left\|(\mathscr{S}-\lambda) \mathscr{S}^{m} y\right\|
$$

for all $y \in \mathscr{H}$ and for all $\lambda \in \mathbb{C}$. In particular,

$$
\alpha\left\|(\mathscr{S}-k) \mathscr{S}^{m} x\right\| \leqslant\left\|(\mathscr{S}-k)^{*} \mathscr{S}^{m} x\right\| \leqslant \beta\left\|(\mathscr{S}-k) \mathscr{S}^{m} x\right\|
$$

It follows that

$$
\alpha\left\|(\mathscr{S}-k) k^{m} x\right\| \leqslant\left\|(\mathscr{S}-k)^{*} k^{m} x\right\| \leqslant \beta\left\|(\mathscr{S}-k) k^{m} x\right\|
$$

Therefore

$$
\alpha\|(\mathscr{S}-k) x\| \leqslant\left\|(\mathscr{S}-k)^{*} x\right\| \leqslant \beta\|(\mathscr{S}-k) x\| .
$$

This clearly forces $x \in \operatorname{ker}(\mathscr{S}-k)^{*}$.
For any $x \in \operatorname{ker}(\mathscr{S}-k)$, we have $(\mathscr{S}-k)(\mathscr{S} x)=0$, which implies that $\mathscr{S} x \in$ $\operatorname{ker}(\mathscr{S}-k)$.

Therefore $\mathscr{S}(\operatorname{ker}(\mathscr{S}-k)) \subset \operatorname{ker}(\mathscr{S}-k)$.

Also, for $x \in \operatorname{ker}(\mathscr{S}-k)$, we have $(\mathscr{S}-k)\left(\mathscr{S}^{*} x\right)=0$, which means that $\mathscr{S}^{*} x \in$ $\operatorname{ker}(\mathscr{S}-k)$.

This gives $\mathscr{S}^{*}(\operatorname{ker}(\mathscr{S}-k)) \subset \operatorname{ker}(\mathscr{S}-k)$. Hence $\operatorname{ker}(\mathscr{S}-k)$ reduces \mathscr{S}.
For $x \in \operatorname{ker}(\mathscr{S}-k)$, we have $\mathscr{S} \mathscr{S}^{*} x=|k|^{2} x=\mathscr{S}^{*} \mathscr{S} x$, i.e. \mathscr{S} is normal on $\operatorname{ker}(\mathscr{S}-k)$.

Let $\sigma_{j p}(\mathscr{S})$ and $\sigma_{p}(\mathscr{S})$ denote the joint point spectrum and point spectrum of \mathscr{S}, respectively. It is known that, if \mathscr{S} is normal, then $\sigma_{j p}(\mathscr{S})=\sigma_{p}(\mathscr{S})$. Of course, if \mathscr{S} is m-quasi-totally- (α, β)-normal operator, then $\sigma_{j p}(\mathscr{S}) \backslash\{0\}=\sigma_{p}(\mathscr{S}) \backslash\{0\}$.

Corollary 5. If \mathscr{S} is a pure m-quasi-totally- (α, β)-normal operator, then $\sigma_{p}(\mathscr{S})=\phi$

Proof. An operator \mathscr{S} is pure if it has no reducing subsapce on which it is normal. Suppose that $\sigma_{p}(\mathscr{S}) \neq \phi$. By Theorem 14, we have \mathscr{S} is normal on $\operatorname{ker}(\mathscr{S}-k)$, it is a contradiction to pure.

We say that an operator \mathscr{S} has the single valued extension property at $\lambda_{0} \in \mathbb{C}$, if $f \equiv 0$ is the only solution to $(\mathscr{S}-\lambda) f(\lambda)=0$ that is analytic in an open neighborhood of λ_{0}. The operator \mathscr{S} is said to have SVEP if it has SVEP at every point λ_{0} in the complex plane.

THEOREM 15. If \mathscr{S} is quasi- (α, β)-normal operator, then \mathscr{S} has SVEP.
Proof. Suppose $x \in \operatorname{ker}\left(\mathscr{S}^{2}\right)$. Then $\mathscr{S}^{2} x=0$. Since \mathscr{S} is quasi- (α, β)-normal operator,

$$
\alpha\left\|\mathscr{S}^{2} x\right\| \leqslant\left\|\mathscr{S}^{*} \mathscr{S} x\right\| \leqslant \beta\left\|\mathscr{S}^{2} x\right\|
$$

for all $x \in \mathscr{H}$. Therefore $\left\|\mathscr{S}^{*} \mathscr{S} x\right\|=0$, and hence $x \in \operatorname{ker}\left(\mathscr{S}^{*} \mathscr{S}\right)$. But $\operatorname{ker}\left(\mathscr{S}^{*} \mathscr{S}\right)=$ $\operatorname{ker}(\mathscr{S})$, hence $x \in \operatorname{ker}(\mathscr{S})$. Hence \mathscr{S} has finite ascent. Therefore \mathscr{S} has SVEP by Theorem 3.8 of [1].

Theorem 16. If \mathscr{S} is m-quasi- (α, β)-normal such that $\alpha \beta=1$, then

$$
\alpha^{2} \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \beta^{2} \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m}
$$

Proof. \mathscr{S} is m-quasi-totally- (α, β)-normal if and only if

$$
\alpha^{2} \mathscr{S}^{* m+1} \mathscr{S}_{m+1} \leqslant \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant \beta^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}
$$

Therefore

$$
\alpha^{4} \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \alpha^{2} \mathscr{S}^{m *} \mathscr{S}^{S^{*}} \mathscr{S}^{m} \leqslant \alpha^{2} \beta^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}
$$

and

$$
\beta^{2} \alpha^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \beta^{2} \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant \beta^{4} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}
$$

Combining these inequalities,

$$
\alpha^{2} \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \beta^{2} \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m}
$$

PROPOSITION 2. Direct sum of two m-quasi- (α, β)-normal is also m-quasi- (α, β) -normal but tensor product of two m-quasi- (α, β)-normal is m-quasi- $\left(\alpha^{2}, \beta^{2}\right)$-normal.

Proof. Suppose that \mathscr{S}_{1} and \mathscr{S}_{2} are m-quasi- (α, β)-normal.
Let $x=x_{1} \oplus x_{2} \in \mathscr{H} \oplus \mathscr{H}$ such that $\|x\|=1$. Then

$$
\alpha\left\|\left(\mathscr{S}_{1} \oplus \mathscr{S}_{2}\right)^{m+1} x\right\| \leqslant\left\|\left(\mathscr{S}_{1} \oplus \mathscr{S}_{2}\right)^{*}\left(\mathscr{S}_{1} \oplus \mathscr{S}_{2}\right)^{m} x\right\| \leqslant \beta\left\|\left(\mathscr{S}_{1} \oplus \mathscr{S}_{2}\right)^{m+1} x\right\|
$$

Let $x=x_{1} \times x_{2} \in \mathscr{H} \otimes \mathscr{H}$ such that $\|x\|=1$. Then

$$
\alpha^{2}\left\|\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}\right)^{m+1} x\right\| \leqslant\left\|\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}\right)^{*}\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}\right)^{m} x\right\| \leqslant \beta^{2}\left\|\left(\mathscr{S}_{1} \otimes \mathscr{S}_{2}\right)^{m+1} x\right\|
$$

Let $\mathscr{S}, \mathscr{T} \in \mathscr{B}(\mathscr{H}) . \mathscr{S}$ and \mathscr{T} have mutually majorized each other if $\alpha^{2} \mathscr{S} \mathscr{S}^{*} \leqslant$ $\mathscr{T} \mathscr{T}^{*} \leqslant \beta^{2} \mathscr{S} \mathscr{S}^{*}(0 \leqslant \alpha \leqslant 1 \leqslant \beta)$.

THEOREM 17. If \mathscr{S}^{2} and $\mathscr{S}^{*} \mathscr{S}$ have mutually majorized each other and if \mathscr{T} is an unitary operator such that $\mathscr{S} \mathscr{T}=\mathscr{T} \mathscr{S}$ and $\mathscr{S}^{*} \mathscr{T}=\mathscr{T} \mathscr{S}^{*}$, then $(\mathscr{S} \mathscr{T})^{2}$ and $(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})$ have mutually majorized each other.

Proof. Since \mathscr{T} is unitary operator, $\mathscr{T}^{*} \mathscr{T}=\mathscr{T} \mathscr{T}^{*}=I$. Therefore

$$
\alpha^{2}(\mathscr{S} \mathscr{T})^{* 2}(\mathscr{S} \mathscr{T})^{2}=\alpha^{2} \mathscr{S}^{* 2} \mathscr{T}^{* 2} \mathscr{T}^{2} \mathscr{S}^{2}=\alpha^{2} \mathscr{S}^{* 2} \mathscr{S}^{2}
$$

and

$$
(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})=\mathscr{S}^{*} \mathscr{S} \mathscr{T}^{*} \mathscr{T} \mathscr{S}^{*} \mathscr{S}=\mathscr{S}^{*} \mathscr{S} \mathscr{S}^{*} \mathscr{S}
$$

Hence $(\mathscr{S} \mathscr{T})^{2}$ and $(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})$ have mutually majorized each other.
THEOREM 18. If \mathscr{S}^{m+1} and $\mathscr{S}^{*} \mathscr{S}^{m}$ have mutually majorized each other and if \mathscr{T} is self-adjoint such that $\mathscr{S} \mathscr{T}=\mathscr{T} \mathscr{S}$, then $(\mathscr{S} \mathscr{T})^{m+1}$ and $(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})^{m}$ have mutually majorized each other for a natural number m.

Proof. Since \mathscr{S}^{m+1} and $\mathscr{S}^{*} \mathscr{S}^{m}$ have mutually majorized each other, we have for $x \in \mathscr{H}$,

$$
\alpha\left\|\mathscr{S}^{m+1} \mathscr{T}^{m+1} x\right\| \leqslant\left\|\mathscr{S}^{*} \mathscr{S}^{m} \mathscr{T}^{m+1} x\right\| \leqslant \beta\left\|\mathscr{S}^{m+1} \mathscr{T}^{m+1} x\right\| .
$$

On the other hand,

$$
\begin{aligned}
\left\|\mathscr{S}^{*} \mathscr{S}^{m} \mathscr{T}^{m+1} x\right\|^{2} & =\left\langle\mathscr{S}^{*} \mathscr{S}^{m} \mathscr{T}^{m+1} x, \mathscr{S}^{*} \mathscr{S}^{m} \mathscr{T}^{m+1} x\right\rangle \\
& =\left\langle\mathscr{T}^{*} \mathscr{S}^{*}(\mathscr{S} \mathscr{T})^{m} x, \mathscr{T}^{*} \mathscr{S}^{*}(\mathscr{S} \mathscr{T})^{m} x\right\rangle \\
& =\left\|(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})^{m} x\right\|^{2} .
\end{aligned}
$$

This implies $\alpha\left\|(\mathscr{S} \mathscr{T})^{m+1} x\right\| \leqslant\left\|(\mathscr{S} \mathscr{T})^{*}(\mathscr{S} \mathscr{T})^{m} x\right\| \leqslant \beta\left\|(\mathscr{S} \mathscr{T})^{m+1} x\right\|$.

THEOREM 19. If \mathscr{S}^{m+1} and $\mathscr{S}^{*} \mathscr{S}^{m}$ have mutually majorized each other and if \mathscr{T} is unitary equivalent to \mathscr{S}, then \mathscr{T}^{m+1} and $\mathscr{T}^{*} \mathscr{T}^{m}$ have mutually majorized each other for a natural number m.

Proof. Let \mathscr{T} be an operator unitary equivalent to \mathscr{S}. Then $\mathscr{T}=\mathscr{U}^{*} \mathscr{S} \mathscr{U}$ for some unitary operator \mathscr{U}. Therefore

$$
\begin{aligned}
\alpha\left\|\mathscr{T}^{m+1} x\right\| & =\alpha\left\|\left(\mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{m+1} x\right\|=\alpha\left\|\mathscr{U}^{*} \mathscr{S}^{m+1} \mathscr{U} x\right\|=\alpha\left\|\mathscr{S}^{m+1} \mathscr{U} x\right\| \\
& \leqslant\left\|\mathscr{S}^{*} \mathscr{S}^{m} \mathscr{U} x\right\|=\left\|\mathscr{U}^{*} \mathscr{S}^{*} \mathscr{S}^{m} \mathscr{U} x\right\|=\left\|\left(\mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{*}\left(\mathscr{U} \mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{m} x\right\| \\
& =\left\|\mathscr{T}^{*} \mathscr{T}^{m} x\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\mathscr{T}^{*} \mathscr{T}^{m} x\right\| & =\left\|\left(\mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{*}\left(\mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{m} x\right\|=\left\|\mathscr{U}^{*} \mathscr{S}^{*} \mathscr{S}^{m} \mathscr{U} x\right\|=\left\|\mathscr{S}^{*} \mathscr{S}^{m} \mathscr{U} x\right\| \\
& \leqslant \beta\left\|\mathscr{S}^{m+1} \mathscr{U} x\right\|=\beta\left\|\mathscr{U}^{*} \mathscr{S}^{m+1} \mathscr{U} x\right\|=\beta\left\|\left(\mathscr{U}^{*} \mathscr{S} \mathscr{U}\right)^{m+1} x\right\| \\
& =\beta\left\|\mathscr{T}^{m+1} x\right\| .
\end{aligned}
$$

Hence \mathscr{T}^{m+1} and $\mathscr{T}^{*} \mathscr{T}^{m}$ have mutually majorized each other for a natural number m.

THEOREM 20. The set $\left\{\mathscr{S} \in \mathscr{B}(\mathscr{H}): \alpha^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant\right.$ $\beta^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}$ and $\left.(0 \leqslant \alpha \leqslant 1 \leqslant \beta)\right\}$ is arcwise connected for $m \in \mathbb{N}$.

Proof. It is enough to prove that $k \mathscr{S}$ is m-quasi- (α, β)-normal operator for every non zero complex number k. Now for $x \in \mathscr{H}$,

$$
\begin{aligned}
\left\langle\alpha^{2}(k \mathscr{S})^{* m+1}(k \mathscr{S})^{m+1} x, x,\right\rangle & \leqslant\left\langle(k \mathscr{S})^{m *}(k \mathscr{S})(k \mathscr{S})^{*}(k \mathscr{S})^{m} x, x\right\rangle \\
& \leqslant\left\langle\beta^{2}(k \mathscr{S})^{* m+1}(k \mathscr{S})^{m+1} x, x\right\rangle .
\end{aligned}
$$

Therefore $\alpha^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1} \leqslant \mathscr{S}^{m *} \mathscr{S} \mathscr{S}^{*} \mathscr{S}^{m} \leqslant \beta^{2} \mathscr{S}^{* m+1} \mathscr{S}^{m+1}$.
This implies that the class of m-quasi- (α, β)-normal operator is arcwise connected.

REFERENCES

[1] P. AIENA, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
[2] S. C. Arora and R. Kumar, M-hyponormal operators, Yokohama Math. J. 28 (1980), 41-44.
[3] B. A. BaRNES, Majorization, range inclusion, and factorization for bounded linear operators, Proc. Amer. Math. Soc. 133 (2005), 155-162.
[4] A. Benali, (α, β)-A-Normal operators in semi-Hilbertian spaces, Afrika Matematika, 30 (2019), 903-920.
[5] M. BERKANi, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[6] M. L. Buzano, Generalizzatione della disiguaglianza di Cauchy-Schwaz, Rend. Sem. Mat. Univ. E Politech. Torino 31 (1974), 405-409.
[7] S. S. Dragomir, Reverse of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure and Appl. Math. 5 Article 76(2004).
[8] S. S. Dragomir, Advances in inequalities of the Schwarz, Gruss and Bessel Type in Inner Product Spaces, Nova Science Publishers (2005), Newyork.
[9] S. S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Ineq. Pure Appl. Math. 7 (2006), Art 14.
[10] S. S. Dragomir and M. S. Moslehian, Some Inequalities for (α, β)-normal Operators in Hilbert Spaces, Ser. Math. Inform. 23 (2008),39-47.
[11] S. S. Dragomir and J. Sandor, Some inequalities in pre-Hilertian spaces, Studia Univ. Babes-Bolyai-Mathematic, 32 (1987), 71-78.
[12] R. G. Duglus, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[13] C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), 43-44.
[14] A. Goldstein, J. V. Ryff and L. E. Clarke, Problem 5473, Amer. Math. Monthly 75 (1968), 309.
[15] K. E. Gustafson and D. K. M. Rao, Numerical range, Springer-Verlag, New York (1997).
[16] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119-123.
[17] Y. M. Han and J. H. Son, On quasi-M-hyponormal operators, Filomat 25 (2011), 37-52.
[18] M. M. Kutkut, On the class of parahyponormal operators, Jour of Mathe Sc., 4 (1993), 73-88.
[19] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323-336.
[20] K. B. Laursen and M. M. Neumann, An introduction to Local spectral theory, London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
[21] V. Manuilov, M. S. Moslehian and Q. Xu, Solvability of the equation $A x=C$ for operators on Hilbert C^{*}-modules, Journal: Proc. Amer. Math. Soc. 148 (2020), 1139-1151.
[22] M. S. Moslehian, On (α, β) -normal operators in Hilbert spaces, IMAGE, 39 (2007).
[23] M. S. Moslehian, M. Kian and Q. Xu, Positivity of 2×2 block matrices of operators, Banach J. Math. Anal. 13 (2019), 726-743.
[24] D. Senthilkumar and P. Maheswari Naik, Weyl's theorem for algebraically absolute - (p, r) paranormal operators, Banach J. Math. Anal., 5 (2011), 29-37.
[25] B. Sid Ahmed and O. A. M. Sid Ahmed, On the class of n-power $D-m$-quasi-normal operators on Hilbert spaces, Operators and Matrices 14 (2020), 159-174.

Sakaka P. O. Box 2014, Saudi Arabia
e-mail: sidahmed@ju.edu.sa, sidahmed.sidha@gmail.com

