
Operators
and

Matrices

Volume 15, Number 3 (2021), 1073–1087 doi:10.7153/oam-2021-15-67

APPROXIMATION OF THE NUMERICAL RANGE

OF POLYNOMIAL OPERATOR MATRICES
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Abstract. A linear operator on a Hilbert space may be approximated by finite matrices choosing
an orthonormal basis of the Hilbert space. In this paper we establish an approximation of the
q-numerical range of a bounded and an unbounded polynomial operator by variational methods.
Applications to Hain-Lüst operator and Stokes operator are also given.

1. Introduction

In a complex Hilbert space H (1 � dimH � ∞) with inner product 〈·, ·〉 , we
consider a polynomial operator of degree m

Q(λ ) = Amλ m +Am−1λ m−1 + · · ·+A1λ +A0, (λ ∈ C) (1)

where Aj are bounded or (possibly unbounded) operators for j = 0,1, . . . ,m , with Am �=
0. In the special case Am ≡ I , where I denotes the identity operator, the polynomial
operator (1) is called monic. At the classical case of finite dimension dimH = n < ∞ ,
Aj ( j = 0, . . . ,m) are n× n matrices and the polynomial operator (1) is called matrix
polynomial. This is an important subject in spectral theory and its applications (see,
[8], [9], [11], [13], [15], [23], [24]).

Let S = {x∈H : ‖x‖=
√〈x,x〉= 1} be the unit sphere in H . A complex number

λ is said to be a root of Q(λ ) if there exists x ∈ S such that 〈Q(λ )x,x〉 = 0, namely

m

∑
j=0

〈Ajx,x〉λ j = 0.

The set of all roots of the polynomial operator Q(λ ) is the well known numerical range
of Q(λ ) denoted by W (Q) , [24]. The special case Q(λ ) = Iλ −A yields the classical
numerical range of operator A given by

W (A) = {〈Ax,x〉 such that x ∈ S}.
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In this sense, the numerical range of a polynomial operator is a natural generalization
of the numerical range of an operator. Generally, the numerical range of a polynomial
operator is neither open nor closed.

During the recent decades, the numerical range of a polynomial operator, as well
as an operator, specialized to a finite dimensional Hilbert space has been extensively
studied by many researchers (see, [2], [14], [17], [19] and the references therein). In
1954 P. H. Muller [18] first introduced the notation for the classical numerical range of
a matrix polynomial Q(λ ) in the finite dimensional Hilbert space H = Cn as

W (Q) = {λ ∈ C : x∗Q(λ )x = 0 for any x ∈ Cn such that x∗x = 1}, (2)

where the inner product 〈x,y〉 = y∗x on the Hilbert space Cn . Should we note that
(only) in the finite dimensional case W (Q) is always closed and contains the spectrum
σ(Q) = {λ ∈ C : detQ(λ ) = 0} of Q(λ ) , that is, the set of all eigenvalues of Q(λ ) .
The notion of the numerical range of a matrix polynomial and its extensions are cur-
rently attracting attention based on several results still being published in the literature
[5], [14], [19], [20].

For a given q ∈ [0,1] , a generalization of the classical numerical range (2), first
mentioned by Psarrakos and Vlamos in [21], is the q-numerical range of an n× n
matrix polynomial Q(λ ) ,

Wq(Q) = {λ ∈ C : y∗Q(λ )x = 0, x,y ∈ Cn with x∗x = y∗y = 1, y∗x = q}. (3)

A review of the properties of the latter set may be found in [21]. Here we simply note
that W1(Q) ≡W (Q) , Wq(Q) is always closed and it also contains σ(Q) .

Extending the definition in (3) for bounded or unbounded operators and a given
real number q ∈ [0,1] , the q-numerical range of a polynomial operator Q(λ ) in (1) is
defined by

Wq(Q) = {λ ∈ C : 〈Q(λ )x,y〉 = 0, x,y ∈ H with ‖x‖ = ‖y‖ = 1, 〈x,y〉 = q}. (4)

The q -numerical range of a polynomial operator, like the numerical range of a poly-
nomial operator, is closed only if dimH < ∞ . The numerical computation of the
boundary of q -numerical range of a matrix polynomial remains a challenging task, and
up to date not entirely satisfactory numerical algorithm has been found. The situation
becomes even worse when dealing with unbounded operators as the ‘random vector’
method proposed in [19] is then sampling from an infinite-dimensional space.

In this paper, we consider how to compute Wq(Q) by projection methods, which
reduce the problem to that of computing the q -numerical range of a (finite) matrix and
a block matrix. Projection methods always yield a subset of the q -numerical range
under hypotheses. It is necessary to make some extra assumptions only if one wishes
to be sure of generating the whole of Wq(Q) . Our motivation for such a study comes
from the fact that some problems arising in various research areas conclude in the study
of unbounded linear operators. The approximation of Wq(Q) of a polynomial operator
Q(λ ) is approached by taking the q -numerical range of sufficiently many matrix poly-
nomials of various size. The algorithms and procedures applied extend known results
regarding the numerical range of a matrix polynomial in [17].
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The paper is organized as follows. In Section 2, some theoretical results are in-
vestigated dealing with the approximation of the q -numerical range of bounded and
unbounded polynomial operators using projection method.

In Section 3, we apply these results to compute the q -numerical range of a quadratic
monic differential polynomial operator.

2. Convergence Theorems

In this section we will use finite matrices to approximate the numerical range of
linear operators. However the idea of approximating linear operators by finite matrices
is an obvious one that must happen again and again. Suppose that one wishes to com-
pute the q-numerical range of polynomial operator Q(λ ) = ∑m

j=0 Ajλ j, by using the
following projection method. Let (Vk)∞

k=1 be a nested family of spaces in H given by
Vk = span{φ1,φ2, . . . ,φk} , where {Vk : k ∈ N} is orthonormal basis of a Hilbert space
H whose element lie in D(Q(λ )) and suppose that the corresponding orthogonal pro-
jections Pk : H →Vk , converge strongly to the identity operator I .

For a fixed number l � 2, and j = 0,1, . . . ,m, the l× l matrix is defined as

A j =

⎛⎜⎜⎜⎝
〈Ajφ1,φ1〉 〈Ajφ1,φ2〉 . . . 〈Ajφ1,φl〉
〈Ajφ2,φ1〉 〈Ajφ2,φ2〉 . . . 〈Ajφ2,φl〉

...
...

...
〈Ajφl,φ1〉 〈Ajφl ,φ2〉 . . . 〈Ajφl,φl〉

⎞⎟⎟⎟⎠ , (5)

that is, the (p,r)-element of A j matrix is equal to 〈Ajφp,φr〉, for p,r = 1,2, . . . , l.
Moreover, the l× l matrix polynomial is formulated by

Ql(λ ) =
m

∑
j=0

A jλ j, (6)

where A j is defined by (5) for j = 0,1, · · ·m .

THEOREM 2.1. Let Q(λ ) be a bounded polynomial operator on a Hilbert space
H , and Q�(λ ) be as in Eq. (6). Let (Vk)∞

k=1 be a nested family of spaces in H
given by Vk = span{φ1,φ2, . . . ,φk} , where (φk)∞

k=1 is an orthonormal. Then Wq(Qk) ⊆
Wq(Q), f or q ∈ (0,1].

Proof. Suppose that λ0 ∈Wq(Q�) , then there exist two unit vectors α,β ∈C� with
〈α,β 〉 = q such that 〈Q�(λ0)α,β 〉 = 0. Define an isometry i : V� → C� by i(α1φ1 +
α2φ2 + · · ·+ α�φ�) = α, and i(β1φ1 + β2φ2 + · · ·+ β�φ�) = β . Choose x,y ∈ V� such
that i(x) = α , i(y) = β , it is evident that ‖x‖ = ‖y‖ = 1 with 〈x,y〉 = q. A simple
calculation shows that 〈Q�(λ0)α,β 〉= 〈Q(λ0)x,y〉 which, by (4), implies λ0 ∈Wq(Q) ,
thus completing the proof. �

The next inclusion, which will be used in the proof of Theorem 2.3, asserts that
{Wq(Q�) : � � 2} forms an increasing sequence of sets.
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LEMMA 2.2. Let (V�)∞
� and Q�(λ ) be as in Theorem 2.1. Given q ∈ (0,1] , then

Wq(Q�) ⊆Wq(Q�+r), r = 1,2, . . . .

Proof. This is an immediate consequence of the fact that C� is a subspace of C�+r .
In detail, let λ0 ∈Wq(Q�) , then we can choose α,β ∈C� such that ‖α‖= ‖β‖= 1 and
〈α,β 〉 = q , for which we have 〈Q�(λ0)α,β 〉 = 0. Both α and β can be extended to
vectors in C�+r , say α̂ and β̂ , whose τ -th components are zero for each τ � �+ r . It
is easy to see that 〈Q�(λ0)α,β 〉 = 〈Q�+r(λ0)α̂, β̂ 〉 , which yields λ0 ∈Wq(Q�+r) . �

In the following theorem, the q -numerical range of bounded polynomial operator
is presented as the infinity union of q -numerical ranges of the reduction polynomial
operator in a matrix polynomial by finite dimension (smaller size of a firstly linear
operator).

THEOREM 2.3. Let Q(λ ) , Q�(λ ) and (V�)∞
� be as in Theorem 2.1. Suppose that

(φk)∞
k=1 is orthnormal basis of H . then, for q ∈ (0,1] holds Wq(Q) =

⋃
�∈NWqQ�(λ ).

Proof. In view of Theorem 2.1, it is sufficient to prove Wq(Q) ⊆
∞⋃

�=2

Wq(Q�) .

Suppose λ ∈ Wq(Q) . Choose x,y ∈ H such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = q ,
for which holds 〈Q(λ )x,y〉 = 0. Since (φk)∞

k=1 is orthnormal basis of H , there ex-
ists a sequence (xk)∞

k=1 , with each xk ∈ span{φ1,φ2, . . . ,φsk} for some sk > 0 such
that ‖x− xk‖ → 0 and ‖Q(λ )x−Q(λ )xk‖ → 0. In a similar way, we may also find
a sequence (yk)∞

k=1 , with each yk ∈ span{φ1,φ2, . . . ,φsk} for some sk > 0, such that
‖y−yk‖→ 0 and ‖Q(λ )y−Q(λ )yk‖→ 0. by a simple calculation, we then obtain that
〈Qk(λ )xk,yk〉 = 〈Q(λ )x,y〉 with

‖xk‖→ ‖x‖ = 1, ‖yk‖→ ‖y‖ = 1, 〈xk,yk〉 → 〈x,y〉 = q, as k → ∞. (7)

Now, consider Vsk the closed subspace of H such that Vsk := span{φ1,φ2, . . . ,φsk}
Fix k > 0. Let i : Vsk → Csk be the standard isometries as in the proof of Theorem
2.1. Define α̃k, β̃k ∈ Csk by α̃k = isk(xk), β̃k = isk(yk). Consider the sk × sk matrix
polynomial

Qsk(λ ) =
m

∑
j=0

A jλ j, (8)

where the (p,r)-element of the sk × sk matrix A j is equal to 〈Ajφp,φr〉 , for p,r =
1,2, . . . ,sk and j = 0,1, . . . ,m . A simple calculation shows that 〈Qsk(λ )α̃k, β̃k〉 =
〈Qk(λ )xk,yk〉 with

‖xk‖ = ‖α̃sk‖, ‖yk‖ = ‖β̃sk‖ and 〈xk,yk〉 = 〈α̃sk , β̃sk〉. (9)

Now, fix � � 2 and suppose that λ� ∈Wq(Q) , then there exist two unit vectors x�,y� ∈
Vs� with 〈x�,y�〉 → q such that 〈Qk(λ�)x�,y�〉 = 0, and which are related to x,y ∈ H .
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From the above relation arises that 〈Qs�(λ�)α̃s� , β̃s�〉 = 0, which in turn implies λ� ∈
Wq(Qs�) due to (7). Therefore, the existence of a sequence {λ� : � ∈ N} ⊆Wq(Qs�) is
guaranteed by the sequence {λ� : � ∈ N} ⊆Wq(Q) . Moreover, the closure of Wq(Q)
for the sequence {λ� : � ∈ N} ⊆Wq(Q) yields λ� → λ as � → +∞ . Thus, there exists

{λ� : � ∈ N} ⊆Wq(Qs�) . It is obvious that λ ∈
∞⋃

�=2

Wq(Qs�) and in view of Lemma 2.2,

immediately gives λ ∈
∞⋃

�=2

Wq(Qs�) ⊆
∞⋃

�=2

Wq(Q�) . �

REMARK 1. Let Q(λ ) and (V�)∞
� be as in Theorem 2.1. Let Pk denote orthogonal

projection onto Vk . If Q(λ ) be a bounded polynomial operator on a Hilbert space
H , then the hypotheses that (φk)∞

k=1 is orthnormal basis of H , is equivalent to the
statements that Pk converge strongly to the identity operator I as k → +∞ .

REMARK 2. We assume readers familiar with basic notions and results about lin-
ear unbounded operators, as well as matrices of non necessarily bounded operators.
useful references are [6] [7] and [24]. We call a few definitions though: A linear op-
erator A with a domain D(A) contained in a Hilbert space H is said to be densely
defined if D(A) = H . Say that a linear operator A is closed if its graph ΓA is closed
in H ⊕H . A linear operator A is called closable if, the closure ΓA of its graph is the
graph of some operator. A subspace D ⊂ D(A) is called a core of a closable operator
A if A |D is closable with closure A.

We consider an unbounded polynomial operator

Q(λ ) = Amλ m +Am−1λ m−1 + · · ·+A1λ +A0, (λ ∈ C) (10)

in a Hilbert space H , where Aj are closable operators for j = 0,1, . . . ,m , with Am �= 0,
with dense domain D(Q(λ )) and is always equal to D(Q(λ )) = ∩m

j=1D(Aj) where
∩m

j=1D(Aj) is also densely defined for j = 0,1, . . . ,m , and the domain D(Q(λ )) do
not dependent on λ .

The definition of the q-numerical range of a bounded polynomial operator Q(λ )
in Eq. (4) generalizes as follows to unbounded polynomial operator Q(λ ) with dense
domain D(Q(λ )) .

DEFINITION 2.4. For a polynomial operator Q(λ ) with domain D(Q(λ )) ⊂ H
we define the q-numerical range of Q(λ ) for 0 � q � 1 by

Wq(Q) = {λ ∈ C : 〈Q(λ )x,y〉 = 0, x,y ∈ D(Q(λ )) with ‖x‖ = ‖y‖ = 1, 〈x,y〉 = q}.
(11)

In the following result we describe that the closure of the range Wq(Q(λ )) is
approximated by Wq(Q�) under the assumption that the linear span of {φ1,φ2, . . . ,} is
a core of Q(λ ) .
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THEOREM 2.5. Let Q(λ ) be an unbounded polynomial operator on a Hilbert
space H , and Q�(λ ) be as in Eq. (6). Let (Vk)∞

k=1 be a nested family of spaces in
D(Q(λ )) given by Vk = span{φ1,φ2, . . . ,φk} , where (φk)∞

k=1 is an orthonormal. Then
Wq(Qk) ⊆Wq(Q), f or q ∈ (0,1].

Proof. Define an isometry π : V� → C� by π(ζ1φ1 + ζ2φ2 + · · ·+ ζ�φ�) = ζ , and
π(γ1φ1 + γ2φ2 + · · ·+ γ�φ�) = γ . Suppose that λ0 ∈Wq(Q�) , then there exist two unit
vectors ζ ,γ ∈ C� with 〈ζ ,γ〉 = q such that 〈Q�(λ0)ζ ,γ〉 = 0. Choose x,y ∈ V� such
that π(x) = ζ , π(y) = γ , it is evident that ‖x‖ = ‖y‖ = 1 with 〈x,y〉 = q. A simple
calculation shows that 〈Q�(λ0)ζ ,γ〉= 〈Q(λ0)x,y〉 which, by (11), implies λ0 ∈Wq(Q) ,
thus completing the proof. �

The following Lemma can be proof in a similar fashion as Lemma 2.2:

LEMMA 2.6. Let (Vk)∞
k=1 be a nested family of spaces in D(Q(λ )) given by Vk =

span{φ1,φ2, . . . ,φk} , where (φk)∞
k=1 is an orthonormal. Let Q�(λ ) be as in Theorem

2.1. Given q ∈ (0,1] , then Wq(Q�) ⊆Wq(Q�+r), r = 1,2, . . . .

THEOREM 2.7. Let Q(λ ) = ∑m
j=0 Ajλ j, be an unbounded polynomial operators

in H , for which the domain D(Q(λ )) do not dependent on λ , and Q�(λ ) denotes
as in Theorem 2.1. Let (Vk)∞

k=1 be a nested family of spaces in D(Q(λ )) given by
Vk = span{φ1,φ2, . . . ,φk} , where (φk)∞

k=1 is an orthonormal. Suppose that A j are
closable operators with dense domains for j = 0,1, . . . ,m, and C = span{φ1,φ2, . . .}
is a core of Q(λ ) . Given q ∈ (0,1] , then Wq(Q) =

⋃∞
�=2Wq(Q�).

Proof. It is sufficient to prove Wq(Q)⊆
∞⋃

�=2

Wq(Q�) . Suppose λ ∈Wq(Q) . Choose

x,y ∈ D(Q(λ )) such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = q , for which holds 〈Q(λ )x,y〉 =
0. Since C is a core of D(Q(λ )) , there exists a sequence (xk)∞

k=1 , with each xk ∈
span{φ1,φ2,
. . . ,φtk} for some tk > 0 such that ‖x− xk‖ → 0 and ‖Q(λ )x−Q(λ )xk‖ → 0. In a
similar way, we may also find a sequence (yk)∞

k=1 , with each yk ∈ span{φ1,φ2, . . . ,φtk}
for some tk > 0, such that ‖y− yk‖ → 0 and ‖Q(λ )y−Q(λ )yk‖ → 0. by a simple
calculation, we then obtain that 〈Qk(λ )xk,yk〉 = 〈Q(λ )x,y〉 with

‖xk‖→ ‖x‖ = 1, ‖yk‖→ ‖y‖ = 1, 〈xk,yk〉 → 〈x,y〉 = q, as k → ∞. (12)

Fix k > 0. Let π : span{φ1,φ2, . . . ,φtk}→Ctk be the standard isometries as in the proof
of Theorem 2.1. Define α̃k, β̃k ∈ Ctk by α̃k = πtk(xk), β̃k = πtk(yk). Consider the tk× tk
matrix polynomial

Qtk (λ ) =
m

∑
j=0

A jλ j, (13)



NUMERICAL RANGE OF POLYNOMIAL OPERATOR MATRICES 1079

where the (p,r)-element of the tk × tk matrix A j is equal to 〈Ajφp,φr〉 , for p,r =
1,2, . . . ,tk and j = 0,1, . . . ,m . A simple calculation shows that 〈Qtk(λ )α̃k, β̃k〉 =
〈Qk(λ )xk,yk〉 with

‖xk‖ = ‖α̃tk‖, ‖yk‖ = ‖β̃tk‖ and 〈xk,yk〉 = 〈α̃tk , β̃tk〉. (14)

Now, fix � � 2 and suppose that λ� ∈Wq(Q) , then there exist two unit vectors x�,y� ∈
Vt� with 〈x�,y�〉 → q such that 〈Q(λ�)x�,y�〉 = 0, and which are related to x,y ∈ H .
From the above relation arises that 〈Qt�(λ�)α̃t� , β̃t�〉 = 0, which in turn implies λ� ∈
Wq(Qt�) due to (14). Therefore, the existence of a sequence {λ� : � ∈ N} ⊆Wq(Qt�) is
guaranteed by the sequence {λ� : � ∈ N} ⊆Wq(Q) . Moreover, the closure of Wq(Q)
for the sequence {λ� : � ∈ N} ⊆Wq(Q) yields λ� → λ as � → +∞ . Thus, there exists

{λ� : � ∈ N} ⊆Wq(Qt�) . It is obvious that λ ∈
∞⋃

�=2

Wq(Qt�) and in view of Lemma 2.2,

immediately gives λ ∈
∞⋃

�=2

Wq(Qt�) ⊆
∞⋃

�=2

Wq(Q�) . �

3. Numerical experiments on a quadratic polynomial differential operator

In this section we study some concrete examples and demonstrate that, in spite of
the results obtained in the previous section, practical computation of the q -numerical
range of a quadratic polynomial differential operator is very far from being straightfor-
ward. We define the inner product 〈u,v〉 to be linear in the first parameter and con-
jugate linear in the second parameter, and we consider the space of square-integrable
functions, L2(Ω,dx), where Ω is an interval in R, a Hilbert space with inner product

〈u,v〉 =
∫

Ω
uvdx. (15)

The computations were performed in Matlab.

3.1. Application to Hain-Lüst operator and Stokes operator.

Assume that w : [0,1] → [0,∞), w̃ : [0,1] → [0,∞), and u : [0,1] → C are such
that w(x) = 1, w̃(x) = 1, u(x) = 18e2π ix − 20, for each x ∈ [0,1] . We introduce the
differential expression

τÃ := − d2

dx2 , τB̃ := w(x), (16)

τC̃ := w̃(x), τD̃ := u(x). (17)

Let A, B, C, D be the operators in the Hilbert space L2(0,1) induced by the differential
expressions τÃ, τB̃, τC̃, τD̃ with domain

D(A) := H2(0,1)∩H1
0 (0,1), D(B) = D(C) = D(D) := L2(0,1).
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In the Hilbert space L2
2(0,1) := L2(0,1)⊕L2(0,1), we introduce the matrix differential

operator

A1 :=
(

A B
C D

)
=

(
− d2

dx2 w(x)
w̃(x) u(x)

)
, (18)

on the domain

D(A1) := (H2(0,1)∩H1
0 (0,1))⊕L2(0,1). (19)

This operator was introduced by K. Hain and R. Lüst in application to problems of
magnetohydrodynamics [10] and the problem of this type has been studied in [1], [3],
[12], [13] and [16].

REMARK 3.

(i) It is clear that the eigenvalues and normalized eigenfunctions for the operator A in
L2[0,1] are

λ j = j2π2, φ j(x) =
√

2sin( jπx), j = 1,2,3, . . . (20)

(ii) By [4, Corollary VII.2.7], the operator A :=− d2

dx2 with domain D(A) =H2(0,1)∩
H1

0 (0,1) is closed and because D(A)⊂D(C), then the operator C is A-bounded
with relative bound 0. This follows that, there is a γ > 0 such that, for every
ε > 0

‖C f‖2 � γ|〈A f , f 〉| � γ(ε‖A f‖2 + ε−1‖ f‖2) for every f ∈ D(A). (21)

On the other hand D(D)⊂D(B), then the operator B is D-boundedwe conclude
that the operator matrix A1 is diagonally dominant of order 0; it is closed by [24,
Corollary 2.2.9 i)].

(iii) The linear span CA = span{φ1,φ2, . . .} is a core of A, where {φk : k ∈ N} is an
orthonormal basis of L2(0,1) also the linear span CD = span{φ1,φ2, . . .} is dense
set in L2(0,1). In order to show that C := CA ⊕CD is a core of A1. Suppose
y = (y1,y2) ∈D(A1), it is sufficient to find a sequence {y(m) : m ∈ N} ⊂ C such
that y(m) → y and A1y(m) → A1y as m tends to infinity. Since C1 is a core of A

and C2 is dense set in L2(0,1), then there exist sequences {y(m)
1 : m ∈ N} ⊂ C1 ,

{y(m)
2 : m ∈ N} ⊂ C2 with y(m)

1 → y1 , Ay(m)
1 → Ay1 and y(m)

2 → y2 , Dy(m)
2 →Dy2

as m tends to infinity. Moreover, A1 is diagonally dominant (that is, C is A-
bounded and B is D-bounded), there exist constants a1,b1,a2,b2 � 0 such that

‖Cy(m)
1 −Cy1‖ � a1‖y(m)

1 − y1‖+b1‖Ay(m)
1 −Ay1‖→ 0 as m → +∞,

‖By(m)
2 −By2‖ � a2‖y(m)

2 − y2‖+b2‖Dy(m)
2 −Dy2‖→ 0 as m → +∞.

The above convergences imply y(m) → y , A y(m) → A y as m tends to infinity.
Hence the subspace C := CA⊕CD ⊂D(A1) = (D(A)∩D(C))⊕(D(B)∩D(D))
is a core of A1.
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(iv) We may use these eigenfunctions in Eq. (20) as basis elements for a discretiza-
tion of the type discussed in Section 2, forming the matrix elements 〈Aφk,φ j〉,
〈wφk,φ j〉, 〈w̃φk,φ j〉, 〈uφk,φ j〉, with respect to the inner product in Eq. (15) and
considering the infinite block matrix

Q1 :=

⎛⎝ 〈Aφk,φ j〉 〈wφk,φ j〉

〈w̃φk,φ j〉 〈uφk,φ j〉

⎞⎠ . (22)

The matrix A1 defined in Eq. (5) is obtained by taking the leading sub-matrices
of the block Q1, in Eq. (22) with appropriate dimensions.

Observe that 〈Aφk,φ j〉 = diag{π2,4π2,9π2, . . .}, 〈wφk,φ j〉 = diag{1,1,1, . . .},
〈w̃φk,φ j〉 = diag{1,1,1, . . .}, and 〈uφk,φ j〉 = 36

∫ 1

0
e2π ix sin(kπx)sin( jπx)dx

−20δk, j, which can be evaluated explicitly.

If the operator A included a potential, for instance, then its eigenfunctions would
not generally be explicitly computable. We could still use the functions φ j in Eq. (20)
as basis functions, but the matrix elements 〈Aφk,φ j〉 would have to be computed by
quadrature and the corresponding matrix would no longer diagonal.

On the other hand, let A0 be a 2× 2 Stokes type system of ordinary differential
equations subject to the Dirichlet boundary conditions on [0,1] , and also in this case,
the underlying Hilbert space is H := L2(0,1)×L2(0,1) and the operator is

A0 :=
(

A0 B0

C0 D0

)
=

(
− d2

dx2 − d
dx

d
dx − 3

2

)
, (23)

The domain of A0 is given by

D(A0) =
{(

u
v

)
: u(0) = 0 = u(1),u ∈ H1

0 (0,1)∩H2(0,1) and v ∈ H1(0,1)
}

.

REMARK 4.

(i) The operator A0 is not closed operator, however it is closable and its closure is
self-adjoint. (see PhD thesis [1]).

(ii) It is not difficult to show that the subspace C0 := CA0 ⊕CB0 is a core of A0, where
The linear span CA0 = span{φ1,φ2, . . .} is a core of A0 where {φk : k ∈ N} is
an orthonormal basis of L2(0,1) also the linear span CB0 = span{φ1,φ2, . . .} is
a core of B0. Now for x = (x1,x2) ∈ D(A0) , it is sufficient to find a sequence
{x(m) : m∈N}⊂C0 such that x(m) → x and A0x(m) →A0x as m tends to infinity.
Since CA0 is a core of A0 and CB0 = span{φ1,φ2, . . .} is a core of B0. , there exist

sequences {x(m)
1 : m ∈ N} ⊂ CA0 ,{x(m)

2 : m ∈ N} ⊂ CB0 with

x(m)
1 → x1, A0x

(m)
1 → A0x1, x(m)

2 → x2, B0x
(m)
2 → B0x2
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as m tends to infinity. Since A0 is upper dominant, (that is C is A-bounded and
D is B-bounded ), there exist constants a1,b1,a2,b2 � 0 such that

||C0x
(m)
1 −C0x1|| � a1||x(m)

1 − x1||+b1||A0x
(m)
1 −A0x1|| → 0 asm → +∞,

||D0x
(m)
2 −D0x2|| � a2||x(m)

2 − x2||+b2||B0x
(m)
2 −B0x2|| → 0 asm → +∞.

The above convergence imply x(m) → x , A0x(m) → A0x as m tends to infinity.
Hence the subspace C0 = CA0 ⊕CB0 ⊂ D(A0) = (D(A0)∩D(C0))⊕ (D(B0)∩
D(D0)) = (H2(0,1)∩H1

0 (0,1))⊕H1(0,1) is a core of A0 .

(iii) Now form the matrix elements 〈−φ ′′
k ,φ j〉, 〈−φ ′

k,φ j〉, 〈φ ′
k,φ j〉, 〈− 3

2 φk,φ j〉 with
respect to the orthonormal basis in Eq. (20) and consider the (infinite) block
operator matrix

Q0 :=

⎛⎝ 〈−φ ′′
k ,φ j〉 〈−φ ′

k,φ j〉

〈φ ′
k,φ j〉 〈− 3

2 φk,φ j〉

⎞⎠ . (24)

The matrix A0 defined in Eq. (5) is obtained by taking the leading sub-matrices
of the block Q0, with appropriate dimensions.

Observe that 〈−φ ′′
k ,φ j〉 = diag{π2,4π2,9π2, . . .},

〈−φ ′
k,φ j〉 =

{
0, if k = j;

−2kπ
∫ 1
0 cos(kπx)sin( jπx)dx, if k �= j;

〈φ ′
k,φ j〉 =

{
0, if k = j;

2kπ
∫ 1
0 cos(kπx)sin( jπx)dx, if k �= j;

and 〈− 3
2 φk,φ j〉 = − 3

2 δk, j, which can be evaluated explicitly.

3.2. The quadratic differential block polynomial operator

Furthermore, consider the quadratic monic differential polynomial operator

Q(λ ) = Iλ 2 +A1λ +A0 = Iλ 2 +

(
− d2

dx2 w(x)
w̃(x) u(x)

)
λ +

(
− d2

dx2 − d
dx

d
dx − 3

2

)
, (25)

in a Hilbert space H , for which the domains D(Q(λ )) do not depend on λ , and are
always D(Q(λ )) := D(A1)∩D(A0) , where the block infinite matrices A1, A0 have
been formulated in (18),(23), respectively.

REMARK 5. According to Remark 3 (i) and Remark 4 (ii), it is not difficult to see
that the subspace C = C1⊕C0 ⊂D(A1)∩D(A0) is a core of Q(λ ) in (25), so in this
case the main Theorem 2.7 is applicable to this example.
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The differential block polynomial operator in Eq. (25) allows us to define the
quadratic monic polynomial operator

Q(λ ) = Iλ 2 +Q1λ +Q0

= Iλ 2 +

⎛⎝ 〈Aφk,φ j〉 〈wφk,φ j〉

〈w̃φk,φ j〉 〈uφk,φ j〉

⎞⎠λ +

⎛⎝ 〈−φ ′′
k ,φ j〉 〈−φ ′

k,φ j〉

〈φ ′
k,φ j〉 〈− 3

2 φk,φ j〉

⎞⎠ , (26)

where the block infinite matrices Q1,Q0 have been formulated in Eq. (22) and Eq.
(24), respectively.

Now, the projection method reduces the quadratic monic polynomial operator in
(26) to the �×� quadratic monic matrix polynomial with coefficients the �×� matrices
A1 and A0 as defined in Eq. (5), derived by taking the leading sub-matrices of the
matrices Q1,Q0 in Eq. (22) and Eq. (24) with appropriate dimensions. Hence fix an
� � 2, the �× � quadratic monic matrix polynomial is given by

Q�(λ ) = Iλ 2 +A1λ +A0. (27)

we consider the monic block polynomial operator Q(λ ) determined by Eq. (25). Based
on the analysis described in Subsection 3.2 and carrying out analogous steps as in Sub-
section 3.1, we attempt to estimate its q -numerical range by sketching the q -numerical
range Wq(Q�) of the reduced �× � monic matrix polynomial Q�(λ ) in Eq. (27) for
some values of � (� = 4,6). The following figures have been produced by two different
ways. The first one uses a simple Matlab code, which can plot the roots of a suffi-
cient number of polynomials of the form y∗Q�(λ )x , where x,y ∈ C� are unit vectors
satisfying y∗x = q∈ [0,1] . On the other hand, Algorithm 3 in [19] is used to draw an es-
timation of the boundary of Wq(Q�) . Alternatively, the boundary of W1(Q�) ≡W (Q�)
may be drawn by Psarrakos’ Matlab code in [22].

3.3. Analytical estimates for Figure 1

Figure 1 illustrates the 1-numerical range W1(Q6) ≡W (Q6) of the 6× 6 monic
matrix polynomial Q6(λ ) in (27). On the left-hand side of figure 1, 40000 random
points are sketched, the roots of x∗Q6(λ )x , with ‖x‖ = 1, whilst On the right-hand
side, its boundary is estimated by using the algorithm in [22]. The spectrum is σ(Q6) =
{−87.8243 + 0.0001i,−38.4685 − 0.0003i,33.1825 + 0.0000i,18.0067 − 13.8987i,
18.0085 + 13.8941i,−8.7706 − 0.0080i,−1.1014 + 0.0128i,−0.9998 + 0.0065i,
−0.9992− 0.0051i,−0.0720− 0.0548i,−0.0721+ 0.0530i,−0.0644+ 0.0002i} and
the eigenvalues are marked with red ‘x’ in both pictures. Observe that W (Q6) lies
in the open rectangle (−100,50)× (−20i,20i) ; there is a clear picture only for the
central area of W (Q6) and the eigenvalues −87.8243+ 0.0001i,33.1825,18.0067−
13.8987i,18.0085+ 13.8941i appear to lie out of W (Q6) . The above rectangle has
been used as the range in Psarrakos’ code with partition equal to hx = hy = 0.1.
As referred to [19] and verified in the right part of figure, the existence of the non-
differentiable points on the boundary of W (Q6) affects the accuracy of the code and it
requires further investigation.
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Figure 1: The 1-numerical range, W1(Q6) ≡W (Q6) , of the monic matrix polynomial Q6 .

3.4. Analytical estimates for Figure 2

For q = 0.7, the q -numerical range W0.7(Q6) is sketched in Figure 2 by the roots
of 40000 randomly generated polynomials y∗Q6(λ )x , where ‖x‖ = ‖y‖ = 1, with
y∗x = 0.7. Observe that W0.7(Q6) has only one connected component, which seems
to lie inside the open rectangle (−100,50)× (−50i,50i) . Using this rectangle as grid
in Algorithm 3 in [19], an approximation of W0.7(Q6) is drawn in the right part of the
figure (white areas in the dark rectangle). Here, one can see that the spectrum σ(Q6)
lies in the interior of at least three connected components, which is a contradiction (see
[21, Theorem 2.1]).

As it has been already noticed in [19], Figures 1 and 2 demonstrate that the re-
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Figure 2: A connected component of W0.7(Q6) .
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liable design of the q -numerical range of a monic matrix polynomial depends on the
existence of real intervals and/or non-differentiable points on its boundary. This is still
an open and challenging problem. Furthermore, if we apply the existing algorithms for
plotting the q -numerical range of a matrix polynomial, whose design area extends to a
large scale with respect to the axes, then the procedure is burdened with large compu-
tation time, some hundreds of thousands, due to the required partitions. This is another
problem for further study and optimization.

3.5. Analytical estimates for Figure 3

At this point, take the 4×4 monic matrix polynomial Q4(λ ) in (27). Figure 3(a)
approximates W0.7(Q4) by 45000 red points, the roots of y∗Q4(λ )x such that ‖x‖ =
‖y‖ = 1 and y∗x = 0.7. The spectrum is σ(Q4) = {−0.0677+ 0.0242i,−0.0689−
0.0253i,−1.0208 − 0.0029i,−1.0908 + 0.0126i,−8.7705 − 0.0070i,−38.4687 +
0.0004i,24.5706+11.3325i,24.5689−11.3346i} marked with black ‘*’. Observe that
W0.7(Q4) has one connected component like W0.7(Q6) . This component seems to lie
inside the open rectangle (−50,50)×(−40i,40i) , which is subset of the rectangle con-
taining W0.7(Q6) . In Figure 3(b), W0.7(Q4) and W0.7(Q6) are depicted at the same
graph by red and blue points, respectively, confirming their inclusion stated in Lemma
2.2.
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(a) (b)

Figure 3: The connected component of W0.7(Q4) is illustrated in (a) and the inclusion
W0.7(Q4) ⊆W0.7(Q6) in (b).

3.6. Analytical estimates for Figure 4

The sub-figures of Figure 4 present Wq(Q4) for some values of q ∈ [0,1] . In
particular, we present W0.2(Q4) (black points), W0.7(Q4) (red points) and W1(Q4)
(blue points) in sub-figures 4(a), 4(b) and 4(c), respectively, by drawing the roots
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Figure 4: The subfigures (a), (b), (c) illustrate W0.2(Q4) , W0.7(Q4) and W (Q4) , respectively,
and W (Q4) ⊆W0.7(Q4) ⊆W0.2(Q4) appears in (d).

of a few thousands randomly generated polynomials y∗Q4(λ )x , where x,y ∈ C4 are
unit vectors such that y∗x = q . The last sub-figure 4(d) demonstrates their inclusion
W (Q4) ⊆W0.7(Q4) ⊆W0.2(Q4) , confirming the well known relation

W1(Q4) ⊆Wq2(Q4) ⊆Wq1(Q4), 0 < q1 � q2 � 1.
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