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Abstract. In this article, we introduce the class of semimonotone star (Es
0 ) matrices. We estab-

lish the importance of the class of Es
0 -matrices in the context of complementarity theory. We

show that the principal pivot transform of an Es
0 -matrix is not necessarily Es

0 in general. How-
ever, we prove that Ẽs

0 -matrices, a subclass of the Es
0 -matrices with some additional conditions,

is fully semimonotone matrix by showing this class is in P0. We prove that LCP (q,A) can be
processable by Lemke’s algorithm if A ∈ Ẽs

0 ∩P0. We find some conditions for which the solu-
tion set of LCP (q,A) is bounded and stable under the Ẽs

0 -property. We propose an algorithm
based on an interior point method to solve LCP (q,A) given A ∈ Ẽs

0.

1. Introduction

The concept of pseudomonotone or copositive star matrices on a closed convex
cone with respect to complementarity condition was studied by Gowda [14]. The prop-
erties of copositive star matrices are well studied in the literature of the linear comple-
mentarity problem. A matrix A is said to be a star matrix [13] if for any x from the
solution set of LCP(0,A) implies AT x � 0. Bazan and Lopez [13] studied F1 -matrices
in the context of star matrices and proved the necessary and sufficient conditions of F1 -
properties. In linear complementarity theory, much of the research is devoted to finding
a constructive characterization of Q0 and Q-matrices. The linear complementarity
problem is a combination of linear and nonlinear systems of inequalities and equations.

The problem may be stated as follows: Given A ∈ Rn×n and a vector q ∈ Rn,
the linear complementarity problem is the problem of finding a solution w ∈ Rn and
z ∈ Rn to the following system:

w − Az = q, w � 0, z � 0 (1.1)

wT z = 0 (1.2)

The linear complementarity problem is denoted as LCP(q,A). Let FEA(q,A) =
{z � 0 : q + Az � 0} and SOL(q,A) = {z ∈ FEA(q,A) : zT (q + Az) = 0} denote the
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feasible and solution set of LCP(q,A) respectively. In this article, we introduce the
class of semimonotone star (Es

0 ) matrices. We call the property of Es
0 -matrices as Es

0 -
property. We establish the importance of Es

0 -matrix in the light of complementarity
theory, principal pivot transform and Lemke’s algorithm.

In linear complementarity theory, the copositive star (C∗
0 ) matrix plays an impor-

tant role. Extending the applicability of Lemke’s algorithm and the potential future
applications have motivated to introduce the class of Es

0 -matrices. We characterize the
properties of Es

0 -matrices in view of matrix theory and establish the importance of this
class in linear complementarity theory. We state some matrix theoretic results which
are needed in the sequel. As an alternative approach, we propose an iterative method to
find a solution of LCP(q,A) on the assumption that the matrix A belongs to Es

0 -matrix.
The class of semimonotone matrices (E0 ) introduced by Eaves [12] (denoted by L1

also) consists of all real square matrices A such that LCP(q,A) has a unique solution
for every q > 0.

Many of the concepts and algorithms in optimization theory are developed based
on the principal pivot transform (PPT). The notion of the PPT is originally motivated
by the well known linear complementarity problem. Cottle and Stone [9] introduced
the notion of a fully semimonotone matrix (E f

0 ) by requiring that every PPT of such

a matrix is a semimonotone matrix. Stone studied various properties of E f
0 -matrices

and conjectured that E f
0 with Q0 -property are contained in P0. We illustrate that the

principal pivot transformof Es
0 is not necessarily Es

0. However, the class of Es
0 -matrices

with some additional conditions is in E f
0 by showing this class in P0. Suppose K(A)

is the set of all q ∈ Rn such that LCP(q,A) has a solution. Eaves [12] showed that
A ∈ Q0 if and only if K(A) is convex. A subclass Q of Q0 is defined by the property
that A ∈ Q if and only if K(A) = Rn. If A ∈ Es

0∩P0, then LCP(q,A) can be processed
by Lemke’s algorithm and the solution set of LCP(q,A) is bounded.

The outline of the article is as follows. In Section 2, some notations, definitions,
and results are presented that are used in the next sections. In Section 3, we introduce
semimonotone star (Es

0)-matrix and study some properties of this class in connection
with complementarity theory, principal pivot transform. Section 4 deals with PPT based
matrix classes under the Es

0 -property. In Section 5, we consider the SOL(q,A) under
Es

0 -property. In this connection, we partially settle an open problem raised by Jones
and Gowda [17]. We propose an iterative algorithm [11] to process LCP(q,A) where
A ∈ Ẽs

0, a subclass of Es
0 -matrix in Section 6. A numerical example is presented to

show the performance of the proposed algorithm in Section 7.

2. Preliminaries

We denote the n dimensional real space by Rn where Rn
+ and Rn

++ denote the
nonnegative and positive orthant of Rn respectively. We consider vectors and matri-
ces with real entries. For any set β ⊆ {1,2, . . . ,n}, β denotes its complement in
{1,2, . . . ,n}. Any vector x ∈ Rn is a column vector unless otherwise specified. For any
matrix A ∈ Rn×n, ai j denotes its i th row and j th column entry, A· j denotes the j th col-
umn and Ai· denotes the i th row of A . If A is a matrix of order n , /0 �= α ⊆{1,2, . . . ,n}
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and /0 �= β ⊆ {1,2, . . . ,n}, then Aαβ denotes the submatrix of A consisting of only the
rows and columns of A whose indices are in α and β , respectively. The interior of a
set S is the union of all open sets contained in it and it is denoted by int S. A matrix
A � 0 or A � 0 implies that either the matrix A is non-negative or non-positive respec-
tively. For any set α , |α| denotes its cardinality. ‖A‖ and ‖q‖ denote the norms of a
matrix A and a vector q respectively.

The principal pivot transform (PPT) of A, a real n× n matrix, with respect to
α ⊆ {1,2, . . . ,n} is defined as the matrix given by

M =
[

Mαα Mαα
Mαα Mαα

]

where Mαα = (Aαα)−1, Mαα =−(Aαα)−1Aαα , Mαα = Aαα(Aαα)−1, Mαα = Aαα −
Aαα(Aαα)−1Aαα . Note that PPT is only defined with respect to those α for which
det Aαα �= 0. By a legitimate principal pivot transform we mean the PPT obtained
from A by performing a principal pivot on its nonsingular principal submatrices. When
α = /0 , by convention det Aαα = 1 and M = A. For further details see [6], [8], [23] and
[25] in this connection. The PPT of LCP(q,A) with respect to α (obtained by pivoting
on Aαα ) is given by LCP(q′,M) where M has the same structure already mentioned
with q′α = −A−1

ααqα and q′α = qα −AααA−1
ααqα .

We say that A ∈ Rn×n is
− positive definite (PD) matrix if xT Ax > 0, ∀ 0 �= x ∈ Rn.
− positive semidefinite (PSD) matrix if xT Ax � 0, ∀ x ∈ Rn.
− column sufficient matrix if xi(Ax)i � 0 ∀ i =⇒ xi(Ax)i = 0 ∀ i.
− row sufficient matrix if AT is column sufficient.
− sufficient matrix if A is both column and row sufficient.
− P(P0)-matrix if all its principal minors are positive (nonnegative).
− N(N0)-matrix if all its principal minors are negative (nonpositive).
− copositive (C0) matrix if xT Ax � 0, ∀ x � 0.
− strictly copositive (C) matrix if xT Ax > 0, ∀ 0 �= x � 0.
− copositive plus (C+

0 ) matrix if A is copositive and xT Ax = 0, x � 0 =⇒ (A +
AT )x = 0.

− copositive star (C∗
0) matrix if A is copositive and xT Ax = 0, Ax � 0, x � 0 =⇒

AT x � 0.
− semimonotone (E0 ) matrix if for every 0 �= x � 0, ∃ an i such that xi > 0 and

(Ax)i � 0.
− L2 -matrix if for every 0 �= x � 0, x ∈ Rn, such that Ax � 0, xT Ax = 0, ∃ two

diagonal matrices D1 � 0 and D2 � 0 such that D2x �= 0 and (D1A+ATD2)x = 0.
− L -matrix if it is E0∩L2.
− strictly semimonotone (E ) matrix if for every 0 �= x � 0, ∃ an i such that xi > 0

and (Ax)i > 0.
− pseudomonotone matrix if for all x,y � 0, (y− x)TAx � 0 =⇒ (y− x)TAy � 0.
− positive subdefinite matrix (PSBD) if ∀ x ∈ Rn, xT Ax < 0 =⇒ either AT x � 0 or

AT x � 0.
− fully copositive (Cf

0 ) matrix if every legitimate PPT of A is C0 -matrix.
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− fully semimonotone (E f
0 ) matrix if every legitimate PPT of A is E0 -matrix.

− almost P0(P)-matrix if det Aαα � 0 (> 0) ∀ α ⊂ {1,2, . . . ,n} and det A < 0.
− an almost N0(N)-matrix if det Aαα � 0 (< 0) ∀ α ⊂ {1,2, . . . ,n} and det A > 0.
− almost copositive matrix if it is copositive of order n−1 but not of order n.
− almost E matrix if it is E of order n−1 but not of order n.
− almost fully copositive (almost C f

0 ) matrix if its PPTs are either C0 or almost C0

and there exists at least one PPT M of A for some α ⊂ {1,2, . . . ,n} that is almost
C0.

− copositive of exact order k matrix if it is copositive up to order n− k.
− Z -matrix if ai j � 0 for i �= j.
− K0 -matrix [4] if it is Z -matrix as well as P0 -matrix.
− connected (Ec) matrix if ∀ q, LCP(q,A) has a connected solution set.
− R-matrix if � z ∈ Rn

+, t(� 0) ∈ R satisfying

Ai.z+ t = 0 if zi > 0,
Ai.z+ t � 0 if zi = 0.

− R0 -matrix if LCP(0,A) has unique solution.
− Qb -matrix if SOL(q,A) is nonempty and compact ∀ q ∈ Rn.
− Q-matrix if for every q ∈ Rn, LCP(q,A) has a solution.
− Q0 -matrix if for any q ∈ Rn, (1.1) has a solution implies that LCP(q,A) has a

solution.
− completely Q-matrix (Q) if all its principal submatrices are Q-matrices.
− completely Q0 -matrix (Q0) if all its principal submatrices are Q0 -matrices.

Several matrix classes arise in the literature of linear complementarity problem.
We use the terms namely fully, complete and invariance to indicate the properties of
matrix classes in the context of LCP(q,A) . For summary of matrix classes, see [5] and
[24]. Now we state some game theoretic results due to von Neumann [31] which are
needed in the sequel. The results say that there exist x∗ ∈ Rm,y∗ ∈ Rn and v ∈ R such
that

∑m
i=1 x∗i ai j � v, ∀ j = 1,2, · · · ,n,

∑n
j=1 y∗j ai j � v, ∀ i = 1,2, · · · ,m.

The strategies (x∗,y∗) are said to be optimal strategies for player I and player II and
v is said to be minimax value of game. In a two person zero-sum matrix game, let
v(A) denote the value of the game corresponding to the pay-off matrix A. The value
of the game v(A) is positive (nonnegative) if there exists a 0 �= x � 0 such that Ax >
0 (Ax � 0). Similarly, v(A) is negative (nonpositive) if there exists a 0 �= y � 0 such
that AT y < 0 (AT y � 0).

The following result was proved by Väliaho [30] for symmetric almost copositive
matrices. However this is true for nonsymmetric almost copositive matrices as well.

THEOREM 2.1. ([10], Theorem 2.2) Let A ∈ Rn×n be almost copositive matrix.
Then A is PSD of order n−1, and A is PD of order n−2.
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THEOREM 2.2. ([19], Theorem 2.2) Suppose A ∈ Rn×n is a PSBD matrix and
rank(A) � 2. Then AT is PSBD and at least one of the following conditions hold:

(i) A is a PSD matrix.
(ii) (A+AT ) � 0.
(iii) A ∈C∗

0 .

THEOREM 2.3. ([19], Lemma 3.2) Suppose A∈Rn×n is a PSBD matrix and rank(A)
� 2 and A+AT � 0. If A is not a skew-symmetric matrix, then A � 0.

Here we consider some more results which will be required in the next section.

THEOREM 2.4. ([32], Lemma 1) The matrix A is a P0 -matrix of order n−1 and
A /∈ P0 if and only if A−1 ∈ N0.

Now we give a result on (++)-property along with the definition which will be
required in the subsequent section.

DEFINITION 2.1. [4] A matrix A is said to satisfy (++)-property if there exists
a matrix X ∈ K0 such that AX is a Z -matrix.

THEOREM 2.5. ([4], Theorem 5) Suppose A ∈ Rn×n with A satisfies (++)-pro-
perty. If A ∈ E0 then A ∈ P0.

We state the notion of stability to a linear complementarity problem at solution
point. For details, see [8].

DEFINITION 2.2. A solution x∗ is said to be stable if there are neighborhoods V
of x∗ and U of (q,A) such that

(i) for all (q,A) ∈U, the set SOL(q,A)∩V �= /0.

(ii) sup{‖y− x∗‖ : y ∈ SOL(q,A)∩V �= /0} goes to zero as (q,A) approaches
(q,A).

THEOREM 2.6. ([15], Theorem 2) Let A ∈ Rn×n be given. Consider the state-
ments

(i) A ∈ R.
(ii) A ∈ int(Q)∩R0.
(iii) the zero vector is a stable solution of the LCP(0,A).
(iv) A ∈ Q∩R0.
(v) A ∈ R0.
Then the following implications hold: (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v).

Moreover, if A ∈ E0, then all five statements are equivalent.

THEOREM 2.7. ([15], Theorem 3) Let A ∈ int(Q)∩R0. If the LCP(q,A) has a
unique solution x∗, then LCP(q,A) is stable at x∗.
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THEOREM 2.8. ([27], Theorem 2.5) Let A∈ Rn×n be such that for some index set
α (possibly empty), Aαα = 0. If Aαα ∈ P0∩Q, then SOL(q,A) is connected for every
q.

THEOREM 2.9. ([3], Theorem 2) Suppose A ∈ Ec ∩Q0. Then Lemke’s algorithm
terminates at a solution of LCP(q,A) or determines that FEA(q,A) = /0.

THEOREM 2.10. ([14], Proposition 2) Suppose that A is pseudomonotoneon Rn
+.

Then A is a P0 matrix.

THEOREM 2.11. ([17], Theorem 3) Suppose that A ∈ Ec. Then A ∈ E f
0 .

THEOREM 2.12. ([30], Theorem 4.3) Any 2×2 P0 -matrix with positive diagonal
is sufficient.

THEOREM 2.13. ([8], Corollary 3.9.19) [12] L-matrices are Q0 -matrices.

THEOREM 2.14. ([7], Theorem 2 and Theorem 2’) Let A ∈ Rn×n where n � 2.
Then A is sufficient if and only if A and each of its principal pivot transforms are
sufficient of order 2.

THEOREM 2.15. ([22], Theorem 6.1) Suppose A ∈ E0. If A ∈ R0 then A ∈ Q.

THEOREM 2.16. ([13], Equation 6) Qb = Q∩R0.

3. Some properties of Es
0 -matrices

We begin by the definition of semimonotone star (Es
0) matrix.

DEFINITION 3.1. A semimonotone matrix A is said to be a semimonotone star
(Es

0 ) matrix if xT Ax = 0, Ax � 0, x � 0 =⇒ AT x � 0.

REMARK 3.1. Note that E0∩R0 ⊆ Es
0.

EXAMPLE 3.1. Consider the matrix A =
[

0 −5
2 0

]
. Now xT Ax = −3x1x2. Con-

sider x =
[

x1

x2

]
, where x1, x2 � 0. Hence we consider the following cases.

Case I: For x1 = x2 = 0, x = 0, Ax = 0, xT Ax = 0 implies AT x = 0.

Case II: For x1 > 0, x2 = 0, x � 0, Ax � 0, xT Ax = 0 implies AT x � 0.

Case III: For x1 = 0, x2 > 0, x � 0. However Ax � 0.

Case IV: For x1 > 0, x2 > 0, x > 0. However xT Ax �= 0.
Hence A ∈ Es

0.
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The following result shows that Es
0 -matrices are invariant under principal rear-

rangement and scaling operations.

THEOREM 3.1. If A ∈ Es
0 -matrix and P ∈ Rn×n is any permutation matrix if and

only if PAPT ∈ Es
0.

Proof. Let A ∈ Es
0 and P ∈ Rn×n be any permutation matrix. Then PAPT is an

E0 -matrix by Theorem 4.3 of [29]. Consider x � 0, (PAPT )x � 0 and xT (PAPT )x = 0.
Let y = PT x. Note that xT PAPTx = yT Ay = 0, APT x = Ay � 0. This implies AT y =
AT PTx � 0. It follows that (PAPT )T x � 0, since P is a permutation matrix. It follows
that PAPT is an Es

0 -matrix. The converse of the above theorem follows from the fact
that PT P = I and therefore invertible with P−1 = PT . �

THEOREM 3.2. Suppose A is a Es
0 -matrix. Let D ∈ Rn×n be a positive diagonal

matrix. Then A ∈ Es
0 if and only if DADT ∈ Es

0.

Proof. Consider A ∈ Es
0 and let D ∈ Rn×n be a positive diagonal matrix. Then

DADT is an E0 -matrix [29]. Consider x � 0, (DADT )x � 0 and xT (DADT )x = 0. Let
y = DT x. Note that xT DADT x = yT Ay = 0, ADT x = Ay � 0 ⇒ AT y = ATDT x � 0. It
follows that (DADT )T x � 0, since D is a positive diagonal matrix. Thus DADT ∈ Es

0.
The converse follows from the fact that D−1 is a positive diagonal matrix and A =
D−1(DADT )(D−1)T . �

The following example shows that A ∈ Es
0 -matrix does not imply (A+AT ) ∈ Es

0 -
matrix.

EXAMPLE 3.2. Let A =

⎡
⎣ 0 1 1

2 0 1
−1 −1 0

⎤
⎦ . Clearly A∈ Es

0, since xT Ax = 0, Ax � 0,

x � 0 implies AT x � 0.

It is easy to show that A+AT =

⎡
⎣ 0 3 0

3 0 0
0 0 0

⎤
⎦ is not an Es

0 -matrix.

We show that PPT of Es
0 -matrix need not be an Es

0 -matrix.

EXAMPLE 3.3. We consider the matrix as in Example 3.2. Note that A ∈ Es
0 and

it is easy to show that A−1 =
1
3

⎡
⎣−1 1 −1

1 −1 −2
2 1 2

⎤
⎦ is not a Es

0 -matrix. Therefore any PPT

of Es
0 -matrix need not be Es

0 -matrix.

Note that a matrix is in E0 if and only if its transpose is in E0. We show that
A ∈ Es

0 -matrix does not imply AT ∈ Es
0 -matrix in general.
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EXAMPLE 3.4. Consider the matrix A =

⎡
⎣ 0 1 1

2 0 1
−1 −1 0

⎤
⎦. Note that A ∈ Es

0. Con-

sider B = AT =

⎡
⎣ 0 2 −1

1 0 −1
1 1 0

⎤
⎦. Now xT Bx = 3x1x2. Consider x =

⎡
⎣ x1

x2

x3

⎤
⎦, where x1, x2,

x3 � 0. Now for x1 > 0, x2 = 0, x3 = 0 implies x � 0, Bx � 0, xT Bx = 0. But BT x � 0.
Therefore B = AT is not an Es

0 -matrix.

Now we show a condition under which AT satisfies Es
0 -property.

THEOREM 3.3. Suppose that A is pseudomonotone on Rn
+ and 0 �= x � 0, AT x =

0 has no solution. Then AT satisfies Es
0 -property.

Proof. Since A is pseudomonotone on Rn
+, then A is a P0 matrix by Theorem

2.10. Hence A ∈ E0. We have to show that AT satisfies the following property.

0 �= x � 0, AT x � 0, and xT ATx = 0 =⇒ Ax � 0.

As 0 �= x � 0, AT x = 0 has no solution, therefore (AT x)i > 0 for some index i.
We consider the vector ei which has one at the i th position and zeros elsewhere. Now
consider y = ei + λe j, where i �= j and λ � 0. Then, for any small δ > 0, we get

(x− δy)T A(δy) = δ [(AT x)i + λ (ATx) j − δyT Ay] � 0.

By pseudomonotonicity, (x−δy)T Ax � 0. Thus yT Ax� 0. This gives (Ax)i+λ (Ax) j �
0. As λ is arbitrary, (Ax)i � 0 and (Ax) j � 0. Hence Ax � 0. �

REMARK 3.2. If A is pseudomonotone on Rn
+ and AT ∈ R0. Then it can be easily

verified that AT satisfies Es
0 -property.

COROLLARY 3.1. Suppose that A is pseudomonotone on Rn
+ and satisfies one of

the following conditions:

(i) A is invertible

(ii) A is normal i.e. AAT = AT A.

Then AT ∈ Es
0.

Proof. To prove the result, we consider following cases.
(i) If A is invertible then the system 0 �= x � 0, AT x = 0 has no solution. Hence

the proof follows from the Theorem 3.3.
(ii) Since xT AAT x = xT AT Ax, so if AT x = 0 then Ax = 0. Again if ATx �= 0, then

for at least one i, (AT x)i > 0. Therefore the proof follows from the Theorem 3.3. �
We say that Es

0 is not a complete class which can be illustrated with the following
example.
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EXAMPLE 3.5. Consider the matrix A =

⎡
⎣ 0 1 1

2 0 1
−4 −5 0

⎤
⎦. Note that A ∈ Es

0. Con-

sider α = {1,2}. Then Aαα =
[

0 1
2 0

]
. Now xT Aααx = 3x1x2. Suppose x =

[
x1

x2

]
,

where x1, x2 � 0. Now for x1 > 0, x2 = 0 implies x � 0, Aααx � 0, xT Aααx = 0.
But AT

ααx � 0. Therefore Aαα is not an Es
0 -matrix.

DEFINITION 3.2. A matrix A is said to be a completely semimonotone star (E
s
0 )

matrices if all its principal submatrices are semimonotone star matrix.

THEOREM 3.4. Let A ∈ PSBD ∩ E0 with rank(A) � 2. Further, suppose A is
not a skew-symmetric matrix. Then A ∈ Es

0 -matrix.

Proof. Let A be a PSBD as well as E0 -matrix with rank(A) � 2. By Theorem
2.2, we have the following three cases.

Case I: A is a PSD matrix. This implies A ∈ Es
0.

Case II: A ∈C∗
0 . This implies A ∈ Es

0.

Case III: (A+AT ) � 0. For x � 0, Ax � 0 implies (A+AT )x � 0. Hence AT x �
−Ax � 0. Therefore, A is an Es

0 -matrix. �

REMARK 3.3. Note that C∗
0 ⊆ Es

0.

EXAMPLE 3.6. Consider the matrix A =
[

0 3
−1 0

]
. As A is a P0 -matrix, A is an

E0 -matrix. Also it is easy to show that A is a PSBD matrix with rank(A) � 2. Hence
by Theorem 3.4, A ∈ Es

0.

4. PPT based matrix classes under Es
0 -property

We consider some PPT based matrix classes with Es
0 -property in the context of

linear complementarity problem to show that these classes are processable by Lemke’s
algorithm under certain conditions. Aganagic and Cottle [2] showed that Lemke’s al-
gorithm processes LCP(q,A) if A ∈ P0∩Q0. Verifying whether a matrix class belongs
to P0 ∩Q0 or not is difficult. We show that the class identified in this paper is a sub-
class of P0 ∩Q0. The identification of this matrix class motivates the study of further
application in matrix theory.

DEFINITION 4.1. A matrix A ∈ Es
0 is said to be Ẽs

0 -matrix if for x ∈ SOL(0,A),
(AT x)i �= 0 =⇒ (Ax)i �= 0 ∀ i.

REMARK 4.1. Note that, a matrix A is said to be a completely Ẽs
0 -matrix if every

principal submatrix of A is Ẽs
0.
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EXAMPLE 4.1. Consider A =

⎡
⎣ 0 1 1

2 0 2
−2 −4 0

⎤
⎦ . Note that, A /∈ C∗

0 . For k > 0 and

x =

⎡
⎣ 0

0
k

⎤
⎦ , x � 0, Ax � 0, xT Ax = 0 implies ATx � 0. Hence A ∈ Es

0.

Now AT x =

⎡
⎣−2k
−4k

0

⎤
⎦ and Ax =

⎡
⎣ k

2k
0

⎤
⎦. Therefore ∀ i, (AT x)i �= 0 =⇒ (Ax)i �=

0. Hence A ∈ Ẽs
0.

REMARK 4.2. It is easy to show that C+
0 ⊆ Ẽs

0.

Note that not every Es
0 -matrix is an Ẽs

0 -matrix. We consider the following example
from the paper [16].

EXAMPLE 4.2. Consider A =

⎡
⎣ 1 −1 −2
−1 1 0

0 0 1

⎤
⎦ . Note that A ∈ P0. Hence A ∈ E0.

The only nonzero vectors in SOL(0,A) are of the form x =

⎡
⎣ k

k
0

⎤
⎦ for k > 0. Now for

such x, AT x � 0 holds. Hence A ∈ Es
0. Now AT x =

⎡
⎣ 0

0
−2k

⎤
⎦ and Ax =

⎡
⎣0

0
0

⎤
⎦. Note

that (AT x)3 �= 0 but (Ax)3 = 0. Hence A /∈ Ẽs
0.

THEOREM 4.1. Let A ∈ Ẽs
0 (n � 3). Assume that each PPT of A is either almost

E or completely Ẽs
0. Then A ∈ P0.

Proof. Since A∈ Ẽs
0 , then for x∈ SOL(0,A) implies AT x � 0. Note that, (AT x)i <

0 implies that (Ax)i > 0 for any i. Again by definition (AT x)i �= 0 which implies
(Ax)i �= 0 ∀ i. Now by taking D2 = I, where I represents the identity matrix. Then
D2x = Ix �= 0. So (D1A+ATI)x = 0 by taking,

Dii =

⎧⎨
⎩

−(ATx)i

(Ax)i
, (Ax)i �= 0,

0, (Ax)i = 0,

where Dii denotes the i th diagonal of D1. So A ∈ Es
0 ∩ L2. Therefore A ∈ Q0 by

Theorem 2.13. Note that every legitimate PPT of A is either almost E or completely
Ẽs

0. Suppose M is a PPT of A so that M ∈ almost E. Then all principal submatrices
of M upto n− 1 order are Q. Hence M ∈ Q0. The rest of the proof follows from
the Theorem 3.6 of Das [10]. Since the PPT of A is almost E, it follows that all
proper principal submatrices are P0. Now to complete the proof, we need to show that
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det A � 0. Suppose not. Then det A < 0. This implies that A is an almost P0 -matrix.
By Theorem 2.4, A−1 ∈ N0. If A−1 ∈ almost E then this contradicts that the diagonal
entries are positive. Therefore det A � 0. It follows that A ∈ P0.

Now suppose M is a PPT of A so that M is completely Ẽs
0. Then M ∈ Q0. As

A ∈ Ẽs
0, it follows that A ∈ E f

0 . Therefore M ∈ E f
0 ∩Q0. By Corollary 3.6 of [21],

M ∈ P0. Hence A ∈ P0. �

COROLLARY 4.1. Let A ∈ Rn×n∩ Ẽs
0. Assume that every legitimate PPT of A is

either almost E or completely Ẽs
0. Then LCP(q,A) is processable by Lemke’s algo-

rithm.

Earlier Das [10] proposed exact order 2 C f
0 -matrices in connectionwith PPT based

matrix classes. We define exact order k C f
0 -matrices. For detail explanation and exam-

ples, see [10].

DEFINITION 4.2. A is said to be an exact order k C f
0 -matrix if its PPTs are

either exact order k C0 or E0 and there exists at least one PPT M of A for some
α ⊂ {1,2, · · · ,n} that is exact order k C0.

We prove the following theorem.

THEOREM 4.2. Let A ∈ Ẽs
0 ∩ exact order k C f

0 (n � k + 2). Assume that each
PPT of A is either exact order k C0 or E0 with at least k positive diagonal entries.
Then LCP(q,A) is processable by Lemke’s algorithm.

Proof. We show that A ∈ P0. Suppose M is a PPT of A so that M is exact order
k C0. By Theorem 2.1, all the principal submatrices of order (n− k) of M are PSD.
Let M(n−k+1) be the principal submatrix of M of order (n− k + 1). It is enough to
show that det M(n−k+1) � 0. Suppose not. Then det M(n−k+1) < 0. We consider B =
M(n−k+1) is an almost P0 -matrix. Therefore B−1 ∈ N0 and there exists a nonempty
subset α ⊂ {1,2, . . . ,n− k+1} satisfying [10]

B−1
αα � 0, B−1

αα � 0, B−1
αα � 0 and B−1

αα � 0. (4.1)

By definition B−1 ∈ E0 with at least k positive diagonal entry. This contradicts Equa-
tion 4.1. Therefore det M(n−k+1) � 0. Now by the same argument as above, we show
that det M � 0. Therefore it follows that A ∈ P0. Hence A ∈ P0∩ Ẽs

0. So LCP(q,A) is
processable by Lemke’s Algorithm. �

We establish the condition under which a matrix A is sufficient whenever it satis-
fies (++)-property.

THEOREM 4.3. Suppose A ∈ E0 satisfies (++)-property. If each legitimate PPT
of A is either almost C0 or completely Ẽs

0 with full rank second order principal sub-
matrices, then A is sufficient.
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Proof. As A ∈ E0 with (++)-property. Hence A ∈ P0 by Theorem 2.5. Suppose
M is a PPT of A. We consider the following cases.

Case I: If M is an almost C0 -matrix, then by Theorem 2.1, M is a PSD matrix of
order (n−1). Hence M is a PSD matrix of order 2 also. So by Theorem 2.14, M is a
sufficient matrix of order (n−1).

Case II: If M is completely Ẽs
0 then sign pattern of all 2×2 principal submatrices

of M will be in the following subcases:

Subcase I: If the sign patterns are

[
0 +
− 0

]
or

[
0 −
+ 0

]
then these two patterns are

sufficient.

Subcase II: If the sign patterns are

[
+ +
− +

]
or

[
+ −
+ +

]
or

[
+ +
+ +

]
or

[
+ −
− +

]

then by Theorem 2.12, these patterns are sufficient.

Subcase III: If the sign patterns are

[
0 +
− +

]
or

[
0 −
+ +

]
or

[
+ −
+ 0

]
or

[
+ +
− 0

]

then these patterns are sufficient.
Then for every PPT of A of order 2 is sufficient. By Theorem 2.14, A is suffi-

cient. �

5. Properties of SOL(q,A) under Es
0 -property

We show that solution set of LCP(q,A) is connected if A ∈ Es
0 with the following

structure A =

[
Aαα +
− 0

]
, where Aαα ∈ R(n−1)×(n−1).

THEOREM 5.1. Let A ∈ Rn×n with A =

[
Aαα +
− 0

]
and Aαα ∈ P0. Then A ∈ Ẽs

0 -

matrix.

Proof. First we show that A =

[
Aαα +
− 0

]
with Aαα ∈ P0 is E0 -matrix. We con-

sider the vector (uα ,v) ∈ Rn
+ where α = {1,2, · · · ,(n−1)}. We assume uα �= 0. Now

as Aαα ∈ P0, we can write Aαα ∈ E0. By the semimonotonicity of Aαα ∃ an index

i such that (uα)i > 0 and (Aααuα)i � 0. If we let A =

[
Aαα P
N 0

]
, for such an index

i, (Aααuα + vP)i � 0, where P and N denotes positive and negative values. Hence
A ∈ E0. We consider the following two cases:

Case I: First we take x = [xα ,0]T , where α = {1,2, · · · ,(n− 1)}. Then suppose
xT Ax = 0, x � 0, but in this case Ax � 0.

Case II: Take x = [xα ,xα ]T , where xα ,xα � 0. Then suppose for this x, xT Ax = 0,
but Ax � 0.

So the vector x for which xT Ax = 0, Ax � 0, x � 0, are the zero vector and
[0,0, · · · ,c]T ,c > 0 and for both cases AT x � 0.

Hence A is Es
0 -matrix. Now it is easy to show that for x = [0,0, · · · ,c]T , (AT x)i �=

0 =⇒ (Ax)i �= 0 for each i. Hence A ∈ Ẽs
0. �
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REMARK 5.1. Suppose A ∈ Rn×n with A =
[
Aαα +
− 0

]
and Aαα ∈ P0 ∩Q. Then

A is a connected matrix (Ec) from the Theorem 2.8 of [27].

REMARK 5.2. Suppose A∈Rn×n with A =
[
Aαα +
− 0

]
and Aαα ∈P0∩Q. Now as

A ∈ Ec so A ∈ Ec∩Q0 and by Theorem 2.9, Lemke’s algorithm processes LCP(q,A).

THEOREM 5.2. Suppose that A ∈ Rn×n with A =
[
Aαα +
− 0

]
and Aαα ∈ P0 ∩Q.

Then A ∈ P0.

Proof. Since A ∈ Rn×n with A =
[
Aαα +
− 0

]
and Aαα ∈ P0 ∩Q then by Remark

5.1, A ∈ Ec. Again by Theorem 2.11, A ∈ E f
0 . As A ∈ Ẽs

0 by Theorem 5.1, A ∈ L by
Theorem 4.1. By applying degree theory, A ∈ P0 in view of Corollary 3.1 of [20]. �

REMARK 5.3. Jones and Gowda [17] raised the following open problem: Is it
true that P0∩Q0 = Ec ∩Q0? Cao and Ferris [3] showed that P0∩Q0 = Ec ∩Q0 is true
for second order matrices. We settle the above open problem partially by considering a
subclass of P0∩ Ẽs

0 = Ec ∩Q0. Note that P0∩ Ẽs
0 ⊆ P0∩Q0.

In general, SOL(q,A) is not bounded for every q ∈ int pos[−A, I] and A ∈ Ẽs
0.

int pos[−A, I] denotes the relative interior of pos[−A, I]. A vector q ∈ int pos[−A, I]
if and only if ∃ z � 0 and w > 0 such that w = q+Az. For details see [8]. Here we
establish the following results.

THEOREM 5.3. Let A ∈ Ẽs
0 and suppose SOL(q,A) is not bounded for all q ∈

int pos[−A, I]. Suppose r ∈ K(A) and ∃ vectors z and zλ = ẑ + λ z such that z ∈
SOL(0,A)\{0}, zλ ∈ SOL(q,A) for any suitable ẑ and ∀ λ � 0 with w ∈ SOL(r,A).
Then (zλ −w)α(A(zλ −w))α < 0 ∀ α = {i : zi �= 0}.

Proof. Suppose A ∈ Ẽs
0 and SOL(q,A) is not bounded for all q ∈ int pos[−A, I].

Note that A ∈ Es
0 ∩ L2 as shown in Theorem 4.1 and q ∈ int pos[−A, I] and there

exist vectors z and zλ = ẑ + λ z such that z ∈ SOL(0,A) \ {0} and zλ ∈ SOL(q,A)
∀ λ � 0. We select an r ∈K(A) such a way that α = {i : zi �= 0}. Then ri−qi < 0 Now
for sufficiently large λ , (zλ −w)α > 0 and w ∈ SOL(r,A). We write

(A(zλ −w))α = −qα − (Aw)α � −qα + rα < 0.

This implies
(zλ −w)α(A(zλ −w))α < 0. �

However, strict inequality of (zλ −w)α (A(zλ −w))α < 0 does not hold in case of
α �= {i : zi �= 0}. For details see [1].
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THEOREM 5.4. Let A ∈ Ẽs
0 and suppose SOL(q,A) is not bounded for all q ∈

int pos[−A, I]. Suppose r ∈ K(A) and ∃ vectors z and zλ = ẑ + λ z such that z ∈
SOL(0,A)\{0}, zλ ∈ SOL(q,A) for any suitable ẑ and ∀ λ � 0 with w ∈ SOL(r,A).
Then (zλ −w)α(A(zλ −w))α � 0 ∀ α = {i : ẑi � 0,zi = 0}.

Proof. The first part of the proof follows from the proof of Theorem 5.3. Now we
select an r ∈ K(A) and consider α = {i : zi �= 0}. We select an r ∈ K(A) and consider
α = {i : zi = 0}. Then ri − qi � 0. Now for sufficiently large λ , (zλ −w)α > 0 and
w ∈ SOL(r,A). Now we consider following two cases.

Case I: Let α = {i : ẑi > 0,zi = 0}. Then ri −qi = 0. We write

(zλ −w)i(A(zλ −w))i = (zλ −w)i((Azλ )i − (Aw)i +qi− ri)

= zλ
i ((Azλ )i +qi)−wi((Azλ )i +qi)

+zλ
i (−(Aw)i − ri)−wi(−(Aw)i − ri)

� 0.

Case II: Let α = {i : zi = ẑi = 0}. Then ri −qi > 0. We write

(zλ −w)i(A(zλ −w))i = −wi((Azλ )i − (Aw)i)

� −wi((Azλ )i − (Aw)i +qi− ri)

= −wi(Azλ +q)i +wi(Aw+ r)i

= −wi(Azλ +q)i

� 0. �

Now we show the condition for which SOL(q,A) is compact where A ∈ Ẽs
0. To

establish the result we use game theoretic approach and Ville’s theorem of alternative.

THEOREM 5.5. Suppose A ∈ Ẽs
0 with v(A) > 0. Then SOL(q,A) is compact.

Proof. By theorem 4.1, Ẽs
0 ⊆ E0 ∩ L2. This implies A ∈ Q0. Since v(A) > 0,

A ∈ Es
0 ∩Q. Now to establish A ∈ R0 it is enough to show that LCP(0,A) has only

trivial solution. Suppose not, then LCP(0,A) has nontrivial solution, i.e. say, 0 �= x ∈
SOL(0,A) then 0 �= x � 0, Ax � 0 and xT Ax = 0. Since A∈Es

0, we can write AT x � 0.
Now AT x � 0, 0 �= x � 0 has a solution. According to Ville’s theorem of alternative,
there does not exist x > 0 such that Ax > 0. However, Ax > 0, x > 0 has a solution
since A ∈ Q. See [[8], Page no. 184]. This is a contradiction. Hence LCP(0,A) has
only trivial solution. Therefore A ∈ Q∩R0. Now by Theorem 2.16, A ∈ Qb. Hence
SOL(q,A) is nonempty and compact. �

We illustrate the result with the help of an example.
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EXAMPLE 5.1. Consider the matrix A =

⎡
⎣ 0 2 1

1 0 1
−2 −2 1

⎤
⎦. Now xT Ax = 3x1x2+x2

3−

x3(x1 + x2). Now we consider the following four cases.

Case I: For x1 = 0, x2 = k, x3 = 0, where k > 0. Here x � 0, xT Ax = 0 holds but
in this case Ax � 0.

Case II: For x1 = k, x2 = 0, x3 = 0, where k > 0. Here x � 0, xT Ax = 0 holds
but in this case Ax � 0.

Case III: x1 = 0, x2 = k, x3 = k, where k > 0. Here x � 0, xT Ax = 0 holds but in
this case Ax � 0.

Case IV: x1 = k, x2 = 0, x3 = k, where k > 0. Here x � 0, xT Ax = 0 holds but in
this case Ax � 0.

Hence zero vector is the only vector for which x � 0, Ax � 0, xT Ax = 0 implies
AT x � 0 holds. So A ∈ Es

0 -matrix. Also it is clear that A ∈ Ẽs
0. Here we get that

LCP(0,A) has unique solution. Hence A ∈ R0.

The following result shows that the solution set of LCP(q,A) is stable when A ∈
Ẽs

0.

THEOREM 5.6. Suppose A ∈ Ẽs
0 with v(A) > 0, if the LCP(q,A) has unique so-

lution x∗, then LCP(q,A) is stable at x∗.

Proof. As A ∈ Ẽs
0 with v(A) > 0, then by Theorem 5.5, A ∈ R0. Again as shown

in the Theorem 2.6, A ∈ int(Q)∩R0. So by Theorem 2.7, if the LCP(q,A) has unique
solution x∗, then LCP(q,A) is stable at x∗. �

6. Iterative algorithm to process LCP(q,A)

Todd and Ye [28] proposed a projective algorithm to solve linear programming
problem considering a suitable merit function. Using the same merit function Pang
[26] proposed an iterative descent type algorithm with a fixed value of the parameter κ
to process LCP(q,A) where A is a row sufficient matrix. Kojima et al. [18] proposed
an interior point method to process P0 -matrices using similar type of merit function.
Here we propose a modified version of interior point algorithm by using a dynamic κ
for each iterations in line with Pang [26] for finding solution of LCP(q,A) given that
A ∈ Ẽs

0. Note that Ẽs
0 contains P0 -matrices as well as non P0 -matrices. We prove that

the search directions generated by algorithm are descent and show that the proposed
algorithm converges to the solution under some defined conditions.

ALGORITHM. Let z > 0, w = q + Az > 0, and ψ : Rn
++ ×Rn

++ → R such that
ψ(z,w) = κk log(zT w)−∑n

i=1 log (ziwi) � 0. Further suppose ρk = mini {zk
i w

k
i } and

κk > max (n, zT w
ρk ) for k -th iteration.

Step 1: Set k = 0. Let β ∈ (0,1) and σ ∈ (0, 1
2 ) following line search step and z0 be

a strictly feasible point of LCP(q,A) and w0 = q+Az0 > 0.
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∇zψk = ∇zψ(zk,wk) , ∇wψk = ∇wψ(zk,wk)

and

Zk = diag(zk) , Wk = diag(wk) .

Step 2: Now to find the search direction, consider the following problem

minimize (∇zψk)T dz +(∇wψk)T dw

subject to dw = Adz , ‖(Zk)−1dz‖2 +‖(Wk)−1dw‖2 � β 2.

Step 3: Find the smallest mk � 0 such that

ψ(zk +2−mkdk
z ,w

k +2−mkdk
w)−ψ(zk,wk) � σ2−mk [(∇zψk)T dk

z +(∇wψk)T dk
w].

Step 4: Set

(zk+1,wk+1) = (zk,wk)+2−mk(dk
z ,d

k
w).

Step 5: If (zk+1)T wk+1 � ε, where ε is a very small positive quantity, stop else k =
k+1.

REMARK 6.1. The algorithm is based on the existence of a strictly feasible point.
As A ∈ Ẽs

0 implies A ∈ Q0 in view of Theorem 4.1 then existence of a strictly feasible
points for such a matrix will eventually lead to the solution of LCP(q,A).

Now we prove the following lemma for E0 -matrices.

LEMMA 6.1. Suppose A ∈ E0, z > 0, w = q+Az > 0, and ψ : Rn
++×Rn

++ → R
such that ψ(z,w) = κk log(zT w)−∑n

i=1 log (ziwi). Further suppose ρk = min i {zk
i w

k
i }

and κk > max (n, zT w
ρk ) for each k th iteration. Then the search direction (dk

z ,d
k
w) gen-

erated by the algorithm is descent direction.

Proof. Consider rk = ∇zψk +AT ∇wψk and first we show that rk �= 0 for k th it-
eration. Consider the merit function z > 0, w = q+Az > 0 and ψ : Rn

++ ×Rn
++ → R

such that ψ(z,w) = κk log(zT w)−∑n
i=1 log (ziwi) � 0. Note that

(
∇zψ(z,w)

)
i = κk

zT w
vi − 1

ziwi
wi

= wi
[ κk

zT w
− 1

ziwi

]
.

Similarly we show (
∇wψ(z,w)

)
i = zi

[ κk

zT w
− 1

ziwi

]
.

Again for k th iteration κk > max (n, zT w
ρk ) where ρk = min i {zk

i w
k
i }. By the construc-

tion of κk, it implies
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zi( κk

zT w
− 1

ziwi
) > 0.

For details, see (page no. 462, [8]). Therefore
(
∇wψ(z,w)

)
i > 0 ∀ i. In a similar way

we can show that
(
∇zψ(z,w)

)
i > 0 ∀ i. Now A ∈ E0. So AT ∈ E0. By the defini-

tion of semimonotonicity for
(
∇wψ(z,w)

)
> 0 ∃ a j such that (AT ∇wψ(z,w)) j � 0.

Therefore (∇zψ(z,w)) j +(AT ∇vψ(z,w)) j �= 0 for at least one j. Hence ∇zψ(z,w)+
AT ∇vψ(z,w) �= 0. Again Ak = (Zk)−2 +AT (Wk)−2A is positive definite as

xT AT (W )−2Ax = (Ax)T (W )−2Ax
= (y)T (W )−2y

and (y)T (W )−2y � 0, ∀ y ∈ Rn, AT (W )−2A is positive semidefinite.

So τk =

√
(rk)T (Ak)−1rk

β
is positive. We have dk

z = − (Ak)−1rk

τk
, dk

w = Adk
z from

the algorithm. Now we show that (∇zψk)T dk
z +(∇wψk)T dk

w < 0. We derive

(∇zψk)T dk
z +(∇wψk)T dk

w =
[
∇zψk +AT ∇wψk

]T
dk

w

= − 1
τk

(
√

(rk)T (Ak)−1rk)2

= −τkβ 2 < 0.

We consider

ψ(zk +2−mkdk
z ,w

k +2−mkdk
w)−ψ(zk,wk) � σ2−mk [(∇zψk)T dk

z +(∇wψk)T dk
w].

Since 0 < β ,σ < 1, we say ψ(zk + 2−mkdk
z ,w

k + 2−mkdk
w)− ψ(zk,wk) < 0. Hence

(dk
z ,d

k
w) is descent direction in this algorithm. �

REMARK 6.2. Note that the Lemma 6.1 is true for Ẽs
0 -matrices as Ẽs

0 ⊆ E0.

REMARK 6.3. We consider dynamic κ to extend the applicability of the algo-
rithm proposed by Pang [26]. By choosing different values of κ instead of a fixed
value in each iterations, we extend the use of Lemma 6.1 for E0 -matrices.

We prove the following theorem to show that the proposed algorithm converges to
the solution under some defined condition.

THEOREM 6.1. If A ∈ Ẽs
0 and LCP(q,A) has a strictly feasible solution, then

every accumulation point of {zk} is the solution of LCP(q,A).

Proof. The proof follows from the Theorem 4 of [26]. �
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7. Numerical illustration

A numerical example is considered to show the performance of the proposed al-
gorithm.

EXAMPLE 7.1. We consider the following example of LCP(q,A), where

A =

⎛
⎝ 0 1 1

2 0 2
−2 −5 0

⎞
⎠ and q =

⎛
⎝−4

−7
10

⎞
⎠ .

It is easy to show that A∈ Ẽs
0. We apply proposed algorithm to find solution of the given

problem. According to Theorem 6.1 algorithm converges to solution with z0,w0 > 0.
To start with we initialize β = 0.5, γ = 0.5, σ = 0.2, and ε = 0.00001. We set z0 =⎛
⎝1

1
5

⎞
⎠ and obtain w0 =

⎛
⎝2

5
3

⎞
⎠ .

Iteration (k) zk wk dk
z dk

w ψ(zk,wk)

1

⎛
⎝1.05

1.09
4.76

⎞
⎠

⎛
⎝ 1.85

4.62
2.42

⎞
⎠

⎛
⎝ 0.106

0.189
−0.487

⎞
⎠

⎛
⎝−0.298

−0.761
−1.155

⎞
⎠ 29.3308

2

⎛
⎝ 1.1

1.17
4.53

⎞
⎠

⎛
⎝ 1.7

4.25
1.94

⎞
⎠

⎛
⎝ 0.0853

0.1607
−0.4551

⎞
⎠

⎛
⎝−0.294

−0.74
−0.974

⎞
⎠ 23.2919

...
...

...
...

...
...

50

⎛
⎝1.07

1.57
2.43

⎞
⎠

⎛
⎝0.00608

0.00389
0.00281

⎞
⎠

⎛
⎝ 0.00047

−0.00017
−0.00154

⎞
⎠

⎛
⎝−0.00171

−0.00215
−0.00009

⎞
⎠ 2.4617

...
...

...
...

...
...

96

⎛
⎝1.07

1.57
2.43

⎞
⎠

⎛
⎝ 0.00001

0.000000
0.00000

⎞
⎠

⎛
⎝−0.000001

−0.00000
−0.000003

⎞
⎠

⎛
⎝−0.00000

−0.00000
−0.00000

⎞
⎠ 1.1684

97

⎛
⎝1.07

1.57
2.43

⎞
⎠

⎛
⎝ 0.00001

0.000009
0.000005

⎞
⎠

⎛
⎝ 0.000002

0.000000
−0.000000

⎞
⎠

⎛
⎝−0.000000

−0.000000
−0.000000

⎞
⎠ 1.1684

...
...

...
...

...
...

100

⎛
⎝1.07

1.57
2.43

⎞
⎠

⎛
⎝0.00000

0.00000
0.00000

⎞
⎠

⎛
⎝ 0.000000

−0.000000
−0.000000

⎞
⎠

⎛
⎝−0.000000

−0.000000
0.00000

⎞
⎠ 1.0565

Table 1: Summary of computation for the proposed algorithm

Table 1 summarizes the computations for the first 2 iterations, 50th iteration and
96th, 97th iterations and 100th iteration. At the 100th iteration, sequence {zk} and
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{wk} produced by the proposed algorithm give the solution of the given LCP(q,A) i.e.

z∗ =

⎛
⎝1.0714

1.5714
2.4285

⎞
⎠ and w∗ =

⎛
⎝0

0
0

⎞
⎠ .

8. Concluding remark

In this article, we showed that LCP(q,A) is processable by Lemke’s algorithm and
the solution set of LCP(q,A) is bounded if A ∈ Ẽs

0 ∩P0, a subclass of Es
0 ∩P0. It can

be shown that non-negative matrices with zero diagonal with at least one ai j > 0 with
i �= j is not a Ẽs

0 -matrix. Whether a matrix class belongs to P0 ∩Q0 or not is difficult
to verify. We find some conditions under which Ẽs

0 -matrix will belong P0∩Q0 which
will motivate further study and applications in matrix theory. Finally we propose an
iterative and descent type interior point method to compute solution of LCP(q,A).
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