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HARNACK TYPE INEQUALITIES FOR OPERATORS
IN LOGARITHMIC SUBMAJORISATION

YAZHOU HAN AND CHENG YAN

(Communicated by S. McCullough)

Abstract. This paper studies the Harnack type logarithmic submajorisation and Fuglede—Kadison
determinant inequalities for operators in a finite von Neumann algebra. In particular, the Har-
nack type determinant inequalities due to Lin—Zhang [17] and Yang—Zhang [28] are extended to
the case of operators in a finite von Neumann algebra.

1. Introduction

The classical Harnack inequality, named after Carl Gustav Axel von Harnack,
gives an estimate from above and an estimate from below for a positive harmonic func-
tion in a domain. Though the classical Harnack inequality is a direct consequence of
the Poisson formula, variants and developed forms of the Harnack inequality have been
demonstrated as an important tool in the general theory of harmonic functions and par-
tial differential equations. There exist as yet extensive works on generalized Harnack
inequalities in various forms, see [19, 27, 28] for a nice introduction about the inequal-
ity. The purpose of this paper is to investigate the Harnack type determinant inequality
for operators and matrices.

With the help of Lagrange multiplier method, the following Harnack type deter-
minant inequality was established by Tung [23], as a tool to study Harnack inequality:
If Z € M, is a complex matrix with singular values r, with 0 <r, <1, k=1,2,...,n,
then

1—r < det(]I YAVA
Ll [det(T-UZ)| 2 b

1
H T peu, (1.1)
l—rk

where U, denotes the set of all n X n unitary matrices U. From these bounds Tung
obtained upper and lower bounds of a Poisson kernel on U, (see [23]), hence that
the so-called Harnack’s first and second theorems are established. Tung’s work drew
immediate attention of Hua and Marcus. Using majorisation theory and singular value
(eigenvalue) inequalities of Weyl, Marcus [18] gave another proof of (1.1) and gave
an equivalent form of (1.1). Almost at the same time, a proof of (1.1) was also given
by Hua [11] based on the determinantal inequality he had previously obtained in [10].

Mathematics subject classification (2020): Primary 47A63; Secondary 46L52.
Keywords and phrases: Logarithmic submajorisation, von Neumann algebra, Harnack type inequality,
Fuglede—Kadison determinant.

© depay, Zagreb 1109
Paper OaM-15-69


http://dx.doi.org/10.7153/oam-2021-15-69

1110 Y. HAN AND C. YAN

In the past decades, Tung’s work has attracted attentions of mathematicians and been
extended to various setting (see [15, 17, 19, 27, 28] and the references therein for more
details). Among these outstanding works we will be interested in Lin—Zhang’s and
Yang—Zhang’s work. Specifically, with A =UZ, (1.1) is equivalently rewritten in terms
of eigenvalues ([ 15, 28]) as

n

T < [T A= A7) (- At A) (T - A)

~
Pl ot St i1 L =1k

N

; (1.2)

where Z € M, is a complex matrix with singular values r; with 0 < rp < 1,k =
1,2,...,n and U € U,. (1.2) leads to the study of inequalities of logarithmic sub-
majorisation of eigenvalues and singular values. Following this line, an interesting
generalization of (1.2) is presented by Yang—Zhang [28] and Jiang—Lin [15] as follows:

1
[T A((T-a%) - ara)-a) ) < [ (13)
kek kek 1 —ry
1 1 2 K 1
[TA i (@-A) T A)T-A) ) > [Ta-D [ 77— 1D
ick kek i1 (1+7i)
where K is a subset of {ry,r2,...,r,} and |K| denotes the number of terms in K. The

main theme of the paper is to continue with Jiang—Lin and Yang—Zhang’s work and to
show their results hold in the case of operators in finite von Neumann algebras.

We are concerned with the Harnack type logarithmic submajorisation inequality
and Fuglede-Kadison determinant inequality for operators in a finite von Neumann al-
gebra. The properties of the logarithmic submajorisation and Fuglede—Kadison deter-
minant for operators in a finite von Neumann algebra was investigated by many authors,
see for example [4, 2, 14]. Those properties are important, for example, in investi-
gation of noncommutative Hardy spaces and invariant subspaces for operators in von
Neumann algebras. By adapting the techniques in [28, 9, 21], we obtain some inequal-
ities which is related to the Harnack type logarithmic submajorisation inequality and
Fuglede—Kadison determinant inequality. In particular, we show that the inequalities
(1.3) and (1.4) hold for operators in a finite von Neumann algebra. We will conclude
this paper with a series of logarithmic submajorisation inequalities which is related to
Cayley transform.

2. Preliminaries

2.1. Von Neumann algebras

Suppose that 7 is a separable Hilbert space over the field C and I is the identity
operator in ##. We will denote by () the «-algebra of all linear bounded oper-
ators in 7. Let .# be a *-subalgebra of Z(.7¢) containing the identity operator I.
Then .# is called a von Neumann algebra if .# is weak* operator closed. Let .# "
denote the positive part of .# . We recall that a weighton .# isamap 7: .47 — [0,]
satisfying
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l. t(x+y)=1(x)+1(y), forall x,ye .#";
2. 1(ax) = at(x) forall x € .Z" and o € [0,o0), with the convention 0 - e = 0.

The weight 7 is called faithful if T(x*x) =0 implies x = 0, normal if x; {; x in
A implies that 0 < 7(x;) T; 7(x), tracial if 7(x*x) = 7(xx*) for all x € .# . Note that
since (x;) is bounded there is x in .# " such that, for any h in J#, (x;h,h) T (xh,h),
which implies that x; tends to x weak* and hence x € .+ . The operator x is obviously
the least upper bound of (x;), it is natural to denote it by sup;x;. The self-adjoint part
of A, .#**, is a partially ordered vector space under the ordering x > 0 defined by
(x€,E) >0,& € . Recall that x € . is contractive if ||x|| < 1 and strictly contractive
if ||x|| < 1. Moreover, if x is strict contractive, then I—x*x is invertible and T—x*x > 0.

It is also customary to say trace instead of tracial weight. A trace 7 is called finite
if T(I) < oo. A finite trace 7 is extended uniquely to a positive linear functional on .#
which will also be denoted by 7. A positive linear functional 7 on a von Neumann
algebra is said to be a state if 7(I) =1.

A von Neumann algebra .# is called finite if the family formed of the finite nor-
mal traces separates the points of .# . Clearly this happens if .# admits a single
faithful normal finite trace. But a finite .# may fail to have any faithful finite trace,
for instance .# = (*(R) where R is equipped with counting measure. However, on
a separable Hilbert space (i.e. if .# is weak*-separable) the converse is also true i.e.,
A 1is finite if and only if it admits a faithful normal finite trace.

In what follows, we will keep all previous notations throughout the paper, and .#
will always denote a finite von Neumann algebra acting on a separable Hilbert space
¢, with a normal faithful finite tracial state 7, i.e., a normal faithful finite trace T
satisfies that 7(I) = 1. We refer to [24] for von Neumann algebras.

2.2. The eigenvalue function and generalized singular value function

DEFINITION 2.1. Let x € .# and ¢ > 0. The “z-th singular number of x” g, (x)
is defined by

L; (x) = inf{ ||xe]| : e is a projection in .# with T(e) <1}.

We denote simply by p(x) the function + — g, (x). The generalized singular num-
ber function r — 1, (x) is decreasing right-continuous. For convenience to discuss the
properties of ,(x) we define u/(x) by
u/ (x) = inf{||xel| : e is a projection in . with T(e*) <1}.

Then ¢ — p/(x) is non-increasing and left-continuous. For x € .# and ¢ > 0, we have
e (x) = inf{s : T(T —es(|x])) <t} and p(x) = inf{s: 7(I — es(|x|)) < ¢}, where the
operators eg(|x|) are the spectral projection of |x|. Therefore, u/(x) = g, (x) holds for
almost every 7 € [0, 1] since the map s — (I — ey(]x|)) is non-increasing and contin-
uous from the right (hence, it is almost everywhere continuous). See [6, 9, 25, 26] for
basic properties and detailed information on g, (x) and u/(x).
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If x is self-adjoint and x = [_tde,;(x) € .# is the spectral resolution of x then
for any Borel subset B C (—eoo,00) we denote by ep(x) the corresponding spectral pro-
jection. However, we write e;(x) = ¢(_o 4 (x). Given x € .#*, the spectral scale A (x)

n (0,7(I)) is defined by

Ae(x) =inf{s e R: 7(I—es(x)) <1}

Obviously, if 0 <x € .# then A,(x) = p;(x) for 0 <z < 1. The spectral scale A;(x) is
non-increasing and right-continuous. For the properties of A,(-), it is important to note
that A, (x +all) = A (x) +a for every x € .#Z** and a € R. This property enables us to
deduce estimations for A, (x) from formulas on g (x).

To achieve our main results, we state some properties of A(-) and u(-) without
proof (see [12, 9]).

PROPOSITION 2.2. (see [12,9]) Let x,y € .# and v € .# . Then
1 u(lx]) = p(x) = u(x*) and p(ox) = |ot|p (x), for t >0 and o € C.

2. Let f be a bounded continuous increasing function on [0,00) with f(0) =

Then (f(x)) = f(w(x)) and ©(f(x)) = f5"" f(u (x))dr.
3. Msrr(x+y) < i (x) + pg(y), s,1>0.
4. If0<x <y, then i (x) < w(y).
50 Meps () < e () s (), 5,2 > 0.
6. If x,y are self-adjoint, then A+s(x+y) < A (x) + As(y), t,5 >0, t +s< 1.

7. If 0 <t < 1 and x,y are self-adjoint, then 2(x) > 0 implies that A, (v:av) <
V][22 (x).

8. If x,y are self-adjoint and x <y, then A (x) < A(y).

9. If x is self-adjoint, then (f(x)) = f(4(x)), t € (0,7(I)), for every increasing
continuous function f on R.

EXAMPLE 2.3. Let ¢ = C" and let . # = #(7#) = M,(C) equipped with the
normalized trace T, := 1tr, where tr, is the standard trace on M, (C). If x € Z(#) =
Mn((C) is self-adjoint, then x can be written as x = ¥, a;p;, where oq > o >

- 2 oy, 1s the sequence of eigenvalues of x in which each is repeated according to its
mu1t1p11c1ty and Y | p; = L. Therefore,

t),t €[0,1).

|\
& |\

Ifx>0,thenoy 20> >0, 20, 4(x) = (x) andu,( )= 2, lajx(
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If x € M,(C) is arbitrary, then u;(x) = w(|x|) and the eigenvalues of |x| are
usually called the singular values of x. It follows that

and

”f(x) = 2 SJX(ﬂ.l](t)v
j:l n ’'n

where 51 > 55 > -+ > 5, > 0 is the sequence of singular values of x, repeated according

to multiplicity. It is clear that p ;i (x) = ;,Lﬁ (x).

Note that if x € MJ,(C) is self-adjoint, then x can also be written as x=Y7", B;p;,
where 31 > B2 > -+ > B, (m <n). Then

3

Ar(x) = lﬁj)c[d_,-,l,dﬂ(t)»

~
I

where dj =¥/ | 7(p;) for j=1,2,---,m and dy = 0. For each j, the length of the in-
terval [nd;_i,nd;) is nt,(p;), which is the dimension of the eigenspace corresponding
to B;. See [13, 6] for more details of i (-) and A;(-) of operators and matrices (Note:
the generalized singular values L, as defined in [13], is denoted by ,ui , in this paper;

the generalized singular values p; and u‘z is noting but 4 and py, respectively, in

[13])

EXAMPLE 2.4. Consider the algebra .# = L=([0, 1]) of all Lebesgue measurable
essentially bounded functions on [0,1]. Algebra .# can be seen as an abelian von Neu-
mann algebra acting via multiplication on the Hilbert space # = L?([0,1]), with the
trace given by integration with respect to Lebesgue measure m. For a real measurable
function f € L*([0,1]), the decreasing rearrangement f* of the function f is given by

ff)=inf{seR:m({he[0,1]: f(h) >s})<t}, 0<r<]1.

Then p(f) =|f|*(t) and A,(f) = f*(¢). Suppose that f = 0 x5, , where B; C [0, 1]
with BiNB; =0 whenever i # j,and 0 < o; € R (j=1,2,---,n) are such that ¢; # a;
whenever i # j. For the computation of t (f), it may be assumed that oy > 0p > --- >
o, . Then

()= %X, ap(0),
=

where d; = {:lm(B,-) for j=1,2,---,nand dy=0.If f>0,then oy >0p > --- >
0 >0, A(f) = (f) and w1 (f) =3, %X, 1.4, (t)- See [6, 21] for more details.
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2.3. Fuglede—Kadison determinant

Let . be a finite von Neumann algebra acting on a separable Hilbert space 7,
with a normal faithful finite tracial state 7. Recall that the Fuglede—Kadison deter-
minant A = A; : .4 — R7 is defined by A;(x) = t(log|x|) if |x| is invertible; and
otherwise, we define Az (x) = infA¢(|x| + €l), the infimum takes over all scalars € > 0.
We define Fuglede—Kadison determinant-like function of x by

A(x) = exp{/ot log ps(x)ds}, t > 0.

Since 7(I) = 1, if |x| is invertible, then

1
Ac(x) = A1 (x) = exp{ /O log s (x)ds}.

We understanding that A(x) =0 if

7(I)
/ log s (x)ds = —eo.
0

Recall that x is said to be logarithmically submajorised by y(see [7, 14]), denoted by
X <=<log ¥ (Or p(x) <=<10g (¥)), if Ar(x) < A;(y) forall £ > 0.

We state for easy reference the following fact, obtained from [1, 4] for Fuglede-
Kadison determinant which will be applied below.

PROPOSITION 2.5. Let x,y € .4 . Then
]. AT ]I) == 17A1(xy) :AT(X)AT(y),

) Ac(|x|%) = (Ac(lx]))*, a €RT

)
g

(
(%) = Ac(x") = Ar(|x
(
(

3 Ac(x7 V) = (Ac(x))7Y, if xis invertible in A
4. Ac(x) SA(y), if 0<x<y

5. limg o+ Ar(x+el) = Ar(x), if 0<x.

6. Ar(x) <AL(y), if X <<iog y-

See [1, 4, 2] for basic properties and detailed information on Fuglede-Kadison determi-
nantof x € 4 .

EXAMPLE 2.6. Let 5 = C" and let 4 = #(#) =M, (C) equipped with the
normalized trace T, := Ltr, where tr, is the standard trace on M, (C). If x € (),

then A, (x) = (det(\x\))% . See [13] for more information on determinant of matrices.

If x,y € .4 and 0 < p < oo, then x is said to be p-submajorised by y, denoted by
x<=py,if f('; Ws(x)Pds < fé Ws(y)Pds forall r > 0.
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REMARK 2.7. Let x,y € .#™" be invertible. Then the following conditions are
equivalent:

1. T4 rx <<jog I+ry, forall re RT;
2. x=<=<py, 0<p<l1;
3. x <<log s

4. [So(us(x))ds < [ @(us(y))ds for all £ > 0 and all nondecreasing functions ¢
on [0,e0) such that @(0) =0 and r — ¢@(e€') is convex.

Indeed, let v is a bounded positive measurable function on [0, ) and

7(r) = exp{ /O "log(1+ ry(s))ds}.

By [8, Lemma 3.2], we have

! psin(zp) [ logm(r)
Ps —
/Ouf(s) ds = p /0 ey dr,

which implies that (1)=>(2) holds.

Note that if (g \(p(s)\l’§)% < oo, t >0 for some p > 0, then from [22, p. 71] we
obtain

! ds . ! ds. 1
expd [ 1oglp(9)] T} = tim( [ lp(s)7 )7, 1> 0,

which yields (2)=(3). (3)=-(4) follows from the fact that 7 — ¢@(¢’) is convex and
@(e°21™)) = @(u(x)) (see [20, p.22, Theorem D.2]). It is easy to check that (4)=-(1).

3. Unitary approximation and Logarithmic submajorisation
Our starting point is the following inequality for complex numbers:
llz] = 1] <|lz| = v| < ||z] + 1], z,v € Cwith |v| = 1. (3.1

In this section, we will consider some Logarithmic submajorisation inequalities for
operator version of (3.1). We start with a lemma which will be used in our proof.

LEMMA 3.1. Let x € #™". Then

As(—x) = —uf_(x), 0<s<1.

Proof. Let x =Y, a;p; with oy >0 >--- > a, >0 and p;p; =0,i # j. With-
out loss of generality we can assume Y. ; p; = . Indeed, if X} | p; # [ we write
pur1=1-=3", pi. Replacing p, by p,+ pn+1 inthe equation x=3" | o;p; if o, =0,
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and replacing x =¥, o;p; by x= Y o4p; if o4, #0. Set diZZj-:lT(pj), 1<i<n
and dyp =0. Then d, =Y)_, 7(p;) = t(I) =1,

Zoc, (@ 1.4](8), 0<s<1,

and

As(=x) =D = O 1 X[1-d;1-d;_)(5), 0<s <L
j=1

Thus, ,
nuff.\'(x) = _zfs(_x), 0<s< 1,

For the general case, let 0 <x € .# and let x = fOHXH Ade, (x) be the spectral decom-
position of x. Put

Jlixl
t i~ D)l il ()
Jit) = le ST SN
Write x, = f,(|x|). It follows that ||x — x| < —Hz’le and x, > x,+1 > x. The proof is

completed by showing that
Tim 11 (n) = 1 (x) and. lim Ay(—x,) = A5(—).
For € > 0, we obtain
1 Cn) < o () + e — ) < Lo (0) 4 [lx — x|, 0<s< 1
and
Asre(—x) — ||xn — x|| < Aspe(—x) — Ae(x —x) < A(—x,), 0<s<1.
Taking the n — o of the both side, we get

limsup u! (x,) < pl . (x), 0<s<1

n—oo

and
liminfA(—x,) = Asre(x), 0 <s< 1.

Since A(—x) is right-continuous and u‘(x) is left-continuous on (0, 1), letting & | 0,
we obtain

limsup u! (x,) < pl(x), liminfA;(—x,) > As(—x), 0<s<1.
n—oo

n—oo

On the other hand, since x < x,,, —x > —x,,, mOreover,

liminfu!(x,) > u(x), limsupAs(—x,) < As(—x), 0<s<1.
n—oo

n—oo

Hence lim,, .. pt!(x,) = u!(x), limsup, .. As(—x,) = A(—x), 0 < s < 1. This com-
pletes the proof. [
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PROPOSITION 3.2. Let x € A . Then
— (%) < As(Rex) < (), — (%) < As(Imx) < pa(x), 0<s < 1.
Proof. The proof is adapted from [15, Lemma 2.1]. For any ¢ > 0, we have
1 I \* 1
X x+ SI—(x"+x)= (tx— —H) (tx— —]I) >0.
t t t
which tell us that 1 1
2 x+ t_2H > 2Rex > — (tzx*x—i— t_2H> (3.2)

Proposition 2.2(8) now yields
A (x4 2T) > Ag(2Rex) > A 2ext 21)), 0 1 33
Stxx—!—t—z > s( eX)/ s\ — t.X)C—FlE s <s < (3.3)

for all s > 0. An easy calculation shows that ps(y +1) = pus(y) +1 and pl(y+1) =
pl(y)+1 for y >0 and 0 < s < 1. Combining this with (3.3) and Proposition 2.2 we
can assert that

1 L1
us(x) + t_zl = U (tzx X+ t_2H>
1
= zfs (tzx*x—i— —2]I>
t
> A(2Rex), 0 <s < 1.

If it was true that p;(x) =0 for some s > 0, there would be 24, (Rex) = A, (2Rex) <0 by

take ¢ — co. Otherwise, we take t = ——, it follows that A,(Rex) < ;(x), 0<s < L.

Us(x)2
On the other hand, combining (3.3) with Proposition 2.2 and Lemma 3.1 yields

As(2Rex) = A < — <t2x*x—|— t%]l))
=—uf_, (tzx*x—|— t%]l)

) 1
= —2uf_(x*x) — por 0<s<l.

We now apply the above argument again, with (x) replaced by u‘(x), to obtain
As(Rex) = —p{ (x), 0<s< 1. Finally, since Re(—ix) = Imx, from what has already
been proved we see that —u| (x) = —u{ (—ix) < A;(Imx) < pg(—ix) = py(x), 0<
s<1. 0O

REMARK 3.3.

1. Let x € .# . From the proof of Lemma 3.1 we have

As(Rex) < pg(x), Ag(Imx) < pe(x), 0<s< 1.
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2. Let x € . . It follows from inequality (3.2) that
2 1 2 % 1
X x+—2]I>2Rex> —(t X x+—2]I>.
t t

Moreover, [14, Lemma 4.2] means that it (2Rex) <<iog [ (t*x*x + tiz]I) for all
t > 0, with —oo allowed for values. Moreover, we have

1
Ac(2Rex) < As (ﬂx*x+ t—21I>7 t>0.

COROLLARY 3.4. Let x,y € .# andlet oo € R. If x* = x, then
As(iRey —iy) < ps(y—ax), 0<s<1
and

As(y —iImy) < us(y —iax), 0 <s< 1.

Proof. The results follow from Remark 3.3(1) along with the fact that —i(y —
Rey) =Imy = Im(y — ox) and y — ilmy = Rey = Re(y —iox). O
PROPOSITION 3.5. Let 0 < x € .# such that ||x|| > 1.
1. If u € A is an unitary operator, then
U (x — Reu) <<jog (x+1),

which implies that

Ar(x — Reu) < Ar(x+1).
(

2. If u € A is an unitary operator and t(|]x —1|) = t(

), then
Ar(x—u) < Ag(x—T).

Proof. (1). From —I < —Reu < I, we deduce that —(x+1) <x—I < x—Reu <
x4+ 1. Then we conclude from [14, Lemma 4.2] that

U (x — Reu) <<jog p(x+1).

Hence we see that
Ar(x — Reu) < Ar(x+1).

(2). Note that [5, Corollary 2.6] leads to
px—I) << p(x—u).

Since 7(|x —1|) = t(|]x — u|), [3, Theorem 3.3] shows that 7(|x —u|”) < 7(|x —T|P),
O<p<l,ie.

1 1
| w=wr < [Cpe-tpan 0<p<t.
0 0
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1
Hence, from fol |f(s)|Pds)? < e and [22, p.74] we obtain

1 ) 1 1
exp{ [ log|f(s)lds} = lim( [ 1£()7as) 7,
0 p—0Jo
which force Ar(x —u) <A (x—1). O
LEMMA 3.6. Let 0 < x € ./ be invertible. Then

w Y =m " o<r<1.

Proof. Without loss of generality, we may assume that .# has no minimal pro-
jections (otherwise we consider the von Neumann algebra .#Z ® L=([0,1])). Since
0 < x € . is invertible, u(x) > 0 forall 0 <s < 1, and so u;_,(x)~! is well de-
fined for 0 <t < 1. First we assume that x = Y7 | o;p; with ay > 0p > --- > 0, > 0
and 7 pi=1,pip;=0,i# j. Thus x ' =37 | aiip,-. Let d; :Z"f:l 7(pj),1<i<n.
Then d, =1(I) =1,

1 (x) = 01 X0.4) (1) + D Ciia,_y.ap (1), 0 <1 <1,
i=
and

1 1
E (1- d,-71—d,~,1](t)+a_IX(l—dl,l)(t)a O0<r<1.

Therefore,

ui(x = 0<t<l1.

pi—(x)’
For the general case, let 0 < x € .Z. Since x Y e #, there exists 8 > 0 such that
x= SHXH Ade) (x) is the spectral decomposition of x. Put

2  Da
0= 3 (34 Y 0 e s 0

J=1

where a = ||x|| — 6 > 0. Obviously, 0 < fi(¢) < fi1(¢) < 2. Set

2"
= £l :2( n)a> o+ iz 51 Jay -

on s

Then
on .
j—1Da\—1
iD= 3 (54 57) e i s

=1 P

It follows that ||x —x,|| < 57 and

1 -1 (J—Day~! jax=! _ 1 a
xS (045 5E) (04 5) < ma
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Hence we infer from [9, Lemma 3.4] that t, (x) = lim,—. t;(x,). On the other hand,
picking up a small & > 0, we obtain

wf o) < pf e i =X ) <t )+ e =xg L

Letting € | 0 we get ‘ ‘
B O ) < ) A =

In consequence, limsup, . uf(x; ') < pf(x~!). Therefore, x~! < x; ! tells us that
liminfg, (x, ") > g (x7").
n—oco
Hence g/ (x) = lim, .. 1/ (x,). This completes the proof. [

EXAMPLE 3.7. Let ¢ = C" and let . # = #(7#) = M,(C) equipped with the
normalized trace T, :2 %tr,, where tr, is the standard trace on M, (C). If x € M, (C)
is positive and invertible, then x can be written as x = Y, a;jp;, wWhere o > 0 >
.-+ 2 o > 0 is the sequence of eigenvalues of x in which each is repeated according to
its multiplicity and Y, p; = L. The proof of Lemma 3.6 tells us that

u () =07 o< <1

In particular,

ue () = (1) = ulfg(x)*l, k=2,...,n.

n

We conclude this section with a series of inequalities of generalized singular value
function.

LEMMA 3.8. Let x,y € M .
1. If x* = x, then A (x) < Uy (x).

2. If s,t >0 such that s+t < 1, then 1 < p; (x) + ug(T—x) and 1 < pf(x) +ul(T—
X).

3. Forany t >0 we have 1 < p(x) +puf ,(I—x), 1< pf(x)+pf ,(I—x) and
1< () + (1),

4. Forany t >0 we have 1 < py(x)+pf  (x£il), 1< pf(x)+u| (x+il) and
< () + (e £1T).

5 If0<x €A and ||x|| <1, then
(=) = 1= (x), g (1=x) =1 = (x).
Proof. (1). Since —|x| < x < ||, A (x) <A (|x]) = pe(x). (2)-(4) follow from the
l

Fact fys (r-+y) < e (¥) + s () and i, (x-+5) < 1 () + 1 (). (5). This follows by
the same method as in Lemma 3.6. [
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4. Harnack type inequality for operator

In this section Harnack type inequalities for operators in Logarithmic submajori-
sation are stated and proved. We will extend the results of Yang—Zhang [28] and Lin—
Zhang [17] to the case of finite von Neumann algebra. We start with a lemma which
follows by the same method as in [28, Proposition 2].

LEMMA 4.1. Let x € A . If 1 — x is invertible, then
(I—x*) NI —x*x)(I—x)"' =2Re((I—x)"1) —1
1
_ )tz
—2Re((]l X) 2H>
=Re((I4x)(I—x)"1) =5*S,

where S = (I—x x) (I—x)~1. Moreover, if x € M with ||x|| < 1, then 1—x is invert-
ible, which implies that the equalities above are true.

THEOREM 4.2. Let x € .4 with ||x|| < 1. Then

- - 14y (x)
I—x) M I—xx)I—x)"H) < —L2 0<r< 1. 4.1
(=3 =) =) ) < A @)
Moreover, for any subset K C [0,1] we have
_ _ 1+t (x)
1 I—x*) NI —x*x)(I— ldtg/l dt
Joga (@) =¥ ar < [ tog s

1 1+th(x)
<[ lo
/0 ST [,Lt(x)

In particular,

A (I—x*x) 1—|—u,x
< I
A (T— x2 ep/ Ogl—u,x

Proof. We conclude from the definition of g, (-) and A(-) that
B (T=x) "I = x"x) (T=2) ) =2 ([ =) T (I=2"x) (I -x) ")
=2 (2Re((I—x)"') =) (Lemma 4.1)
=4/ (2Re((I—x)~1)) =1 (Proposition 2.2(9))
p(2(T—x)"1) =1 (Remark 3.3)

_ 2
)
2
1= (x)
L (x)
Sl pu(x)

N

—1 (Lemma 3.6)

N

— 1 (Lemma 3.8)

0<r<l1.
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Furthermore, since % > 1, (4.1) means that

1+‘LL[.X
1 I—x* - log
[ togn (1=x)" U-x)I-0)ar < [ 1_u,xd’

/ 1 1 + ,ut )C
l — .th .x
Finally, by (4.1) and Proposition 2.5(1)-(3), we have
Ae(I—x"x) wy—1 * —1
WZAT((H_X) (I—=x"x)([—x)"")

. ! *\—1 * —1
—exp/ log (T—x*) " (I—x"x)(IT—x) " ")dt

exp/ log 1+ut (|

To achieve one of our main results, we state for easy reference the following fact,
which will be applied below.

LEMMA 4.3. ( [21, Theorem 2]) Let x,y € .# be invertible. If K is a Borel
subset of [0,1] with m(K) =t (m(K) denotes the Lebesgue measure of K), then

1
/ log s (xy)ds < / log us(x)ds + / log us(y)ds
K 0 K

LEMMA 4.4. Let x,y € .# be invertible. If K is a Borel subset of [0,1] with
m(K) =t (m(K) denotes the Lebesgue measure of K), then

/ log s (x)ds + / log ty—( / log s (xy)ds

Proof. Let K¢ denote the set {r € [0,1] : ¢ ¢ K}. Then m(K) =1 —¢. We con-
clude from Lemma 4.3 that

1—1
/ log i, (xy)d / log t1(x) + / log s (y (4.2)

Note that x,y € . are invertible. By Proposition 2.5(1) and (3) we have A(x) # 0,
A(y) #0 and

1 1 1
Ceo< /O log(4ts (x))ds + /0 log s (v)ds — /0 log ity (xy)ds <o (4.3)

Subtracting (4.2) from (4.3) yields

/logus )ds + logus )dsé/logus(xy)ds
K

ie.,

/ log pis(x)ds + / log p1—s( / log s (xy)ds. O
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REMARK 4.5.

. Let x,y € .# and let K be a Borel subset of [0, 1] with m(K) =1t (here m(K)
denotes the Lebesgue measure of K). Then

/ log pis(x)ds + / log pt1—( / log pis(xy)ds

Indeed, if x,y are invertible, then it follows from Lemma 4.4. We write x = ulx|
and y = v|y| for unitary operators u,v € .# . Then z = u|x|[y*|v* and p (x) =
(), 1) = (), #(z) = e(ly*l). Thus, we may without loss of
generality assume x > 0,y > 0 and let

z(e1,8) = (x+ &) (y+ &l).

Note that ps(x+ &) = ps(x) + & and ps(y + &1l) = us(y) + & . From Lemma
4.4 we see that

[ og(ua )+ ends + [ og(au-s) + e2)ds
K 0

(4.4)
< / log us(z(€1,€2))ds.
K

Moreover, for any projection operators e € .Z , we have

lz(e1,&)el|> = |le(y+ &1) (x* 4 2e1x + 21) (y + &)e||,
which implies that p;(z(€;,€,)) is decreasing in €. Similarly, u(z(€;,€&)) is
decreasing in & . Letting & — 0 and using the monotone convergence theorem

in (4.4), we obtain the desired inequality.

. Let x,y € . and let K be a Borel subset of [0, 1] with m(K) =¢ (m(K) denotes
the Lebesgue measure of K). Combining Lemma 4.3 with Lemma 4.4 we can
assert that

t
/K log i (x)ds + /O log 1—(y)ds < /K log i (xy)ds

t
< /K log s (x) + /0 log us(y)ds

In particular, if K = [0,¢], then

/ log us(x)ds + / log g —( / log s (xy)ds

/ log s (x / log s (y
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THEOREM 4.6. Let x € A with |x|| < 1. If K is a Borel subset of [0,1] with
m(K) =t (m(K) denotes the Lebesgue measure of K), then

/logus((]l—x*)_l(ﬂ—x*x)(]I—x)_l)ds

/ 210g1 ds+/10g 1 — py_y(x)?)ds,t > 0.

Proof. For convenience, we write A := (I—x*)~}(I—x*x)(I—x)~!. Since ||x|| <
1, A is invertible, hence that A(A) > 0. Therefore, fol log us(A)ds > —eo. Using
Lemma 4.4 twice, we have

t
/log,us(A)ds>/ 210gul_s((]l—x)*l)ds+/logus(ﬂ—x*x)ds.
K 0 K

It follows from Lemma 3.8(3)-(5) and Lemma 3.6 that
t

/log,us(A)ds>/ Zlog,ul_s((]l—x)*l)ds+/logu_y(]l—x*x)ds
K

—/ 210g ds+/10gus (I—x"x)ds

1
2/ ZIOngS‘F/IOg HI_S(X)z)dS
/ 210g1+ ds+/10g 1 — py—(x)%)ds,

because u!(x) = u,(x) holds for almost every ¢ € [0,1]. [

COROLLARY 4.7. Let x € . with ||x|| < 1. Then
t
s (x)
log tt1 s (T—x*) " (T— x*x) (I — x ds>/10 ST >0,
[ o (=) 1= x) -2 BT

In particular,

Ar(I—x*x) _”S(x)d

0 2 1 .
Ar(I—x)? e"p/ )

Proof. Replacing K by [1 —1¢,1], in Theorem 4.6 we have
t 1
[ o @yds= [ togu(a)as
0 1
1
/ Zlog ds + log(l —i_(x)})ds

—/210g1 xds+/logl—[.15())

— |1 _7“‘[1.
/o R EETRE
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Therefore, letting t — 1 yields

/loglls ds—/ log (. ds>/ log —H'LSX

)C

This completes the proof. [

THEOREM 4.8. Let 0 < x; € A with ||xj|| <1, i =1,2,---,n. Then for any

unitary operator u € ./ and positive scalars @;, i=1,2,---,n, 21 o, = 1, we have
Tlexp [ tog Lol 4] ¢ Acl=W?) L) 1o
ex log ————=dt| < < ex / log ——HX) 4, ,

111{ P/O g1+lit(xi) A (T —uW2 ll_Il p gl 10 (x;)

where W =31 | wx;.

Proof. An easy calculation shows that 1 —W? and 1 —uW are invertible and
W >0 with ||W]| < 1. Theorem 4.2 and Corollary 4.7 tell us that

s (x) A(]I x*x) / 1—|—u,x
<
exp/ 10g1+‘u,< )dt\ AT log )

Note that [9, Theorem 4.4] tells us that

1 tr n
/ us(W)ds g/ Zwills(x )ds
0 0=l

The rest of the proof run as [17, Theorem 5]. For the convenience of the reader, we add
a proof. Indeed, the convexity and the monotonicity of the function f(r) = log 1+’ 0<

t < 1 mean that .,
t t
| rwas < [ 13 omstys
i=1
On the other hand, by Lewent’s inequality( [17, 16]), we obtain

1+ 2;;1 co,-,us(x,-) < n ( 1+ .Us(xi) ) ;
=31 o () 2 M= ()

dt. 4.5)

Thus
/f,u\ / ogH (7“_,/2& 3) ds:giw,-/otlog (%jﬁ;gi;)ﬁ
It follows that
exp{/ log( +Z?E$;) exp/ logl—HJt i) d] . (4.6)

Moreover, the inequalities in (4.6) reverse by taking reciprocals, which implies

eXp{/Otlog(:Zizggj;)ds} [ exp/ 10g1+Z;EXZ§dt] . 4.7)
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Combining (4.5) with (4.6) and (4.7) yields

1—p(x o A (T— 1 / 1+ e (x :|0)i
1 d <L) I Dol O
eXp/ T () AT(]I—uW 11 P J R T T ax)

5. Cayley transform with logarithmic submajorisation

In this section, we will consider some logarithmic submajorisation inequalities
related to Cayley transform. We will extend some results of Yang—Zhang [28] to the
case of finite von Neumann algebra.

Let x € . . If x+il is invertible, we call € (x) = (x —il)(x+il)~! the Cayley
transform of x.

THEOREM 5.1. Let x,y € 4 with ||x| <1, |ly|| <1 and let € (x) and € (y) be
the Cayley transforms of x and y, respectively. If K is a Borel subset of [0, 1] with
m(K) =t (m(K) denotes the Lebesgue measure of K), then

/log(l—;,Ll,_y(x))ds—/tlog(l+[.15(x))ds
K 0
< [ togus((x))ds

< [ tog(1+ ) ~ | tog(1~ (x)ds
K 0

and

< [ tog2u,(x—yds— [ Togl(1 — ()1 ~ (3l
Proof. Let us first compute the upper bounds. Remark 4.5 shows that
/K log 1t5(%'(x))ds = /K og fs((x — i) (x + 1)~ )ds
< /K log s (x — il)ds + /0 "log 1y (x+iT) " )ds.
Together with Lemma 3.8 this gives
/(: log s ((x + i) 1)ds < /(: log[u| _,(x+il)]"'ds

< [M1og(1 (o) s

=~ [1oa(1 - (w))ds
0
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Thus

/logus /log L+ ps(x /log 1 — pg(x

The lower bound follows easily by using Remark 4.5. Indeed, from Remark 4.5
we obtain

/ log 11s(% (x))ds > / "log iy o(x— ill)ds+ / log pts((x-+ 1) Vds
K 0 K
> [og(1 — {()ds — [ loguf_(x+iD)ds
> [ tog(1 — ul(w))ds — [ tog(1+ u{(x))ds
:/tlog(l—,u_y(x))ds—/log(1—|—,u_y(x))ds
0 K

For the second part, an easy calculation shows that €’(x) = 1 — 2i(x+I)~! and
E(x) —C(y) = 2i(y+il) M (x—y) (x+iI) 7!
Hence, Remark 4.5 implies that

[ tog (@) =€ (»))ds = [ Tog2us((y+iD)~ (x =)+ i)~ )ds

</0 log ps (v +il)~ )ds+/Klog2us(x—y)ds
+/O log s ((x+ i)~ ds

< [[toglu -+ ] ds + [ Tog2ux—)ds
+ [ togluf_(x+iD]ds

</Ot10g[1 —us(y)]‘lder/Klog2us(x—y)ds
+ [ toglt — () s

:/ log2us(x —y)ds
K
— [ togl(1 = )1 ~ ply)lds. O

If we replace K by [0, 1], in Theorem 5.1 we have the following corollary.

COROLLARY 5.2. Let x,y € A with ||x|| < 1, |ly]| <1 and let € (x) and € (y)
be the Cayley transforms of x and y, respectively. Then

1 1
—ul s 1+,LL_\~(X)
log — =gy < | logu, < [ log——2)
/0 og e ds / og s (€' (x))ds /0 0g 5 _”S(x)ds
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and

1 1 2ug(x—y)
| tozms(6 ()~ 6 )ds < [ 1og b s
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