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SPHERICAL SYMMETRY OF SOME UNITARY

INVARIANTS FOR COMMUTING TUPLES
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(Communicated by G. Misra)

Abstract. We discuss spherical and Euclidean analogues of joint spectral radius, joint operator
norm and joint numerical radius associated with commuting d -tuples of Hilbert space operators.
In particular, we deduce their invariance under the action of the group U (d) of d × d unitary
matrices. Unlike spectral and numerical radii, the analogues of joint operator norm differ in
dimension d > 1. The joint hyponormality ensures that these analogues of joint operator norm
agree in all dimensions. However, the separate hyponormality fails to ensure so.

1. Introduction

Let N denote the set of nonnegative integers and C denote the complex plane. Let
H be a complex Hilbert space and B(H ) stand for the C∗ -Algebra of all bounded
linear operators on H with identity IH (or I if no confusion arises). For A,B ∈
B(H ), the cross-commutator of A and B is given by [A,B] := AB−BA. Let B(H )(d)

denote the set of d -tuples T = (T1, . . . ,Td) of operators in B(H ). When the operators
T1, . . . ,Td are pairwise commuting, that is [Ti,Tj] = 0 for all i, j ∈ {1, . . . ,d}, we say
that T is a commuting d -tuple. A commuting d -tuple T is said to be doubly com-
muting if [T ∗

i ,Tj] = 0 for all 1 � i �= j � d . We say that a commuting d -tuple T =
(T1, . . . ,Td) ∈ B(H )(d) is jointly hyponormal if the operator matrix (([T ∗

j ,Ti]))1�i, j�d

is a positive operator on the d -fold inflation ⊕d
i=1H of H (see [2, Definition 1]). For

an account on various related notions of hyponormality in several variables, one may
refer to [11].

The Taylor spectrum and approximate point spectrum of a commuting d -tuple
T = (T1, . . . ,Td) ∈ B(H )(d) are denoted by σT (T) and σπ(T), respectively ( the
reader is referred to [17, 8, 10] for the definitions and basic properties). Recall that
σT (T) is a nonempty compact subset of Cd . The joint spectral radius of T is defined
by

r(T) = max{‖λ‖2, λ = (λ1, . . . ,λd) ∈ σT (T)},
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where ‖ · ‖2 denotes the Euclidean norm on Cd . We invoke the following analogue
of the Gelfand-Beurling spectral radius formula for commuting tuples of Hilbert space
operators (see [5, Lemma 5], [15, Theorem 1] and [9, Theorem 1]):

r(T) = inf
n∈N∗

∥∥∥ ∑
|α |=n,

α∈Nd

n!
α!

T∗αTα
∥∥∥ 1

2n = lim
n→∞

∥∥∥ ∑
|α |=n,

α∈Nd

n!
α!

T∗αTα
∥∥∥ 1

2n
. (1.1)

Here for the multi-index α = (α1, . . . ,αd)∈N
d , we used the notations |α| := ∑d

j=1 |α j|,
α! := ∏d

k=1 αk! and Tα := ∏d
k=1 T αk

k . The spherical norm of T ∈ B(H )(d) is given
by

‖T‖ := sup

⎧⎨
⎩
(

d

∑
k=1

‖Tkx‖2

) 1
2

; x ∈ H , ‖x‖ = 1

⎫⎬
⎭ .

Note that ‖T‖ =
∥∥ d

∑
k=1

T ∗
k Tk
∥∥ 1

2 . It may be now deduced from (1.1) that r(T) � ‖T‖.
We are also interested in the Euclidean analogue of joint spectral radius and joint

norm of a d -tuple T (see [16, Page 26]):

re(T) := sup
(λ1,...,λd)∈Bd

r(λ1T1 + . . .+ λdTd),

‖T‖e := sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . .+ λdTd‖,

where Bd denotes the open unit ball of Cd with respect to the Euclidean norm ‖ · ‖2.
It turns out that ‖T‖ and ‖T‖e are always equivalent on B(H )(d) (see [16, Theorem
1.18] and [13, Proposition 2.1]):

1√
d
‖T‖ � ‖T‖e � ‖T‖, T ∈ B(H )(d). (1.2)

Let T= (T1, . . . ,Td)∈B(H )(d). Following [8], we define the joint (or spherical)
numerical radius of T as

ω(T) = sup

{( d

∑
k=1

|〈Tkx,x〉|2
) 1

2
; x ∈ H , ‖x‖ = 1

}
.

It was shown in [16, Proof of Theorem 1.19] that ω(T) coincides with the Euclidean
numerical radius ωe(T) given by

ωe(T) := sup
(λ1,...,λd)∈Bd

ω(λ1T1 + . . .+ λdTd).

We mention that the usage of notations in [16] differs from this. For any commuting
d -tuple T = (T1, . . . ,Td) ∈ B(H )(d), we have

r(T) � max

{
1

2
√

d
‖T‖,r(T)

}
� ω(T) � ‖T‖e � ‖T‖. (1.3)



SPHERICAL SYMMETRY OF SOME UNITARY INVARIANTS 1133

(see [4, Theorem 2.4] and [3, Theorem 2.2]). We also mention that the second last
inequality above follows from the fact that ωe(T) = ω(T) . The inequalities in (1.3)

can simultaneously be strict even if d = 1. Indeed, let T =
(

1 1
0 1

)
be an operator on

C2 . One can verify that r(T ) = 1, ‖T‖e = ‖T‖ =
√

5+1
2 and ω(T ) = 3

2 . It is clear
that the invariants r(·),‖ · ‖,ω(·) (spherical) and re(·),‖ · ‖e,ωe(·) (Euclidean) are all
unitary invariants.

One of the main results of this note shows that all these invariants have spherical
symmetry, and except the joint norm, their spherical and Euclidean analogues coincide
(see Theorem 2.1). This disparity is addressed in the rest of this note. In particular,
it it shown that we have equality of spherical and Euclidean analogues of all the three
invariants for jointly hyponormal tuples (see Corollary 2.1). Finally, we characterize
all commuting d -tuples for which joint norm and joint spectral radius coincide (see
Theorem 2.2).

2. Spherical symmetry

Let T = (T1, . . . ,Td)∈B(H )(d) and let U (d) denote the group of complex d×d
unitary matrices. For U = (u jk)1� j,k�d ∈ U (d) , the d -tuple TU is given by

(TU) j =
d

∑
k=1

u jkTk, 1 � j � d.

If T is commuting, then so is TU for every U ∈ U (d). The unitary group U (d) acts
faithfully on B(H )(d) via the group action

(U,T) → TU , U ∈ U (d), T ∈ B(H )(d).

Following [7], we say that a commuting d -tuple T is spherical if the orbit {TU : U ∈
U (d)} of T is single-ton up to the unitary equivalence. Interestingly some of the uni-
tary invariants, seen as a function on B(H )(d), are constant on the orbit of a possibly
non-spherical d -tuple.

THEOREM 2.1. Let T = (T1, . . . ,Td) ∈B(H )(d) be a commuting d -tuple. Then,
for every U ∈ U (d), the following hold:

(i) r(TU ) = r(T) = re(T) = re(TU ).

(ii) ω(TU) = ω(T) = ωe(T) = ωe(TU ).

(iii) ‖TU‖ = ‖T‖ and ‖T‖e = ‖TU‖e.

REMARK 2.1. There are several remarks.

(1) Geometrically, U -invariance in (i) (resp. ( ii)) says that although Taylor spec-
trum (resp. joint numerical range) need not be invariant under “rotation” by a
unitary, its supremum is unchanged under the same effect.
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(2) The equality r(T) = re(T) and ω(T) = ωe(T) was first observed in [3, Theorem
2.1] and [16, Proof of Theorem 1.19], respectively. It is worth mentioning that
(ii) holds even for non-commuting d -tuples.

(3) In general, ‖T‖ �= ‖T‖e, so there is a disparity in (iii) and (i)–(ii) (see Example
2.1 below for details).

Proof.
(i) We need the following elementary facts:

sup
(λ1,...,λd)∈Bd

∣∣∣ d

∑
j=1

λ jz j

∣∣∣= ‖z‖2, z ∈ C
d . (2.1)

For two nonempty sets A,B and a bounded function f : A×B→ [0,∞),

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b). (2.2)

We contend that
re(TU) = r(T), U ∈ U (d). (2.3)

For λ = (λ1, . . . ,λd) ∈ Cd and U ∈ U (d), consider SU,λ := ∑d
k=1 λk(TU )k. By the

spectral mapping property of the Taylor spectrum (see [10, Corollary 3.7] and [17,
Lemma 3.1]), we have σT (TU ) = UσT (T), and hence

r(SU,λ ) = sup σT (SU,λ ) = sup
z∈σT (T)

∣∣∣ d

∑
j=1

λ j(Uz) j

∣∣∣, λ = (λ1, . . . ,λd) ∈ C
d .

Taking supremum on both sides over unit ball, we may infer from (2.1) and (2.2) that

re(TU ) = sup
(λ1,...,λd)∈Bd

sup
z∈σT (T)

∣∣∣ d

∑
j=1

λ j(Uz) j

∣∣∣
= sup

z∈σT (T)
‖Uz‖2

= sup
z∈σT (T)

‖z‖2

= r(T).

Thus the claim stands verified. Letting U to be the identity matrix in (2.3), we ob-
tain re(T) = r(T), and hence applying this fact to the commuting d -tuple TU , we get
re(TU) = r(TU ). Another application of (2.3) completes the proof of (i).

(ii) For U ∈ U (d) and λ = (λ1, . . . ,λd) ∈ Cd , note that

d

∑
j=1

λ j(TU ) j =
d

∑
k=1

( d

∑
j=1

λ ju jk

)
Tk.
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Since ωe(S∗) = ωe(S) for any d -tuple S, by the spherical symmetry of Bd ,

ωe(TU ) = ωe(T∗
U )

= sup
(λ1,...,λd)∈Bd

ω

(
d

∑
k=1

( d

∑
j=1

λ ju jk

)
T ∗
k

)

= sup
λ∈Bd

ω
( d

∑
k=1

(U∗λ )kT
∗
k

)
= ωe(T),

where λ denotes the d -tuple (λ 1, . . . ,λ d) in Cd . Since ω(·) = ωe(·) (see Remark
2.1), we obtain (ii).

(iii) As in the preceding paragraph, one may see that ‖TU‖e = ‖T‖e for any U ∈
U (d). Indeed,

‖TU‖e = ‖T∗
U‖e

= sup
(λ1,...,λd)∈Bd

∥∥∥ d

∑
k=1

( d

∑
j=1

λ ju jk

)
T ∗
k

∥∥∥
= sup

λ∈Bd

∥∥∥ d

∑
k=1

(U∗λ )kT
∗
k

∥∥∥
= ‖T‖e.

Finally, the equality ‖TU‖ = ‖T‖ is immediate from the identity

d

∑
j=1

(T∗
U ) j(TU ) j =

d

∑
j=1

T ∗
j Tj, U ∈ U (d)

(cf. [12, Equation (11)]). �
The following example illustrates that there is disparity in (iii) and (i)-(ii) of The-

orem 2.1.

EXAMPLE 2.1. For an arbitrary commuting d -tuple T, we need not have ‖T‖e =
‖T‖. Indeed, ‖T∗‖e = ‖T‖e is always true, while ‖T∗‖ = ‖T‖ fails in general. To
see this, we consider the Drury-Arveson d -shift Mz, that is, the d -tuple of operators
Mz1 , . . . ,Mzd of multiplication by the coordinate functions z1, . . . ,zd on the reproduc-
ing kernel Hilbert space associated with the positive definite kernel κ given by

κ(z,w) :=
1

1−〈z,w〉 , z,w ∈ Bd .

By [1, Remark 3.2], ∑d
j=1 Mz jM

∗
z j

� I. Further, it is not difficult to see that ∑d
j=1 M∗

z j
Mz j

� I, where equality holds if and only if d = 1. Putting all these facts together, we may
conclude that ‖M∗

z‖ = ‖Mz‖ if and only if d = 1. Moreover, by [1, Corollary, Page
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192], Mz j is a hyponormal operator for every j = 1, . . . ,d. By (1.1), the Taylor spec-
trum of Mz is contained closed unit ball in Cd , and hence it may be deduced from [6,
Lemma 3.10] that Mz is jointly hyponormal if and only if d = 1.

The last example together with Theorem 2.1 motivates us to the following ques-
tion.

QUESTION 2.1. What are all commuting d -tuples T for which ‖TU‖e = ‖TU‖
for every U ∈ U (d)?

In view of Theorem 2.1(iii), the question above is equivalent to characterizing
commuting tuples T for which ‖T‖e = ‖T‖. One obvious necessary condition for this
is that ‖T∗‖ = ‖T‖. This fails even for commuting d -tuples of hyponormal operators
(see Example 2.1). It turns out however that the answer to above question is affirmative
for jointly hyponormal tuples. Indeed, we have the following general fact.

PROPOSITION 2.1. Let T = (T1, . . . ,Td) ∈ B(H )(d) be a commuting d -tuple. If
r(T) = ‖T‖, then ‖TU‖e = ‖TU‖ for every U ∈ U (d).

Proof. Assume that r(T) = ‖T‖. We already recorded that ‖T‖e � ‖T‖ (see
(1.2)). We check that ‖T‖e � ‖T‖. For λ = (λ1, . . . ,λd) ∈ Cd , consider the opera-
tor Sλ := ∑d

k=1 λkTk. Recall the fact that norm of bounded linear operator is at least its
spectral radius. Combining this with r(T) = ‖T‖ and Theorem 2.1(i), we obtain

‖T‖e = sup
λ∈Bd

‖Sλ‖ � sup
λ∈Bd

r(Sλ ) = re(T) = r(T) = ‖T‖.

We may now apply Theorem 2.1(iii). �
There exists a commuting d -tuple T for which ‖T‖ = ‖T‖e but r(T) �= ‖T‖ .

Indeed, if A is a nonzero nilpotent operator and T = (A, . . . ,A) is a commuting d -
tuple, then ‖T‖= ‖T‖e =

√
d ‖A‖ �= 0, but r(T) =

√
d r(A)= 0. Moreover, the equality

r(T) = ω(T) does not imply in general r(T) = ‖T‖e, even if d = 1. Indeed, let

T =

⎛
⎝1 0 0

0 0 2
0 0 0

⎞
⎠ .

One can verify that r(T ) = 1, ‖T‖ = 2 and ω(T ) = 1. Thus, r(T ) = ω(T ) however,
r(T ) �= ‖T‖ .

The following result generalizes [13, Theorem 2.1] ( in view of the fact that any
doubly commuting tuple of hyponormal operators is jointly hyponormal) :

COROLLARY 2.1. Let T = (T1, . . . ,Td) ∈ B(H )(d) be a jointly hyponormal d -
tuple. Then, for every U ∈ U (d),

‖TU‖ = ‖T‖ = ‖T‖e = ‖TU‖e.
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Proof. By [6, Lemma 3.10], r(T) = ‖T‖. Now apply Proposition 2.1. �
Proposition 2.1 raises the problem of characterizing all commuting tuples T for

which r(T) = ‖T‖. The following theorem answers this plus little more. In particular,
the assertion (i) below generalizes [14, Problem 218].

THEOREM 2.2. Let T = (T1, . . . ,Td) ∈ B(H )(d) be a commuting d -tuple. The
following statements are true:

(i) r(T) = ‖T‖ if and only if ω(T) = ‖T‖.
(ii) r(T) = ‖T‖e if and only if ω(T) = ‖T‖e.

Proof. Assume that r(T) = ‖T‖. Then, by (1.3), we obtain ω(T) = ‖T‖. Con-
versely, assume that ω(T) = ‖T‖. Since r(T) � ‖T‖ is always true, in order to get the
desired result, it suffices to prove that r(T) � ‖T‖. To see this, let JtW(T) denote the
bounded subset of Cd given by

JtW (T) := {(〈T1x,x〉, . . . ,〈Tdx,x〉) ; x ∈ H , ‖x‖ = 1}.
Note that

‖T‖ = ω(T) = sup{‖λ‖2 ; λ ∈ JtW (T)} = sup
{‖λ‖2 ; λ ∈ JtW (T)

}
.

Since JtW (T) is compact, there exist λ = (λ1, . . . ,λd) ∈ JtW(T) and a sequence
{xn}n�0 of unit vectors in H such that

‖λ‖2 = ‖T‖,
λk = lim

n→+∞
〈Tkxn,xn〉, k ∈ {1, . . . ,d}

}
. (2.4)

If ℜ(z) denotes the real part of the complex number z, then

d

∑
k=1

‖(Tk −λkI)xn‖2 =
d

∑
k=1

(
‖Tkxn‖2 + |λk|2 −2ℜ

(
λ k〈Tkxn,xn〉

))

� ‖T‖2 +‖λ‖2
2−2

d

∑
k=1

ℜ
(

λ k〈Tkxn,xn〉
)

n→+∞−−−−→ 0,

where we employed (2.4) in the last step. It follows that

lim
n→∞

‖(Tk −λk)xn‖ = 0, k ∈ {1, . . . ,d},

which in turn yields that λ ∈ σπ(T). Since σπ(T) ⊆ σT (T) (see [10, Page 22]), we
must have ‖T‖ � r(T). This yields (i).

The conclusion in (ii) may be obtained by imitating the argument of (i). However,
for the sake of completeness, we provide a direct argument. To see this, we notice first
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that by (1.3), r(T) = ‖T‖e implies ω(T) = ‖T‖e . Conversely, suppose that ω(T) =
‖T‖e. By (1.3), we have r(T) � ‖T‖e . So, in order to get the desired result, it suffices
to prove that r(T) � ‖T‖e. For λ = (λ1, . . . ,λd) ∈ Cd , we let Sλ := ∑d

k=1 λkTk . By (i)
(the case of d = 1), we have

r(Sλ ) = ‖Sλ‖⇐⇒ ω(Sλ ) = ‖Sλ‖, λ ∈ C
d . (2.5)

On the other hand, since ω(T) = ωe(T) (see [16, Proof of Theorem 1.19]), by the
continuity of the numerical radius and the operator norm there exists μ ∈ Bd such that

ω(Sμ) = ω(T) = ‖T‖e � ‖Sμ‖.

Since ω(Sμ) � ‖Sμ‖,
‖T‖e = ω(Sμ) = ‖Sμ‖. (2.6)

By (2.5), r(Sμ) = ‖Sμ‖ . So, by Theorem 2.1(i) and (2.6), we get

r(T) = re(T) � r(Sμ) = ‖Sμ‖ = ‖T‖e.

This completes the proof. �
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