ONE-SIDED STAR PARTIAL ORDER PRESERVERS ON $B(H)$

Gregor Dolinar, Bojan Kuzma, Janko Marovt and Edward Poon

(Communicated by L. Molnár)

Abstract

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H. We classify (possibly non-additive) maps on $B(H)$, with H infinite dimensional, which preserve either the left-star or the right-star partial order in both directions. We also introduce natural, weaker versions of these partial orders and classify their preservers.

1. Introduction and statement of the main results

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H. We denote by A^{*} the adjoint operator of $A \in B(H)$ and by $\operatorname{Im} A$ and $\operatorname{Ker} A$ the range and the kernel of $A \in B(H)$, respectively. Many partial orders can be defined on $B(H)$. One of the most used is the star partial order \leqslant^{*} which was introduced by Drazin [6] and may be defined on $B(H)$ in the following way. We write

$$
A \leqslant \leqslant^{*} B \quad \text { when } \quad A^{*} A=A^{*} B \quad \text { and } \quad A A^{*}=B A^{*}, \quad A, B \in B(H) .
$$

If one of the two conditions defining the star order is omitted, then the remaining condition does not induce a partial order. However, it was shown in [4] that by adding conditions on the images of the considered operators we obtain the following two partial orders.

Definition 1. The left-star partial order on $B(H)$ is a relation defined by

$$
A \notin B \quad \text { when } \quad A^{*} A=A^{*} B \text { and } \operatorname{Im} A \subseteq \operatorname{Im} B, \quad A, B \in B(H)
$$

The right-star partial order on $B(H)$ is a relation defined by

$$
A \leqslant \quad B \quad \text { when } \quad A A^{*}=B A^{*} \text { and } \operatorname{Im} A^{*} \subseteq \operatorname{Im} B^{*}, \quad A, B \in B(H)
$$

[^0]It is interesting to find the form of the maps which preserve a relation, a quantity or some subsets. For example, let \leqslant be any partial order on $B(H)$. We say the map Φ on $B(H)$ is a bi-preserver of \leqslant (that is, Φ preserves \leqslant in both directions) if

$$
A \leqslant B \quad \text { if and only if } \quad \Phi(A) \leqslant \Phi(B), \quad A, B \in B(H)
$$

Let $M_{n}(\mathbb{F})$, where $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$, be the set of all $n \times n$ real or complex matrices. Surjective bi-preservers of the star, or the left-star, or the right-star partial order on $M_{n}(\mathbb{F}), n \geqslant 3$, have already been characterized; see [10,5] and also [8]. More precisely, in [5, Theorem 3] the following main result was proved.

Proposition 2. Let $n \geqslant 3$ be an integer. Then a surjection $\Phi: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ is a bi-preserver of the left-star partial order if and only if there exist invertible $T, W \in$ $M_{n}(\mathbb{F})$ such that Φ has the following form:

$$
\Phi(X)=T\left(\dot{X} \stackrel{\bullet}{X}^{\dagger}+\left(I-\dot{X} \stackrel{\bullet}{X}^{\dagger}\right) \cdot T^{-1} T^{-*} \cdot \dot{X} \stackrel{\bullet}{X}^{\dagger} \cdot\left[\dot{X} \stackrel{\bullet}{X}^{\dagger} \cdot T^{-1} T^{-*} \cdot \dot{X} \dot{X}^{\dagger}\right]^{\dagger}\right) \dot{X} W
$$

Here the map $X \mapsto \dot{X}$ denotes either identity, or entrywise conjugation, or MoorePenrose inverse, or entrywise-conjugated Moore-Penrose inverse on $M_{n}(\mathbb{F})$.

Results on star, or left-star, or right-star partial order preservers on $M_{n}(\mathbb{F})$ were extended to $B(H)$ or some subsets of $B(H)$ in [3, 4]. In [4] it is assumed that preservers of the left-star or the right-star partial orders on $B(H)$ with H infinite-dimensional are bijective and additive. It is the aim of this paper to further generalize this result by omitting additivity and injectivity.

Recall that the Moore-Penrose inverse of an operator $A \in B(H)$ is an operator, denoted by $A^{\dagger} \in B(H)$, which satisfies the four equations:

$$
A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad A A^{\dagger} A=A, \quad\left(A^{\dagger} A\right)^{*}=\left(A^{\dagger} A\right), \quad\left(A A^{\dagger}\right)^{*}=\left(A A^{\dagger}\right)
$$

Clearly, $\left(A^{\dagger}\right)^{\dagger}=A$. By applying adjoint on all four equations we also see that $\left(A^{\dagger}\right)^{*}$ is the Moore-Penrose inverse of A^{*}, that is,

$$
\left(A^{\dagger}\right)^{*}=\left(A^{*}\right)^{\dagger}
$$

Moreover, by the four equations which define the Moore-Penrose inverse, $A A^{\dagger}$ is a projection (i.e., a self-adjoint idempotent) onto $\operatorname{Im} A$, which must therefore be closed. Note also that $A \in B(H)$ has a Moore-Penrose inverse if and only if the range of A is closed (see, e.g. [12]). Since A^{*} has a Moore-Penrose inverse whenever A does, we see that $\operatorname{Im} A^{*}$ is closed whenever A has a Moore-Penrose inverse.

The Moore-Penrose inverse, when it exists, is unique. Namely, if B satisfies the same four equations, then

$$
\begin{aligned}
B & =B A B=B(A B)^{*}=B B^{*} A^{*}=B B^{*} A^{*}\left(A^{*}\right)^{\dagger} A^{*}=B(A B)^{*}\left(A A^{\dagger}\right)^{*} \\
& =B(A B A) A^{\dagger}=B A A^{\dagger}=(B A)\left(A^{\dagger} A\right) A^{\dagger}=A^{*} B^{*} A^{*}\left(A^{*}\right)^{\dagger} A^{\dagger} \\
& =A^{*}\left(A^{*}\right)^{\dagger} A^{\dagger}=\left(A^{\dagger} A\right) A^{\dagger}=A^{\dagger} .
\end{aligned}
$$

Moreover it exists for all operators with closed range. In fact, if $A: H=\operatorname{Ker} A \oplus$ $(\operatorname{Ker} A)^{\perp} \rightarrow H=(\operatorname{Im} A)^{\perp} \oplus(\operatorname{Im} A)$ is such an operator, then its Moore-Penrose inverse,

$$
A^{\dagger}: H=(\operatorname{Im} A)^{\perp} \oplus(\operatorname{Im} A) \rightarrow H
$$

is defined as zero on $(\operatorname{Im} A)^{\perp}$ and as the inverse, $\left(\left.A\right|_{(\operatorname{Ker} A)^{\perp}}\right)^{-1}$ on $\operatorname{Im} A$ (see [9, Theorem 2.4, page 80]). It follows that $A^{\dagger} A$ is a projector onto $\operatorname{Im} A^{\dagger}=(\operatorname{Ker} A)^{\perp}=\overline{\operatorname{Im} A^{*}}=$ $\operatorname{Im} A^{*}$.

In particular, for operators A, B with closed range,

$$
\begin{align*}
\operatorname{Im} A^{\dagger} \subseteq \operatorname{Im} B^{\dagger} & \Leftrightarrow \operatorname{Im} A^{*} \subseteq \operatorname{Im} B^{*} \Leftrightarrow(\operatorname{Ker} A)^{\perp} \subseteq(\operatorname{Ker} B)^{\perp} \\
& \Leftrightarrow \operatorname{Ker} B \subseteq \operatorname{Ker} A \Leftrightarrow A(\operatorname{Ker} B)=0 \Leftrightarrow A\left(I-B^{\dagger} B\right)=0 \tag{1}
\end{align*}
$$

where the last identify holds because $\left(I-B^{\dagger} B\right)$ is a projection onto $\left(\operatorname{Im} B^{*}\right)^{\perp}=\operatorname{Ker} B$. Also, the following string of implications for a closed range operator T

$$
\begin{aligned}
T^{\dagger} X=0 & \Rightarrow T T^{\dagger} X=0 \Rightarrow X^{*}\left(T T^{\dagger}\right)=0 \Rightarrow X^{*} T T^{\dagger} T=X^{*} T=0 \Rightarrow T^{*} X=0 \\
& \Rightarrow X^{*} T T^{\dagger}=0 \Rightarrow T^{\dagger}\left(T T^{\dagger}\right) X=T^{\dagger} X=0
\end{aligned}
$$

proves that

$$
\begin{equation*}
T^{*} X=0 \quad \text { if and only if } \quad T^{\dagger} X=0 \tag{2}
\end{equation*}
$$

(see also [1]). Hence, by its definition, and in view of (1)

$$
\begin{equation*}
A^{\dagger} * B^{\dagger} \Leftrightarrow\left(A^{\dagger}\right)^{*} A^{\dagger}=\left(A^{\dagger}\right)^{*} B^{\dagger} \quad \text { and } \quad A\left(I-B^{\dagger} B\right)=0 \tag{3}
\end{equation*}
$$

By inserting $T=A^{\dagger}$ and $X=B^{\dagger}-A^{\dagger}$ into (2) we see that the first equality is equivalent to

$$
\begin{equation*}
A A^{\dagger}=\left(A^{\dagger}\right)^{\dagger} A^{\dagger}=\left(A^{\dagger}\right)^{\dagger} B^{\dagger}=A B^{\dagger} \tag{4}
\end{equation*}
$$

By multiplying it with $A^{\dagger}(\cdot) B$ and utilizing at the end also the second equality in (3) we get

$$
A^{\dagger} A A^{\dagger} B=A^{\dagger} A B^{\dagger} B=A^{\dagger} A
$$

so $A^{\dagger} B=A^{\dagger} A$. By (2) this is equivalent to $A^{*} B=A^{*} A$. On the other hand, by multiplying (4) with A^{\dagger} and taking the adjoints we get $\left(A^{\dagger}\right)^{*}=\left(B^{\dagger}\right)^{*}\left(A^{\dagger} A\right)^{*}=\left(B^{\dagger}\right)^{*}\left(A^{\dagger} A\right)$. It follows that $\operatorname{Im}\left(A^{\dagger}\right)^{*} \subseteq \operatorname{Im}\left(B^{\dagger}\right)^{*}$ or equivalently, $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$. Hence, (3) implies $A * B$.

This shows that the Moore-Penrose inverse $X \mapsto X^{\dagger}$ is a well-defined map on the set of operators with closed range and it does preserve the \nVdash order in both directions.

However, the general form of surjective bi-preservers of the left-star partial order on $B(H)$ cannot be of the same form as in Proposition 2, since an arbitrary operator in $B(H)$ does not necessarily have a closed range.

It is easy to check (see e.g., [3]) that the map $\Phi: B(H) \rightarrow B(H)$ defined by

$$
\begin{equation*}
\Phi(A)=U A T, \quad A \in B(H) \tag{5}
\end{equation*}
$$

where $U \in B(H)$ is a unitary operator and $T \in B(H)$ is invertible, is a bi-preserver of the left-star partial order. We will show that such maps are the only possible surjective bi-preservers of the left-star partial order, with only one additional possibility that $U: H \rightarrow H$ may be an anti-unitary operator. Recall that, by its definition, an antiunitary operator U is a conjugate-linear sujective isometry. Its adjoint, U^{*} is defined by $\langle U x, y\rangle=\left\langle U^{*} y, x\right\rangle$, where $\langle\cdot, \cdot\rangle$ is a scalar product on H. Our main result therefore reads as follows.

Theorem 3. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the left-star partial order $*$ if and only if

$$
\Phi(A)=U A T, \quad A \in B(H)
$$

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded linear (respectively conjugate-linear) operator on H.

It is interesting to observe that for infinite-dimensional Hilbert spaces the structure of surjective left-star partial order bi-preservers is simpler than in finite dimensional spaces, see Proposition 2. In particular, this simpler structure shows yet again that the Moore-Penrose inverse cannot be extended to operators with non-closed range.

Observe that for $A, B \in B(H)$ the following holds (see, e.g., [4, Lemma 3])

$$
\begin{equation*}
A * B \text { if and only if } A^{*} \leqslant B^{*} \tag{6}
\end{equation*}
$$

Let $\Phi: B(H) \rightarrow B(H)$ be a surjective bi-preserver of the right-star partial order. Applying Theorem 3 on the map $\Psi(X)=\left(\Phi\left(X^{*}\right)\right)^{*}, X \in B(H)$, which by (6) is a bi-preserver of the left-star order, we obtain the next corollary.

Corollary 4. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the right-star partial order $\leqslant * \quad$ if and only if

$$
\Phi(A)=T A U, \quad A \in B(H)
$$

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded linear (respectively conjugate-linear) operator on H.

REMARK 5. Our results easily extend to classify converters from \leqslant to $\leqslant *$ i.e., to surjective maps $\Psi: B(H) \rightarrow B(H)$, where H is infinite-dimensional, with the property $A * B$ if and only if $\Psi(A) \leqslant * \Psi(B)$. Namely, given any such Ψ the map $\Phi(X)=\Psi(X)^{*}$ preserves order.

Note that, unlike in finite-dimensional spaces, the images of operators on an infinitedimensional Hilbert space H need not be closed. It is hence natural to consider also the weak counterparts to the left- and right- star partial orders where one compares the closures of images. They coincide with the classical ones on finite-dimensional spaces and are defined as follows:

DEFINITION 6. The weak left-star partial order on $B(H)$ is a relation defined by

$$
A \Vdash_{w} B \quad \text { when } \quad A^{*} A=A^{*} B \text { and } \overline{\operatorname{Im} A} \subseteq \overline{\operatorname{Im} B}, \quad A, B \in B(H) .
$$

The weak right-star partial order on $B(H)$ is a relation defined by

$$
A \leqslant{ }_{w} B \quad \text { when } \quad A A^{*}=B A^{*} \text { and } \overline{\operatorname{Im} A^{*}} \subseteq \overline{\operatorname{Im} B^{*}}, \quad A, B \in B(H) .
$$

That these are actually partial orders is a straightforward consequence of the observation

$$
\begin{equation*}
A \leqslant_{w} B \Longleftrightarrow A^{*} \leqslant_{w} B^{*} \tag{7}
\end{equation*}
$$

and the following useful proposition.
Proposition 7. $A \Vdash_{w} B$ if and only if $A=P B$ for some projection P onto a closed subspace of $\overline{\operatorname{Im} B}$.

Proof. (\Rightarrow) Suppose $A \star_{w} B$. Let P be the orthogonal projection onto $\overline{\operatorname{Im} A}$. Observe that $A^{*}(A-B)=0$, so $\operatorname{Im}(A-B) \subseteq \operatorname{Ker} A^{*}=\overline{\operatorname{Im} A}{ }^{\perp}$. Then

$$
A=P A=P B+P(A-B)=P B
$$

(\Leftarrow) Suppose $A=P B$ for some projection P onto a subspace of $\overline{\operatorname{Im} B}$. Then $\overline{\operatorname{Im} A} \subseteq \overline{\operatorname{Im} B}$ and

$$
A^{*} A=B^{*} P^{2} B=B^{*} P B=A^{*} B
$$

REMARK 8. If $A *_{w} B$, then actually $A=Q B$ where Q is a projection onto $\overline{\operatorname{Im} A}$. This is seen by pre-multiplying the equation in Proposition 7 with Q.

We can now state our second main result.
Theorem 9. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the weak left-star partial order $*_{w}$ if and only if there exists an invertible positive definite $S \in B(H)$, a unitary (or antiunitary) operator U on H, and an invertible bounded linear (respectively, conjugatelinear) operator T on H such that

$$
\Phi(A)=U P_{\overline{\mathrm{Im} S A}} S^{-1} A T, \quad A \in B(H)
$$

where $P_{\overline{\operatorname{Im} S A}}$ is the orthogonal projection onto $\overline{\operatorname{ImSA}}$.
Similarly to Corollary 4 we can see that the following is true:
Corollary 10. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the weak right-star partial order \leqslant_{w} if and only if there exists an invertible positive definite $S \in B(H)$, a unitary (or antiunitary) operator U on H, and an invertible bounded linear (respectively, conjugatelinear) operator T on H such that

$$
\Phi(A)=T A S^{-1} P_{\overline{\operatorname{Im} S A^{*}}} U, \quad A \in B(H)
$$

where $P_{\overline{\mathrm{Im} S A^{*}}}$ is the orthogonal projection onto $\overline{\operatorname{ImSA*}}$.

2. Preliminary results

We start with some notation and auxiliary results. Given a vector $w \in H$ we let w^{*} be a bounded linear functional on H given by $z \mapsto\langle z, w\rangle$. Denote by $x w^{*}$ a rank-one operator given by $z \mapsto\langle z, w\rangle x$, where $w, x \in H$ are nonzero. Recall that every rank-one operator in $B(H)$ can be written in this form.

We will need in the sequel the following Propositions 11-16. Observe that Propositions $11-12$ and $14-16$ hold for both $*$ and $*_{w}$ orders, therefore we introduce a new notation \mathscr{L} to denote either $*$ or $*_{w}$. Similarly, let \mathscr{R} denote either \leqslant_{*} and $\leqslant{ }_{w}$.

Proposition 11. If $P \in B(H)$ is a projection and $A \mathscr{L} P$, then A is a projection and $A P=P A=A$.

Proof. It suffices to show this when $\mathscr{L}=\star_{w}$ because if $A * P$ then also $A *_{w} P$. But for $*_{w}$ this follows immediately from Remark 8.

Proposition 12. Let $A \in B(H)$ be nonzero. For every nonzero $x \in \operatorname{Im} A$ there exists a nonzero $y \in H$ such that $x y^{*} \mathscr{L} A$.

Proof. Define $y=\frac{A^{*} x}{\|x\|^{2}}$. Since $x=A z \in \operatorname{Im} A$ for some $z \in H$, it follows that $y^{*} z=\frac{x^{*} x}{\|x\|^{2}}=1$, so $y \neq 0$. The rest follows directly from the definition of $*$ and $*_{w}$.

Let us now show that a similar observation holds also for \mathscr{R}.

Proposition 13. Let $A \in B(H)$ be nonzero and suppose the range of A is closed. Let $y \in \operatorname{Im} A^{*}, y \neq 0$. Then there exists a nonzero $l \in H$ such that $y l^{*} \mathscr{R} A^{*}$.

Proof. This was shown in [4] for the partial order $\leqslant *$. It holds also for $\leqslant *{ }_{w}$ since $\leqslant *$ and $\leqslant{ }_{w}$ coincide when the range of A is closed.

We denote by $B_{1}(H)$ the set of all rank-one operators in $B(H)$. Let now $x y^{*}$ and $u \nu^{*}$ be two rank-one operators in $B(H)$. Let us define the following relation between operators in $B_{1}(H)$: we write $x y^{*} \sim u v^{*}$ if x and u are linearly dependent or y and v are linearly dependent. So, for two operators $A, B \in B_{1}(H)$ we write $A \sim B$ if $\operatorname{Im} A=$ $\operatorname{Im} B$ or $\operatorname{Ker} A=\operatorname{Ker} B$.

Proposition 14. Let $A, B \in B(H), A \neq B$, be rank-one operators in $B(H)$. Then $A \sim B$ if and only if there does not exist a rank-two operator $C \in B(H)$ such that $A \mathscr{L} C$ and $B \mathscr{L} C$.

Proof. As in the proof of Proposition 13 this follows from [4].
Let $x, y \in H$ be nonzero. Let us define the following sets of operators:

$$
L_{x}=\left\{x v^{*}: v \in H \backslash\{0\}\right\} \quad \text { and } \quad R_{y}=\left\{z y^{*}: z \in H \backslash\{0\}\right\} .
$$

Note that every operator in L_{x} and every operator in R_{y} is of rank-one.

Proposition 15. An operator A is invertible if and only if for every nonzero $x \in H$ and for every nonzero $y \in H$ there exist $B \in L_{x}$ and $C \in R_{y}$ such that $B \mathscr{L} A$ and $C \mathscr{L} A$.

Proof. This was shown in [4] for the usual left-star partial order. For the weak left-star partial order the necessity follows from Proposition 12, Proposition 13, and equation (7). To prove sufficiency, first let $x \in H$ be nonzero. By hypothesis $x v^{*} *{ }_{w} A$ for some nonzero $v \in H$, so by the definition of $*_{w}$ it follows that $x \in \overline{\operatorname{Im} A}$. Thus $\operatorname{Im} A$ is dense, so $\operatorname{Ker} A^{*}=0$ and A^{*} is injective.

Now let $y \in H$ be nonzero, so there exists some nonzero z such that $z y^{*} *_{w} A$. By Remark $8, z y^{*}=P A$ for the projection P whose range is $\mathbb{C} z$. It follows that $y \in$ $\mathbb{C} A^{*} z$. Thus A^{*} is also surjective and the result follows.

The following result gives a characterization of rank-one operators in $B(H)$ that are dominated with respect to \mathscr{L} by a given operator $B \in B(H)$ with $\operatorname{rank} B \geqslant 2$.

Proposition 16. Let $\operatorname{rank} B \geqslant 2$.

1. A rank-one $R * B$ if and only if $R=x x^{*} B$ for some vector $x \in \operatorname{Im} B$ with $\|x\|=$ 1.
2. A rank-one $R \Vdash_{w} B$ if and only if $R=x x^{*} B$ for some vector $x \in \overline{\operatorname{Im} B}$ with $\|x\|=1$.

Proof. The first assertion may be proved in the same way as Lemma 6 in [5], and for the second assertion we can use Proposition 7 and Remark 8.

To streamline the proofs, we state and prove a common result for both the left-star partial order and its weaker version.

Proposition 17. Let H be an infinite-dimensional complex Hilbert space. Let $\Phi: B(H) \rightarrow B(H)$ be a surjective bi-preserver of either the left-star partial order $*$ or the weak left-star partial order $*_{w}$. Then Φ is bijective, preserves rank, and there exist a positive invertible operator $S \in B(H)$ and a unitary (or anti-unitary) operator U and an invertible bounded linear (respectively conjugate-linear) T on H such that

$$
U^{*} \Phi\left(x y^{*}\right) T^{-1}=\frac{S x y^{*} S}{\|S x\|^{2}}
$$

for all rank-one operators $x y^{*}$.
Most of the arguments in the following proof hold at the same time for $*$ and for $*_{w}$; differences are noted whenever they occur. In particular, recall that $*$ and $*_{w}$ coincide on sets of operators acting on finite-dimensional spaces.

Proof. The proof will be divided into several steps. Recall that \mathscr{L} denotes either $*$ or $*_{w}$. Let from now on H be an infinite-dimensional complex Hilbert space and $\Phi: B(H) \rightarrow B(H)$ as in Theorem 3, i.e., Φ is a surjective map such that for every pair $A, B \in B(H)$ we have

$$
A \mathscr{L} B \text { if and only if } \Phi(A) \mathscr{L} \Phi(B)
$$

Step 1. First we show that Φ is injective and therefore bijective, and that $\Phi(0)=$ 0.

Indeed, if $\Phi(A)=\Phi(B)$, then $\Phi(A) \mathscr{L} \Phi(B) \mathscr{L} \Phi(A)$ and therefore we have $A \mathscr{L} B \mathscr{L} A$. So, $A=B$. Since $0 \mathscr{L} \Phi^{-1}(0)$, we have $\Phi(0) \mathscr{L} 0$ and thus $\Phi(0)=0$.

Step 2. Let $B \in B(H)$. Then rank $B=\infty$ if and only if there exists an infinite chain $0=A_{0} \mathscr{L} A_{1} \mathscr{L} \ldots \mathscr{L} B$ of pairwise distinct operators. Moreover, $\operatorname{rank} B=r<\infty$ if and only if there exists a chain

$$
0=A_{0} \mathscr{L} A_{1} \mathscr{L} \ldots \mathscr{L} A_{r}=B
$$

of $r+1$ pairwise distinct operators and no other such chain has larger length.
To see that the existence of the infinite chain implies $\operatorname{rank} B=\infty$, note that $\operatorname{Im} A_{i} \subseteq$ $\overline{\operatorname{Im} B}$. So we are done if $\operatorname{rank} A_{i}=\infty$. However, if each A_{i} is of finite rank, then by Proposition 7 and Remark 8 (which hold also for $*$ since the ranges of all operators A_{i} are closed) we obtain that $\operatorname{Im} A_{i} \subsetneq \operatorname{Im} A_{i+1}$ so again $\operatorname{dim} \operatorname{Im} B=\infty$. For the converse implication, take an orthonormal system $\left(x_{n}\right)_{n} \in \operatorname{Im} B$. By Proposition 16 we have $x_{i} x_{i}^{*} B \mathscr{L} B$ for each i. Also, one easily sees that $A_{n}=\sum_{i=1}^{n} x_{i} x_{i}^{*} B$ is a nested sequence of operators below B with respect to the order \mathscr{L}. One proceeds similarly when $\operatorname{rank} B<\infty$.

Step 3. Φ preserves the rank of operators.
Let $B \in B(H)$ with $\operatorname{rank} B=r<\infty$. By Step 2 there exists a chain $0=A_{0} \mathscr{L} A_{1} \mathscr{L}$ $\ldots \mathscr{L} A_{r}=B$ of $r+1$ pairwise distinct operators and no other such chain has larger length. Since Φ is injective and a bi-preserver of the order \mathscr{L}, it follows that $0=$ $\Phi\left(A_{0}\right) \mathscr{L} \Phi\left(A_{1}\right) \mathscr{L} \ldots \mathscr{L} \Phi\left(A_{r}\right)=\Phi(B)$ is a chain of $r+1$ pairwise distinct operators and no other such chain has larger length. Thus, again by Step 2, $\operatorname{rank} \Phi(B)=r$. Since Φ^{-1} has the same properties as Φ, we may conclude that for $B \in B(H), \operatorname{rank} B=r<\infty$ if and only if $\operatorname{rank} \Phi(B)=r$.

Step 4. Φ is a bi-preserver of the relation \sim.
Indeed, it follows by Proposition 14 and Step 3 that for every pair $A, B \in B_{1}(H)$ we have $A \sim B$ if and only if $\Phi(A) \sim \Phi(B)$.

Step 5. Action of Φ on the sets L_{x}, R_{y}.
It is easy to see that for nonzero $x, y \in H, L_{x}$ and R_{y} are the only maximal sets (with respect to the set inclusion) which consist of pairwise related rank-one operators via \sim. Since Φ is a bijective bi-preserver of the relation \sim, it follows that for every nonzero $x \in H$ there exists a nonzero $u \in H$ such that $\Phi\left(L_{x}\right)=L_{u}$, or there exists a nonzero $y \in H$ such that $\Phi\left(L_{x}\right)=R_{y}$. Similarly, for every nonzero $y \in H$ there exists a nonzero $x \in H$ such that $\Phi\left(R_{y}\right)=L_{x}$, or there exists a nonzero $v \in H$ such that $\Phi\left(R_{y}\right)=R_{v}$. The same holds for Φ^{-1}.

Step 6. Φ preserves invertibility.

Let now $A \in B(H)$ be an invertible operator and suppose $u \in H$ is nonzero. There exists a nonzero $x \in H$ such that $\Phi\left(L_{x}\right)=L_{u}$, or there exists a nonzero $y \in H$ such that $\Phi\left(R_{y}\right)=L_{u}$. Suppose $\Phi\left(L_{x}\right)=L_{u}$. Since A is invertible, it follows by Proposition 15 that there exists $B \in L_{x}$ such that $B \mathscr{L} A$. So, $\Phi(B) \mathscr{L} \Phi(A)$. Note that $\Phi(B) \in L_{u}$. Similarly, if $\Phi\left(R_{y}\right)=L_{u}$ there exists $C \in R_{y}$ such that $\Phi(C) \mathscr{L} \Phi(A)$ and $\Phi(C) \in L_{u}$. So, since Φ is surjective, we may find for every nonzero $u \in H$ an operator $D \in L_{u}$ such that $D \mathscr{L} \Phi(A)$. In the same way we prove that there exists an operator $E \in R_{u}$ such that $E \mathscr{L} \Phi(A)$. By Proposition 15 we may conclude that $\Phi(A)$ is an invertible operator. Since Φ^{-1} has the same properties as Φ it follows that $A \in B(H)$ is invertible if and only if $\Phi(A)$ is invertible.

Step 7. Without loss of generality we may assume that $\Phi(I)=I$.
Indeed, $\Phi(I)$, where I is the identity operator, is also invertible. By (5) we may replace the map Φ with the map $\Psi: B(H) \rightarrow B(H)$ which is defined in the following way: $\Psi(A)=\Phi(A) \Phi^{-1}(I)$. From now on we may and will assume that

$$
\Phi(I)=I
$$

Step 8. Φ leaves invariant the set $\mathscr{P}(H)$ of all projections in $B(H)$.
By Definitions 1 and 6 it is clear that for every $P \in \mathscr{P}(H)$ we have $P \mathscr{L} I$. So, $\Phi(P) \mathscr{L} I$ and hence by Proposition $11, \Phi(P)$ is also a projection. Since Φ is a bipreserver of the left-star partial order, we may conclude that $\Phi(\mathscr{P}(H))=\mathscr{P}(H)$.

Step 9. Restriction of Φ on $\mathscr{P}(H)$.
Let $P, Q \in \mathscr{P}(H)$. Proposition 11 yields that if $P \mathscr{L} Q$, then $P Q=Q P=P$ and hence $P \leqslant Q$ where \leqslant denotes the usual order on $\mathscr{P}(H)$ (i.e., $P \leqslant Q$ when $P Q=$ $Q P=P$). Also, directly by Definitions 1 and 6 it follows that if $P Q=Q P=P$ for $P, Q \in \mathscr{P}(H)$, then $P \mathscr{L} Q$. The restriction of Φ to $\mathscr{P}(H)$ is a bijective map from $\mathscr{P}(H)$ to $\mathscr{P}(H)$ which preserves the usual order in both directions.

Step 10. Action of Φ on $\mathscr{P}(H)$.
We may identify closed subspaces in H with operators in $\mathscr{P}(H)$. So, the map Φ induces a lattice automorphism, i.e., a bijective map ω defined on the set of all closed subspaces in H, where $M \subseteq N$ if and only if $\omega(M) \subseteq \omega(N)$ for every pair of closed subspaces M, N in H. Recall that H is an infinite dimensional complex Hilbert space. By [7, Theorem 1] there exists a bicontinuous linear or conjugate-linear bijection $S: H \rightarrow H$ such that $\omega(M)=S M$ for every closed subspace M in H. Let from now on $P_{M} \in B(H)$ denote a projection with $\operatorname{Im} P_{M}=M$. It follows that

$$
\Phi\left(P_{M}\right)=P_{S(M)}
$$

for every $P_{M} \in \mathscr{P}(H)$.
Step 11. Without loss of generality we may assume that the operator S (introduced in Step 10) is an invertible and a positive operator.

Let the operator $S: H \rightarrow H$ be as in Step 10, i.e., a bicontinuous linear or conjugatelinear bijection. Suppose first S is linear and let $S=U|S|$ be its polar decomposition where U is a partial isometry and $|S|=\sqrt{S^{*} S}$, i.e., $|S|$ is a positive operator in $B(H)$.

Since S is invertible, $U \in B(H)$ is unitary. Step 10 implies that

$$
\Phi\left(x x^{*}\right)=\frac{1}{\|S x\|^{2}}(S x)(S x)^{*}=\frac{1}{\|S x\|^{2}} S x x^{*} S^{*}
$$

for every $x \in H$ with $\|x\|=1$. By replacing Φ with $U^{*} \Phi(\cdot) U$ we may by (5) without loss of generality assume that S is an invertible, positive operator in $B(H)$ (and thus self-adjoint).

Let now $S: H \rightarrow H$ be a bounded, conjugate-linear bijection. We will show that even in this case we may assume that $S \in B(H)$ is an invertible, positive (linear) operator. To show this let us recall some known facts about bounded conjugate-linear operators on Hilbert spaces (see for example [2]). A bounded conjugate-linear operator $T: H \rightarrow H$ has a unique conjugate-linear adjoint $T^{*}: H \rightarrow H$ defined with

$$
\langle T x, y\rangle=\left\langle T^{*} y, x\right\rangle
$$

for all $x, y \in H$. As in the linear case, we say that T is self-adjoint when $T=T^{*}$, i.e., $\langle T x, y\rangle=\langle T y, x\rangle$ for every $x, y \in H$. Let A be a bounded conjugate-linear operator on a Hilbert space H and let $B \in B(H)$. Then both $A B$ and $B^{*} A^{*}$ are bounded conjugatelinear operators on H and since

$$
\langle(A B) x, y\rangle=\left\langle A^{*} y, B x\right\rangle=\left\langle B^{*} A^{*} y, x\right\rangle
$$

we may by the uniqueness of the adjoint conclude that

$$
(A B)^{*}=B^{*} A^{*}
$$

Similarly, if both A and B are bounded conjugate-linear operators on H, then $A B$, $B^{*} A^{*} \in B(H)$ and

$$
\langle(A B) x, y\rangle=\left\langle A^{*} y, B x\right\rangle=\overline{\left\langle B x, A^{*} y\right\rangle}=\overline{\left\langle B^{*} A^{*} y, x\right\rangle}=\left\langle x, B^{*} A^{*} y\right\rangle
$$

and therefore again $(A B)^{*}=B^{*} A^{*}$.
An example of a conjugate-linear operator on a complex Hilbert space H is the map J which, relative to a fixed orthonormal basis $\left(e_{\lambda}\right)_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is the empty set in case H is a separable Hilbert space, is defined as follows: $J: x=\sum \alpha_{\lambda} e_{\lambda} \mapsto$ $\sum \overline{\alpha_{\lambda}} e_{\lambda}, \alpha_{\lambda} \in \mathbb{C}$. Note that J is an involution, i.e., a conjugate-linear isometry from H onto H with $J^{2}=I$, and that every involution is of this form (see [2]). Observe also $\langle J x, y\rangle=\langle J y, x\rangle$ for every $x, y \in H$, i.e., J is self-adjoint. Let $T: H \rightarrow H$ be a bounded conjugate-linear operator and let $J: H \rightarrow H$ be as above. Then $J T \in B(H)$ and

$$
T^{*} T=T^{*} J J T=\left(J^{*} T\right)^{*}(J T)=(J T)^{*}(J T)
$$

It follows that $|T|=|J T|$ is independent of J and hence well defined. If $J T=U|J T|=$ $U|T|$ is the polar decomposition for $J T$, then $T=V|T|$ is the polar decomposition of T, where $V=J U$ is a conjugate-linear partial isometry. So, conjugate-linear operators have a well-defined polar decomposition with analogous properties to those of linear
operators (see also [2]). Let $T=V|T|$ be the polar decomposition of a conjugate-linear bounded operator T. Suppose T is invertible. Observe that then V is anti-unitary, i.e., a conjugate-linear bounded operator on H with $V^{*} V=V V^{*}=I$. Also, $|T|=|J T|$ is a positive, invertible, bounded linear operator.

Let now U be an anti-unitary operator on H and $S: H \rightarrow H$ an invertible conjugatelinear bounded operator. Let $A, B \in B(H)$. Then $\operatorname{Im} A \subseteq \operatorname{Im} B$ if and only if $\operatorname{Im} U A S \subseteq$ $\operatorname{Im} U B S$, and $\overline{\operatorname{Im} A} \subseteq \overline{\operatorname{Im} B}$ if and only if $\overline{\operatorname{Im} U A S} \subseteq \overline{\operatorname{Im} U B S}$ (for use with the usual and weak partial orders respectively). Also $A^{*} A=A^{*} B$ if and only if $(U A S)^{*}(U A S)=$ $S^{*} A^{*} U^{*} U A S=S^{*} A^{*} A S=S^{*} A^{*} B S=S^{*} A^{*} U^{*} U B S=(U A S)^{*}(U B S)$, and therefore

$$
\begin{equation*}
A \mathscr{L} B \quad \text { if and only if } \quad U A S \mathscr{L} U B S \tag{8}
\end{equation*}
$$

Suppose $S: H \rightarrow H$ from Step 10 is a conjugate-linear, bijective, and bounded operator. Then we may write $S=U|S|$ where U is an anti-unitary operator on H and $|S| \in B(H)$ a positive, invertible operator. By again replacing Φ with $U^{*} \Phi(\cdot) U$, we may thus by (8) as in the linear case assume that S is a positive linear, bounded, and invertible operator on H.

From now on, let $S \in B(H)$ be an invertible and positive operator (and thus selfadjoint).

Step 12. We show that $\Phi\left(P_{M} B(H) P_{M}\right)=P_{S(M)} B(H) P_{S(M)}$ where $P_{M} B(H) P_{M}=$ $\left\{P_{M} A P_{M}: A \in B(H)\right\}$ and $P_{M} \in B(H)$ is a finite rank projection of rank $n \geqslant 2$.

Since Φ^{-1} has the same properties as Φ, it is enough to show that

$$
\Phi\left(P_{M} B(H) P_{M}\right) \subseteq P_{S(M)} B(H) P_{S(M)}
$$

First note that $A \in P_{M} B(H) P_{M}$ if and only if $\operatorname{Im} A \subseteq \operatorname{Im} P_{M}$ and $\operatorname{Ker} P_{M} \subseteq \operatorname{Ker} A$. Indeed, if $A \in P_{M} B(H) P_{M}$, then $A=P_{M} A P_{M}$ and therefore $\operatorname{Im} A \subseteq \operatorname{Im} P_{M}$ and Ker $P_{M} \subseteq \operatorname{Ker}$ A. Conversely, if $\operatorname{Im} A \subseteq \operatorname{Im} P_{M}$, then $A=P_{M} A$ and if Ker $P_{M} \subseteq \operatorname{Ker} A$, then $\operatorname{Im} A^{*} \subseteq$ $\operatorname{Im} P_{M}$ and therefore $A^{*}=P_{M} A^{*}$, i.e., $A=A P_{M}$. It follows that $A=P_{M} A P_{M}$ and so $A \in P_{M} B(H) P_{M}$.

First, let us show that for every rank-one operator $A \in P_{M} B(H) P_{M}$ it follows that $\Phi(A) \in P_{S(M)} B(H) P_{S(M)}$. Recall that

$$
\Phi\left(x x^{*}\right)=\frac{1}{\|S x\|^{2}}(S x)(S x)^{*}
$$

for every $x \in H$ with $\|x\|=1$. Suppose $A=\alpha x y^{*}$ where $\|x\|=\|y\|=1, \alpha \in \mathbb{C} \backslash\{0\}$, and $A \in P_{M} B(H) P_{M}$. Then $x, y \in M$. Since $A \sim x x^{*}$ and $A \sim y y^{*}$, it follows by Step 4 that

$$
\Phi(A) \sim \frac{1}{\|S x\|^{2}}(S x)(S x)^{*} \text { and } \Phi(A) \sim \frac{1}{\|S y\|^{2}}(S y)(S y)^{*}
$$

If x and y are linearly independent, then by the bijectivity of S also $S x$ and $S y$ are linearly independent. It follows that $\Phi(A)=\lambda(S x)(S y)^{*}$ or $\Phi(A)=\mu(S y)(S x)^{*}, \lambda, \mu \in$ $\mathbb{C} \backslash\{0\}$. In both cases $\Phi(A) \in P_{S(M)} B(H) P_{S(M)}$ and it is not a scalar multiple of a rankone projection.

If $y \in \mathbb{C} x$, then $A \in \mathbb{C} x x^{*}$. By the previous argument applied on Φ^{-1} and since Φ preserves operators of rank-one we have that $\Phi(A)$ is a scalar multiple of a rankone projection. Note that $A \sim x x^{*}$, so $\Phi(A) \sim \Phi\left(x x^{*}\right) \in \mathbb{C}(S x)(S x)^{*}$ and therefore $\Phi(A) \in P_{S(M)} B(H) P_{S(M)}$.

Second, let now $D \in P_{M} B(H) P_{M}$ be an operator of rank at least two. By Proposition 16, for each rank-one C such that $C \mathscr{L} D$, it follows $C=x x^{*} D, x \in \operatorname{Im} D=\overline{\operatorname{Im} D}$. This yields $C \in P_{M} B(H) P_{M}$ and hence

$$
\begin{equation*}
\Phi(C) \in P_{S(M)} B(H) P_{S(M)} \text { for every rank one } C \mathscr{L} D \tag{9}
\end{equation*}
$$

So, $\operatorname{Im} \Phi(C) \subseteq \operatorname{Im} P_{S(M)}$. Since Φ is a bijective bi-preserver and maps the set of all rank-one operators onto itself (see also Proposition 12),

$$
\operatorname{Im} \Phi(D) \subseteq \bigcup\left\{\operatorname{Im} \Phi(C): C \in B_{1}(H) \text { and } C \mathscr{L} D\right\} \subseteq \operatorname{Im} P_{S(M)}
$$

Recall that M, hence also $S(M)$, is a finite-dimensional subspace; since $S(M)$ contains the range of $\Phi(D)$, the range of $\Phi(D)$ is closed. In order to prove that $\Phi(D) \in$ $P_{S(M)} B(H) P_{S(M)}$ it remains to show that $\operatorname{Im} \Phi(D)^{*} \subseteq \operatorname{Im} P_{S(M)}$.

For a nonzero $y \in \operatorname{Im} \Phi(D)^{*}$ there exists by Proposition $13, l \in H, l \neq 0$, such that $\Phi(C)^{*}=y l^{*} \mathscr{R} \Phi(D)^{*}$ for some $C \in B_{1}(H)$. Note that $\operatorname{Im} \Phi(C)^{*}=\mathbb{C} y$, and since $y \in \operatorname{Im} \Phi(D)^{*}$ was arbitrary it follows

$$
\begin{aligned}
\operatorname{Im} \Phi(D)^{*} & \subseteq \bigcup\left\{\operatorname{Im} \Phi(C)^{*}: C \in B_{1}(H) \text { and } \Phi(C)^{*} \mathscr{R} \Phi(D)^{*}\right\} \\
& =\bigcup\left\{\operatorname{Im} \Phi(C)^{*}: C \in B_{1}(H) \text { and } C \mathscr{L} D\right\}
\end{aligned}
$$

where the last equality follows by (6) and (7).
Recall that $D \in P_{M} B(H) P_{M}$. For every $C \in B_{1}(H)$ where $C \mathscr{L} D$ we have $\Phi(C) \in P_{S(M)} B(H) P_{S(M)}$ by (9). It follows that $\operatorname{Im} \Phi(C)^{*} \subseteq \operatorname{Im} P_{S(M)}$. This implies that $\operatorname{Im} \Phi(D)^{*} \subseteq \operatorname{Im} P_{S(M)}$ and hence $\Phi(D) \in P_{S(M)} B(H) P_{S(M)}$.

Step 13. Reduction of the problem to bijective bi-preservers on $M_{n}(\mathbb{C})$.
Take any finite-dimensional subspace $M \subseteq H$ of dimension at least three and identify $P_{M} B(H) P_{M}$ and $P_{S(M)} B(H) P_{S(M)}$ with $M_{n}(\mathbb{C}), n=\operatorname{dim} M=\operatorname{dim} S(M)$. By Steps 9 and 10

$$
\Phi\left(x x^{*}\right)=\frac{1}{\|S x\|^{2}}(S x)(S x)^{*}=\frac{1}{\|S x\|^{2}} S x x^{*} S
$$

for every unit vector $x \in H$. By [5, equations (9) and (10)] either

$$
\Phi\left(x y^{*}\right)=\gamma_{x y^{*}} S x y^{*} S
$$

for every rank-one $x y^{*} \in P_{M} B(H) P_{M}$ or

$$
\Phi\left(x y^{*}\right)=\gamma_{x y^{*}} S y x^{*} S
$$

for every rank-one $x y^{*} \in P_{M} B(H) P_{M}$ where $\gamma_{x y^{*}}$ is a nonzero scalar that depends on $x y^{*}$.

It easily follows that

$$
\begin{equation*}
\Phi\left(x y^{*}\right)=\gamma_{x y^{*}} S x y^{*} S \tag{10}
\end{equation*}
$$

for every rank-one $x y^{*} \in B(H)$ or

$$
\begin{equation*}
\Phi\left(x y^{*}\right)=\gamma_{x y^{*}} S y x^{*} S \tag{11}
\end{equation*}
$$

for every rank-one $x y^{*} \in B(H)$. Note that in the former case we have $\gamma_{x y^{*}}=\frac{1}{\|S x\|^{2}}$ by [5, Lemma 19].

Step 14. We assume Φ is of the form (11) on the set of all rank-one operators in $B(H)$ and get a contradiction.

Observe first that $x w^{*}=u v^{*}$ if and only if either one of x, w and one of u, v is zero or else $x \| u$ and $w \| v$ (i.e., are parallel). Suppose there exists an invertible, positive operator $S \in B(H)$ such that

$$
\Phi\left(x y^{*}\right)=\frac{S y x^{*} S}{\lambda_{x y^{*}}}
$$

for every nonzero $x, y \in H$ where $\lambda_{x y^{*}}$ is some nonzero scalar that depends on $x y^{*}$. Fix an orthonormal basis $\left(e_{\lambda}\right)_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is an empty set in case H is a separable Hilbert space. Define a linear operator B with $B e_{n}=\frac{1}{n} e_{n}, n \in \mathbb{N}$, and $B e_{\lambda}=e_{\lambda}$ for all $\lambda \in \Lambda$. Note that B is injective, bounded, and has a dense range. Let $C=\Phi(B)$ and let $x \in \operatorname{Im} B$ be a unit vector. By the assumption

$$
\Phi\left(x x^{*} B\right)=\frac{S B^{*} x x^{*} S}{\alpha} \mathscr{L} C
$$

where α is some nonzero scalar. Since Φ preserves rank, there exists by Proposition 16 a unit vector y such that $\frac{S B^{*} x x^{*} S}{\alpha}=y y^{*} C$. It follows that

$$
\begin{equation*}
y=\frac{S B^{*} x}{\left\|S B^{*} x\right\|} \mu \tag{12}
\end{equation*}
$$

for some unimodular scalar μ which depends on x. Also,

$$
\begin{equation*}
y^{*} C=x^{*} S \delta \tag{13}
\end{equation*}
$$

for some scalar δ. Equation (12) yields $y^{*} C=\frac{x^{*} B S C}{\left\|S B^{*} x\right\|} \bar{\mu}$ and thus by (13)

$$
x^{*} S \delta=\frac{x^{*} B S C}{\left\|S B^{*} x\right\|} \bar{\mu}
$$

Since $x \in \operatorname{Im} B$, we may write $x=\frac{B z}{\|B z\|}$ for some nonzero $z \in H$. So,

$$
z^{*} B^{*} S \delta_{z}=z^{*} B^{*} B S C \mu_{z}
$$

where scalars δ_{z} and μ_{z} depend on z. This implies that $B^{*} S$ and $B^{*} B S C$ are locally linearly dependent. However since $B^{*} S$ is of infinite rank, we may conclude (see e.g. [11, page 1869]) that they are linearly dependent, i.e., $B^{*} B S C=\lambda B^{*} S$ for some scalar λ. Note λ is nonzero because $\operatorname{Ker}\left(B^{*} B S\right)=\{0\}$ and $C=\Phi(B)$ is nonzero since $B \neq 0$. We have

$$
C^{*} S B^{*} B=\bar{\lambda} S B
$$

Evaluate this identity on the vector e_{n} and use the fact that $B^{*} B=B^{2}$ to obtain $C^{*}\left(\frac{S e_{n}}{n^{2}}\right)$ $=\frac{\bar{\lambda} S e_{n}}{n}$ and thus $C^{*}\left(S e_{n}\right)=n \bar{\lambda} S e_{n}$. We may (for each integer n) conclude that the operator C^{*} is unbounded which is a contradiction.

Step 15. Conclusion of the proof.
By the preceding steps, and by taking into account the assumptions from Steps 7 and 11 , the result follows.

3. Proof of Theorem 3

Proof of Theorem 3. By our earlier remarks, sufficiency is clear. To prove necessity, suppose Φ is a surjective bi-preserver of $*$. By Proposition 17Φ is bijective and we may assume without loss of generality that Φ maps rank-one operators $x y^{*}$ into

$$
\Phi\left(x y^{*}\right)=\frac{S x y^{*} S}{\|S x\|^{2}}
$$

for some invertible, positive operator $S \in B(H)$. It suffices to show that Φ is then the identity map.

Consider $A \in B(H)$ with a dense range and let $B=\Phi(A)$. If $x \in \operatorname{Im} A$ is a unit vector, then by Proposition $16 x x^{*} A * A$ (note that the range-kernel orthogonality $\operatorname{Ker} A^{*}=(\operatorname{Im} A)^{\perp}$ implies $\left.x^{*} A \neq 0\right)$ so applying Φ gives

$$
\frac{S x x^{*} A S}{\|S x\|^{2}} * B
$$

which by Proposition 16 means that there exists a unit vector $z \in \operatorname{Im} B$ such that

$$
\begin{equation*}
\frac{S x x^{*} A S}{\|S x\|^{2}}=z z^{*} B \tag{14}
\end{equation*}
$$

It follows that $S x=\delta_{x} z \in \operatorname{Im} B$ for every $x \in \operatorname{Im} A$ where δ_{x} is a nonzero scalar that depends on x, and in particular, $S \operatorname{Im} A \subseteq \operatorname{Im} B$. Conversely, if $z \in \operatorname{Im} B$ is a unit vector, then $0 \neq z z^{*} B * B$, and since Φ^{-1} also preserves the order $*$ and rank of operators, there exists a unit vector $x \in \operatorname{Im} A=\operatorname{Im} \Phi^{-1}(B)$ such that $\Phi\left(x x^{*} A\right)=z z^{*} B$, i.e., there exists $x \in \operatorname{Im} A$ such that $S x=\delta_{x} z$. Hence

$$
\begin{equation*}
\operatorname{Im} B=S \operatorname{Im} A \tag{15}
\end{equation*}
$$

Let $x \in \operatorname{Im} A$ and $x=A w \neq 0$. Insert for x in (14) $\frac{x}{\|x\|}=\frac{A w}{\|x\|}$ to deduce

$$
\gamma_{w} S A w w^{*} A^{*} A S=z z^{*} B
$$

where γ_{w} is some nonzero scalar. We infer that $z \in \mathbb{C} S A w$ and since $S^{*}=S$ we obtain

$$
\mu_{w} S A w w^{*} A^{*} A S=S A w w^{*} A^{*} S B
$$

for some nonzero scalar μ_{w}. Comparing both sides we get

$$
\mu_{w} w^{*} A^{*} A S=w^{*} A^{*} S B
$$

for all vectors w such that $A w \neq 0$. Clearly this holds also if $A w=0$. Then $A^{*} A S$ and $A^{*} S B$ are locally linearly dependent and since A is not rank-one or zero we have that there exists $\lambda \in \mathbb{C}$ such that

$$
\lambda A^{*} A S=A^{*} S B
$$

that is

$$
A^{*}\left(\lambda A-S B S^{-1}\right)=0
$$

Since $\operatorname{Im} A$ is dense, A^{*} is injective (by the range-kernel orthogonality) so $\lambda A=S B S^{-1}$ or equivalently,

$$
B=\lambda S^{-1} A S
$$

It follows that $\operatorname{Im} B=S^{-1} \operatorname{Im} A=S \operatorname{Im} A$ where the last identity follows from (15). So,

$$
S^{2} \operatorname{Im} A=\operatorname{Im} A
$$

whenever $\operatorname{Im} A$ is a dense space.
Suppose there exists a vector $x \in H$ such that x and $y=S^{2} x$ are linearly independent vectors. Fix an orthonormal basis $\left(e_{\lambda}\right)_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is the empty set in case H is a separable Hilbert space and define a linear operator A with $A e_{n}=\frac{1}{n} e_{n}, n \in \mathbb{N}$, and $A e_{\lambda}=e_{\lambda}$ for all $\lambda \in \Lambda$. Recall that A is injective, bounded, and has a dense range. Let $\hat{y}=\sum \frac{1}{n} e_{n}$ and note that $\hat{y} \notin \operatorname{Im} A$. There exists a bounded linear bijection T on H which maps e_{1} to x and \hat{y} to y. Note that $x \in \operatorname{Im} T A$ and hence $y=S^{2} x \in S^{2} \operatorname{Im} T A$, however $y \notin \operatorname{Im} T A$, a contradiction with $S^{2} \operatorname{Im} T A=\operatorname{Im} T A$. It follows that S^{2} and I are locally linearly dependent and since the positive operator S^{2} is not rank-one or zero, there exists $\lambda>0$ such that $S^{2}=\lambda I$ and so its positive square root is $S=\sqrt{\lambda} I$. This implies that $\Phi\left(x y^{*}\right)=\frac{S x y^{*} S}{\|S x\|^{2}}=x y^{*}$ and so Φ is the identity map on operators of rank at most one. By applying [4, Lemma 13] we see that Φ is the identity.

Taking into account the assumption (see also Proposition 17) we may conclude that if H be an infinite-dimensional complex Hilbert space and $\Phi: B(H) \rightarrow B(H)$ a surjective bi-preserver of the left-star partial order, then

$$
\Phi(A)=U A T, \quad A \in B(H)
$$

where $U \in B(H)$ is a unitary operator and $T \in B(H)$ is an invertible operator, or U is an anti-unitary operator on H and T is an invertible conjugate-linear operator on H.

4. Proof of Theorem 9

Before proving Theorem 9, we first investigate a special class of maps that arise for bi-preservers of the weak left-star partial order.

Lemma 18. Fix an invertible positive $S \in B(H)$ and define $\psi: B(H) \rightarrow B(H)$ by

$$
\psi(A)=P_{\overline{\operatorname{Im} S A}} S^{-1} A, \quad A \in B(H)
$$

Then $\operatorname{Ker} \psi(A)=\operatorname{Ker} A$ and $\overline{\operatorname{Im} \psi(A)}=\overline{\operatorname{ImSA}}$.

Proof. For the first assertion,

$$
\begin{aligned}
\operatorname{Ker} \psi(A) & =\left\{x: S^{-1} A x \in \overline{\operatorname{Im} S A}^{\perp}=\operatorname{Ker}(S A)^{*}\right\} \\
& =\left\{x: A^{*} S S^{-1} A x=0\right\}=\left\{x: A^{*} A x=0\right\} \\
& =\operatorname{Ker} A .
\end{aligned}
$$

For the second assertion, it suffices to prove $\overline{\operatorname{Im} \psi(A)}{ }^{\perp}=\overline{\operatorname{ImSA}}^{\perp}$. Note

$$
\begin{aligned}
\overline{\operatorname{Im} \psi(A)} & \perp \operatorname{Ker} \psi(A)^{*}
\end{aligned}=\left\{x: A^{*} S^{-1} P_{\overline{\mathrm{Im} S A}} x=0\right\}, \overline{\operatorname{Im} S A}+\left\{x \in \overline{\overline{\operatorname{Im} S A}}: A^{*} S^{-1} x=0\right\} .
$$

But

$$
\begin{aligned}
\left\{x \in \overline{\operatorname{Im} S A}: A^{*} S^{-1} x=0\right\}= & \left\{x=\lim S A x_{n}: A^{*}\left(\lim S^{-1} S A x_{n}\right)=0\right\} \\
& \text { write } y=S^{-1} x \\
= & \left\{S y: y=\lim A x_{n}, A^{*} y=0\right\} \\
= & \left\{S y: y \in \overline{\operatorname{Im} A} \cap \operatorname{Ker} A^{*}=\{0\}\right\}=\{0\},
\end{aligned}
$$

so the result follows.
Proof of Theorem 9. We begin by proving necessity. Suppose $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of $*_{w}$. By Proposition 17Φ is bijective, preserves rank, and we may assume without loss of generality that there exists an invertible positive definite $S \in B(H)$ such that

$$
\Phi\left(x y^{*}\right)=\frac{S x y^{*} S}{\|S x\|^{2}}
$$

for all nonzero $x \in H$. It suffices to show that, for all $B \in B(H)$,

$$
\Phi(B)=P_{\overline{\operatorname{Im} S B}} S^{-1} B S
$$

where $P_{\overline{\operatorname{Im} S B}}$ is the orthogonal projection onto $\overline{\operatorname{ImSB}}$.
Let $B \in B(H)$ and write $C=\Phi(B)$. By Proposition 7, and since Φ is a bijective rank-preserving bi-preserver of \Vdash_{w}, the following are equivalent.
(a) $R=x x^{*} B$ for some $x \in \overline{\operatorname{Im} B}$ with $\|x\|=1$.
(b) $\operatorname{rank} R=1$ and $R * B$.
(c) $\operatorname{rank} \Phi(R)=1$ and $\Phi(R) * C$.
(d) $\Phi(R)=y y^{*} C$ for some $y \in \overline{\operatorname{Im} C}$ with $\|y\|=1$.

Because (a) implies (d), for each unit vector $x \in \overline{\operatorname{Im} B}$ there exists a unit vector $y \in$ $\overline{\operatorname{ImC}}$ such that

$$
\begin{equation*}
\frac{S x x^{*} B S}{\|S x\|^{2}}=y y^{*} C \tag{16}
\end{equation*}
$$

From this we conclude that $\overline{S \operatorname{Im} B} \subseteq \overline{\operatorname{Im} C}$. Conversely, because (d) implies (a), for each unit vector $y \in \overline{\operatorname{Im} C}$ there exist a unit vector $x \in \overline{\operatorname{Im} B}$ so that (16) holds, whence

Let x be a unit vector in $\overline{\operatorname{Im} B}$ and set $y=S x /\|S x\|$. By (16)

$$
C^{*} S x=S B^{*} x=S B^{*} S^{-1}(S x) .
$$

Thus $C^{*}=S B^{*} S^{-1}$ when restricted to $\overline{\operatorname{ImSB}}$.
We also have $\operatorname{Ker} C^{*}=(\overline{\operatorname{ImC}})^{\perp}=(\overline{\operatorname{ImSB}})^{\perp}$. Thus for $x \in \overline{\operatorname{ImSB}}, y \in \overline{\operatorname{ImSB}}{ }^{\perp}$ we have

$$
C^{*}(x+y)=S B^{*} S^{-1} x=S B^{*} S^{-1} P_{\overline{\operatorname{Im} S B}}(x+y)
$$

so $C^{*}=S B^{*} S^{-1} P_{\overline{\mathrm{Im} S B}}$ and the result follows.
To prove sufficiency, let S be an invertible positive operator in $B(H)$ and define $\psi: B(H) \rightarrow B(H)$ by

$$
\psi(A)=P_{\overline{\operatorname{Im} S A}} S^{-1} A, \quad A \in B(H)
$$

It suffices to prove that ψ is a surjective bi-preserver of $*_{w}$.
Let $A, B \in B(H)$. First suppose that $A \Vdash_{w} B$. By Lemma 18,

$$
\overline{\operatorname{Im} \psi(A)}=\overline{\operatorname{Im} S A}=S(\overline{\operatorname{Im} A}) \subseteq S(\overline{\operatorname{Im} B})=\overline{\operatorname{Im} S B}=\overline{\operatorname{Im} \psi(B)}
$$

We also have

$$
\begin{aligned}
A *_{v} B & \Longrightarrow A^{*} A=A^{*} B \quad \text { take adjoint of both sides } \\
& \Longrightarrow A^{*} A=B^{*} A \Longrightarrow\left(A^{*}-B^{*}\right) S^{-1} S A=0 \\
& \Longrightarrow\left(A^{*}-B^{*}\right) S^{-1} P_{\overline{\mathrm{Im} S A}}=0 \\
& \Longrightarrow A^{*} S^{-1} P_{\overline{\mathrm{Im}} S A}=B^{*} S^{-1} P_{\overline{\mathrm{Im} S A}}=B^{*} S^{-1} P_{\overline{\mathrm{Im} S B}} P_{\overline{\mathrm{Im}} S A},
\end{aligned}
$$

Taking adjoints of the last line gives $\psi(A)=P_{\overline{\mathrm{Im} S A}} \psi(B)$; by Proposition 7, $\psi(A) *_{w}$ $\psi(B)$.

Conversely, suppose that $\psi(A) \Vdash_{w} \psi(B)$. By Lemma $18, \overline{\operatorname{Im} S A} \subseteq \overline{\operatorname{Im} S B}$; applying S^{-1} gives $\overline{\operatorname{Im} A} \subseteq \overline{\operatorname{Im} B}$. By Proposition 7 and Lemma 18, $\psi(A)=P_{\overline{\operatorname{ImSA}}} \psi(B)$, so

$$
\begin{aligned}
& P_{\overline{\operatorname{Im} S A}} S^{-1} A=P_{\operatorname{Im} S A} S^{-1} B \\
& \Longrightarrow P_{\overline{\operatorname{Im} S A}} S^{-1}(A-B)=0 \\
& \Longrightarrow S^{-1}(A-B) x \in \overline{\operatorname{Im} S A}{ }^{\perp}=\operatorname{Ker}(S A)^{*} \quad(\text { for all } x \in H) \\
& \Longrightarrow A^{*} S S^{-1}(A-B)=0 \\
& \Longrightarrow A^{*} A=A^{*} B
\end{aligned}
$$

Thus $A \not *_{w} B$.

Finally, to show surjectivity, fix $B \in B(H)$ and set $A=P_{\overline{\operatorname{Im} S^{-1} B}} S B$. By Lemma 18, $\overline{\operatorname{Im} A}=\overline{\operatorname{Im} S^{-1} B}$, so

$$
\psi(A)=P_{\overline{\operatorname{Im} S A}} S^{-1} P_{\overline{\operatorname{Im} S^{-1} B}} S B=P_{\overline{\operatorname{Im} B}} S^{-1} P_{\overline{\operatorname{Im} S^{-1} B}} S B .
$$

Let $x \in H$. Then $S B x=s+z$ for some $s \in \overline{\operatorname{Im} S^{-1} B}$ and some $z \in \overline{\operatorname{Im} S^{-1} B}{ }^{\perp}=$ $\operatorname{Ker} B^{*} S^{-1}$, and therefore $P_{\overline{\operatorname{Im} S^{-1} B}} S B x=s=S B x-z$. Thus

$$
\begin{aligned}
\psi(A) x & =P_{\overline{\operatorname{Im} B}} S^{-1} P_{\overline{\operatorname{Im} S^{-1} B}} S B x \\
& =P_{\overline{\operatorname{Im} B}} S^{-1}(S B x-z) \\
& =B x-P_{\overline{\operatorname{Im} B}} S^{-1} z=B x
\end{aligned}
$$

since $z \in \operatorname{Ker} B^{*} S^{-1}$ implies $S^{-1} z \in \operatorname{Ker} B^{*}=\overline{\operatorname{Im} B}{ }^{\perp}$. Thus $\psi(A)=B$.

REMARK 19. Note the above proof shows that the inverse of the map $\psi(A)=$ $P_{\overline{\mathrm{Im} S A}} S^{-1} A$ has the same form and is given by $\psi^{-1}(B)=P_{\overline{\operatorname{Im} S^{-1} B}} S B$.

REFERENCES

[1] J. K. Baksalary, S. K. Mitra, Left-star and right-star partial orderings, Linear Algebra Appl. 149 (1991), 73-89.
[2] B. BLACKADAR, Operator algebras: Theory of C^{*}-algebras and von Neumann algebras, Springer, Berlin, 2006.
[3] G. Dolinar, A. Guterman, J. Marovt, Automorphisms of $K(H)$ with respect to the star partial order, Oper. Matrices 7 (2013), No. 1, 225-239.
[4] G. Dolinar, A. Guterman, J. Marovt, Monotone transformations on $B(H)$ with respect to the left-star and the right-star partial order, Math. Inequal. Appl. 17 (2014), No. 2, 573-589.
[5] G. Dolinar, S. Halicioglu, A. Harmanci, B. Kuzma, J. Marovt, B. Ungor, Preservers of the left-star and rigt-star partial orders, Linear Algebra Appl. 587 (2020), 70-91.
[6] M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), 139-141.
[7] P. A. Fillmore, W. E. Longstaff, On isomorphisms of lattices of closed subspaces, Can. J. Math. 5 (1984), 820-829.
[8] A. E. Guterman, Monotone additive transformations on matrices, Mat. Zametki 81 (2007), 681692.
[9] R. Hagen, S. Roch, B. Sibermann, C^{*} algebras and numerical analysis, CRC Press, Boca Raton, 2001.
[10] P. Legiša, Automorphisms of M_{n}, partially ordered by the star order, Linear Multilinear Algebra 54, No. 3, 157-188, 2006.
[11] L. MolnÁr, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), No. 6, 1867-1874.
[12] M. Z. NASHED (ed.), Generalized inverses and applications, Academic Press, New York-London, 1976.
(Received June 2, 2020)

Gregor Dolinar
University of Ljubljana
Faculty of Electrical Engineering
Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia
e-mail: gregor.dolinar@fe.uni-lj.si
Bojan Kuzma
University of Primorska Glagoljaška 8, SI-6000 Koper, Slovenia and
IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia
e-mail: bojan.kuzma@upr.si
Janko Marovt
University of Maribor
Faculty of Economics and Business
Razlagova 14, SI-2000 Maribor, Slovenia
and
IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia
e-mail: janko.marovt@um.si
Edward Poon
Embry-Riddle Aeronautical University
Department of Mathematics
3700 Willow Creek Road, Prescott, Arizona, USA
e-mail: edward.poon@erau.edu

[^0]: Mathematics subject classification (2020): Primary 47B49; Secondary 15A86, 06A06.
 Keywords and phrases: Left-star order, right-star order, preserver, Hilbert space.
 The authors acknowledge the financial support from the Slovenian Research Agency, ARRS (research programs No. P1-0222, No. P1-0288, and No. P1-0285, and research project No. N1-0210). The authors also acknowledge the project (Preserver problems with applications, BI-US/18-20-066) was financially supported by the Slovenian Research Agency.

