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ONE–SIDED STAR PARTIAL ORDER PRESERVERS ON B(H)

GREGOR DOLINAR, BOJAN KUZMA, JANKO MAROVT AND EDWARD POON

(Communicated by L. Molnár)

Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space
H . We classify (possibly non-additive) maps on B(H) , with H infinite dimensional, which
preserve either the left-star or the right-star partial order in both directions. We also introduce
natural, weaker versions of these partial orders and classify their preservers.

1. Introduction and statement of the main results

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert
space H . We denote by A∗ the adjoint operator of A ∈ B(H) and by ImA and KerA
the range and the kernel of A ∈ B(H) , respectively. Many partial orders can be defined
on B(H) . One of the most used is the star partial order �∗ which was introduced by
Drazin [6] and may be defined on B(H) in the following way. We write

A �∗ B when A∗A = A∗B and AA∗ = BA∗, A,B ∈ B(H).

If one of the two conditions defining the star order is omitted, then the remaining con-
dition does not induce a partial order. However, it was shown in [4] that by adding
conditions on the images of the considered operators we obtain the following two par-
tial orders.

DEFINITION 1. The left-star partial order on B(H) is a relation defined by

A �∗ B when A∗A = A∗B and ImA ⊆ ImB, A,B ∈ B(H).

The right-star partial order on B(H) is a relation defined by

A �∗ B when AA∗ = BA∗ and ImA∗ ⊆ ImB∗, A,B ∈ B(H).
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It is interesting to find the form of the maps which preserve a relation, a quantity
or some subsets. For example, let � be any partial order on B(H) . We say the map Φ
on B(H) is a bi-preserver of � (that is, Φ preserves � in both directions) if

A � B if and only if Φ(A) � Φ(B), A,B ∈ B(H).

Let Mn(F) , where F ∈ {R,C} , be the set of all n× n real or complex matrices.
Surjective bi-preservers of the star, or the left-star, or the right-star partial order on
Mn(F) , n � 3, have already been characterized; see [10, 5] and also [8]. More precisely,
in [5, Theorem 3] the following main result was proved.

PROPOSITION 2. Let n � 3 be an integer. Then a surjection Φ : Mn(F)→ Mn(F)
is a bi-preserver of the left-star partial order if and only if there exist invertible T,W ∈
Mn(F) such that Φ has the following form:

Φ(X) = T

(
•
X

•
X

†
+(I− •

X
•
X

†
) ·T−1T−∗ · •X •

X
†
·
[

•
X

•
X

†
·T−1T−∗ · •X •

X
†
]†) •

XW.

Here the map X �→ •
X denotes either identity, or entrywise conjugation, or Moore-

Penrose inverse, or entrywise-conjugated Moore-Penrose inverse on Mn(F) .

Results on star, or left-star, or right-star partial order preservers on Mn(F) were
extended to B(H) or some subsets of B(H) in [3, 4]. In [4] it is assumed that preservers
of the left-star or the right-star partial orders on B(H) with H infinite-dimensional are
bijective and additive. It is the aim of this paper to further generalize this result by
omitting additivity and injectivity.

Recall that the Moore-Penrose inverse of an operator A ∈ B(H) is an operator,
denoted by A† ∈ B(H) , which satisfies the four equations:

A†AA† = A†, AA†A = A, (A†A)∗ = (A†A), (AA†)∗ = (AA†).

Clearly, (A†)† = A . By applying adjoint on all four equations we also see that (A†)∗ is
the Moore-Penrose inverse of A∗ , that is,

(A†)∗ = (A∗)†.

Moreover, by the four equations which define the Moore-Penrose inverse, AA† is a
projection (i.e., a self-adjoint idempotent) onto ImA , which must therefore be closed.
Note also that A ∈ B(H) has a Moore-Penrose inverse if and only if the range of A is
closed (see, e.g. [12]). Since A∗ has a Moore-Penrose inverse whenever A does, we
see that ImA∗ is closed whenever A has a Moore-Penrose inverse.

The Moore-Penrose inverse, when it exists, is unique. Namely, if B satisfies the
same four equations, then

B = BAB = B(AB)∗ = BB∗A∗ = BB∗A∗(A∗)†A∗ = B(AB)∗(AA†)∗

= B(ABA)A† = BAA† = (BA)(A†A)A† = A∗B∗A∗(A∗)†A†

= A∗(A∗)†A† = (A†A)A† = A†.
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Moreover it exists for all operators with closed range. In fact, if A : H = KerA⊕
(KerA)⊥ →H = (ImA)⊥⊕ (ImA) is such an operator, then its Moore-Penrose inverse,

A† : H = (ImA)⊥⊕ (ImA) → H

is defined as zero on (ImA)⊥ and as the inverse,
(
A|(KerA)⊥

)−1
on ImA (see [9, Theo-

rem 2.4, page 80]). It follows that A†A is a projector onto ImA† = (KerA)⊥ = ImA∗ =
ImA∗ .

In particular, for operators A,B with closed range,

ImA† ⊆ ImB† ⇔ ImA∗ ⊆ ImB∗ ⇔ (KerA)⊥ ⊆ (KerB)⊥

⇔ KerB ⊆ KerA ⇔ A(KerB) = 0 ⇔ A(I−B†B) = 0
(1)

where the last identify holds because (I−B†B) is a projection onto (ImB∗)⊥ = KerB .
Also, the following string of implications for a closed range operator T

T †X = 0 ⇒ TT †X = 0 ⇒ X∗(TT †) = 0 ⇒ X∗TT †T = X∗T = 0 ⇒ T ∗X = 0

⇒ X∗TT † = 0 ⇒ T †(TT †)X = T †X = 0

proves that
T ∗X = 0 if and only if T †X = 0 (2)

(see also [1]). Hence, by its definition, and in view of (1)

A† �∗ B† ⇔ (A†)∗A† = (A†)∗B† and A(I−B†B) = 0. (3)

By inserting T = A† and X = B†−A† into (2) we see that the first equality is equivalent
to

AA† = (A†)†A† = (A†)†B† = AB†. (4)

By multiplying it with A†(·)B and utilizing at the end also the second equality in (3)
we get

A†AA†B = A†AB†B = A†A,

so A†B = A†A . By (2) this is equivalent to A∗B = A∗A . On the other hand, by multi-
plying (4) with A† and taking the adjoints we get (A†)∗ = (B†)∗(A†A)∗ = (B†)∗(A†A) .
It follows that Im(A†)∗ ⊆ Im(B†)∗ or equivalently, Im(A)⊆ Im(B) . Hence, (3) implies
A �∗ B .

This shows that the Moore-Penrose inverse X �→ X† is a well-defined map on the
set of operators with closed range and it does preserve the �∗ order in both directions.

However, the general form of surjective bi-preservers of the left-star partial order
on B(H) cannot be of the same form as in Proposition 2, since an arbitrary operator in
B(H) does not necessarily have a closed range.

It is easy to check (see e.g., [3]) that the map Φ : B(H) → B(H) defined by

Φ(A) = UAT, A ∈ B(H), (5)
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where U ∈ B(H) is a unitary operator and T ∈ B(H) is invertible, is a bi-preserver
of the left-star partial order. We will show that such maps are the only possible sur-
jective bi-preservers of the left-star partial order, with only one additional possibility
that U : H → H may be an anti-unitary operator. Recall that, by its definition, an anti-
unitary operator U is a conjugate-linear sujective isometry. Its adjoint, U∗ is defined
by 〈Ux,y〉 = 〈U∗y,x〉 , where 〈·, ·〉 is a scalar product on H . Our main result therefore
reads as follows.

THEOREM 3. Let H be an infinite-dimensional complex Hilbert space. Then
Φ : B(H) → B(H) is a surjective bi-preserver of the left-star partial order �∗ if and
only if

Φ(A) = UAT, A ∈ B(H),

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded
linear (respectively conjugate-linear) operator on H .

It is interesting to observe that for infinite-dimensional Hilbert spaces the structure
of surjective left-star partial order bi-preservers is simpler than in finite dimensional
spaces, see Proposition 2. In particular, this simpler structure shows yet again that the
Moore-Penrose inverse cannot be extended to operators with non-closed range.

Observe that for A,B ∈ B(H) the following holds (see, e.g., [4, Lemma 3])

A �∗ B if and only if A∗ �∗ B∗. (6)

Let Φ : B(H)→B(H) be a surjective bi-preserver of the right-star partial order. Apply-
ing Theorem 3 on the map Ψ(X) = (Φ(X∗))∗,X ∈ B(H) , which by (6) is a bi-preserver
of the left-star order, we obtain the next corollary.

COROLLARY 4. Let H be an infinite-dimensional complex Hilbert space. Then
Φ : B(H) → B(H) is a surjective bi-preserver of the right-star partial order �∗ if
and only if

Φ(A) = TAU, A ∈ B(H),

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded
linear (respectively conjugate-linear) operator on H .

REMARK 5. Our results easily extend to classify converters from �∗ to �∗ i.e.,
to surjective maps Ψ : B(H) → B(H) , where H is infinite-dimensional, with the prop-
erty A �∗ B if and only if Ψ(A) �∗ Ψ(B) . Namely, given any such Ψ the map
Φ(X) = Ψ(X)∗ preserves �∗ order.

Note that, unlike in finite-dimensional spaces, the images of operators on an infinite-
dimensional Hilbert space H need not be closed. It is hence natural to consider also
the weak counterparts to the left- and right- star partial orders where one compares the
closures of images. They coincide with the classical ones on finite-dimensional spaces
and are defined as follows:
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DEFINITION 6. The weak left-star partial order on B(H) is a relation defined by

A �∗ w B when A∗A = A∗B and ImA ⊆ ImB, A,B ∈ B(H).

The weak right-star partial order on B(H) is a relation defined by

A �∗w B when AA∗ = BA∗ and ImA∗ ⊆ ImB∗, A,B ∈ B(H).

That these are actually partial orders is a straightforward consequence of the ob-
servation

A �∗ w B ⇐⇒ A∗ �∗w B∗ (7)

and the following useful proposition.

PROPOSITION 7. A �∗ w B if and only if A = PB for some projection P onto a
closed subspace of ImB.

Proof. (⇒) Suppose A �∗ w B . Let P be the orthogonal projection onto ImA .

Observe that A∗(A−B) = 0, so Im(A−B)⊆ KerA∗ = ImA
⊥

. Then

A = PA = PB+P(A−B) = PB.

(⇐) Suppose A = PB for some projection P onto a subspace of ImB . Then
ImA ⊆ ImB and

A∗A = B∗P2B = B∗PB = A∗B. �

REMARK 8. If A �∗ w B , then actually A = QB where Q is a projection onto
ImA . This is seen by pre-multiplying the equation in Proposition 7 with Q .

We can now state our second main result.

THEOREM 9. Let H be an infinite-dimensional complex Hilbert space. Then
Φ : B(H) → B(H) is a surjective bi-preserver of the weak left-star partial order �∗ w

if and only if there exists an invertible positive definite S ∈ B(H) , a unitary (or anti-
unitary) operator U on H , and an invertible bounded linear (respectively, conjugate-
linear) operator T on H such that

Φ(A) = UPImSAS−1AT, A ∈ B(H),

where PImSA is the orthogonal projection onto ImSA.

Similarly to Corollary 4 we can see that the following is true:

COROLLARY 10. Let H be an infinite-dimensional complex Hilbert space. Then
Φ : B(H)→ B(H) is a surjective bi-preserver of the weak right-star partial order �∗w

if and only if there exists an invertible positive definite S ∈ B(H) , a unitary (or anti-
unitary) operator U on H , and an invertible bounded linear (respectively, conjugate-
linear) operator T on H such that

Φ(A) = TAS−1PImSA∗U, A ∈ B(H),

where PImSA∗ is the orthogonal projection onto ImSA∗ .
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2. Preliminary results

We start with some notation and auxiliary results. Given a vector w ∈H we let w∗
be a bounded linear functional on H given by z �→ 〈z,w〉 . Denote by xw∗ a rank-one
operator given by z �→ 〈z,w〉x , where w,x ∈ H are nonzero. Recall that every rank-one
operator in B(H) can be written in this form.

We will need in the sequel the following Propositions 11–16. Observe that Propo-
sitions 11–12 and 14–16 hold for both �∗ and �∗ w orders, therefore we introduce
a new notation L to denote either �∗ or �∗ w . Similarly, let R denote either �∗
and �∗w .

PROPOSITION 11. If P∈ B(H) is a projection and A L P, then A is a projection
and AP = PA = A.

Proof. It suffices to show this when L = �∗ w because if A �∗ P then also
A �∗ w P . But for �∗ w this follows immediately from Remark 8. �

PROPOSITION 12. Let A ∈ B(H) be nonzero. For every nonzero x ∈ ImA there
exists a nonzero y ∈ H such that xy∗ L A.

Proof. Define y = A∗x
‖x‖2 . Since x = Az ∈ ImA for some z ∈ H , it follows that

y∗z = x∗x
‖x‖2 = 1, so y �= 0. The rest follows directly from the definition of �∗ and

�∗ w . �
Let us now show that a similar observation holds also for R .

PROPOSITION 13. Let A∈B(H) be nonzero and suppose the range of A is closed.
Let y ∈ ImA∗,y �= 0. Then there exists a nonzero l ∈ H such that yl∗ R A∗ .

Proof. This was shown in [4] for the partial order �∗ . It holds also for �∗w

since �∗ and �∗w coincide when the range of A is closed. �
We denote by B1(H) the set of all rank-one operators in B(H) . Let now xy∗ and

uv∗ be two rank-one operators in B(H). Let us define the following relation between
operators in B1(H) : we write xy∗ ∼ uv∗ if x and u are linearly dependent or y and v
are linearly dependent. So, for two operators A,B ∈ B1(H) we write A ∼ B if ImA =
ImB or KerA = KerB .

PROPOSITION 14. Let A,B ∈ B(H), A �= B, be rank-one operators in B(H).
Then A ∼ B if and only if there does not exist a rank-two operator C ∈ B(H) such
that A L C and B L C.

Proof. As in the proof of Proposition 13 this follows from [4]. �
Let x,y ∈ H be nonzero. Let us define the following sets of operators:

Lx = {xv∗ : v ∈ H \ {0}} and Ry = {zy∗ : z ∈ H \ {0}}.
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Note that every operator in Lx and every operator in Ry is of rank-one.

PROPOSITION 15. An operator A is invertible if and only if for every nonzero
x ∈ H and for every nonzero y ∈ H there exist B ∈ Lx and C ∈ Ry such that B L A
and C L A.

Proof. This was shown in [4] for the usual left-star partial order. For the weak
left-star partial order the necessity follows from Proposition 12, Proposition 13, and
equation (7). To prove sufficiency, first let x∈H be nonzero. By hypothesis xv∗ �∗ w A
for some nonzero v ∈ H , so by the definition of �∗ w it follows that x ∈ ImA . Thus
ImA is dense, so KerA∗ = 0 and A∗ is injective.

Now let y ∈ H be nonzero, so there exists some nonzero z such that zy∗ �∗ w A .
By Remark 8, zy∗ = PA for the projection P whose range is Cz . It follows that y ∈
CA∗z . Thus A∗ is also surjective and the result follows. �

The following result gives a characterization of rank-one operators in B(H) that
are dominated with respect to L by a given operator B ∈ B(H) with rankB � 2.

PROPOSITION 16. Let rankB � 2 .

1. A rank-one R �∗ B if and only if R = xx∗B for some vector x ∈ ImB with ‖x‖=
1 .

2. A rank-one R �∗ w B if and only if R = xx∗B for some vector x ∈ ImB with
‖x‖ = 1 .

Proof. The first assertion may be proved in the same way as Lemma 6 in [5], and
for the second assertion we can use Proposition 7 and Remark 8. �

To streamline the proofs, we state and prove a common result for both the left-star
partial order and its weaker version.

PROPOSITION 17. Let H be an infinite-dimensional complex Hilbert space. Let
Φ : B(H) → B(H) be a surjective bi-preserver of either the left-star partial order �∗
or the weak left-star partial order �∗ w . Then Φ is bijective, preserves rank, and there
exist a positive invertible operator S ∈ B(H) and a unitary (or anti-unitary) operator
U and an invertible bounded linear (respectively conjugate-linear) T on H such that

U∗Φ(xy∗)T−1 =
Sxy∗S
‖Sx‖2

for all rank-one operators xy∗ .

Most of the arguments in the following proof hold at the same time for �∗ and
for �∗ w ; differences are noted whenever they occur. In particular, recall that �∗ and
�∗ w coincide on sets of operators acting on finite-dimensional spaces.
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Proof. The proof will be divided into several steps. Recall that L denotes either
�∗ or �∗ w . Let from now on H be an infinite-dimensional complex Hilbert space

and Φ : B(H) → B(H) as in Theorem 3, i.e., Φ is a surjective map such that for every
pair A,B ∈ B(H) we have

A L B if and only if Φ(A) L Φ(B).

Step 1. First we show that Φ is injective and therefore bijective, and that Φ(0) =
0 .

Indeed, if Φ(A) = Φ(B) , then Φ(A) L Φ(B) L Φ(A) and therefore we have
A L B L A . So, A = B . Since 0 L Φ−1(0), we have Φ(0) L 0 and thus Φ(0) = 0.

Step 2. Let B∈ B(H) . Then rankB = ∞ if and only if there exists an infinite chain
0 = A0 L A1 L . . . L B of pairwise distinct operators. Moreover, rankB = r < ∞ if
and only if there exists a chain

0 = A0 L A1 L . . . L Ar = B

of r+1 pairwise distinct operators and no other such chain has larger length.
To see that the existence of the infinite chain implies rankB = ∞ , note that ImAi ⊆

ImB . So we are done if rankAi = ∞ . However, if each Ai is of finite rank, then by
Proposition 7 and Remark 8 (which hold also for �∗ since the ranges of all operators
Ai are closed) we obtain that ImAi � ImAi+1 so again dimImB = ∞ . For the converse
implication, take an orthonormal system (xn)n ∈ ImB . By Proposition 16 we have
xix∗i B L B for each i . Also, one easily sees that An = ∑n

i=1 xix∗i B is a nested sequence
of operators below B with respect to the order L . One proceeds similarly when
rankB < ∞ .

Step 3. Φ preserves the rank of operators.
Let B∈ B(H) with rankB = r < ∞ . By Step 2 there exists a chain 0 = A0 L A1 L

. . . L Ar = B of r + 1 pairwise distinct operators and no other such chain has larger
length. Since Φ is injective and a bi-preserver of the order L , it follows that 0 =
Φ(A0) L Φ(A1) L . . . L Φ(Ar) = Φ(B) is a chain of r+1 pairwise distinct operators
and no other such chain has larger length. Thus, again by Step 2, rankΦ(B) = r . Since
Φ−1 has the same properties as Φ , we may conclude that for B∈B(H) , rankB = r < ∞
if and only if rankΦ(B) = r .

Step 4. Φ is a bi-preserver of the relation ∼ .
Indeed, it follows by Proposition 14 and Step 3 that for every pair A,B ∈ B1(H)

we have A ∼ B if and only if Φ(A) ∼ Φ(B) .
Step 5. Action of Φ on the sets Lx , Ry .
It is easy to see that for nonzero x,y ∈ H , Lx and Ry are the only maximal sets

(with respect to the set inclusion) which consist of pairwise related rank-one operators
via ∼ . Since Φ is a bijective bi-preserver of the relation ∼ , it follows that for every
nonzero x ∈ H there exists a nonzero u ∈ H such that Φ(Lx) = Lu , or there exists a
nonzero y ∈ H such that Φ(Lx) = Ry. Similarly, for every nonzero y ∈ H there exists
a nonzero x ∈ H such that Φ(Ry) = Lx , or there exists a nonzero v ∈ H such that
Φ(Ry) = Rv . The same holds for Φ−1 .
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Step 6. Φ preserves invertibility.
Let now A ∈ B(H) be an invertible operator and suppose u∈ H is nonzero. There

exists a nonzero x ∈H such that Φ(Lx) = Lu , or there exists a nonzero y ∈H such that
Φ(Ry) = Lu. Suppose Φ(Lx) = Lu. Since A is invertible, it follows by Proposition 15
that there exists B ∈ Lx such that B L A. So, Φ(B) L Φ(A). Note that Φ(B) ∈ Lu.
Similarly, if Φ(Ry) = Lu there exists C ∈ Ry such that Φ(C) L Φ(A) and Φ(C) ∈ Lu.
So, since Φ is surjective, we may find for every nonzero u ∈ H an operator D ∈ Lu

such that D L Φ(A). In the same way we prove that there exists an operator E ∈ Ru

such that E L Φ(A). By Proposition 15 we may conclude that Φ(A) is an invertible
operator. Since Φ−1 has the same properties as Φ it follows that A∈ B(H) is invertible
if and only if Φ(A) is invertible.

Step 7. Without loss of generality we may assume that Φ(I) = I .
Indeed, Φ(I) , where I is the identity operator, is also invertible. By (5) we may

replace the map Φ with the map Ψ : B(H) → B(H) which is defined in the following
way: Ψ(A) = Φ(A)Φ−1(I). From now on we may and will assume that

Φ(I) = I.

Step 8. Φ leaves invariant the set P(H) of all projections in B(H) .
By Definitions 1 and 6 it is clear that for every P ∈ P(H) we have P L I. So,

Φ(P) L I and hence by Proposition 11, Φ(P) is also a projection. Since Φ is a bi-
preserver of the left-star partial order, we may conclude that Φ(P(H)) = P(H) .

Step 9. Restriction of Φ on P(H) .
Let P,Q ∈ P(H). Proposition 11 yields that if P L Q, then PQ = QP = P and

hence P � Q where � denotes the usual order on P(H) (i.e., P � Q when PQ =
QP = P). Also, directly by Definitions 1 and 6 it follows that if PQ = QP = P for
P,Q ∈ P(H), then P L Q. The restriction of Φ to P(H) is a bijective map from
P(H) to P(H) which preserves the usual order in both directions.

Step 10. Action of Φ on P(H) .
We may identify closed subspaces in H with operators in P(H) . So, the map

Φ induces a lattice automorphism, i.e., a bijective map ω defined on the set of all
closed subspaces in H , where M ⊆ N if and only if ω(M) ⊆ ω(N) for every pair of
closed subspaces M,N in H. Recall that H is an infinite dimensional complex Hilbert
space. By [7, Theorem 1] there exists a bicontinuous linear or conjugate-linear bijection
S : H →H such that ω(M) = SM for every closed subspace M in H. Let from now on
PM ∈ B(H) denote a projection with ImPM = M . It follows that

Φ(PM) = PS(M)

for every PM ∈ P(H) .
Step 11. Without loss of generality we may assume that the operator S (introduced

in Step 10) is an invertible and a positive operator.
Let the operator S : H →H be as in Step 10, i.e., a bicontinuous linear or conjugate-

linear bijection. Suppose first S is linear and let S = U |S| be its polar decomposition
where U is a partial isometry and |S| = √

S∗S , i.e., |S| is a positive operator in B(H) .
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Since S is invertible, U ∈ B(H) is unitary. Step 10 implies that

Φ(xx∗) =
1

‖Sx‖2 (Sx)(Sx)∗ =
1

‖Sx‖2 Sxx∗S∗

for every x ∈ H with ‖x‖ = 1. By replacing Φ with U∗Φ(·)U we may by (5) without
loss of generality assume that S is an invertible, positive operator in B(H) (and thus
self-adjoint).

Let now S : H → H be a bounded, conjugate-linear bijection. We will show that
even in this case we may assume that S ∈ B(H) is an invertible, positive (linear) op-
erator. To show this let us recall some known facts about bounded conjugate-linear
operators on Hilbert spaces (see for example [2]). A bounded conjugate-linear operator
T : H → H has a unique conjugate-linear adjoint T ∗ : H → H defined with

〈Tx,y〉 = 〈T ∗y,x〉

for all x,y ∈ H . As in the linear case, we say that T is self-adjoint when T = T ∗ , i.e.,
〈Tx,y〉 = 〈Ty,x〉 for every x,y ∈ H . Let A be a bounded conjugate-linear operator on
a Hilbert space H and let B ∈ B(H) . Then both AB and B∗A∗ are bounded conjugate-
linear operators on H and since

〈(AB)x,y〉 = 〈A∗y,Bx〉 = 〈B∗A∗y,x〉

we may by the uniqueness of the adjoint conclude that

(AB)∗ = B∗A∗.

Similarly, if both A and B are bounded conjugate-linear operators on H , then AB,
B∗A∗ ∈ B(H) and

〈(AB)x,y〉 = 〈A∗y,Bx〉 = 〈Bx,A∗y〉 = 〈B∗A∗y,x〉 = 〈x,B∗A∗y〉

and therefore again (AB)∗ = B∗A∗ .
An example of a conjugate-linear operator on a complex Hilbert space H is the

map J which, relative to a fixed orthonormal basis (eλ )λ∈N∪Λ where Λ is the empty
set in case H is a separable Hilbert space, is defined as follows: J : x = ∑αλ eλ �→
∑αλ eλ , αλ ∈ C . Note that J is an involution, i.e., a conjugate-linear isometry from
H onto H with J2 = I , and that every involution is of this form (see [2]). Observe also
〈Jx,y〉 = 〈Jy,x〉 for every x,y ∈ H , i.e., J is self-adjoint. Let T : H → H be a bounded
conjugate-linear operator and let J : H → H be as above. Then JT ∈ B(H) and

T ∗T = T ∗JJT = (J∗T )∗(JT ) = (JT )∗(JT ).

It follows that |T |= |JT | is independent of J and hence well defined. If JT =U |JT |=
U |T | is the polar decomposition for JT , then T = V |T | is the polar decomposition of
T , where V = JU is a conjugate-linear partial isometry. So, conjugate-linear operators
have a well-defined polar decomposition with analogous properties to those of linear
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operators (see also [2]). Let T =V |T | be the polar decomposition of a conjugate-linear
bounded operator T . Suppose T is invertible. Observe that then V is anti-unitary, i.e.,
a conjugate-linear bounded operator on H with V ∗V =VV ∗ = I . Also, |T | = |JT | is a
positive, invertible, bounded linear operator.

Let now U be an anti-unitary operator on H and S : H →H an invertible conjugate-
linear bounded operator. Let A,B ∈ B(H) . Then ImA ⊆ ImB if and only if ImUAS ⊆
ImUBS , and ImA ⊆ ImB if and only if ImUAS ⊆ ImUBS (for use with the usual
and weak partial orders respectively). Also A∗A = A∗B if and only if (UAS)∗(UAS) =
S∗A∗U∗UAS = S∗A∗AS = S∗A∗BS = S∗A∗U∗UBS = (UAS)∗(UBS) , and therefore

A L B if and only if UAS L UBS. (8)

Suppose S : H →H from Step 10 is a conjugate-linear, bijective, and bounded operator.
Then we may write S =U |S| where U is an anti-unitary operator on H and |S| ∈ B(H)
a positive, invertible operator. By again replacing Φ with U∗Φ(·)U , we may thus by
(8) as in the linear case assume that S is a positive linear, bounded, and invertible
operator on H .

From now on, let S ∈ B(H) be an invertible and positive operator (and thus self-
adjoint).

Step 12. We show that Φ(PMB(H)PM) = PS(M)B(H)PS(M) where PMB(H)PM =
{PMAPM : A ∈ B(H)} and PM ∈ B(H) is a finite rank projection of rank n � 2 .

Since Φ−1 has the same properties as Φ , it is enough to show that

Φ(PMB(H)PM) ⊆ PS(M)B(H)PS(M).

First note that A∈PMB(H)PM if and only if ImA⊆ ImPM and KerPM ⊆KerA . Indeed,
if A ∈ PMB(H)PM , then A = PMAPM and therefore ImA ⊆ ImPM and Ker PM ⊆ Ker
A . Conversely, if ImA ⊆ ImPM , then A = PMA and if Ker PM ⊆ Ker A , then ImA∗ ⊆
ImPM and therefore A∗ = PMA∗ , i.e., A = APM . It follows that A = PMAPM and so
A ∈ PMB(H)PM .

First, let us show that for every rank-one operator A ∈ PMB(H)PM it follows that
Φ(A) ∈ PS(M)B(H)PS(M) . Recall that

Φ(xx∗) =
1

‖Sx‖2 (Sx)(Sx)∗

for every x ∈H with ‖x‖ = 1. Suppose A = αxy∗ where ‖x‖= ‖y‖= 1, α ∈ C\{0} ,
and A ∈ PMB(H)PM . Then x,y ∈ M . Since A ∼ xx∗ and A ∼ yy∗ , it follows by Step 4
that

Φ(A) ∼ 1

‖Sx‖2 (Sx)(Sx)∗ and Φ(A) ∼ 1

‖Sy‖2 (Sy)(Sy)∗.

If x and y are linearly independent, then by the bijectivity of S also Sx and Sy are
linearly independent. It follows that Φ(A) = λ (Sx)(Sy)∗ or Φ(A) = μ(Sy)(Sx)∗,λ ,μ ∈
C\{0} . In both cases Φ(A) ∈ PS(M)B(H)PS(M) and it is not a scalar multiple of a rank-
one projection.
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If y ∈ Cx , then A ∈ Cxx∗ . By the previous argument applied on Φ−1 and since
Φ preserves operators of rank-one we have that Φ(A) is a scalar multiple of a rank-
one projection. Note that A ∼ xx∗ , so Φ(A) ∼ Φ(xx∗) ∈ C(Sx)(Sx)∗ and therefore
Φ(A) ∈ PS(M)B(H)PS(M) .

Second, let now D ∈ PMB(H)PM be an operator of rank at least two. By Proposi-
tion 16, for each rank-one C such that C L D , it follows C = xx∗D , x ∈ ImD = ImD .
This yields C ∈ PMB(H)PM and hence

Φ(C) ∈ PS(M)B(H)PS(M) for every rank one C L D. (9)

So, ImΦ(C) ⊆ ImPS(M) . Since Φ is a bijective bi-preserver and maps the set of all
rank-one operators onto itself (see also Proposition 12),

ImΦ(D) ⊆
⋃

{ImΦ(C) : C ∈ B1(H) and C L D} ⊆ ImPS(M).

Recall that M , hence also S(M) , is a finite-dimensional subspace; since S(M) con-
tains the range of Φ(D) , the range of Φ(D) is closed. In order to prove that Φ(D) ∈
PS(M)B(H)PS(M) it remains to show that ImΦ(D)∗ ⊆ ImPS(M) .

For a nonzero y ∈ ImΦ(D)∗ there exists by Proposition 13, l ∈ H, l �= 0, such
that Φ(C)∗ = yl∗R Φ(D)∗ for some C ∈ B1(H) . Note that ImΦ(C)∗ = Cy , and since
y ∈ ImΦ(D)∗ was arbitrary it follows

ImΦ(D)∗ ⊆
⋃

{ImΦ(C)∗ : C ∈ B1(H) and Φ(C)∗R Φ(D)∗}
=
⋃

{ImΦ(C)∗ : C ∈ B1(H) and C L D} ,

where the last equality follows by (6) and (7).
Recall that D ∈ PMB(H)PM . For every C ∈ B1(H) where C L D we have

Φ(C) ∈ PS(M)B(H)PS(M) by (9). It follows that ImΦ(C)∗ ⊆ ImPS(M) . This implies
that ImΦ(D)∗ ⊆ ImPS(M) and hence Φ(D) ∈ PS(M)B(H)PS(M) .

Step 13. Reduction of the problem to bijective bi-preservers on Mn(C) .
Take any finite-dimensional subspace M ⊆H of dimension at least three and iden-

tify PMB(H)PM and PS(M)B(H)PS(M) with Mn(C) , n = dimM = dimS(M) . By Steps
9 and 10

Φ(xx∗) =
1

‖Sx‖2 (Sx)(Sx)∗ =
1

‖Sx‖2 Sxx∗S

for every unit vector x ∈ H . By [5, equations (9) and (10)] either

Φ(xy∗) = γxy∗Sxy∗S

for every rank-one xy∗ ∈ PMB(H)PM or

Φ(xy∗) = γxy∗Syx∗S

for every rank-one xy∗ ∈ PMB(H)PM where γxy∗ is a nonzero scalar that depends on
xy∗ .

It easily follows that
Φ(xy∗) = γxy∗Sxy∗S (10)
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for every rank-one xy∗ ∈ B(H) or

Φ(xy∗) = γxy∗Syx∗S (11)

for every rank-one xy∗ ∈ B(H) . Note that in the former case we have γxy∗ = 1
‖Sx‖2 by

[5, Lemma 19].
Step 14. We assume Φ is of the form (11) on the set of all rank-one operators in

B(H) and get a contradiction.
Observe first that xw∗ = uv∗ if and only if either one of x,w and one of u,v is zero

or else x ‖ u and w ‖ v (i.e., are parallel). Suppose there exists an invertible, positive
operator S ∈ B(H) such that

Φ(xy∗) =
Syx∗S
λxy∗

for every nonzero x,y ∈ H where λxy∗ is some nonzero scalar that depends on xy∗ .
Fix an orthonormal basis (eλ )λ∈N∪Λ where Λ is an empty set in case H is a separable
Hilbert space. Define a linear operator B with Ben = 1

nen , n ∈ N , and Beλ = eλ for all
λ ∈ Λ . Note that B is injective, bounded, and has a dense range. Let C = Φ(B) and let
x ∈ ImB be a unit vector. By the assumption

Φ(xx∗B) =
SB∗xx∗S

α
L C

where α is some nonzero scalar. Since Φ preserves rank, there exists by Proposition
16 a unit vector y such that SB∗xx∗S

α = yy∗C . It follows that

y =
SB∗x
‖SB∗x‖μ (12)

for some unimodular scalar μ which depends on x . Also,

y∗C = x∗Sδ (13)

for some scalar δ . Equation (12) yields y∗C = x∗BSC
‖SB∗x‖μ and thus by (13)

x∗Sδ =
x∗BSC
‖SB∗x‖μ .

Since x ∈ ImB , we may write x = Bz
‖Bz‖ for some nonzero z ∈ H . So,

z∗B∗Sδz = z∗B∗BSCμz

where scalars δz and μz depend on z . This implies that B∗S and B∗BSC are locally
linearly dependent. However since B∗S is of infinite rank, we may conclude (see e.g.
[11, page 1869]) that they are linearly dependent, i.e., B∗BSC = λB∗S for some scalar
λ . Note λ is nonzero because Ker(B∗BS) = {0} and C = Φ(B) is nonzero since
B �= 0. We have

C∗SB∗B = λSB.
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Evaluate this identity on the vector en and use the fact that B∗B = B2 to obtain C∗
(

Sen
n2

)
= λSen

n and thus C∗(Sen) = nλSen . We may (for each integer n ) conclude that the op-
erator C∗ is unbounded which is a contradiction.

Step 15. Conclusion of the proof.
By the preceding steps, and by taking into account the assumptions from Steps 7

and 11, the result follows. �

3. Proof of Theorem 3

Proof of Theorem 3. By our earlier remarks, sufficiency is clear. To prove neces-
sity, suppose Φ is a surjective bi-preserver of �∗ . By Proposition 17 Φ is bijective
and we may assume without loss of generality that Φ maps rank-one operators xy∗ into

Φ(xy∗) =
Sxy∗S
‖Sx‖2

for some invertible, positive operator S ∈ B(H) . It suffices to show that Φ is then the
identity map.

Consider A ∈ B(H) with a dense range and let B = Φ(A) . If x ∈ ImA is a unit
vector, then by Proposition 16 xx∗A �∗ A (note that the range-kernel orthogonality
KerA∗ = (ImA)⊥ implies x∗A �= 0) so applying Φ gives

Sxx∗AS
‖Sx‖2 �∗ B

which by Proposition 16 means that there exists a unit vector z ∈ ImB such that

Sxx∗AS
‖Sx‖2 = zz∗B. (14)

It follows that Sx = δxz ∈ ImB for every x ∈ ImA where δx is a nonzero scalar that
depends on x , and in particular, S ImA ⊆ ImB . Conversely, if z ∈ ImB is a unit vector,
then 0 �= zz∗B �∗ B , and since Φ−1 also preserves the order �∗ and rank of opera-
tors, there exists a unit vector x ∈ ImA = ImΦ−1(B) such that Φ(xx∗A) = zz∗B , i.e.,
there exists x ∈ ImA such that Sx = δxz . Hence

ImB = S ImA. (15)

Let x ∈ ImA and x = Aw �= 0. Insert for x in (14) x
‖x‖ = Aw

‖x‖ to deduce

γwSAww∗A∗AS = zz∗B

where γw is some nonzero scalar. We infer that z ∈ CSAw and since S∗ = S we obtain

μwSAww∗A∗AS = SAww∗A∗SB

for some nonzero scalar μw . Comparing both sides we get

μww∗A∗AS = w∗A∗SB
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for all vectors w such that Aw �= 0. Clearly this holds also if Aw = 0. Then A∗AS and
A∗SB are locally linearly dependent and since A is not rank-one or zero we have that
there exists λ ∈ C such that

λA∗AS = A∗SB,

that is
A∗(λA−SBS−1) = 0.

Since ImA is dense, A∗ is injective (by the range-kernel orthogonality) so λA = SBS−1

or equivalently,
B = λS−1AS.

It follows that ImB = S−1 ImA = S ImA where the last identity follows from (15). So,

S2 ImA = ImA

whenever ImA is a dense space.
Suppose there exists a vector x ∈ H such that x and y = S2x are linearly indepen-

dent vectors. Fix an orthonormal basis (eλ )λ∈N∪Λ where Λ is the empty set in case H
is a separable Hilbert space and define a linear operator A with Aen = 1

nen , n ∈ N , and
Aeλ = eλ for all λ ∈ Λ . Recall that A is injective, bounded, and has a dense range.
Let ŷ = ∑ 1

n en and note that ŷ /∈ ImA . There exists a bounded linear bijection T on H
which maps e1 to x and ŷ to y . Note that x ∈ ImTA and hence y = S2x ∈ S2 ImTA ,
however y /∈ ImTA , a contradiction with S2 ImTA = ImTA . It follows that S2 and I
are locally linearly dependent and since the positive operator S2 is not rank-one or zero,
there exists λ > 0 such that S2 = λ I and so its positive square root is S =

√
λ I . This

implies that Φ(xy∗) = Sxy∗S
‖Sx‖2 = xy∗ and so Φ is the identity map on operators of rank at

most one. By applying [4, Lemma 13] we see that Φ is the identity.
Taking into account the assumption (see also Proposition 17) we may conclude

that if H be an infinite-dimensional complex Hilbert space and Φ : B(H) → B(H) a
surjective bi-preserver of the left-star partial order, then

Φ(A) = UAT, A ∈ B(H),

where U ∈ B(H) is a unitary operator and T ∈ B(H) is an invertible operator, or U
is an anti-unitary operator on H and T is an invertible conjugate-linear operator on
H . �

4. Proof of Theorem 9

Before proving Theorem 9, we first investigate a special class of maps that arise
for bi-preservers of the weak left-star partial order.

LEMMA 18. Fix an invertible positive S ∈ B(H) and define ψ : B(H)→ B(H) by

ψ(A) = PImSA S−1A, A ∈ B(H).

Then Kerψ(A) = KerA and Imψ(A) = ImSA.
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Proof. For the first assertion,

Kerψ(A) = {x : S−1Ax ∈ ImSA
⊥ = Ker(SA)∗}

= {x : A∗SS−1Ax = 0} = {x : A∗Ax = 0}
= KerA.

For the second assertion, it suffices to prove Imψ(A)
⊥

= ImSA
⊥

. Note

Imψ(A)
⊥

= Kerψ(A)∗ = {x : A∗S−1PImSA x = 0}
= ImSA

⊥ +{x ∈ ImSA : A∗S−1x = 0}.
But

{x ∈ ImSA : A∗S−1x = 0} = {x = limSAxn : A∗(limS−1SAxn) = 0}
write y = S−1x

= {Sy : y = limAxn,A
∗y = 0}

= {Sy : y ∈ ImA∩KerA∗ = {0}}= {0},
so the result follows. �

Proof of Theorem 9. We begin by proving necessity. Suppose Φ : B(H) → B(H)
is a surjective bi-preserver of �∗ w . By Proposition 17 Φ is bijective, preserves rank,
and we may assume without loss of generality that there exists an invertible positive
definite S ∈ B(H) such that

Φ(xy∗) =
Sxy∗S
‖Sx‖2

for all nonzero x ∈ H . It suffices to show that, for all B ∈ B(H) ,

Φ(B) = PImSBS−1BS

where PImSB is the orthogonal projection onto ImSB .
Let B ∈ B(H) and write C = Φ(B) . By Proposition 7, and since Φ is a bijective

rank-preserving bi-preserver of �∗ w , the following are equivalent.

(a) R = xx∗B for some x ∈ ImB with ‖x‖ = 1.

(b) rankR = 1 and R �∗ B .

(c) rankΦ(R) = 1 and Φ(R) �∗ C .

(d) Φ(R) = yy∗C for some y ∈ ImC with ‖y‖ = 1.

Because (a) implies (d) , for each unit vector x ∈ ImB there exists a unit vector y ∈
ImC such that

Sxx∗BS
‖Sx‖2 = yy∗C. (16)
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From this we conclude that SImB ⊆ ImC . Conversely, because (d) implies (a) , for
each unit vector y ∈ ImC there exist a unit vector x ∈ ImB so that (16) holds, whence
ImC ⊆ SImB . Thus ImC = SImB = ImSB .

Let x be a unit vector in ImB and set y = Sx/‖Sx‖ . By (16)

C∗Sx = SB∗x = SB∗S−1(Sx).

Thus C∗ = SB∗S−1 when restricted to ImSB .
We also have KerC∗ = (ImC)⊥ = (ImSB)⊥ . Thus for x ∈ ImSB , y ∈ ImSB

⊥
we

have
C∗(x+ y) = SB∗S−1x = SB∗S−1PImSB(x+ y),

so C∗ = SB∗S−1PImSB and the result follows.
To prove sufficiency, let S be an invertible positive operator in B(H) and define

ψ : B(H) → B(H) by

ψ(A) = PImSA S−1A, A ∈ B(H).

It suffices to prove that ψ is a surjective bi-preserver of �∗ w .
Let A,B ∈ B(H) . First suppose that A �∗ w B . By Lemma 18,

Imψ(A) = ImSA = S(ImA) ⊆ S(ImB) = ImSB = Imψ(B).

We also have

A �∗ w B =⇒ A∗A = A∗B take adjoint of both sides

=⇒ A∗A = B∗A =⇒ (A∗ −B∗)S−1SA = 0

=⇒ (A∗ −B∗)S−1PImSA = 0

=⇒ A∗S−1PImSA = B∗S−1PImSA = B∗S−1PImSBPImSA,

Taking adjoints of the last line gives ψ(A) = PImSA ψ(B) ; by Proposition 7, ψ(A) �∗ w

ψ(B) .
Conversely, suppose that ψ(A) �∗ w ψ(B) . By Lemma 18, ImSA ⊆ ImSB ; ap-

plying S−1 gives ImA ⊆ ImB . By Proposition 7 and Lemma 18, ψ(A) = PImSAψ(B) ,
so

PImSAS−1A = PImSAS−1B

=⇒ PImSAS−1(A−B) = 0

=⇒ S−1(A−B)x ∈ ImSA
⊥ = Ker(SA)∗ (for all x ∈ H)

=⇒ A∗SS−1(A−B) = 0

=⇒ A∗A = A∗B.

Thus A �∗ w B .
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Finally, to show surjectivity, fix B∈ B(H) and set A = P
ImS−1B

SB . By Lemma 18,

ImA = ImS−1B , so

ψ(A) = PImSAS−1P
ImS−1B

SB = PImBS−1P
ImS−1B

SB.

Let x ∈ H . Then SBx = s + z for some s ∈ ImS−1B and some z ∈ ImS−1B
⊥

=
KerB∗S−1 , and therefore P

ImS−1B
SBx = s = SBx− z . Thus

ψ(A)x = PImBS−1P
ImS−1B

SBx

= PImBS−1(SBx− z)

= Bx−PImBS−1z = Bx

since z ∈ KerB∗S−1 implies S−1z ∈ KerB∗ = ImB
⊥

. Thus ψ(A) = B . �

REMARK 19. Note the above proof shows that the inverse of the map ψ(A) =
PImSA S−1A has the same form and is given by ψ−1(B) = P

ImS−1B
SB.
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Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

and
IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail: gregor.dolinar@fe.uni-lj.si

Bojan Kuzma
University of Primorska
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