ONE–SIDED STAR PARTIAL ORDER PRESERVERS ON B(H)

GREGOR DOLINAR, BOJAN KUZMA, JANKO MAROVT AND EDWARD POON

(Communicated by L. Molnár)

Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. We classify (possibly non-additive) maps on B(H), with H infinite dimensional, which preserve either the left-star or the right-star partial order in both directions. We also introduce natural, weaker versions of these partial orders and classify their preservers.

1. Introduction and statement of the main results

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. We denote by A^* the adjoint operator of $A \in B(H)$ and by ImA and KerA the range and the kernel of $A \in B(H)$, respectively. Many partial orders can be defined on B(H). One of the most used is the star partial order \leq^* which was introduced by Drazin [6] and may be defined on B(H) in the following way. We write

 $A \leq B$ when $A^*A = A^*B$ and $AA^* = BA^*$, $A, B \in B(H)$.

If one of the two conditions defining the star order is omitted, then the remaining condition does not induce a partial order. However, it was shown in [4] that by adding conditions on the images of the considered operators we obtain the following two partial orders.

DEFINITION 1. The left-star partial order on B(H) is a relation defined by

 $A \ll B$ when $A^*A = A^*B$ and $\operatorname{Im} A \subseteq \operatorname{Im} B$, $A, B \in B(H)$.

The right-star partial order on B(H) is a relation defined by

 $A \leq B$ when $AA^* = BA^*$ and $ImA^* \subseteq ImB^*$, $A, B \in B(H)$.

Mathematics subject classification (2020): Primary 47B49; Secondary 15A86, 06A06.

Keywords and phrases: Left-star order, right-star order, preserver, Hilbert space.

The authors acknowledge the financial support from the Slovenian Research Agency, ARRS (research programs No. P1-0222, No. P1-0288, and No. P1-0285, and research project No. N1-0210). The authors also acknowledge the project (Preserver problems with applications, BI-US/18-20-066) was financially supported by the Slovenian Research Agency.

It is interesting to find the form of the maps which preserve a relation, a quantity or some subsets. For example, let \leq be any partial order on B(H). We say the map Φ on B(H) is a bi-preserver of \leq (that is, Φ preserves \leq in both directions) if

$$A \leq B$$
 if and only if $\Phi(A) \leq \Phi(B)$, $A, B \in B(H)$.

Let $M_n(\mathbb{F})$, where $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, be the set of all $n \times n$ real or complex matrices. Surjective bi-preservers of the star, or the left-star, or the right-star partial order on $M_n(\mathbb{F})$, $n \ge 3$, have already been characterized; see [10, 5] and also [8]. More precisely, in [5, Theorem 3] the following main result was proved.

PROPOSITION 2. Let $n \ge 3$ be an integer. Then a surjection $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ is a bi-preserver of the left-star partial order if and only if there exist invertible $T, W \in M_n(\mathbb{F})$ such that Φ has the following form:

$$\Phi(X) = T \left(XX^{\dagger} + (I - XX^{\dagger}) \cdot T^{-1}T^{-*} \cdot XX^{\dagger} \cdot \left[XX^{\dagger} \cdot T^{-1}T^{-*} \cdot XX^{\dagger} \right]^{\dagger} \right) XW.$$

Here the map $X \mapsto \overset{\bullet}{X}$ denotes either identity, or entrywise conjugation, or Moore-Penrose inverse, or entrywise-conjugated Moore-Penrose inverse on $M_n(\mathbb{F})$.

Results on star, or left-star, or right-star partial order preservers on $M_n(\mathbb{F})$ were extended to B(H) or some subsets of B(H) in [3, 4]. In [4] it is assumed that preservers of the left-star or the right-star partial orders on B(H) with H infinite-dimensional are bijective and additive. It is the aim of this paper to further generalize this result by omitting additivity and injectivity.

Recall that the Moore-Penrose inverse of an operator $A \in B(H)$ is an operator, denoted by $A^{\dagger} \in B(H)$, which satisfies the four equations:

$$A^{\dagger}AA^{\dagger} = A^{\dagger}, \quad AA^{\dagger}A = A, \quad (A^{\dagger}A)^* = (A^{\dagger}A), \quad (AA^{\dagger})^* = (AA^{\dagger}).$$

Clearly, $(A^{\dagger})^{\dagger} = A$. By applying adjoint on all four equations we also see that $(A^{\dagger})^*$ is the Moore-Penrose inverse of A^* , that is,

$$(A^{\dagger})^* = (A^*)^{\dagger}.$$

Moreover, by the four equations which define the Moore-Penrose inverse, AA^{\dagger} is a projection (i.e., a self-adjoint idempotent) onto ImA, which must therefore be closed. Note also that $A \in B(H)$ has a Moore-Penrose inverse if and only if the range of A is closed (see, e.g. [12]). Since A^* has a Moore-Penrose inverse whenever A does, we see that Im A^* is closed whenever A has a Moore-Penrose inverse.

The Moore-Penrose inverse, when it exists, is unique. Namely, if B satisfies the same four equations, then

$$B = BAB = B(AB)^* = BB^*A^* = BB^*A^*(A^*)^{\dagger}A^* = B(AB)^*(AA^{\dagger})^*$$

= $B(ABA)A^{\dagger} = BAA^{\dagger} = (BA)(A^{\dagger}A)A^{\dagger} = A^*B^*A^*(A^*)^{\dagger}A^{\dagger}$
= $A^*(A^*)^{\dagger}A^{\dagger} = (A^{\dagger}A)A^{\dagger} = A^{\dagger}.$

Moreover it exists for all operators with closed range. In fact, if $A: H = \text{Ker}A \oplus (\text{Ker}A)^{\perp} \rightarrow H = (\text{Im}A)^{\perp} \oplus (\text{Im}A)$ is such an operator, then its Moore-Penrose inverse,

$$A^{\dagger} \colon H = (\mathrm{Im}A)^{\perp} \oplus (\mathrm{Im}A) \to H$$

is defined as zero on $(\text{Im}A)^{\perp}$ and as the inverse, $(A|_{(\text{Ker}A)^{\perp}})^{-1}$ on ImA (see [9, Theorem 2.4, page 80]). It follows that $A^{\dagger}A$ is a projector onto $\text{Im}A^{\dagger} = (\text{Ker}A)^{\perp} = \overline{\text{Im}A^*} = \text{Im}A^*$.

In particular, for operators A, B with closed range,

$$\operatorname{Im} A^{\dagger} \subseteq \operatorname{Im} B^{\dagger} \Leftrightarrow \operatorname{Im} A^{*} \subseteq \operatorname{Im} B^{*} \Leftrightarrow (\operatorname{Ker} A)^{\perp} \subseteq (\operatorname{Ker} B)^{\perp}$$

$$\Leftrightarrow \operatorname{Ker} B \subseteq \operatorname{Ker} A \Leftrightarrow A(\operatorname{Ker} B) = 0 \Leftrightarrow A(I - B^{\dagger}B) = 0$$
(1)

where the last identify holds because $(I - B^{\dagger}B)$ is a projection onto $(\text{Im}B^*)^{\perp} = \text{Ker}B$. Also, the following string of implications for a closed range operator T

$$T^{\dagger}X = 0 \Rightarrow TT^{\dagger}X = 0 \Rightarrow X^{*}(TT^{\dagger}) = 0 \Rightarrow X^{*}TT^{\dagger}T = X^{*}T = 0 \Rightarrow T^{*}X = 0$$
$$\Rightarrow X^{*}TT^{\dagger} = 0 \Rightarrow T^{\dagger}(TT^{\dagger})X = T^{\dagger}X = 0$$

proves that

 $T^*X = 0$ if and only if $T^{\dagger}X = 0$ (2)

(see also [1]). Hence, by its definition, and in view of (1)

$$A^{\dagger} \leqslant B^{\dagger} \Leftrightarrow (A^{\dagger})^* A^{\dagger} = (A^{\dagger})^* B^{\dagger} \text{ and } A(I - B^{\dagger}B) = 0.$$
 (3)

By inserting $T = A^{\dagger}$ and $X = B^{\dagger} - A^{\dagger}$ into (2) we see that the first equality is equivalent to

$$AA^{\dagger} = (A^{\dagger})^{\dagger}A^{\dagger} = (A^{\dagger})^{\dagger}B^{\dagger} = AB^{\dagger}.$$
(4)

By multiplying it with $A^{\dagger}(\cdot)B$ and utilizing at the end also the second equality in (3) we get

$$A^{\dagger}AA^{\dagger}B = A^{\dagger}AB^{\dagger}B = A^{\dagger}A,$$

so $A^{\dagger}B = A^{\dagger}A$. By (2) this is equivalent to $A^*B = A^*A$. On the other hand, by multiplying (4) with A^{\dagger} and taking the adjoints we get $(A^{\dagger})^* = (B^{\dagger})^*(A^{\dagger}A)^* = (B^{\dagger})^*(A^{\dagger}A)$. It follows that $\text{Im}(A^{\dagger})^* \subseteq \text{Im}(B^{\dagger})^*$ or equivalently, $\text{Im}(A) \subseteq \text{Im}(B)$. Hence, (3) implies $A \ll B$.

This shows that the Moore-Penrose inverse $X \mapsto X^{\dagger}$ is a well-defined map on the set of operators with closed range and it does preserve the \ll order in both directions.

However, the general form of surjective bi-preservers of the left-star partial order on B(H) cannot be of the same form as in Proposition 2, since an arbitrary operator in B(H) does not necessarily have a closed range.

It is easy to check (see e.g., [3]) that the map $\Phi: B(H) \to B(H)$ defined by

$$\Phi(A) = UAT, \quad A \in B(H), \tag{5}$$

where $U \in B(H)$ is a unitary operator and $T \in B(H)$ is invertible, is a bi-preserver of the left-star partial order. We will show that such maps are the only possible surjective bi-preservers of the left-star partial order, with only one additional possibility that $U: H \to H$ may be an anti-unitary operator. Recall that, by its definition, an antiunitary operator U is a conjugate-linear sujective isometry. Its adjoint, U^* is defined by $\langle Ux, y \rangle = \langle U^*y, x \rangle$, where $\langle \cdot, \cdot \rangle$ is a scalar product on H. Our main result therefore reads as follows.

THEOREM 3. Let *H* be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the left-star partial order \ll if and only if

$$\Phi(A) = UAT, \quad A \in B(H),$$

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded linear (respectively conjugate-linear) operator on H.

It is interesting to observe that for infinite-dimensional Hilbert spaces the structure of surjective left-star partial order bi-preservers is simpler than in finite dimensional spaces, see Proposition 2. In particular, this simpler structure shows yet again that the Moore-Penrose inverse cannot be extended to operators with non-closed range.

Observe that for $A, B \in B(H)$ the following holds (see, e.g., [4, Lemma 3])

$$A \leqslant B$$
 if and only if $A^* \leqslant B^*$. (6)

Let $\Phi: B(H) \to B(H)$ be a surjective bi-preserver of the right-star partial order. Applying Theorem 3 on the map $\Psi(X) = (\Phi(X^*))^*, X \in B(H)$, which by (6) is a bi-preserver of the left-star order, we obtain the next corollary.

COROLLARY 4. Let *H* be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the right-star partial order \ll if and only if

$$\Phi(A) = TAU, \quad A \in B(H),$$

where U is a unitary (or anti-unitary) operator on H and T is an invertible bounded linear (respectively conjugate-linear) operator on H.

REMARK 5. Our results easily extend to classify converters from \ll to \ll i.e., to surjective maps $\Psi: B(H) \to B(H)$, where *H* is infinite-dimensional, with the property $A \ll B$ if and only if $\Psi(A) \ll \Psi(B)$. Namely, given any such Ψ the map $\Phi(X) = \Psi(X)^*$ preserves \ll order.

Note that, unlike in finite-dimensional spaces, the images of operators on an infinitedimensional Hilbert space H need not be closed. It is hence natural to consider also the weak counterparts to the left- and right- star partial orders where one compares the closures of images. They coincide with the classical ones on finite-dimensional spaces and are defined as follows: DEFINITION 6. The weak left-star partial order on B(H) is a relation defined by

$$A \ll_{W} B$$
 when $A^*A = A^*B$ and $\overline{\operatorname{Im} A} \subseteq \overline{\operatorname{Im} B}$, $A, B \in B(H)$.

The weak right-star partial order on B(H) is a relation defined by

 $A \ll_w B$ when $AA^* = BA^*$ and $\overline{\operatorname{Im} A^*} \subseteq \overline{\operatorname{Im} B^*}$, $A, B \in B(H)$.

That these are actually partial orders is a straightforward consequence of the observation

$$A \ll_{\scriptscriptstyle W} B \iff A^* \ll_{\scriptscriptstyle W} B^* \tag{7}$$

and the following useful proposition.

PROPOSITION 7. $A \ll_w B$ if and only if A = PB for some projection P onto a closed subspace of $\overline{\text{Im}B}$.

Proof. (\Rightarrow) Suppose $A \ll_w B$. Let *P* be the orthogonal projection onto $\overline{\text{Im}A}$. Observe that $A^*(A - B) = 0$, so $\text{Im}(A - B) \subseteq \text{Ker}A^* = \overline{\text{Im}A}^{\perp}$. Then

$$A = PA = PB + P(A - B) = PB.$$

 (\Leftarrow) Suppose A = PB for some projection P onto a subspace of $\overline{\text{Im}B}$. Then $\overline{\text{Im}A} \subseteq \overline{\text{Im}B}$ and

$$A^*A = B^*P^2B = B^*PB = A^*B. \quad \Box$$

REMARK 8. If $A \ll_w B$, then actually A = QB where Q is a projection onto ImA. This is seen by pre-multiplying the equation in Proposition 7 with Q.

We can now state our second main result.

THEOREM 9. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the weak left-star partial order \ll_w if and only if there exists an invertible positive definite $S \in B(H)$, a unitary (or antiunitary) operator U on H, and an invertible bounded linear (respectively, conjugatelinear) operator T on H such that

 $\Phi(A) = UP_{\overline{\text{Im SA}}}S^{-1}AT, \quad A \in B(H),$

where $P_{\overline{\text{Im SA}}}$ is the orthogonal projection onto $\overline{\text{Im SA}}$.

Similarly to Corollary 4 we can see that the following is true:

COROLLARY 10. Let H be an infinite-dimensional complex Hilbert space. Then $\Phi: B(H) \rightarrow B(H)$ is a surjective bi-preserver of the weak right-star partial order \ll_w if and only if there exists an invertible positive definite $S \in B(H)$, a unitary (or antiunitary) operator U on H, and an invertible bounded linear (respectively, conjugatelinear) operator T on H such that

$$\Phi(A) = TAS^{-1}P_{\overline{\operatorname{Im} SA^*}}U, \quad A \in B(H),$$

where $P_{\overline{\text{Im SA}^*}}$ is the orthogonal projection onto $\overline{\text{Im SA}^*}$.

2. Preliminary results

We start with some notation and auxiliary results. Given a vector $w \in H$ we let w^* be a bounded linear functional on H given by $z \mapsto \langle z, w \rangle$. Denote by xw^* a rank-one operator given by $z \mapsto \langle z, w \rangle x$, where $w, x \in H$ are nonzero. Recall that every rank-one operator in B(H) can be written in this form.

We will need in the sequel the following Propositions 11–16. Observe that Propositions 11–12 and 14–16 hold for both \ll and \ll_w orders, therefore we introduce a new notation \mathscr{L} to denote either \ll or \ll_w . Similarly, let \mathscr{R} denote either \ll and \ll_w .

PROPOSITION 11. If $P \in B(H)$ is a projection and $A \mathcal{L} P$, then A is a projection and AP = PA = A.

Proof. It suffices to show this when $\mathscr{L} = \ll_w$ because if $A \ll P$ then also $A \ll_w P$. But for \ll_w this follows immediately from Remark 8. \Box

PROPOSITION 12. Let $A \in B(H)$ be nonzero. For every nonzero $x \in \text{Im}A$ there exists a nonzero $y \in H$ such that $xy^* \mathcal{L}A$.

Proof. Define $y = \frac{A^*x}{\|x\|^2}$. Since $x = Az \in \text{Im}A$ for some $z \in H$, it follows that $y^*z = \frac{x^*x}{\|x\|^2} = 1$, so $y \neq 0$. The rest follows directly from the definition of \ll and \ll_w . \Box

Let us now show that a similar observation holds also for \mathscr{R} .

PROPOSITION 13. Let $A \in B(H)$ be nonzero and suppose the range of A is closed. Let $y \in \text{Im}A^*, y \neq 0$. Then there exists a nonzero $l \in H$ such that $yl^* \mathscr{R} A^*$.

Proof. This was shown in [4] for the partial order \ll . It holds also for \ll_w since \ll and \ll_w coincide when the range of A is closed. \Box

We denote by $B_1(H)$ the set of all rank-one operators in B(H). Let now xy^* and uv^* be two rank-one operators in B(H). Let us define the following relation between operators in $B_1(H)$: we write $xy^* \sim uv^*$ if x and u are linearly dependent or y and v are linearly dependent. So, for two operators $A, B \in B_1(H)$ we write $A \sim B$ if ImA = ImB or KerA = KerB.

PROPOSITION 14. Let $A, B \in B(H)$, $A \neq B$, be rank-one operators in B(H). Then $A \sim B$ if and only if there does not exist a rank-two operator $C \in B(H)$ such that $A \mathcal{L} C$ and $B \mathcal{L} C$.

Proof. As in the proof of Proposition 13 this follows from [4]. \Box

Let $x, y \in H$ be nonzero. Let us define the following sets of operators:

 $L_x = \{xv^* : v \in H \setminus \{0\}\}$ and $R_y = \{zy^* : z \in H \setminus \{0\}\}.$

Note that every operator in L_x and every operator in R_y is of rank-one.

PROPOSITION 15. An operator A is invertible if and only if for every nonzero $x \in H$ and for every nonzero $y \in H$ there exist $B \in L_x$ and $C \in R_y$ such that $B \mathscr{L} A$ and $C \mathscr{L} A$.

Proof. This was shown in [4] for the usual left-star partial order. For the weak left-star partial order the necessity follows from Proposition 12, Proposition 13, and equation (7). To prove sufficiency, first let $x \in H$ be nonzero. By hypothesis $xv^* \ll_w A$ for some nonzero $v \in H$, so by the definition of \ll_w it follows that $x \in \overline{\text{Im}A}$. Thus ImA is dense, so Ker $A^* = 0$ and A^* is injective.

Now let $y \in H$ be nonzero, so there exists some nonzero z such that $zy^* \ll_w A$. By Remark 8, $zy^* = PA$ for the projection P whose range is $\mathbb{C}z$. It follows that $y \in \mathbb{C}A^*z$. Thus A^* is also surjective and the result follows. \Box

The following result gives a characterization of rank-one operators in B(H) that are dominated with respect to \mathscr{L} by a given operator $B \in B(H)$ with rank $B \ge 2$.

PROPOSITION 16. Let rank $B \ge 2$.

- 1. A rank-one $R \leq B$ if and only if $R = xx^*B$ for some vector $x \in \text{Im}B$ with ||x|| = 1.
- 2. A rank-one $R \ll_w B$ if and only if $R = xx^*B$ for some vector $x \in \overline{\text{Im}B}$ with ||x|| = 1.

Proof. The first assertion may be proved in the same way as Lemma 6 in [5], and for the second assertion we can use Proposition 7 and Remark 8. \Box

To streamline the proofs, we state and prove a common result for both the left-star partial order and its weaker version.

PROPOSITION 17. Let *H* be an infinite-dimensional complex Hilbert space. Let $\Phi: B(H) \rightarrow B(H)$ be a surjective bi-preserver of either the left-star partial order \ll or the weak left-star partial order \ll_w . Then Φ is bijective, preserves rank, and there exist a positive invertible operator $S \in B(H)$ and a unitary (or anti-unitary) operator *U* and an invertible bounded linear (respectively conjugate-linear) *T* on *H* such that

$$U^* \Phi(xy^*) T^{-1} = \frac{Sxy^*S}{\|Sx\|^2}$$

for all rank-one operators xy^{*}.

Most of the arguments in the following proof hold at the same time for \ll and for \ll_w ; differences are noted whenever they occur. In particular, recall that \ll and \ll_w coincide on sets of operators acting on finite-dimensional spaces.

Proof. The proof will be divided into several steps. Recall that \mathscr{L} denotes either \ll or \ll_w . Let from now on H be an infinite-dimensional complex Hilbert space and $\Phi: B(H) \to B(H)$ as in Theorem 3, i.e., Φ is a surjective map such that for every pair $A, B \in B(H)$ we have

 $A \mathscr{L} B$ if and only if $\Phi(A) \mathscr{L} \Phi(B)$.

Step 1. *First we show that* Φ *is injective and therefore bijective, and that* $\Phi(0) = 0$.

Indeed, if $\Phi(A) = \Phi(B)$, then $\Phi(A) \mathscr{L} \Phi(B) \mathscr{L} \Phi(A)$ and therefore we have $A \mathscr{L} B \mathscr{L} A$. So, A = B. Since $0 \mathscr{L} \Phi^{-1}(0)$, we have $\Phi(0) \mathscr{L} 0$ and thus $\Phi(0) = 0$.

Step 2. Let $B \in B(H)$. Then rank $B = \infty$ if and only if there exists an infinite chain $0 = A_0 \mathcal{L} A_1 \mathcal{L} \ldots \mathcal{L} B$ of pairwise distinct operators. Moreover, rank $B = r < \infty$ if and only if there exists a chain

$$0 = A_0 \mathscr{L} A_1 \mathscr{L} \ldots \mathscr{L} A_r = B$$

of r+1 pairwise distinct operators and no other such chain has larger length.

To see that the existence of the infinite chain implies rank $B = \infty$, note that $\text{Im} A_i \subseteq \overline{\text{Im} B}$. So we are done if rank $A_i = \infty$. However, if each A_i is of finite rank, then by Proposition 7 and Remark 8 (which hold also for \ll since the ranges of all operators A_i are closed) we obtain that $\text{Im} A_i \subseteq \text{Im} A_{i+1}$ so again dim $\text{Im} B = \infty$. For the converse implication, take an orthonormal system $(x_n)_n \in \text{Im} B$. By Proposition 16 we have $x_i x_i^* B \mathcal{L} B$ for each *i*. Also, one easily sees that $A_n = \sum_{i=1}^n x_i x_i^* B$ is a nested sequence of operators below *B* with respect to the order \mathcal{L} . One proceeds similarly when rank $B < \infty$.

Step 3. Φ preserves the rank of operators.

Let $B \in B(H)$ with rank $B = r < \infty$. By Step 2 there exists a chain $0 = A_0 \mathcal{L} A_1 \mathcal{L} \dots \mathcal{L} A_r = B$ of r+1 pairwise distinct operators and no other such chain has larger length. Since Φ is injective and a bi-preserver of the order \mathcal{L} , it follows that $0 = \Phi(A_0) \mathcal{L} \Phi(A_1) \mathcal{L} \dots \mathcal{L} \Phi(A_r) = \Phi(B)$ is a chain of r+1 pairwise distinct operators and no other such chain has larger length. Thus, again by Step 2, rank $\Phi(B) = r$. Since Φ^{-1} has the same properties as Φ , we may conclude that for $B \in B(H)$, rank $B = r < \infty$ if and only if rank $\Phi(B) = r$.

Step 4. Φ is a bi-preserver of the relation \sim .

Indeed, it follows by Proposition 14 and Step 3 that for every pair $A, B \in B_1(H)$ we have $A \sim B$ if and only if $\Phi(A) \sim \Phi(B)$.

Step 5. Action of Φ on the sets L_x , R_y .

It is easy to see that for nonzero $x, y \in H$, L_x and R_y are the only maximal sets (with respect to the set inclusion) which consist of pairwise related rank-one operators via \sim . Since Φ is a bijective bi-preserver of the relation \sim , it follows that for every nonzero $x \in H$ there exists a nonzero $u \in H$ such that $\Phi(L_x) = L_u$, or there exists a nonzero $y \in H$ such that $\Phi(L_x) = R_y$. Similarly, for every nonzero $y \in H$ there exists a nonzero $x \in H$ such that $\Phi(R_y) = L_x$, or there exists a nonzero $v \in H$ such that $\Phi(R_y) = R_y$. The same holds for Φ^{-1} .

Step 6. Φ preserves invertibility.

Let now $A \in B(H)$ be an invertible operator and suppose $u \in H$ is nonzero. There exists a nonzero $x \in H$ such that $\Phi(L_x) = L_u$, or there exists a nonzero $y \in H$ such that $\Phi(R_y) = L_u$. Suppose $\Phi(L_x) = L_u$. Since A is invertible, it follows by Proposition 15 that there exists $B \in L_x$ such that $B \mathcal{L} A$. So, $\Phi(B) \mathcal{L} \Phi(A)$. Note that $\Phi(B) \in L_u$. Similarly, if $\Phi(R_y) = L_u$ there exists $C \in R_y$ such that $\Phi(C) \mathcal{L} \Phi(A)$ and $\Phi(C) \in L_u$. So, since Φ is surjective, we may find for every nonzero $u \in H$ an operator $D \in L_u$ such that $D \mathcal{L} \Phi(A)$. In the same way we prove that there exists an operator $E \in R_u$ such that $E \mathcal{L} \Phi(A)$. By Proposition 15 we may conclude that $\Phi(A)$ is an invertible operator. Since Φ^{-1} has the same properties as Φ it follows that $A \in B(H)$ is invertible if and only if $\Phi(A)$ is invertible.

Step 7. Without loss of generality we may assume that $\Phi(I) = I$.

Indeed, $\Phi(I)$, where *I* is the identity operator, is also invertible. By (5) we may replace the map Φ with the map $\Psi: B(H) \to B(H)$ which is defined in the following way: $\Psi(A) = \Phi(A)\Phi^{-1}(I)$. From now on we may and will assume that

$$\Phi(I) = I$$

Step 8. Φ leaves invariant the set $\mathscr{P}(H)$ of all projections in B(H).

By Definitions 1 and 6 it is clear that for every $P \in \mathscr{P}(H)$ we have $P \mathscr{L} I$. So, $\Phi(P) \mathscr{L} I$ and hence by Proposition 11, $\Phi(P)$ is also a projection. Since Φ is a bipreserver of the left-star partial order, we may conclude that $\Phi(\mathscr{P}(H)) = \mathscr{P}(H)$.

Step 9. *Restriction of* Φ *on* $\mathscr{P}(H)$.

Let $P, Q \in \mathscr{P}(H)$. Proposition 11 yields that if $P \mathscr{L} Q$, then PQ = QP = P and hence $P \leq Q$ where \leq denotes the usual order on $\mathscr{P}(H)$ (i.e., $P \leq Q$ when PQ = QP = P). Also, directly by Definitions 1 and 6 it follows that if PQ = QP = P for $P, Q \in \mathscr{P}(H)$, then $P \mathscr{L} Q$. The restriction of Φ to $\mathscr{P}(H)$ is a bijective map from $\mathscr{P}(H)$ to $\mathscr{P}(H)$ which preserves the usual order in both directions.

Step 10. Action of Φ on $\mathcal{P}(H)$.

We may identify closed subspaces in H with operators in $\mathscr{P}(H)$. So, the map Φ induces a lattice automorphism, i.e., a bijective map ω defined on the set of all closed subspaces in H, where $M \subseteq N$ if and only if $\omega(M) \subseteq \omega(N)$ for every pair of closed subspaces M,N in H. Recall that H is an infinite dimensional complex Hilbert space. By [7, Theorem 1] there exists a bicontinuous linear or conjugate-linear bijection $S: H \rightarrow H$ such that $\omega(M) = SM$ for every closed subspace M in H. Let from now on $P_M \in B(H)$ denote a projection with $\text{Im}P_M = M$. It follows that

$$\Phi(P_M) = P_{S(M)}$$

for every $P_M \in \mathscr{P}(H)$.

Step 11. Without loss of generality we may assume that the operator S (introduced in Step 10) is an invertible and a positive operator.

Let the operator $S: H \to H$ be as in Step 10, i.e., a bicontinuous linear or conjugatelinear bijection. Suppose first S is linear and let S = U |S| be its polar decomposition where U is a partial isometry and $|S| = \sqrt{S^*S}$, i.e., |S| is a positive operator in B(H). Since *S* is invertible, $U \in B(H)$ is unitary. Step 10 implies that

$$\Phi(xx^*) = \frac{1}{\|Sx\|^2} (Sx) (Sx)^* = \frac{1}{\|Sx\|^2} Sxx^* S^*$$

for every $x \in H$ with ||x|| = 1. By replacing Φ with $U^*\Phi(\cdot)U$ we may by (5) without loss of generality assume that *S* is an invertible, positive operator in B(H) (and thus self-adjoint).

Let now $S: H \to H$ be a bounded, conjugate-linear bijection. We will show that even in this case we may assume that $S \in B(H)$ is an invertible, positive (linear) operator. To show this let us recall some known facts about bounded conjugate-linear operators on Hilbert spaces (see for example [2]). A bounded conjugate-linear operator $T: H \to H$ has a unique conjugate-linear adjoint $T^*: H \to H$ defined with

$$\langle Tx, y \rangle = \langle T^*y, x \rangle$$

for all $x, y \in H$. As in the linear case, we say that *T* is self-adjoint when $T = T^*$, i.e., $\langle Tx, y \rangle = \langle Ty, x \rangle$ for every $x, y \in H$. Let *A* be a bounded conjugate-linear operator on a Hilbert space *H* and let $B \in B(H)$. Then both *AB* and B^*A^* are bounded conjugate-linear operators on *H* and since

$$\langle (AB)x, y \rangle = \langle A^*y, Bx \rangle = \langle B^*A^*y, x \rangle$$

we may by the uniqueness of the adjoint conclude that

$$(AB)^* = B^*A^*.$$

Similarly, if both A and B are bounded conjugate-linear operators on H, then AB, $B^*A^* \in B(H)$ and

$$\langle (AB)x, y \rangle = \langle A^*y, Bx \rangle = \overline{\langle Bx, A^*y \rangle} = \overline{\langle B^*A^*y, x \rangle} = \langle x, B^*A^*y \rangle$$

and therefore again $(AB)^* = B^*A^*$.

An example of a conjugate-linear operator on a complex Hilbert space *H* is the map *J* which, relative to a fixed orthonormal basis $(e_{\lambda})_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is the empty set in case *H* is a separable Hilbert space, is defined as follows: $J : x = \sum \alpha_{\lambda} e_{\lambda} \mapsto \sum \overline{\alpha_{\lambda}} e_{\lambda}$, $\alpha_{\lambda} \in \mathbb{C}$. Note that *J* is an involution, i.e., a conjugate-linear isometry from *H* onto *H* with $J^2 = I$, and that every involution is of this form (see [2]). Observe also $\langle Jx, y \rangle = \langle Jy, x \rangle$ for every $x, y \in H$, i.e., *J* is self-adjoint. Let $T : H \to H$ be a bounded conjugate-linear operator and let $J : H \to H$ be as above. Then $JT \in B(H)$ and

$$T^*T = T^*JJT = (J^*T)^*(JT) = (JT)^*(JT).$$

It follows that |T| = |JT| is independent of J and hence well defined. If JT = U |JT| = U |T| is the polar decomposition for JT, then T = V |T| is the polar decomposition of T, where V = JU is a conjugate-linear partial isometry. So, conjugate-linear operators have a well-defined polar decomposition with analogous properties to those of linear

operators (see also [2]). Let T = V |T| be the polar decomposition of a conjugate-linear bounded operator T. Suppose T is invertible. Observe that then V is anti-unitary, i.e., a conjugate-linear bounded operator on H with $V^*V = VV^* = I$. Also, |T| = |JT| is a positive, invertible, bounded linear operator.

Let now U be an anti-unitary operator on H and $S: H \to H$ an invertible conjugatelinear bounded operator. Let $A, B \in B(H)$. Then Im $A \subseteq$ ImB if and only if Im $UAS \subseteq$ Im UBS, and $\overline{\text{Im}A} \subseteq \overline{\text{Im}B}$ if and only if $\overline{\text{Im}UAS} \subseteq \overline{\text{Im}UBS}$ (for use with the usual and weak partial orders respectively). Also $A^*A = A^*B$ if and only if $(UAS)^*(UAS) =$ $S^*A^*U^*UAS = S^*A^*AS = S^*A^*BS = S^*A^*U^*UBS = (UAS)^*(UBS)$, and therefore

$$A \mathscr{L} B$$
 if and only if UAS $\mathscr{L} UBS$. (8)

Suppose $S: H \to H$ from Step 10 is a conjugate-linear, bijective, and bounded operator. Then we may write S = U|S| where U is an anti-unitary operator on H and $|S| \in B(H)$ a positive, invertible operator. By again replacing Φ with $U^*\Phi(\cdot)U$, we may thus by (8) as in the linear case assume that S is a positive linear, bounded, and invertible operator on H.

From now on, let $S \in B(H)$ be an invertible and positive operator (and thus selfadjoint).

Step 12. We show that $\Phi(P_M B(H) P_M) = P_{S(M)} B(H) P_{S(M)}$ where $P_M B(H) P_M =$ $\{P_MAP_M : A \in B(H)\}$ and $P_M \in B(H)$ is a finite rank projection of rank $n \ge 2$. Since Φ^{-1} has the same properties as Φ , it is enough to show that

$$\Phi(P_M B(H) P_M) \subseteq P_{S(M)} B(H) P_{S(M)}.$$

First note that $A \in P_M B(H) P_M$ if and only if $\text{Im} A \subseteq \text{Im} P_M$ and $\text{Ker} P_M \subseteq \text{Ker} A$. Indeed, if $A \in P_M B(H) P_M$, then $A = P_M A P_M$ and therefore $\text{Im} A \subseteq \text{Im} P_M$ and Ker $P_M \subseteq \text{Ker}$ A. Conversely, if $\operatorname{Im} A \subseteq \operatorname{Im} P_M$, then $A = P_M A$ and if Ker $P_M \subseteq \operatorname{Ker} A$, then $\operatorname{Im} A^* \subseteq$ Im P_M and therefore $A^* = P_M A^*$, i.e., $A = A P_M$. It follows that $A = P_M A P_M$ and so $A \in P_M B(H) P_M$.

First, let us show that for every rank-one operator $A \in P_M B(H) P_M$ it follows that $\Phi(A) \in P_{S(M)}B(H)P_{S(M)}$. Recall that

$$\Phi(xx^*) = \frac{1}{\|Sx\|^2} (Sx) (Sx)^*$$

for every $x \in H$ with ||x|| = 1. Suppose $A = \alpha x y^*$ where ||x|| = ||y|| = 1, $\alpha \in \mathbb{C} \setminus \{0\}$, and $A \in P_M B(H) P_M$. Then $x, y \in M$. Since $A \sim xx^*$ and $A \sim yy^*$, it follows by Step 4 that

$$\Phi(A) \sim \frac{1}{\|Sx\|^2} (Sx) (Sx)^* \text{ and } \Phi(A) \sim \frac{1}{\|Sy\|^2} (Sy) (Sy)^*.$$

If x and y are linearly independent, then by the bijectivity of S also Sx and Sy are linearly independent. It follows that $\Phi(A) = \lambda(Sx)(Sy)^*$ or $\Phi(A) = \mu(Sy)(Sx)^*, \lambda, \mu \in$ $\mathbb{C} \setminus \{0\}$. In both cases $\Phi(A) \in P_{S(M)}B(H)P_{S(M)}$ and it is not a scalar multiple of a rankone projection.

If $y \in \mathbb{C}x$, then $A \in \mathbb{C}xx^*$. By the previous argument applied on Φ^{-1} and since Φ preserves operators of rank-one we have that $\Phi(A)$ is a scalar multiple of a rank-one projection. Note that $A \sim xx^*$, so $\Phi(A) \sim \Phi(xx^*) \in \mathbb{C}(Sx)(Sx)^*$ and therefore $\Phi(A) \in P_{S(M)}B(H)P_{S(M)}$.

Second, let now $D \in P_M B(H) P_M$ be an operator of rank at least two. By Proposition 16, for each rank-one *C* such that $C \mathcal{L} D$, it follows $C = xx^*D$, $x \in \text{Im}D = \overline{\text{Im}D}$. This yields $C \in P_M B(H) P_M$ and hence

$$\Phi(C) \in P_{S(M)}B(H)P_{S(M)} \text{ for every rank one } C \mathscr{L} D.$$
(9)

So, $\text{Im}\Phi(C) \subseteq \text{Im}P_{S(M)}$. Since Φ is a bijective bi-preserver and maps the set of all rank-one operators onto itself (see also Proposition 12),

$$\operatorname{Im} \Phi(D) \subseteq \bigcup \{\operatorname{Im} \Phi(C) : C \in B_1(H) \text{ and } C \mathscr{L} D\} \subseteq \operatorname{Im} P_{S(M)}.$$

Recall that M, hence also S(M), is a finite-dimensional subspace; since S(M) contains the range of $\Phi(D)$, the range of $\Phi(D)$ is closed. In order to prove that $\Phi(D) \in P_{S(M)}B(H)P_{S(M)}$ it remains to show that $\operatorname{Im} \Phi(D)^* \subseteq \operatorname{Im} P_{S(M)}$.

For a nonzero $y \in \text{Im}\Phi(D)^*$ there exists by Proposition 13, $l \in H$, $l \neq 0$, such that $\Phi(C)^* = yl^* \mathscr{R}\Phi(D)^*$ for some $C \in B_1(H)$. Note that $\text{Im}\Phi(C)^* = \mathbb{C}y$, and since $y \in \text{Im}\Phi(D)^*$ was arbitrary it follows

$$\operatorname{Im} \Phi(D)^* \subseteq \bigcup \left\{ \operatorname{Im} \Phi(C)^* : C \in B_1(H) \text{ and } \Phi(C)^* \mathscr{R} \Phi(D)^* \right\}$$
$$= \bigcup \left\{ \operatorname{Im} \Phi(C)^* : C \in B_1(H) \text{ and } C \mathscr{L} D \right\},$$

where the last equality follows by (6) and (7).

Recall that $D \in P_M B(H) P_M$. For every $C \in B_1(H)$ where $C \mathscr{L} D$ we have $\Phi(C) \in P_{S(M)} B(H) P_{S(M)}$ by (9). It follows that $\operatorname{Im} \Phi(C)^* \subseteq \operatorname{Im} P_{S(M)}$. This implies that $\operatorname{Im} \Phi(D)^* \subseteq \operatorname{Im} P_{S(M)}$ and hence $\Phi(D) \in P_{S(M)} B(H) P_{S(M)}$.

Step 13. *Reduction of the problem to bijective bi-preservers on* $M_n(\mathbb{C})$ *.*

Take any finite-dimensional subspace $M \subseteq H$ of dimension at least three and identify $P_M B(H) P_M$ and $P_{S(M)} B(H) P_{S(M)}$ with $M_n(\mathbb{C})$, $n = \dim M = \dim S(M)$. By Steps 9 and 10

$$\Phi(xx^*) = \frac{1}{\|Sx\|^2} (Sx) (Sx)^* = \frac{1}{\|Sx\|^2} Sxx^*S$$

for every unit vector $x \in H$. By [5, equations (9) and (10)] either

$$\Phi(xy^*) = \gamma_{xy^*} Sxy^* S$$

for every rank-one $xy^* \in P_M B(H) P_M$ or

$$\Phi(xy^*) = \gamma_{xy^*} Syx^*S$$

for every rank-one $xy^* \in P_M B(H) P_M$ where γ_{xy^*} is a nonzero scalar that depends on xy^* .

It easily follows that

$$\Phi(xy^*) = \gamma_{xy^*} Sxy^* S \tag{10}$$

for every rank-one $xy^* \in B(H)$ or

$$\Phi(xy^*) = \gamma_{xy^*} Syx^* S \tag{11}$$

for every rank-one $xy^* \in B(H)$. Note that in the former case we have $\gamma_{xy^*} = \frac{1}{\|Sx\|^2}$ by [5, Lemma 19].

Step 14. We assume Φ is of the form (11) on the set of all rank-one operators in B(H) and get a contradiction.

Observe first that $xw^* = uv^*$ if and only if either one of x, w and one of u, v is zero or else $x \parallel u$ and $w \parallel v$ (i.e., are parallel). Suppose there exists an invertible, positive operator $S \in B(H)$ such that

$$\Phi(xy^*) = \frac{Syx^*S}{\lambda_{xy^*}}$$

for every nonzero $x, y \in H$ where λ_{xy^*} is some nonzero scalar that depends on xy^* . Fix an orthonormal basis $(e_{\lambda})_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is an empty set in case H is a separable Hilbert space. Define a linear operator B with $Be_n = \frac{1}{n}e_n$, $n \in \mathbb{N}$, and $Be_{\lambda} = e_{\lambda}$ for all $\lambda \in \Lambda$. Note that B is injective, bounded, and has a dense range. Let $C = \Phi(B)$ and let $x \in \text{Im} B$ be a unit vector. By the assumption

$$\Phi(xx^*B) = \frac{SB^*xx^*S}{\alpha} \mathscr{L}C$$

where α is some nonzero scalar. Since Φ preserves rank, there exists by Proposition 16 a unit vector y such that $\frac{SB^*xx^*S}{\alpha} = yy^*C$. It follows that

$$y = \frac{SB^*x}{\|SB^*x\|}\mu\tag{12}$$

for some unimodular scalar μ which depends on x. Also,

$$y^*C = x^*S\delta \tag{13}$$

for some scalar δ . Equation (12) yields $y^*C = \frac{x^*BSC}{\|SB^*x\|}\overline{\mu}$ and thus by (13)

$$x^*S\delta = \frac{x^*BSC}{\|SB^*x\|}\overline{\mu}.$$

Since $x \in \text{Im}B$, we may write $x = \frac{Bz}{\|Bz\|}$ for some nonzero $z \in H$. So,

$$z^*B^*S\delta_z = z^*B^*BSC\mu_z$$

where scalars δ_z and μ_z depend on *z*. This implies that B^*S and B^*BSC are locally linearly dependent. However since B^*S is of infinite rank, we may conclude (see e.g. [11, page 1869]) that they are linearly dependent, i.e., $B^*BSC = \lambda B^*S$ for some scalar λ . Note λ is nonzero because Ker $(B^*BS) = \{0\}$ and $C = \Phi(B)$ is nonzero since $B \neq 0$. We have

$$C^*SB^*B = \lambda SB.$$

Evaluate this identity on the vector e_n and use the fact that $B^*B = B^2$ to obtain $C^*\left(\frac{Se_n}{n^2}\right)$ = $\frac{\overline{\lambda}Se_n}{n}$ and thus $C^*(Se_n) = n\overline{\lambda}Se_n$. We may (for each integer *n*) conclude that the op-

 $rac{d}{n}$ and thus $C(Se_n) = nXSe_n$. We may (for each integer *n*) conclude that the operator C^* is unbounded which is a contradiction.

Step 15. Conclusion of the proof.

By the preceding steps, and by taking into account the assumptions from Steps 7 and 11, the result follows. \Box

3. Proof of Theorem 3

Proof of Theorem 3. By our earlier remarks, sufficiency is clear. To prove necessity, suppose Φ is a surjective bi-preserver of \ll . By Proposition 17 Φ is bijective and we may assume without loss of generality that Φ maps rank-one operators xy^* into

$$\Phi(xy^*) = \frac{Sxy^*S}{\|Sx\|^2}$$

for some invertible, positive operator $S \in B(H)$. It suffices to show that Φ is then the identity map.

Consider $A \in B(H)$ with a dense range and let $B = \Phi(A)$. If $x \in \text{Im}A$ is a unit vector, then by Proposition 16 $xx^*A \ll A$ (note that the range-kernel orthogonality $\text{Ker}A^* = (\text{Im}A)^{\perp}$ implies $x^*A \neq 0$) so applying Φ gives

$$\frac{Sxx^*AS}{\|Sx\|^2} \leqslant B$$

which by Proposition 16 means that there exists a unit vector $z \in \text{Im}B$ such that

$$\frac{Sxx^*AS}{\|Sx\|^2} = zz^*B. \tag{14}$$

It follows that $Sx = \delta_x z \in \text{Im}B$ for every $x \in \text{Im}A$ where δ_x is a nonzero scalar that depends on x, and in particular, $S \text{Im}A \subseteq \text{Im}B$. Conversely, if $z \in \text{Im}B$ is a unit vector, then $0 \neq zz^*B \ll B$, and since Φ^{-1} also preserves the order \ll and rank of operators, there exists a unit vector $x \in \text{Im}A = \text{Im}\Phi^{-1}(B)$ such that $\Phi(xx^*A) = zz^*B$, i.e., there exists $x \in \text{Im}A$ such that $Sx = \delta_x z$. Hence

$$Im B = S Im A. \tag{15}$$

Let $x \in \text{Im}A$ and $x = Aw \neq 0$. Insert for x in (14) $\frac{x}{\|x\|} = \frac{Aw}{\|x\|}$ to deduce

$$\gamma_w SAww^*A^*AS = zz^*B$$

where γ_w is some nonzero scalar. We infer that $z \in \mathbb{C}SAw$ and since $S^* = S$ we obtain

$$\mu_{w}SAww^{*}A^{*}AS = SAww^{*}A^{*}SB$$

for some nonzero scalar μ_w . Comparing both sides we get

$$\mu_w w^* A^* A S = w^* A^* S B$$

for all vectors *w* such that $Aw \neq 0$. Clearly this holds also if Aw = 0. Then A^*AS and A^*SB are locally linearly dependent and since *A* is not rank-one or zero we have that there exists $\lambda \in \mathbb{C}$ such that

$$\lambda A^*AS = A^*SB,$$

that is

$$A^*(\lambda A - SBS^{-1}) = 0.$$

Since ImA is dense, A^* is injective (by the range-kernel orthogonality) so $\lambda A = SBS^{-1}$ or equivalently,

$$B = \lambda S^{-1} A S.$$

It follows that $\text{Im}B = S^{-1}\text{Im}A = S\text{Im}A$ where the last identity follows from (15). So,

$$S^2 \operatorname{Im} A = \operatorname{Im} A$$

whenever ImA is a dense space.

Suppose there exists a vector $x \in H$ such that x and $y = S^2 x$ are linearly independent vectors. Fix an orthonormal basis $(e_{\lambda})_{\lambda \in \mathbb{N} \cup \Lambda}$ where Λ is the empty set in case H is a separable Hilbert space and define a linear operator A with $Ae_n = \frac{1}{n}e_n$, $n \in \mathbb{N}$, and $Ae_{\lambda} = e_{\lambda}$ for all $\lambda \in \Lambda$. Recall that A is injective, bounded, and has a dense range. Let $\hat{y} = \sum \frac{1}{n}e_n$ and note that $\hat{y} \notin \operatorname{Im} A$. There exists a bounded linear bijection T on H which maps e_1 to x and \hat{y} to y. Note that $x \in \operatorname{Im} TA$ and hence $y = S^2 x \in S^2 \operatorname{Im} TA$, however $y \notin \operatorname{Im} TA$, a contradiction with $S^2 \operatorname{Im} TA = \operatorname{Im} TA$. It follows that S^2 and I are locally linearly dependent and since the positive operator S^2 is not rank-one or zero, there exists $\lambda > 0$ such that $S^2 = \lambda I$ and so its positive square root is $S = \sqrt{\lambda}I$. This implies that $\Phi(xy^*) = \frac{Sxy^*S}{\|Sx\|^2} = xy^*$ and so Φ is the identity map on operators of rank at most one. By applying [4, Lemma 13] we see that Φ is the identity.

Taking into account the assumption (see also Proposition 17) we may conclude that if *H* be an infinite-dimensional complex Hilbert space and $\Phi: B(H) \rightarrow B(H)$ a surjective bi-preserver of the left-star partial order, then

$$\Phi(A) = UAT, \quad A \in B(H),$$

where $U \in B(H)$ is a unitary operator and $T \in B(H)$ is an invertible operator, or U is an anti-unitary operator on H and T is an invertible conjugate-linear operator on H. \Box

4. Proof of Theorem 9

Before proving Theorem 9, we first investigate a special class of maps that arise for bi-preservers of the weak left-star partial order.

LEMMA 18. Fix an invertible positive $S \in B(H)$ and define $\psi : B(H) \to B(H)$ by

$$\Psi(A) = P_{\overline{\operatorname{Im} SA}} S^{-1} A, \quad A \in B(H).$$

Then $\operatorname{Ker} \psi(A) = \operatorname{Ker} A$ and $\overline{\operatorname{Im} \psi(A)} = \overline{\operatorname{Im} SA}$.

Proof. For the first assertion,

$$\operatorname{Ker} \psi(A) = \{x : S^{-1}Ax \in \overline{\operatorname{Im} SA}^{\perp} = \operatorname{Ker} (SA)^*\}$$
$$= \{x : A^*SS^{-1}Ax = 0\} = \{x : A^*Ax = 0\}$$
$$= \operatorname{Ker} A.$$

For the second assertion, it suffices to prove $\overline{\operatorname{Im} \psi(A)}^{\perp} = \overline{\operatorname{Im} SA}^{\perp}$. Note

$$\overline{\operatorname{Im} \psi(A)}^{\perp} = \operatorname{Ker} \psi(A)^* = \{ x : A^* S^{-1} P_{\overline{\operatorname{Im} SA}} x = 0 \}$$
$$= \overline{\operatorname{Im} SA}^{\perp} + \{ x \in \overline{\operatorname{Im} SA} : A^* S^{-1} x = 0 \}.$$

But

$$\{x \in \overline{\text{Im}SA} : A^*S^{-1}x = 0\} = \{x = \lim SAx_n : A^*(\lim S^{-1}SAx_n) = 0\}$$

write $y = S^{-1}x$
 $= \{Sy : y = \lim Ax_n, A^*y = 0\}$
 $= \{Sy : y \in \overline{\text{Im}A} \cap \text{Ker}A^* = \{0\}\} = \{0\},\$

so the result follows. \Box

Proof of Theorem 9. We begin by proving necessity. Suppose $\Phi : B(H) \to B(H)$ is a surjective bi-preserver of \ll_w . By Proposition 17 Φ is bijective, preserves rank, and we may assume without loss of generality that there exists an invertible positive definite $S \in B(H)$ such that

$$\Phi(xy^*) = \frac{Sxy^*S}{\|Sx\|^2}$$

for all nonzero $x \in H$. It suffices to show that, for all $B \in B(H)$,

$$\Phi(B) = P_{\overline{\text{Im}SB}}S^{-1}BS$$

where $P_{\overline{\text{Im}SB}}$ is the orthogonal projection onto $\overline{\text{Im}SB}$.

Let $B \in B(H)$ and write $C = \Phi(B)$. By Proposition 7, and since Φ is a bijective rank-preserving bi-preserver of \ll_w , the following are equivalent.

- (a) $R = xx^*B$ for some $x \in \overline{\text{Im}B}$ with ||x|| = 1.
- (b) rank R = 1 and $R \ll B$.
- (c) rank $\Phi(R) = 1$ and $\Phi(R) \ll C$.
- (d) $\Phi(R) = yy^*C$ for some $y \in \overline{\text{Im}C}$ with ||y|| = 1.

Because (a) implies (d), for each unit vector $x \in \overline{\text{Im}B}$ there exists a unit vector $y \in \overline{\text{Im}C}$ such that

$$\frac{Sxx^*BS}{\|Sx\|^2} = yy^*C.$$
(16)

From this we conclude that $S\overline{\text{Im}B} \subseteq \overline{\text{Im}C}$. Conversely, because (d) implies (a), for each unit vector $y \in \overline{\text{Im}C}$ there exist a unit vector $x \in \overline{\text{Im}B}$ so that (16) holds, whence $\overline{\text{Im}C} \subseteq S\overline{\text{Im}B}$. Thus $\overline{\text{Im}C} = S\overline{\text{Im}B} = \overline{\text{Im}SB}$.

Let x be a unit vector in $\overline{\text{Im}B}$ and set y = Sx/||Sx||. By (16)

$$C^*Sx = SB^*x = SB^*S^{-1}(Sx).$$

Thus $C^* = SB^*S^{-1}$ when restricted to $\overline{\text{Im}SB}$.

We also have $\operatorname{Ker} C^* = (\overline{\operatorname{Im} C})^{\perp} = (\overline{\operatorname{Im} SB})^{\perp}$. Thus for $x \in \overline{\operatorname{Im} SB}$, $y \in \overline{\operatorname{Im} SB}^{\perp}$ we have

$$C^*(x+y) = SB^*S^{-1}x = SB^*S^{-1}P_{\overline{\text{Im}\,SB}}(x+y),$$

so $C^* = SB^*S^{-1}P_{\overline{\text{Im}SB}}$ and the result follows.

To prove sufficiency, let *S* be an invertible positive operator in B(H) and define $\psi: B(H) \to B(H)$ by

$$\psi(A) = P_{\overline{\operatorname{Im} SA}} S^{-1} A, \quad A \in B(H)$$

It suffices to prove that ψ is a surjective bi-preserver of \ll_w .

Let $A, B \in B(H)$. First suppose that $A \ll_w B$. By Lemma 18,

$$\overline{\operatorname{Im} \psi(A)} = \overline{\operatorname{Im} SA} = S(\overline{\operatorname{Im} A}) \subseteq S(\overline{\operatorname{Im} B}) = \overline{\operatorname{Im} SB} = \overline{\operatorname{Im} \psi(B)}$$

We also have

$$A \ll_{W} B \implies A^{*}A = A^{*}B \quad \text{take adjoint of both sides}$$
$$\implies A^{*}A = B^{*}A \implies (A^{*} - B^{*})S^{-1}SA = 0$$
$$\implies (A^{*} - B^{*})S^{-1}P_{\overline{\text{Im SA}}} = 0$$
$$\implies A^{*}S^{-1}P_{\overline{\text{Im SA}}} = B^{*}S^{-1}P_{\overline{\text{Im SA}}} = B^{*}S^{-1}P_{\overline{\text{Im SB}}}P_{\overline{\text{Im SA}}},$$

Taking adjoints of the last line gives $\psi(A) = P_{\overline{\text{Im SA}}} \psi(B)$; by Proposition 7, $\psi(A) \ll_w \psi(B)$.

Conversely, suppose that $\psi(A) \ll_w \psi(B)$. By Lemma 18, $\overline{\text{Im}SA} \subseteq \overline{\text{Im}SB}$; applying S^{-1} gives $\overline{\text{Im}A} \subseteq \overline{\text{Im}B}$. By Proposition 7 and Lemma 18, $\psi(A) = P_{\overline{\text{Im}SA}}\psi(B)$, so

$$P_{\overline{\text{Im SA}}}S^{-1}A = P_{\overline{\text{Im SA}}}S^{-1}B$$

$$\implies P_{\overline{\text{Im SA}}}S^{-1}(A - B) = 0$$

$$\implies S^{-1}(A - B)x \in \overline{\text{Im SA}}^{\perp} = \text{Ker}(SA)^* \quad \text{(for all } x \in H)$$

$$\implies A^*SS^{-1}(A - B) = 0$$

$$\implies A^*A = A^*B.$$

Thus $A \ll_w B$.

Finally, to show surjectivity, fix $B \in B(H)$ and set $A = P_{\overline{\text{Im}S^{-1}B}}SB$. By Lemma 18, $\overline{\text{Im}A} = \overline{\text{Im}S^{-1}B}$, so

$$\psi(A) = P_{\overline{\operatorname{Im} SA}} S^{-1} P_{\overline{\operatorname{Im} S^{-1} B}} SB = P_{\overline{\operatorname{Im} B}} S^{-1} P_{\overline{\operatorname{Im} S^{-1} B}} SB.$$

Let $x \in H$. Then SBx = s + z for some $s \in \overline{\text{Im}S^{-1}B}$ and some $z \in \overline{\text{Im}S^{-1}B}^{\perp} = \text{Ker}B^*S^{-1}$, and therefore $P_{\overline{\text{Im}S^{-1}B}}SBx = s = SBx - z$. Thus

$$\psi(A)x = P_{\overline{\text{Im}B}}S^{-1}P_{\overline{\text{Im}S^{-1}B}}SBx$$
$$= P_{\overline{\text{Im}B}}S^{-1}(SBx - z)$$
$$= Bx - P_{\overline{\text{Im}B}}S^{-1}z = Bx$$

since $z \in \operatorname{Ker} B^* S^{-1}$ implies $S^{-1} z \in \operatorname{Ker} B^* = \overline{\operatorname{Im} B}^{\perp}$. Thus $\psi(A) = B$. \Box

REMARK 19. Note the above proof shows that the inverse of the map $\psi(A) = P_{\overline{\text{Im SA}}}S^{-1}A$ has the same form and is given by $\psi^{-1}(B) = P_{\overline{\text{Im S}^{-1}B}}SB$.

REFERENCES

- J. K. BAKSALARY, S. K. MITRA, *Left-star and right-star partial orderings*, Linear Algebra Appl. 149 (1991), 73–89.
- B. BLACKADAR, Operator algebras: Theory of C*-algebras and von Neumann algebras, Springer, Berlin, 2006.
- [3] G. DOLINAR, A. GUTERMAN, J. MAROVT, Automorphisms of K(H) with respect to the star partial order, Oper. Matrices 7 (2013), No. 1, 225–239.
- [4] G. DOLINAR, A. GUTERMAN, J. MAROVT, Monotone transformations on B(H) with respect to the left-star and the right-star partial order, Math. Inequal. Appl. 17 (2014), No. 2, 573–589.
- [5] G. DOLINAR, S. HALICIOGLU, A. HARMANCI, B. KUZMA, J. MAROVT, B. UNGOR, Preservers of the left-star and rigt-star partial orders, Linear Algebra Appl. 587 (2020), 70–91.
- [6] M. P. DRAZIN, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), 139–141.
- [7] P. A. FILLMORE, W. E. LONGSTAFF, On isomorphisms of lattices of closed subspaces, Can. J. Math. 5 (1984), 820–829.
- [8] A. E. GUTERMAN, Monotone additive transformations on matrices, Mat. Zametki 81 (2007), 681– 692.
- [9] R. HAGEN, S. ROCH, B. SIBERMANN, C^{*} algebras and numerical analysis, CRC Press, Boca Raton, 2001.
- [10] P. LEGIŠA, Automorphisms of M_n, partially ordered by the star order, Linear Multilinear Algebra 54, No. 3, 157–188, 2006.

- [11] L. MOLNÁR, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), No. 6, 1867–1874.
- [12] M. Z. NASHED (ed.), Generalized inverses and applications, Academic Press, New York-London, 1976.

(Received June 2, 2020)

Gregor Dolinar University of Ljubljana Faculty of Electrical Engineering Tržaška cesta 25, SI-1000 Ljubljana, Slovenia and IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia e-mail: gregor.dolinar@fe.uni-1j.si

Bojan Kuzma University of Primorska Glagoljaška 8, SI-6000 Koper, Slovenia and IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia e-mail: bojan.kuzma@upr.si

Janko Marovt University of Maribor Faculty of Economics and Business Razlagova 14, SI-2000 Maribor, Slovenia and IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia e-mail: janko.marovt@um.si Edward Poon

Embry-Riddle Aeronautical University Department of Mathematics 3700 Willow Creek Road, Prescott, Arizona, USA e-mail: edward.poon@erau.edu

Operators and Matrices www.ele-math.com oam@ele-math.com