ON ERGODIC THEOREM FOR A FAMILY OF OPERATORS

ABDELLAH AKRYM, ABDESLAM EL BAKKALI* AND ABDELKHALEK FAOUZI

(Communicated by M. Omladič)

Abstract. In this paper, we obtain a generalization of the uniform ergodic theorem to the family of bounded linear operators on a Banach space. We present some elementary results in this setting and we show that Lin's theorem can be extended from the case of a bounded linear operator to the case of a family of bounded linear operators acting on a Banach space.

1. Introduction

Let *T* be a bounded linear operator on a complex Banach space \mathscr{X} . The uniform ergodicity for *T* was already developed in different directions (see, e.g. [2, 3, 4, 5, 7, 8, 9, 12]). For example, in [3], it was shown that if $\frac{1}{n} || T^n || \longrightarrow 0$ as $n \to \infty$, then *T* is uniformly ergodic if and only if $(I - T)^2 \mathscr{X}$ is closed. Hence $(I - T)^k \mathscr{X}$ is closed for each integer $k \ge 1$. In [8] M. Lin has established the following theorem which characterizes the uniform ergodicity for an operator acting on a Banach space.

THEOREM 1. Let T be a bounded linear operator on a Banach space \mathscr{X} satisfying $\frac{1}{n} ||T^n|| \longrightarrow 0$ as $n \to \infty$. Then the following conditions are equivalent:

(1) There exists a bounded linear operator P such that

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}T^k-P\right\|\longrightarrow 0 \text{ as } n\to\infty.$$

- (2) $(I-T) \mathscr{X}$ is closed and $\mathscr{X} = \{x \in \mathscr{X} : Tx = x\} \oplus (I-T) \mathscr{X}$.
- (3) $(I-T)^2 \mathscr{X}$ is closed.
- (4) $(I-T) \mathscr{X}$ is closed.

^{*} Corresponding author.

Mathematics subject classification (2020): 37Axx, 47A35, 47AXX.

Keywords and phrases: Cesàro mean operator, family of operators, ergodic theorem.

In this paper we introduce the notion of the uniform ergodicity for a family of bounded linear operators from the Banach algebra $C_b((0,1], \mathscr{B}(\mathscr{X}))$ (respectively from \mathscr{B}_{∞}), see below for the definitions. We give relations between these two definitions, see Proposition 1 below, and we extend the equivalent properties of Theorem 1 for a family of bounded linear operators acting on a Banach space.

Krishna and Johnson have analyzed completeness of a collection of bounded linear operators between normed spaces in [6]. We are motivated by the papers [10, 11] of S. Macovei which contain some interesting properties of families of bounded linear operators acting on a Banach space.

2. Preliminaries

Let \mathscr{X} be an infinite-dimensional complex Banach space and $\mathscr{B}(\mathscr{X})$ the Banach algebra of all bounded linear operators on \mathscr{X} . We denote by *I* the identity operator on \mathscr{X} .

Let $T \in \mathscr{B}(\mathscr{X})$, we denote the Cesàro mean by

$$M_n(T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k.$$

Recall that T is uniformly ergodic if there exists $P \in \mathscr{B}(\mathscr{X})$ such that

$$||M_n(T) - P|| \longrightarrow 0 \text{ as } n \to \infty.$$

In [10], Macovei showed that the set

$$C_b((0,1],\mathscr{B}(\mathscr{X})) = \Big\{ \{T_h\}_{h \in (0,1]} \subset \mathscr{B}(\mathscr{X}) : \{T_h\}_{h \in (0,1]} \text{ is a bounded family, i.e.} \\ \sup_{h \in (0,1]} \|T_h\| < \infty \Big\},$$

is a Banach algebra non-commutative with norm

$$\|\{T_h\}\| = \sup_{h \in (0,1]} \|T_h\|.$$

And

$$C_0\left((0,1],\mathscr{B}(\mathscr{X})\right) = \left\{ \{T_h\}_{h \in (0,1]} \subset C_b\left((0,1],\mathscr{B}(\mathscr{X})\right) : \lim_{h \to 0} \|T_h\| = 0 \right\}$$

is a closed bilateral ideal of $C_b((0,1],\mathscr{B}(\mathscr{X}))$. The quotient algebra

$$C_b((0,1],\mathscr{B}(\mathscr{X}))/C_0((0,1],\mathscr{B}(\mathscr{X})))$$

which will be denoted \mathscr{B}_{∞} , is also a Banach algebra with quotient norm

$$\left\|\{\dot{T}_{h}\}\right\| = \inf_{\{U_{h}\}_{h \in \{0,1\}} \in C_{0}((0,1],\mathscr{B}(\mathscr{X}))} \left\|\{T_{h}\} + \{U_{h}\}\right\| = \inf_{\{S_{h}\}_{h \in \{0,1\}} \in \{\dot{T}_{h}\}} \left\|\{S_{h}\}\right\| \leqslant \left\|\{S_{h}\}\right\|,$$

for any $\{S_h\}_{h \in [0,1]} \in \{\dot{T}_h\}$. On the other hand we have

$$\limsup_{h\to 0} \|\{S_h\}\| \leqslant \left\|\{\dot{T}_h\}\right\|$$

for any $\{S_h\}_{h\in(0,1]} \in \{\dot{T}_h\}$.

In the following Definition, we introduce the notion of uniform ergodicity for a family of operators of $C_b((0,1], \mathscr{B}(\mathscr{X}))$.

DEFINITION 1. We say that a family of operators $\{T_h\}_{h \in (0,1]} \in C_b((0,1], \mathscr{B}(\mathscr{X}))$ is uniformly ergodic if there exists $\{P_h\}_{h \in (0,1]} \in C_b((0,1], \mathscr{B}(\mathscr{X}))$ such that

$$\lim_{n\to\infty}\limsup_{h\to 0}\|M_n(T_h)-P_h\|=0.$$

EXAMPLE 1. (i) If T_h is uniformly ergodic for any $h \in (0,1]$, then the family $\{T_h\}_{h \in (0,1]}$ does.

- (ii) If $T_h = T$ for each $h \in (0, 1]$ then, T is uniformly ergodic if and only if $\{T_h\}_{h \in (0, 1]}$ does.
- (iii) Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $H(\mathbb{D})$ the set of all analytic functions on \mathbb{D} . We consider the following Banach space

$$H^{\infty}(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \|f\|_{\infty} := \sup_{z \in \mathbb{D}} |f(z)| < \infty \right\}.$$

For $\varphi_h(z) = (\frac{1}{2} - h)z$, $h \in (0, 1]$, we have $\|\varphi_h^n\|_{\infty}$ converges to 0 as $n \to \infty$. Then, by [1, Theorem 3.3.], the composition operator $C_{\varphi_h} : H^{\infty}(\mathbb{D}) \longrightarrow H^{\infty}(\mathbb{D})$ defined by $C_{\varphi_h}(f) = f \circ \varphi_h$ is uniformly ergodic for all $h \in (0, 1]$. By (i), then the family $\{C_{\varphi_h}\}_{h \in (0, 1]}$ is uniformly ergodic.

In [11], Macovei showed that the set

$$\mathscr{X}_b\left((0,1],\mathscr{X}\right) = \left\{ \{x_h\}_{h\in(0,1]} \subset \mathscr{X} : \{x_h\}_{h\in(0,1]} \text{ is a bounded sequence, i.e.} \\ \sup_{h\in(0,1]} \|x_h\| < \infty \right\},\$$

is a Banach algebra with norm

$$\|\{x_h\}\| = \sup_{h \in (0,1]} \|x_h\|.$$

And

$$\mathscr{X}_0\left((0,1],\mathscr{X}\right) = \left\{ \{x_h\}_{h \in (0,1]} \subset \mathscr{X}_b\left((0,1],\mathscr{X}\right) : \lim_{h \to 0} \|x_h\| = 0 \right\}$$

is a closed bilateral ideal of $\mathscr{X}_b((0,1],\mathscr{X})$. The quotient space

$$\mathscr{X}_b((0,1],\mathscr{X})/\mathscr{X}_0((0,1],\mathscr{X}),$$

which will be denoted \mathscr{X}_{∞} , is a Banach algebra with quotient norm

$$\|\{\dot{x}_{h}\}\| = \inf_{\substack{\{u_{h}\}_{h\in(0,1]}\in\mathscr{X}_{0}((0,1],\mathscr{X}) \\ \{y_{h}\}_{h\in(0,1]}\in\{\dot{x}_{h}\}}} \|\{x_{h}\} + \{u_{h}\}\| = \inf_{\substack{\{y_{h}\}_{h\in(0,1]}\in\{\dot{x}_{h}\} \\ \{y_{h}\}_{h\in(0,1]}\in\{\dot{x}_{h}\}}} \sup_{h\in(0,1]} \|y_{h}\|.$$

In [11], it was shown that $\mathscr{B}_{\infty} \subset \mathscr{B}(\mathscr{X}_{\infty})$, where $\mathscr{B}(\mathscr{X}_{\infty})$ is the algebra of bounded linear operators on \mathscr{X}_{∞} .

In the following Definition, we introduce the notion of uniform ergodicity for a family of operators of \mathscr{B}_{∞} .

DEFINITION 2. We say that $\{\dot{T}_h\} \in \mathscr{B}_{\infty}$ is uniformly ergodic if there exists $\{\dot{P}_h\} \in \mathscr{B}_{\infty}$ such that

$$\lim_{n\to\infty}\left\|M_n(\{\dot{T}_h\})-\{\dot{P}_h\}\right\|=0,$$

where

$$M_n(\{\dot{T}_h\}) - \{\dot{P}_h\} = \{M_n(T_h)\} - \{\dot{P}_h\} = \{M_n(T_h) - P_h\}.$$

3. Main results

In this section, we will extend the known uniform ergodic theorem of M. Lin [8] from the case of a bounded linear operator to the case of a family of bounded linear operators on a Banach space.

We start this section by the following Proposition.

PROPOSITION 1. Let $\{\dot{T}_h\} \in \mathscr{B}_{\infty}$ be uniformly ergodic. Then any $\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}$ is also uniformly ergodic.

Proof. Suppose that $\{\dot{T}_h\}$ is uniformly ergodic, then there exists $\{\dot{P}_h\} \in \mathscr{B}_{\infty}$ such that

$$\lim_{n\to\infty}\left\|M_n(\{\dot{T}_h\})-\{\dot{P}_h\}\right\|=0.$$

Let $\{S_h\}_{h\in(0,1]} \in \{\dot{T}_h\}$ be arbitrary. Then for $\{P_h\}_{h\in(0,1]} \in \{\dot{P}_h\}$, we have

$$\lim_{n \to \infty} \limsup_{h \to 0} \|M_n(S_h) - P_h\| \leq \lim_{n \to \infty} \|M_n(\{T_h\}) - \{P_h\}\| = \lim_{n \to \infty} \|M_n(\{\dot{T}_h\}) - \{\dot{P}_h\}\| = 0.$$

Therefore, $\{S_h\}_{h \in (0,1]}$ is uniform ergodic. \Box

In particular, we obtain the following result.

COROLLARY 1. Let $\{\dot{T}_h\} \in \mathscr{B}_{\infty}$ be uniformly ergodic. Then $\{T_h\}_{h \in (0,1]}$ is also uniformly ergodic.

The proof of $(d) \Rightarrow (a)$, in the principal theorem (Theorem 2), requires the following Lemma.

LEMMA 1. Let $\Phi : \mathscr{X}_{\infty} \to \mathscr{Y}_{\infty}$ a linear map. Then the following assertions are equivalent:

- (1) Φ is open from \mathscr{X}_{∞} onto \mathscr{Y}_{∞} ;
- (2) There exists k > 0 such that for any $\{\dot{y}_h\} \in \mathscr{Y}_{\infty}$, there exists $\{\dot{x}_h\} \in \mathscr{X}_{\infty}$ with $\Phi(\{\dot{x}_h\}) = \{\dot{y}_h\}$ and $\|\{\dot{x}_h\}\| \leq k \|\{\dot{y}_h\}\|$.

Proof. (1) \Rightarrow (2) Since $\Phi(B_{\mathscr{X}_{\infty}})$ is open and $\{\dot{0}\} \in \Phi(B_{\mathscr{X}_{\infty}})$, (where $B_{\mathscr{X}_{\infty}}$ is the unit ball of \mathscr{X}_{∞}), there exists $\delta > 0$ such that $\{\{\dot{y}_h\} \in \Phi(\mathscr{X}_{\infty}) : \|\{\dot{y}_h\}\| < \delta\} \subset \Phi(B_{\mathscr{X}_{\infty}})$. Then, for $\{\dot{y}_h\} \in \mathscr{X}_{\infty}$ such that $\{\dot{y}_h\} \neq \{\dot{0}\}$, it follows that $\frac{\delta\{\dot{y}_h\}}{2\|\{\dot{y}_h\}\|} \in \{\dot{y}_h\} \in \Phi(\mathscr{X}_{\infty}) : \|\{\dot{y}_h\}\| < \delta\}$. Thus, $\frac{\delta\{\dot{y}_h\}}{2\|\{\dot{y}_h\}\|} \in \Phi(B_{\mathscr{X}_{\infty}})$. Hence, there exists $\{\dot{z}_h\} \in B_{\mathscr{X}_{\infty}}$ such that $\Phi(\{\dot{z}_h\}) = \frac{\delta\{\dot{y}_h\}}{2\|\{\dot{y}_h\}\|}$. If we set $\{\dot{x}_h\} = \frac{2\|\{\dot{y}_h\}\|}{\delta}\{\dot{z}_h\}$, we have

$$\Phi\left(\{\dot{x_h}\}\right) = \Phi\left(\frac{2\left\|\{\dot{y_h}\}\right\|}{\delta}\{\dot{z_h}\}\right) = \frac{2\left\|\{\dot{y_h}\}\right\|}{\delta}\Phi\left(\{\dot{z_h}\}\right) = \frac{2\left\|\{\dot{y_h}\}\right\|}{\delta}\cdot\frac{\delta\{\dot{y_h}\}}{2\left\|\{\dot{y_h}\}\right\|} = \{\dot{y_h}\},$$

Since $\left\| \{ \dot{z}_h \} \right\| < 1$, then

$$\left\| \{ \dot{x_h} \} \right\| \leqslant \frac{2}{\delta} \left\| \{ \dot{y_h} \} \right\|.$$

Consequently by taking $k = \frac{2}{\delta} > 0$, (2) holds.

Conversely, fix an open set $U \in \mathscr{X}_{\infty}$ and $\{\dot{x}_h\} \in U$. There exists r > 0 such that $\{\dot{x}_h\} + B(\{\dot{0}\}, r) = B(\{\dot{x}_h\}, r) \subset U$. To show that $\Phi(U)$ is open, it suffices to prove that

$$\Phi\left(\left\{\dot{x}_{h}\right\}+B\left(\left\{\dot{0}\right\},\frac{r}{k}\right)\right)=B\left(\Phi\left(\left\{\dot{x}_{h}\right\}\right),\frac{r}{k}\right)\subset\Phi(U).$$

Take $\{\dot{y}_h\} \in \mathscr{Y}_{\infty}$ with $\left\| \{\dot{y}_h\} \right\| < \frac{r}{k}$, then by (2) there exists $\{\dot{z}_h\} \in \mathscr{X}_{\infty}$ such that $\Phi\left(\{\dot{z}_h\}\right) = \{\dot{y}_h\}$ and $\left\| \{\dot{z}_h\} \right\| < k \cdot \frac{r}{k} = r$. Thus, $\{\dot{x}_h\} + \{\dot{z}_h\} \in U$ and $\Phi\left(\{\dot{x}_h\}\right) + \{\dot{y}_h\} = \Phi\left(\{\dot{x}_h\}\right) + \Phi\left(\{\dot{z}_h\}\right) = \Phi\left(\{\dot{x}_h\} + \{\dot{z}_h\}\right) \in \Phi(U)$. Then $\Phi(U)$ is open. \Box

THEOREM 2. Let $\{\dot{T}_h\} \in \mathscr{B}_{\infty}$ satisfy $\lim_{n\to\infty} \frac{1}{n} \left\| \left(\{\dot{T}_h\}\right)^n \right\| = 0$. Then, the following assertions are equivalent:

- (a) $\{\dot{T}_h\}$ is uniformly ergodic;
- (b) $\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\mathscr{X}_{\infty}$ is closed and $\mathscr{X}_{\infty} = \left\{\{\dot{x}_{h}\}\in\mathscr{X}_{\infty}:\{\dot{T}_{h}\}(\{\dot{x}_{h}\})=\{\dot{x}_{h}\}\right\}\oplus\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\mathscr{X}_{\infty};$
- (c) $\left(\{\dot{I}\}-\{\dot{T}_h\}\right)^2 \mathscr{X}_{\infty}$ is closed;
- (d) $\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\mathscr{X}_{\infty}$ is closed.

Proof. Let $\mathfrak{Y} = \overline{\left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty}}$. (*a*) \Rightarrow (*b*). Suppose that there exists $\{\dot{P}_h\} \in \mathscr{B}_{\infty}$ such that

$$\left\|M_n\left(\{\dot{T}_h\}\right)-\{\dot{P}_h\}\right\|\longrightarrow 0 \text{ as } n\to\infty$$

We start first by showing that $\{\dot{T}_h\}$. $\{\dot{P}_h\} = \{\dot{P}_h\}$. $\{\dot{T}_h\} = \{\dot{P}_h\}$, where $\{\dot{T}_h\}$. $\{\dot{P}_h\} = \{T_h\dot{P}_h\}$ (recall that \mathscr{B}_{∞} is a Banach algebra). We have

$$\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right).M_{n}\left(\{\dot{T}_{h}\}\right) = \frac{1}{n}\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\cdot\left(\{\dot{I}_{h}\}+\{\dot{T}_{h}\}+\ldots+\left(\{\dot{T}_{h}\}\right)^{n-1}\right)$$
$$=\frac{1}{n}\left(\{\dot{I}_{h}\}-\{\dot{T}_{h}\}^{n}\right).$$

Since $\frac{1}{n} \left\| \left(\{ \dot{T}_h \} \right)^n \right\| \longrightarrow 0 \text{ as } n \to \infty$. Hence by passing to limit as $n \to \infty$ we get $\left(\{ \dot{I} \} - \{ \dot{T}_h \} \right) . \{ \dot{P}_h \} = 0$. Thus $\{ \dot{T}_h \} . \{ \dot{P}_h \} = \{ \dot{P}_h \}$. Analogously $\{ \dot{P}_h \} . \{ \dot{T}_h \} = \{ \dot{P}_h \}$, which means that

$$\{\dot{P}_h\}.(\{\dot{I}\}-\{\dot{T}_h\})=(\{\dot{I}\}-\{\dot{T}_h\}).\{\dot{P}_h\}=\{\dot{0}\}.$$

We will prove that $\{\dot{P}_h\} \mathscr{X}_{\infty} = \left\{\{\dot{x}_h\} \in \mathscr{X}_{\infty} : \{\dot{T}_h\}(\{\dot{x}_h\}) = \{\dot{x}_h\}\right\}.$

Let $\{\dot{z}_h\} \in \mathscr{X}_{\infty}$ such that $\{\dot{T}_h\}(\{\dot{z}_h\}) = \{\dot{z}_h\}$. Then $M_n\left(\{\dot{T}_h\}\right)\left(\{\dot{z}_h\}\right) = \{\dot{z}_h\}$, thus, by passing to limit when $n \to \infty$, we get $\{\dot{P}_h\}\left(\{\dot{z}_h\}\right) = \{\dot{z}_h\}$. Hence $\{\dot{z}_h\} \in \{\dot{P}_h\}\mathscr{X}_{\infty}$.

Conversely, let $\{\dot{y}_h\} \in \{\dot{P}_h\} \mathscr{X}_{\infty}$. Then there exists $\{\dot{x}_h\} \in \mathscr{X}_{\infty}$ such that $\{\dot{P}_h\} \left(\{\dot{x}_h\}\right) = \{\dot{y}_h\}$. The fact that $\{\dot{T}_h\} \cdot \{\dot{P}_h\} \left(\{\dot{x}_h\}\right) = \{\dot{P}_h\} \left(\{\dot{x}_h\}\right)$ allows us to show easily that

$$\{\dot{P}_h\}\left(\{\dot{x}_h\}\right) = \{\dot{y}_h\} \in \left\{\{\dot{x}_h\} \in \mathscr{X}_{\infty} : \{\dot{T}_h\}\left(\{\dot{x}_h\}\right)\right) = \{\dot{x}_h\}\right\}.$$

Now, let us show that $(\{\dot{P}_h\})^2 = \{\dot{P}_h\}$. Since $\{\dot{T}_h\}.\{\dot{P}_h\} = \{\dot{P}_h\}$, it follows that

$$M_n\left(\{\dot{T}_h\}\right).\{\dot{P}_h\} = \frac{1}{n}\left(\{\dot{P}_h\} + \{\dot{T}_h\}.\{\dot{P}_h\} + \dots + \left(\{\dot{T}_h\}\right)^n.\{\dot{P}_h\}\right) = \{\dot{P}_h\}$$

Hence $\left(\{\dot{P}_h\}\right)^2 = \{\dot{P}_h\}.$

Next, we will prove that $\mathscr{X}_{\infty} = (\{\dot{P}_h\}) \mathscr{X}_{\infty} \oplus \mathfrak{Y}$. Put $\{\dot{Q}_h\} = \{\dot{I}_h\} - \{\dot{P}_h\}$. First, we prove that $(\{\dot{Q}_h\}) \mathscr{X}_{\infty} \subset \mathfrak{Y}$.

Suppose that there exists $\{\dot{u_h}\} \notin \mathfrak{Y}$ but $\{\dot{u_h}\} \in (\{\dot{Q_h}\}) \mathscr{X}_{\infty}$. Then there exists a linear and continuous mapping $f : \mathscr{X}_{\infty} \longrightarrow \mathbb{C}$ such that

$$f\left(\{\dot{u_h}\}\right) = 1 \text{ and } f\left(\{\dot{y_h}\}\right) = 0 \text{ for all } \{\dot{y_h}\} \in \mathfrak{Y}.$$

Since $f\left(\left(\{\dot{I}_h\}-\{\dot{T}_h\}\right)\{\dot{z}_h\}\right)=0$, for all $\{\dot{z}_h\}\in\mathscr{X}_{\infty}$, it results $f\left(\{\dot{I}_h\}\left(\{\dot{z}_h\}\right)\right)=f\left(\{\dot{T}_h\}\right)\left(\{\dot{z}_h\}\right)=f\left(M_n\left(\{\dot{T}_h\}\right)\{\dot{z}_h\}\right)$, for all $\{\dot{z}_h\}\in\mathscr{X}_{\infty}$. Passing to limit as $n\to\infty$ we obtain

$$f\left(M_n\left(\{\dot{T}_h\}\right)\{\dot{z}_h\}\right) \longrightarrow f\left(\{\dot{P}_h\}\{\dot{z}_h\}\right).$$

Thus $f(\{\dot{Q}_h\}\{\dot{z}_h\})=0$, for all $\{\dot{z}_h\}\in\mathscr{X}_{\infty}$. Let $\{\dot{v}_h\}\in\mathscr{X}_{\infty}$ such that $\{\dot{u}_h\}=\{\dot{Q}_h\}(\{\dot{v}_h\})$, thus $f(\{\dot{u}_h\})=0$, contradiction. Therefore $\{\dot{Q}_h\}\mathscr{X}_{\infty}\subset\mathfrak{Y}$.

Since $\{\dot{P}_h\}$ is a projection, we have the equality $\mathscr{X}_{\infty} = \{\dot{P}_h\}\mathscr{X}_{\infty} \oplus \{\dot{Q}_h\}\mathscr{X}_{\infty}$. Then $\mathscr{X}_{\infty} \subset \{\dot{P}_h\}\mathscr{X}_{\infty} \oplus \mathfrak{Y}$. Therefore, $\mathscr{X}_{\infty} = \{\dot{P}_h\}\mathscr{X}_{\infty} \oplus \mathfrak{Y}$. Since

$$\{\dot{T}_h\}\mathfrak{Y} = \{\dot{T}_h\}\mathscr{X}_{\infty} - \{\dot{T}_h\}\{\dot{P}_h\}\mathscr{X}_{\infty} = \{\dot{T}_h\}\mathscr{X}_{\infty} - \{\dot{P}_h\}\mathscr{X}_{\infty} \subset \mathscr{X}_{\infty} - \{\dot{P}_h\}\mathscr{X}_{\infty} \subset \mathfrak{Y},$$

thus \mathfrak{Y} is $\{\dot{T}_h\}$ -invariant.

If we put $\{\dot{S}_h\} = \{\dot{T}_h\}_{|\mathfrak{Y}}$, then, by (1) we obtain

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}\left\{\dot{S_{h}}\right\}^{k}\right\| \longrightarrow 0 \text{ as } n \to \infty.$$

Fix $n_0 \in \mathbb{N}$ such that $\left\| \frac{1}{n_0} \sum_{k=0}^{n_0-1} \{ \dot{S}_h \}^k \right\| < 1$. Then $\{ \dot{I} \} - \frac{1}{n_0} \sum_{k=0}^{n_0-1} \{ \dot{S}_h \}^k$ is invertible. Using

$$\begin{split} \{\dot{I}\} &- \frac{1}{n_0} \sum_{k=0}^{n_0 - 1} \{\dot{S}_h\}^k = \{\dot{I}\} - \frac{1}{n_0} \{\dot{I}\} - \frac{1}{n_0} \{\dot{S}_h\} - \dots - \frac{1}{n_0} \{\dot{S}_h\}^{n_0 - 1} \\ &= \frac{1}{n_0} \left(\{\dot{I}\} - \{\dot{S}_h\}\right) \left(\{\dot{I}\} + \left(\{\dot{I}\} + \{\dot{S}_h\}\right) \\ &+ \dots + \left(\{\dot{I}\} + \{\dot{S}_h\} + \dots + \{\dot{S}_h\}^{n_0 - 2}\right)\right), \end{split}$$

we deduce that $\{\dot{I}\} - \{\dot{S}_h\}$ is invertible. Thus,

$$\mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{S}_h\}\right)\mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{T}_h\}\right)\mathfrak{Y} \subset \left(\{\dot{I}\} - \{\dot{T}_h\}\right)\mathscr{K}_{\infty},$$

hence

$$\mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty}.$$

Then $(\{\dot{I}\} - \{\dot{T}_h\}) \mathscr{X}_{\infty}$ is closed and (b) is verified. $(b) \Rightarrow (c)$. Let $\mathfrak{Y} = (\{\dot{I}\} - \{\dot{T}_h\}) \mathscr{X}_{\infty}$, we want to prove the equality $((\dot{I}) - (\dot{T}_h))^2 \mathscr{X}_{\infty} = \mathfrak{Y}$

$$\left(\{\dot{I}\}-\{\dot{T}_h\}\right)^2\mathscr{X}_{\infty}=\mathfrak{Y}$$

Evidently we have

$$\left(\{\dot{I}\}-\{\dot{T}_h\}\right)^2\mathscr{X}_{\infty}=\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\mathscr{X}_{\infty}\subset\mathfrak{Y}.$$

Let $\{\dot{y}_h\} \in \mathfrak{Y}$, then there exists $\{\dot{x}_h\} \in \mathscr{X}_{\infty}$ such that $\{\dot{y}_h\} = (\{\dot{I}\} - \{\dot{T}_h\}) \{\dot{x}_h\}$. By (b), we write $\{\dot{x}_h\}$ as follows

$$\{\dot{x}_h\} = \{\dot{u}_h\} + \{\dot{v}_h\} \text{ with } \{\dot{T}_h\} \{\dot{u}_h\} = \{\dot{u}_h\} \text{ and } \{\dot{v}_h\} \in \mathfrak{Y}.$$

Thus,

$$\begin{aligned} \{\dot{y}_h\} &= \left(\{\dot{I}\} - \{\dot{T}_h\}\right)\{\dot{x}_h\} = \left(\{\dot{I}\} - \{\dot{T}_h\}\right)\{\dot{v}_h\} \in \left(\{\dot{I}\} - \{\dot{T}_h\}\right)\mathfrak{Y}\\ &= \left(\{\dot{I}\} - \{\dot{T}_h\}\right)^2 \mathscr{X}_{\infty},\end{aligned}$$

hence $\mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{T}_h\}\right)^2 \mathscr{X}_{\infty}$, therefore $\left(\{\dot{I}\} - \{\dot{T}_h\}\right)^2 \mathscr{X}_{\infty}$ is closed. $(c) \Rightarrow (d)$. Let $\mathfrak{Y} = \overline{\left(\{\dot{I}\} - \{\dot{T}_h\}\right)} \mathscr{X}_{\infty}$. We will prove that $\left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty} = \mathfrak{Y}$. It is easy to show that

$$\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)^{2}\mathscr{X}_{\infty} = \left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\mathscr{X}_{\infty} \\ \subset \overline{\left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\mathscr{X}_{\infty}} = \left(\{\dot{I}\}-\{\dot{T}_{h}\}\right)\mathfrak{Y}_{\infty}$$

On the other hand, by (c), we have

$$\left(\{\dot{I}\} - \{\dot{T}_h\} \right) \mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{T}_h\} \right) \overline{\left(\{\dot{I}\} - \{\dot{T}_h\} \right) \mathscr{X}_{\infty}} \subset \left(\{\dot{I}\} - \{\dot{T}_h\} \right)^2 \mathscr{X}_{\infty}$$
$$= \left(\{\dot{I}\} - \{\dot{T}_h\} \right)^2 \mathscr{X}_{\infty}.$$

Since $(\{\dot{I}\} - \{\dot{T}_h\})^2 \mathscr{X}_{\infty}$ is closed thus $(\{\dot{I}\} - \{\dot{T}_h\}) \mathfrak{Y} = \overline{(\{\dot{I}\} - \{\dot{T}_h\}) \mathfrak{Y}}$. As in the proof of $(b) \Rightarrow (c)$, the restriction $\{\dot{S}_h\} = \{\dot{T}_h\}_{|\mathfrak{Y}|}$ satisfies $\left\|\frac{1}{n}\sum_{k=0}^{n-1}\{\dot{S}_h\}^k\{\dot{y}_h\}\right\| \longrightarrow 0$ as $n \to \infty$, for any $\{\dot{y}_h\} \in (\{\dot{I}\} - \{\dot{T}_h\}) \mathscr{X}_{\infty}$. Then

$$\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\mathscr{X}_{\infty}\subset\overline{\left(\{\dot{I}\}-\{\dot{S}_h\}\right)\mathfrak{Y}}=\left(\{\dot{I}\}-\{\dot{S}_h\}\right)\mathfrak{Y}=\left(\{\dot{I}\}-\{\dot{T}_h\}\right)^2\mathscr{X}_{\infty}.$$

Hence $\mathfrak{Y} \subset \left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty}$. Therefore $\left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty}$ is closed. $(d) \Rightarrow (a)$. Let $\mathfrak{Y} = \left(\{\dot{I}\} - \{\dot{T}_h\}\right) \mathscr{X}_{\infty}$, then \mathfrak{Y} is a Banach space. The operator

 $\{\dot{I}\} - \{\dot{T}_h\}: \mathscr{X}_{\infty} \longrightarrow \mathfrak{Y}$ is surjective and continuous, then by the open mapping theorem, $\{\dot{I}\} - \{\dot{T}_h\}$ is open. Thus by the Lemma 1 there exists k > 0 satisfying that for each $\{\dot{y}_h\} \in \mathfrak{Y}$, there exists $\{\dot{z}_h\} \in \mathscr{X}_{\infty}$ such that

$$\left(\left\{\dot{I}\right\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{z}_{h}\right\}=\left\{\dot{y}_{h}\right\}, \text{ and } \left\|\left\{\dot{z}_{h}\right\}\right\|\leqslant k\left\|\left\{\dot{y}_{h}\right\}\right\|.$$

Hence, for $\{\dot{y}_h\} \in \mathfrak{Y}$, we have

$$\left\| \frac{1}{n} \sum_{k=0}^{n-1} \left\{ \dot{T}_h \right\}^k \left\{ \dot{y}_h \right\} \right\| = \left\| \frac{1}{n} \sum_{k=0}^{n-1} \left\{ \dot{T}_h \right\}^k \left(\left\{ \dot{I} \right\} - \left\{ \dot{T}_h \right\} \right) \left\{ \dot{x}_h \right\} \right\| = \left\| \frac{1}{n} \left(\left\{ \dot{I} \right\} - \left\{ \dot{T}_h \right\}^n \right) \left\{ \dot{x}_h \right\} \right\|$$
$$\leq k \left\| \frac{1}{n} \left(\left\{ \dot{I} \right\} - \left\{ \dot{T}_h \right\}^n \right) \right\| \left\| \left\{ \dot{y}_h \right\} \right\|.$$

Let $\{\dot{S}_h\} = \{\dot{T}_h\}_{|\mathfrak{Y}}$, the restriction of $\{\dot{T}_h\}$ to \mathfrak{Y} . Then $\left\|\frac{1}{n}\sum_{k=0}^{n-1}\{\dot{S}_h\}^k\right\| \longrightarrow 0$ as $n \to \infty$. By the proof of $(a) \Rightarrow (b)$, we obtain that $\{\dot{I}\} - \{\dot{S}_h\}$ is invertible on \mathfrak{Y} and

$$\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\mathscr{X}_{\infty}=\mathfrak{Y}=\left(\{\dot{I}\}-\{\dot{S}_h\}\right)\mathfrak{Y}=\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\mathfrak{Y}=\left(\{\dot{I}\}-\{\dot{S}_h\}\right)\mathscr{X}_{\infty}.$$

Then for $\{\dot{x}_h\} \in \mathscr{X}_{\infty}$ there exists $\{\dot{y}_h\} \in \mathfrak{Y}$ such that

$$\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\{\dot{x}_h\}=\left(\{\dot{I}\}-\{\dot{T}_h\}\right)\{\dot{y}_h\},$$

consequently $(\{\dot{I}\} - \{\dot{T}_h\})(\{\dot{x}_h\} - \{\dot{y}_h\}) = \{\dot{0}\}$. Thus $M_n(\{\dot{T}_h\})(\{\dot{x}_h\} - \{\dot{y}_h\}) = (\{\dot{x}_h\} - \{\dot{y}_h\})$ for all $n \in \mathbb{N}$. Hence by the equality $\{\dot{x}_h\} = (\{\dot{x}_h\} - \{\dot{y}_h\}) + \{\dot{y}_h\}$, one can show that

$$\mathscr{X}_{\infty} = \left\{ \{ \dot{x_h} \} \in \mathscr{X}_{\infty} : \{ \dot{T_h} \} (\{ \dot{x_h} \}) = \{ \dot{x_h} \} \right\} \oplus \left(\{ \dot{I} \} - \{ \dot{T_h} \} \right) \mathscr{X}_{\infty}.$$

Therefore, if we define the map $\{\dot{P}_h\}: \mathscr{X}_{\infty} \longrightarrow \mathscr{X}_{\infty}$ by $\{\dot{P}_h\}\{\dot{x}_h\} = \{\dot{x}_h\} - \{\dot{y}_h\}$ such that $\{\dot{y}_h\}$ is the element defined as $(\{\dot{I}\} - \{\dot{T}_h\})\{\dot{x}_h\} = (\{\dot{I}\} - \{\dot{T}_h\})\{\dot{y}_h\}$, one can show that

$$\lim_{n\to\infty}\left\|M_n\left(\{\dot{T}_h\}\right)-\{\dot{P}_h\}\right\|=0.$$

and we obtain (a), so the proof is complete. \Box

Acknowledgement. The authors would like to thank the referee for his valuable comments.

REFERENCES

- M. J. BELTRÁN, M. C. GÓMEZ-COLLADO, E. JORDÁ AND D. JORNET, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270, (2016), 4369–4385.
- [2] Y. DERRIENNIC, On the mean ergodic theorem for Cesàro bounded operators, Colloquium Math. 84/85, 2 (2000), 443–445.
- [3] N. DUNFORD, Spectral theory I. Convergence to projection, Trans. Amer. Math. Soc. 54, (1943), 185–217.
- [4] R. EMILION, Mean bounded operators and mean ergodic theorems, J. Funct. Anal. 61, (1985), 1–14.
- [5] E. HILLE, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57, (1945), 246–269.
- [6] M. KRISHNA K, P. S. JOHNSON, Quotient Operators and the Open Mapping Theorem, Filomat 32, 18 (2018), 6221–6227.
- [7] H. LI, Equivalent conditions for the convergence of a sequence $\{B^n\}_{n=1}^{\infty}$, Acta Math. Sinica **29**, (1986), 285–288.
- [8] M. LIN, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43, 2 (1974), 337-340.
- [9] M. LIN, On the uniform ergodic theorem, II, Proc. Amer. Math. Soc. 46, 2 (1974), 217–225.
- [10] S. MACOVEI, Spectrum of a Family of Operators, Surv. Math. Appl. 6, (2011), 137–159.
- [11] S. MACOVEI, Local Spectrum of a Family of Operators, Ann. Funct. Anal. 4, 2 (2013), 131-143.
- [12] M. MBEKHTA AND J. ZEMÁNEK, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris série I Math. 317, 1 (1993), 1155–1158.

(Received June 3, 2020)

Abdellah Akrym Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: akrym.maths@gmail.com

Abdeslam El Bakkali Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: abdeslamelbakkalii@gmail.com; aba0101q@yahoo.fr

> Abdelkhalek Faouzi Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: faouzi.a@ucd.ac.ma

Operators and Matrices www.ele-math.com oam@ele-math.com