ON ERGODIC THEOREM FOR A FAMILY OF OPERATORS

Abdellah Akrym, Abdeslam El Bakkali* and Abdelkhalek Faouzi

(Communicated by M. Omladič)

Abstract

In this paper, we obtain a generalization of the uniform ergodic theorem to the family of bounded linear operators on a Banach space. We present some elementary results in this setting and we show that Lin's theorem can be extended from the case of a bounded linear operator to the case of a family of bounded linear operators acting on a Banach space.

1. Introduction

Let T be a bounded linear operator on a complex Banach space \mathscr{X}. The uniform ergodicity for T was already developed in different directions (see, e.g. [2, 3, 4, 5, 7, 8, 9, 12]). For example, in [3], it was shown that if $\frac{1}{n}\left\|T^{n}\right\| \longrightarrow 0$ as $n \rightarrow \infty$, then T is uniformly ergodic if and only if $(I-T)^{2} \mathscr{X}$ is closed. Hence $(I-T)^{k} \mathscr{X}$ is closed for each integer $k \geqslant 1$. In [8] M . Lin has established the following theorem which characterizes the uniform ergodicity for an operator acting on a Banach space.

Theorem 1. Let T be a bounded linear operator on a Banach space \mathscr{X} satisfying $\frac{1}{n}\left\|T^{n}\right\| \longrightarrow 0$ as $n \rightarrow \infty$. Then the following conditions are equivalent:
(1) There exists a bounded linear operator P such that

$$
\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{k}-P\right\| \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

(2) $(I-T) \mathscr{X}$ is closed and $\mathscr{X}=\{x \in \mathscr{X}: T x=x\} \oplus(I-T) \mathscr{X}$.
(3) $(I-T)^{2} \mathscr{X}$ is closed.
(4) $(I-T) \mathscr{X}$ is closed.

[^0]In this paper we introduce the notion of the uniform ergodicity for a family of bounded linear operators from the Banach algebra $C_{b}((0,1], \mathscr{B}(\mathscr{X}))$ (respectively from \mathscr{B}_{∞}), see below for the definitions. We give relations between these two definitions, see Proposition 1 below, and we extend the equivalent properties of Theorem 1 for a family of bounded linear operators acting on a Banach space.

Krishna and Johnson have analyzed completeness of a collection of bounded linear operators between normed spaces in [6]. We are motivated by the papers [10, 11] of S. Macovei which contain some interesting properties of families of bounded linear operators acting on a Banach space.

2. Preliminaries

Let \mathscr{X} be an infinite-dimensional complex Banach space and $\mathscr{B}(\mathscr{X})$ the Banach algebra of all bounded linear operators on \mathscr{X}. We denote by I the identity operator on \mathscr{X}.

Let $T \in \mathscr{B}(\mathscr{X})$, we denote the Cesàro mean by

$$
M_{n}(T)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}
$$

Recall that T is uniformly ergodic if there exists $P \in \mathscr{B}(\mathscr{X})$ such that

$$
\left\|M_{n}(T)-P\right\| \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

In [10], Macovei showed that the set

$$
\begin{aligned}
& C_{b}((0,1], \mathscr{B}(\mathscr{X}))=\left\{\left\{T_{h}\right\}_{h \in(0,1]} \subset \mathscr{B}(\mathscr{X}):\left\{T_{h}\right\}_{h \in(0,1]}\right. \text { is a bounded family, i.e. } \\
&\left.\sup _{h \in(0,1]}\left\|T_{h}\right\|<\infty\right\},
\end{aligned}
$$

is a Banach algebra non-commutative with norm

$$
\left\|\left\{T_{h}\right\}\right\|=\sup _{h \in(0,1]}\left\|T_{h}\right\|
$$

And

$$
C_{0}((0,1], \mathscr{B}(\mathscr{X}))=\left\{\left\{T_{h}\right\}_{h \in(0,1]} \subset C_{b}((0,1], \mathscr{B}(\mathscr{X})): \lim _{h \rightarrow 0}\left\|T_{h}\right\|=0\right\}
$$

is a closed bilateral ideal of $C_{b}((0,1], \mathscr{B}(\mathscr{X}))$. The quotient algebra

$$
C_{b}((0,1], \mathscr{B}(\mathscr{X})) / C_{0}((0,1], \mathscr{B}(\mathscr{X})),
$$

which will be denoted \mathscr{B}_{∞}, is also a Banach algebra with quotient norm

$$
\left\|\left\{\dot{T}_{h}\right\}\right\|=\inf _{\left\{U_{h}\right\}_{h \in(0,1]} \in C_{0}((0,1], \mathscr{B}(\mathscr{X}))}\left\|\left\{T_{h}\right\}+\left\{U_{h}\right\}\right\|=\inf _{\left\{S_{h}\right\}_{h \in(0,1]} \in\left\{\dot{T}_{h}\right\}}\left\|\left\{S_{h}\right\}\right\| \leqslant\left\|\left\{S_{h}\right\}\right\|
$$

for any $\left\{S_{h}\right\}_{h \in(0,1]} \in\left\{\dot{T}_{h}\right\}$. On the other hand we have

$$
\limsup _{h \rightarrow 0}\left\|\left\{S_{h}\right\}\right\| \leqslant\left\|\left\{\dot{T}_{h}\right\}\right\|
$$

for any $\left\{S_{h}\right\}_{h \in(0,1]} \in\left\{\dot{T}_{h}\right\}$.
In the following Definition, we introduce the notion of uniform ergodicity for a family of operators of $C_{b}((0,1], \mathscr{B}(\mathscr{X}))$.

DEFINITION 1. We say that a family of operators $\left\{T_{h}\right\}_{h \in(0,1]} \in C_{b}((0,1], \mathscr{B}(\mathscr{X}))$ is uniformly ergodic if there exists $\left\{P_{h}\right\}_{h \in(0,1]} \in C_{b}((0,1], \mathscr{B}(\mathscr{X}))$ such that

$$
\lim _{n \rightarrow \infty} \limsup _{h \rightarrow 0}\left\|M_{n}\left(T_{h}\right)-P_{h}\right\|=0
$$

EXAMPLE 1. (i) If T_{h} is uniformly ergodic for any $h \in(0,1]$, then the family $\left\{T_{h}\right\}_{h \in(0,1]}$ does.
(ii) If $T_{h}=T$ for each $h \in(0,1]$ then, T is uniformly ergodic if and only if $\left\{T_{h}\right\}_{h \in(0,1]}$ does.
(iii) Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and let $H(\mathbb{D})$ the set of all analytic functions on \mathbb{D}. We consider the following Banach space

$$
H^{\infty}(\mathbb{D})=\left\{f \in H(\mathbb{D}):\|f\|_{\infty}:=\sup _{z \in \mathbb{D}}|f(z)|<\infty\right\}
$$

For $\varphi_{h}(z)=\left(\frac{1}{2}-h\right) z, h \in(0,1]$, we have $\left\|\varphi_{h}^{n}\right\|_{\infty}$ converges to 0 as $n \rightarrow \infty$. Then, by [1, Theorem 3.3.], the composition operator $C_{\varphi_{h}}: H^{\infty}(\mathbb{D}) \longrightarrow H^{\infty}(\mathbb{D})$ defined by $C_{\varphi_{h}}(f)=f \circ \varphi_{h}$ is uniformly ergodic for all $h \in(0,1]$. By (i), then the family $\left\{C_{\varphi_{h}}\right\}_{h \in(0,1]}$ is uniformly ergodic.

In [11], Macovei showed that the set
$\mathscr{X}_{b}((0,1], \mathscr{X})=\left\{\left\{x_{h}\right\}_{h \in(0,1]} \subset \mathscr{X}:\left\{x_{h}\right\}_{h \in(0,1]}\right.$ is a bounded sequence, i.e.

$$
\left.\sup _{h \in(0,1]}\left\|x_{h}\right\|<\infty\right\}
$$

is a Banach algebra with norm

$$
\left\|\left\{x_{h}\right\}\right\|=\sup _{h \in(0,1]}\left\|x_{h}\right\|
$$

And

$$
\mathscr{X}_{0}((0,1], \mathscr{X})=\left\{\left\{x_{h}\right\}_{h \in(0,1]} \subset \mathscr{X}_{b}((0,1], \mathscr{X}): \lim _{h \rightarrow 0}\left\|x_{h}\right\|=0\right\}
$$

is a closed bilateral ideal of $\mathscr{X}_{b}((0,1], \mathscr{X})$. The quotient space

$$
\mathscr{X}_{b}((0,1], \mathscr{X}) / \mathscr{X}_{0}((0,1], \mathscr{X}),
$$

which will be denoted \mathscr{X}_{∞}, is a Banach algebra with quotient norm

$$
\begin{aligned}
\left\|\left\{\dot{x}_{h}\right\}\right\| & =\inf _{\left\{u_{h}\right\}_{h \in(0,1]} \in \mathscr{X}_{0}((0,1], \mathscr{X})}\left\|\left\{x_{h}\right\}+\left\{u_{h}\right\}\right\|=\inf _{\left\{y_{h}\right\}_{h \in(0,1]} \in\left\{\dot{x}_{h}\right\}}\left\|\left\{y_{h}\right\}\right\| \\
& =\inf _{\left\{y_{h}\right\}_{h \in(0,1]} \in\left\{\dot{x}_{h}\right\}} \sup _{h \in(0,1]}\left\|y_{h}\right\| .
\end{aligned}
$$

In [11], it was shown that $\mathscr{B}_{\infty} \subset \mathscr{B}\left(\mathscr{X}_{\infty}\right)$, where $\mathscr{B}\left(\mathscr{X}_{\infty}\right)$ is the algebra of bounded linear operators on \mathscr{X}_{∞}.

In the following Definition, we introduce the notion of uniform ergodicity for a family of operators of \mathscr{B}_{∞}.

DEFINITION 2. We say that $\left\{\dot{T}_{h}\right\} \in \mathscr{B}_{\infty}$ is uniformly ergodic if there exists $\left\{\dot{P}_{h}\right\} \in$ \mathscr{B}_{∞} such that

$$
\lim _{n \rightarrow \infty}\left\|M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}\right\|=0
$$

where

$$
\left.M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}=\left\{M_{n} \dot{(} T_{h}\right)\right\}-\left\{\dot{P}_{h}\right\}=\left\{M_{n}\left(T_{h}\right)-P_{h}\right\}
$$

3. Main results

In this section, we will extend the known uniform ergodic theorem of M. Lin [8] from the case of a bounded linear operator to the case of a family of bounded linear operators on a Banach space.

We start this section by the following Proposition.
Proposition 1. Let $\left\{\dot{T}_{h}\right\} \in \mathscr{B}_{\infty}$ be uniformly ergodic. Then any $\left\{S_{h}\right\}_{h \in(0,1]} \in$ $\left\{\dot{T}_{h}\right\}$ is also uniformly ergodic.

Proof. Suppose that $\left\{\dot{T}_{h}\right\}$ is uniformly ergodic, then there exists $\left\{\dot{P}_{h}\right\} \in \mathscr{B}_{\infty}$ such that

$$
\lim _{n \rightarrow \infty}\left\|M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}\right\|=0
$$

Let $\left\{S_{h}\right\}_{h \in(0,1]} \in\left\{\dot{T}_{h}\right\}$ be arbitrary. Then for $\left\{P_{h}\right\}_{h \in(0,1]} \in\left\{\dot{P}_{h}\right\}$, we have
$\lim _{n \rightarrow \infty} \limsup _{h \rightarrow 0}\left\|M_{n}\left(S_{h}\right)-P_{h}\right\| \leqslant \lim _{n \rightarrow \infty}\left\|M_{n}\left(\left\{T_{h}\right\}\right)-\left\{P_{h}\right\}\right\|=\lim _{n \rightarrow \infty}\left\|M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}\right\|=0$.
Therefore, $\left\{S_{h}\right\}_{h \in(0,1]}$ is uniform ergodic.
In particular, we obtain the following result.

Corollary 1. Let $\left\{\dot{T}_{h}\right\} \in \mathscr{B}_{\infty}$ be uniformly ergodic. Then $\left\{T_{h}\right\}_{h \in(0,1]}$ is also uniformly ergodic.

The proof of $(d) \Rightarrow(a)$, in the principal theorem (Theorem 2), requires the following Lemma.

Lemma 1. Let $\Phi: \mathscr{X}_{\infty} \rightarrow \mathscr{Y}_{\infty}$ a linear map. Then the following assertions are equivalent:
(1) Φ is open from \mathscr{X}_{∞} onto \mathscr{Y}_{∞};
(2) There exists $k>0$ such that for any $\left\{\dot{y_{h}}\right\} \in \mathscr{Y}_{\infty}$, there exists $\left\{\dot{x_{h}}\right\} \in \mathscr{X}_{\infty}$ with $\Phi\left(\left\{\dot{x_{h}}\right\}\right)=\left\{\dot{y_{h}}\right\}$ and $\left\|\left\{\dot{x_{h}}\right\}\right\| \leqslant k\left\|\left\{\dot{y_{h}}\right\}\right\|$.

Proof. (1) \Rightarrow (2) Since $\Phi\left(B_{\mathscr{X}_{\infty}}\right)$ is open and $\{\dot{0}\} \in \Phi\left(B_{\mathscr{X}_{\infty}}\right)$, (where $B_{\mathscr{X}_{\infty}}$ is the unit ball of $\left.\mathscr{X}_{\infty}\right)$, there exists $\delta>0$ such that $\left\{\left\{\dot{y_{h}}\right\} \in \Phi\left(\mathscr{X}_{\infty}\right):\left\|\left\{\dot{y_{h}}\right\}\right\|<\delta\right\} \subset$ $\Phi\left(B_{\mathscr{X}_{\infty}}\right)$. Then, for $\left\{\dot{y_{h}}\right\} \in \mathscr{X}_{\infty}$ such that $\left\{\dot{y_{h}}\right\} \neq\{\dot{0}\}$, it follows that $\frac{\delta\left\{\dot{y}_{h}\right\}}{2\left\|\left\{\dot{y}_{h}\right\}\right\|} \in$ $\left\{\left\{\dot{y_{h}}\right\} \in \Phi\left(\mathscr{X}_{\infty}\right):\left\|\left\{\dot{y_{h}}\right\}\right\|<\delta\right\}$. Thus, $\frac{\delta\left\{\dot{y}_{h}\right\}}{2\left\|\left\{\dot{y}_{h}\right\}\right\|} \in \Phi\left(B_{\mathscr{X}_{\infty}}\right)$. Hence, there exists $\left\{\dot{z_{h}}\right\} \in$ $B_{\mathscr{X}_{\infty}}$ such that $\Phi\left(\left\{\dot{z}_{h}\right\}\right)=\frac{\delta\left\{\dot{y}_{h}\right\}}{2\left\|\left\{\dot{y}_{h}\right\}\right\|}$. If we set $\left\{\dot{x_{h}}\right\}=\frac{2\left\|\left\{\dot{y}_{h}\right\}\right\|}{\delta}\left\{\dot{z_{h}}\right\}$, we have
$\Phi\left(\left\{\dot{x}_{h}\right\}\right)=\Phi\left(\frac{2\left\|\left\{\dot{y}_{h}\right\}\right\|}{\delta}\left\{\dot{z}_{h}\right\}\right)=\frac{2\left\|\left\{\dot{y}_{h}\right\}\right\|}{\delta} \Phi\left(\left\{\dot{z_{h}}\right\}\right)=\frac{2\left\|\left\{\dot{y_{h}}\right\}\right\|}{\delta} \cdot \frac{\delta\left\{\dot{y}_{h}\right\}}{2\left\|\left\{\dot{y}_{h}\right\}\right\|}=\left\{\dot{y_{h}}\right\}$,
Since $\left\|\left\{\dot{z} \dot{z}_{h}\right\}\right\|<1$, then

$$
\left\|\left\{\dot{x_{h}}\right\}\right\| \leqslant \frac{2}{\delta}\left\|\left\{\dot{y_{h}}\right\}\right\| .
$$

Consequently by taking $k=\frac{2}{\delta}>0$, (2) holds.
Conversely, fix an open set $U \in \mathscr{X}_{\infty}$ and $\left\{\dot{x}_{h}\right\} \in U$. There exists $r>0$ such that $\left\{\dot{x_{h}}\right\}+B(\{\dot{0}\}, r)=B\left(\left\{\dot{x_{h}}\right\}, r\right) \subset U$. To show that $\Phi(U)$ is open, it suffices to prove that

$$
\Phi\left(\left\{\dot{x_{h}}\right\}+B\left(\{\dot{0}\}, \frac{r}{k}\right)\right)=B\left(\Phi\left(\left\{\dot{x_{h}}\right\}\right), \frac{r}{k}\right) \subset \Phi(U) .
$$

Take $\left\{\dot{y_{h}}\right\} \in \mathscr{Y}_{\infty}$ with $\left\|\left\{\dot{y}_{h}\right\}\right\|<\frac{r}{k}$, then by (2) there exists $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$ such that $\Phi\left(\left\{\dot{z}_{h}\right\}\right)=\left\{\dot{y_{h}}\right\}$ and $\left\|\left\{\dot{z}_{h}\right\}\right\|<k \cdot \frac{r}{k}=r$. Thus, $\left\{\dot{x}_{h}\right\}+\left\{\dot{z}_{h}\right\} \in U$ and $\Phi\left(\left\{\dot{x}_{h}\right\}\right)+$ $\left\{\dot{y_{h}}\right\}=\Phi\left(\left\{\dot{x}_{h}\right\}\right)+\Phi\left(\left\{\dot{z}_{h}\right\}\right)=\Phi\left(\left\{\dot{x}_{h}\right\}+\left\{\dot{z}_{h}\right\}\right) \in \Phi(U)$. Then $\Phi(U)$ is open.

THEOREM 2. Let $\left\{\dot{T}_{h}\right\} \in \mathscr{B}_{\infty}$ satisfy $\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\left(\left\{\dot{T}_{h}\right\}\right)^{n}\right\|=0$. Then, the following assertions are equivalent:
(a) $\left\{\dot{T}_{h}\right\}$ is uniformly ergodic;
(b) $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$ is closed and

$$
\mathscr{X}_{\infty}=\left\{\left\{\dot{x}_{h}\right\} \in \mathscr{X}_{\infty}:\left\{\dot{T}_{h}\right\}\left(\left\{\dot{x_{h}}\right\}\right)=\left\{\dot{x_{h}}\right\}\right\} \oplus\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty} ;
$$

(c) $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}$ is closed;
(d) $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$ is closed.

Proof. Let $\mathfrak{Y}=\overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}}$.
$(a) \Rightarrow(b)$. Suppose that there exists $\left\{\dot{P}_{h}\right\} \in \mathscr{B}_{\infty}$ such that

$$
\left\|M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}\right\| \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

We start first by showing that $\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}=\left\{\dot{P}_{h}\right\} \cdot\left\{\dot{T}_{h}\right\}=\left\{\dot{P}_{h}\right\}$, where $\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}=$ $\left\{T_{h} P_{h}\right\}$ (recall that \mathscr{B}_{∞} is a Banach algebra). We have

$$
\begin{aligned}
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \cdot M_{n}\left(\left\{\dot{T}_{h}\right\}\right) & =\frac{1}{n}\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \cdot\left(\left\{\dot{I}_{h}\right\}+\left\{\dot{T}_{h}\right\}+\ldots+\left(\left\{\dot{T}_{h}\right\}\right)^{n-1}\right) \\
& =\frac{1}{n}\left(\left\{\dot{I}_{h}\right\}-\left\{\dot{T}_{h}\right\}^{n}\right) .
\end{aligned}
$$

Since $\frac{1}{n}\left\|\left(\left\{\dot{T}_{h}\right\}\right)^{n}\right\| \longrightarrow 0$ as $n \rightarrow \infty$. Hence by passing to limit as $n \rightarrow \infty$ we get $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \cdot\left\{\dot{P}_{h}\right\}=0$. Thus $\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}=\left\{\dot{P}_{h}\right\}$. Analogously $\left\{\dot{P}_{h}\right\} \cdot\left\{\dot{T}_{h}\right\}=\left\{\dot{P}_{h}\right\}$, which means that

$$
\left\{\dot{P}_{h}\right\} \cdot\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \cdot\left\{\dot{P}_{h}\right\}=\{\dot{0}\}
$$

We will prove that $\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty}=\left\{\left\{\dot{x_{h}}\right\} \in \mathscr{X}_{\infty}:\left\{\dot{T}_{h}\right\}\left(\left\{\dot{x_{h}}\right\}\right)=\left\{\dot{x_{h}}\right\}\right\}$.
Let $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$ such that $\left\{\dot{T}_{h}\right\}\left(\left\{\dot{z}_{h}\right\}\right)=\left\{\dot{z}_{h}\right\}$. Then $M_{n}\left(\left\{\dot{T}_{h}\right\}\right)\left(\left\{\dot{z}_{h}\right\}\right)=\left\{\dot{z}_{h}\right\}$, thus, by passing to limit when $n \rightarrow \infty$, we get $\left\{\dot{P}_{h}\right\}\left(\left\{\dot{z}_{h}\right\}\right)=\left\{\dot{z}_{h}\right\}$. Hence $\left\{\dot{z}_{h}\right\} \in$ $\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty}$.

Conversely, let $\left\{\dot{y_{h}}\right\} \in\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty}$. Then there exists $\left\{\dot{x}_{h}\right\} \in \mathscr{X}_{\infty}$ such that $\left\{\dot{P}_{h}\right\}\left(\left\{\dot{x}_{h}\right\}\right)$ $=\left\{\dot{y}_{h}\right\}$. The fact that $\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}\left(\left\{\dot{x}_{h}\right\}\right)=\left\{\dot{P}_{h}\right\}\left(\left\{\dot{x}_{h}\right\}\right)$ allows us to show easily that

$$
\left.\left\{\dot{P}_{h}\right\}\left(\left\{\dot{x_{h}}\right\}\right)=\left\{\dot{y}_{h}\right\} \in\left\{\left\{\dot{x_{h}}\right\} \in \mathscr{X}_{\infty}:\left\{\dot{T}_{h}\right\}\left(\left\{\dot{x}_{h}\right\}\right)\right)=\left\{\dot{x_{h}}\right\}\right\}
$$

Now, let us show that $\left(\left\{\dot{P}_{h}\right\}\right)^{2}=\left\{\dot{P}_{h}\right\}$. Since $\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}=\left\{\dot{P}_{h}\right\}$, it follows that

$$
M_{n}\left(\left\{\dot{T}_{h}\right\}\right) \cdot\left\{\dot{P}_{h}\right\}=\frac{1}{n}\left(\left\{\dot{P}_{h}\right\}+\left\{\dot{T}_{h}\right\} \cdot\left\{\dot{P}_{h}\right\}+\ldots+\left(\left\{\dot{T}_{h}\right\}\right)^{n} \cdot\left\{\dot{P}_{h}\right\}\right)=\left\{\dot{P}_{h}\right\}
$$

Hence $\left(\left\{\dot{P}_{h}\right\}\right)^{2}=\left\{\dot{P}_{h}\right\}$.
Next, we will prove that $\mathscr{X}_{\infty}=\left(\left\{\dot{P}_{h}\right\}\right) \mathscr{X}_{\infty} \oplus \mathfrak{Y}$. Put $\left\{\dot{Q}_{h}\right\}=\left\{\dot{I}_{h}\right\}-\left\{\dot{P}_{h}\right\}$. First, we prove that $\left(\left\{\dot{Q}_{h}\right\}\right) \mathscr{X}_{\infty} \subset \mathfrak{Y}$.

Suppose that there exists $\left\{\dot{u_{h}}\right\} \notin \mathfrak{Y}$ but $\left\{\dot{u}_{h}\right\} \in\left(\left\{\dot{Q}_{h}\right\}\right) \mathscr{X}_{\infty}$. Then there exists a linear and continuous mapping $f: \mathscr{X}_{\infty} \longrightarrow \mathbb{C}$ such that

$$
f\left(\left\{\dot{u}_{h}\right\}\right)=1 \text { and } f\left(\left\{\dot{y}_{h}\right\}\right)=0 \text { for all }\left\{\dot{y}_{h}\right\} \in \mathfrak{Y}
$$

Since $f\left(\left(\left\{\dot{I}_{h}\right\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{z}_{h}\right\}\right)=0$, for all $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$, it results $f\left(\left\{\dot{I}_{h}\right\}\left(\left\{\dot{z}_{h}\right\}\right)\right)=$ $f\left(\left\{\dot{T}_{h}\right\}\right)\left(\left\{\dot{z}_{h}\right\}\right)=f\left(M_{n}\left(\left\{\dot{T}_{h}\right\}\right)\left\{\dot{z}_{h}\right\}\right)$, for all $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$. Passing to limit as $n \rightarrow \infty$ we obtain

$$
f\left(M_{n}\left(\left\{\dot{T}_{h}\right\}\right)\left\{\dot{z}_{h}\right\}\right) \longrightarrow f\left(\left\{\dot{P}_{h}\right\}\left\{\dot{z}_{h}\right\}\right)
$$

Thus $f\left(\left\{\dot{Q}_{h}\right\}\left\{\dot{z}_{h}\right\}\right)=0$, for all $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$. Let $\left\{\dot{v}_{h}\right\} \in \mathscr{X}_{\infty}$ such that $\left\{\dot{u}_{h}\right\}=\left\{\dot{Q}_{h}\right\}\left(\left\{\dot{v}_{h}\right\}\right)$, thus $f\left(\left\{\dot{u_{h}}\right\}\right)=0$, contradiction. Therefore $\left\{\dot{Q}_{h}\right\} \mathscr{X}_{\infty} \subset \mathfrak{Y}$.

Since $\left\{\dot{P}_{h}\right\}$ is a projection, we have the equality $\mathscr{X}_{\infty}=\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty} \oplus\left\{\dot{Q}_{h}\right\} \mathscr{X}_{\infty}$. Then $\mathscr{X}_{\infty} \subset\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty} \oplus \mathfrak{Y}$. Therefore, $\mathscr{X}_{\infty}=\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty} \oplus \mathfrak{Y}$.

Since

$$
\left\{\dot{T}_{h}\right\} \mathfrak{Y}=\left\{\dot{T}_{h}\right\} \mathscr{X}_{\infty}-\left\{\dot{T}_{h}\right\}\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty}=\left\{\dot{T}_{h}\right\} \mathscr{X}_{\infty}-\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty} \subset \mathscr{X}_{\infty}-\left\{\dot{P}_{h}\right\} \mathscr{X}_{\infty} \subset \mathfrak{Y}
$$

thus \mathfrak{Y} is $\left\{\dot{T}_{h}\right\}$-invariant.
If we put $\left\{\dot{S}_{h}\right\}=\left\{\dot{T}_{h}\right\}_{\mid \mathfrak{Y}}$, then, by (1) we obtain

$$
\left\|\frac{1}{n} \sum_{k=0}^{n-1}\left\{\dot{S}_{h}\right\}^{k}\right\| \longrightarrow 0 \text { as } n \rightarrow \infty
$$

Fix $n_{0} \in \mathbb{N}$ such that $\left\|\frac{1}{n_{0}} \sum_{k=0}^{n_{0}-1}\left\{\dot{S}_{h}\right\}^{k}\right\|<1$. Then $\{\dot{I}\}-\frac{1}{n_{0}} \sum_{k=0}^{n_{0}-1}\left\{\dot{S}_{h}\right\}^{k}$ is invertible.
Using

$$
\begin{aligned}
\{\dot{I}\}-\frac{1}{n_{0}} \sum_{k=0}^{n_{0}-1}\left\{\dot{S}_{h}\right\}^{k}= & \{\dot{I}\}-\frac{1}{n_{0}}\{\dot{I}\}-\frac{1}{n_{0}}\left\{\dot{S}_{h}\right\}-\ldots-\frac{1}{n_{0}}\left\{\dot{S}_{h}\right\}^{n_{0}-1} \\
= & \frac{1}{n_{0}}\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right)\left(\{\dot{I}\}+\left(\{\dot{I}\}+\left\{\dot{S}_{h}\right\}\right)\right. \\
& \left.+\ldots+\left(\{\dot{I}\}+\left\{\dot{S}_{h}\right\}+\ldots+\left\{\dot{S}_{h}\right\}^{n_{0}-2}\right)\right)
\end{aligned}
$$

we deduce that $\{\dot{I}\}-\left\{\dot{S}_{h}\right\}$ is invertible. Thus,

$$
\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right) \mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y} \subset\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty},
$$

hence

$$
\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}
$$

Then $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$ is closed and (b) is verified.
$(b) \Rightarrow(c)$. Let $\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$, we want to prove the equality

$$
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}=\mathfrak{Y}
$$

Evidently we have

$$
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty} \subset \mathfrak{Y}
$$

Let $\left\{\dot{y_{h}}\right\} \in \mathfrak{Y}$, then there exists $\left\{\dot{x_{h}}\right\} \in \mathscr{X}_{\infty}$ such that $\left\{\dot{y_{h}}\right\}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{x}_{h}\right\}$. By (b), we write $\left\{\dot{x_{h}}\right\}$ as follows

$$
\left\{\dot{x_{h}}\right\}=\left\{\dot{u_{h}}\right\}+\left\{\dot{v_{h}}\right\} \text { with }\left\{\dot{T}_{h}\right\}\left\{\dot{u_{h}}\right\}=\left\{\dot{u_{h}}\right\} \text { and }\left\{\dot{v_{h}}\right\} \in \mathfrak{Y} .
$$

Thus,

$$
\begin{aligned}
\left\{\dot{y_{h}}\right\} & =\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{x}_{h}\right\}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{v}_{h}\right\} \in\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y} \\
& =\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}
\end{aligned}
$$

hence $\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}$, therefore $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}$ is closed.
$(c) \Rightarrow(d)$. Let $\mathfrak{Y}=\overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}}$. We will prove that $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}=$ \mathfrak{Y}. It is easy to show that

$$
\begin{aligned}
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty} & =\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty} \\
& \subset \overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y} .
\end{aligned}
$$

On the other hand, by (c), we have

$$
\begin{aligned}
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y} & =\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}} \subset \overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}} \\
& =\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty} .
\end{aligned}
$$

Since $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty}$ is closed thus $\left(\{\dot{I}\}-\left\{\dot{I}_{h}\right\}\right) \mathfrak{Y}=\overline{\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y}}$. As in the proof of $(b) \Rightarrow(c)$, the restriction $\left\{\dot{S}_{h}\right\}=\left\{\dot{T}_{h}\right\}_{\mid \mathfrak{Y}}$ satisfies $\left\|\frac{1}{n} \sum_{k=0}^{n-1}\left\{\dot{S}_{h}\right\}^{k}\left\{\dot{y}_{h}\right\}\right\| \longrightarrow$ 0 as $n \rightarrow \infty$, for any $\left\{\dot{y}_{h}\right\} \in\left(\{\dot{I}\}-\left\{\dot{I}_{h}\right\}\right) \mathscr{X}_{\infty}$. Then

$$
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty} \subset \overline{\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right) \mathfrak{Y}}=\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right) \mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)^{2} \mathscr{X}_{\infty} .
$$

Hence $\mathfrak{Y} \subset\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$. Therefore $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$ is closed.
$(d) \Rightarrow(a)$. Let $\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}$, then \mathfrak{Y} is a Banach space. The operator $\{\dot{I}\}-\left\{\dot{T}_{h}\right\}: \mathscr{X}_{\infty} \longrightarrow \mathfrak{Y}$ is surjective and continuous, then by the open mapping theorem, $\{\dot{I}\}-\left\{\dot{T}_{h}\right\}$ is open. Thus by the Lemma 1 there exists $k>0$ satisfying that for each $\left\{\dot{y}_{h}\right\} \in \mathfrak{Y}$, there exists $\left\{\dot{z}_{h}\right\} \in \mathscr{X}_{\infty}$ such that

$$
\left(\{\dot{I}\}-\left\{\dot{I}_{h}\right\}\right)\left\{\dot{z}_{h}\right\}=\left\{\dot{y}_{h}\right\}, \text { and }\left\|\left\{\dot{z}_{h}\right\}\right\| \leqslant k\left\|\left\{\dot{y}_{h}\right\}\right\| .
$$

Hence, for $\left\{\dot{y}_{h}\right\} \in \mathfrak{Y}$, we have

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{k=0}^{n-1}\left\{\dot{T}_{h}\right\}^{k}\left\{\dot{y}_{h}\right\}\right\| & =\left\|\frac{1}{n} \sum_{k=0}^{n-1}\left\{\dot{T}_{h}\right\}^{k}\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{x}_{h}\right\}\right\|=\left\|\frac{1}{n}\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}^{n}\right)\left\{\dot{x}_{h}\right\}\right\| \\
& \leqslant k\left\|\frac{1}{n}\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}^{n}\right)\right\|\left\|\left\{\dot{y}_{h}\right\}\right\| .
\end{aligned}
$$

Let $\left\{\dot{S}_{h}\right\}=\left\{\dot{T}_{h}\right\}_{\mid \mathfrak{Y}}$, the restriction of $\left\{\dot{T}_{h}\right\}$ to \mathfrak{Y}. Then $\left\|\frac{1}{n} \sum_{k=0}^{n-1}\left\{\dot{S}_{h}\right\}^{k}\right\| \longrightarrow 0$ as $n \rightarrow$ ∞. By the proof of $(a) \Rightarrow(b)$, we obtain that $\{\dot{I}\}-\left\{\dot{S}_{h}\right\}$ is invertible on \mathfrak{Y} and

$$
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty}=\mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right) \mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathfrak{Y}=\left(\{\dot{I}\}-\left\{\dot{S}_{h}\right\}\right) \mathscr{X}_{\infty} .
$$

Then for $\left\{\dot{x}_{h}\right\} \in \mathscr{X}_{\infty}$ there exists $\left\{\dot{y}_{h}\right\} \in \mathfrak{Y}$ such that

$$
\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{x}_{h}\right\}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{y}_{h}\right\},
$$

consequently $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left(\left\{\dot{x}_{h}\right\}-\left\{\dot{y}_{h}\right\}\right)=\{\dot{0}\}$. Thus $M_{n}\left(\left\{\dot{T}_{h}\right\}\right)\left(\left\{\dot{x}_{h}\right\}-\left\{\dot{y}_{h}\right\}\right)=$ $\left(\left\{\dot{x}_{h}\right\}-\left\{\dot{y}_{h}\right\}\right)$ for all $n \in \mathbb{N}$. Hence by the equality $\left\{\dot{x}_{h}\right\}=\left(\left\{\dot{x_{h}}\right\}-\left\{\dot{y}_{h}\right\}\right)+\left\{\dot{y}_{h}\right\}$, one can show that

$$
\mathscr{X}_{\infty}=\left\{\left\{\dot{x}_{h}\right\} \in \mathscr{X}_{\infty}:\left\{\dot{T}_{h}\right\}\left(\left\{\dot{x}_{h}\right\}\right)=\left\{\dot{x}_{h}\right\}\right\} \oplus\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right) \mathscr{X}_{\infty} .
$$

Therefore, if we define the map $\left\{\dot{P}_{h}\right\}: \mathscr{X}_{\infty} \longrightarrow \mathscr{X}_{\infty}$ by $\left\{\dot{P}_{h}\right\}\left\{\dot{x_{h}}\right\}=\left\{\dot{x_{h}}\right\}-\left\{\dot{y_{h}}\right\}$ such that $\left\{\dot{y}_{h}\right\}$ is the element defined as $\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{x_{h}}\right\}=\left(\{\dot{I}\}-\left\{\dot{T}_{h}\right\}\right)\left\{\dot{y}_{h}\right\}$, one can show that

$$
\lim _{n \rightarrow \infty}\left\|M_{n}\left(\left\{\dot{T}_{h}\right\}\right)-\left\{\dot{P}_{h}\right\}\right\|=0
$$

and we obtain (a), so the proof is complete.
Acknowledgement. The authors would like to thank the referee for his valuable comments.

REFERENCES

[1] M. J. Beltrán, M. C. Gómez-Collado, E. Jordá and D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270, (2016), 4369-4385.
[2] Y. Derriennic, On the mean ergodic theorem for Cesàro bounded operators, Colloquium Math. 84/85, 2 (2000), 443-445.
[3] N. Dunford, Spectral theory I. Convergence to projection, Trans. Amer. Math. Soc. 54, (1943), 185-217.
[4] R. Emilion, Mean bounded operators and mean ergodic theorems, J. Funct. Anal. 61, (1985), 1-14.
[5] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57, (1945), 246-269.
[6] M. Krishna K, P. S. Johnson, Quotient Operators and the Open Mapping Theorem, Filomat 32, 18 (2018), 6221-6227.
[7] H. Li, Equivalent conditions for the convergence of a sequence $\left\{B^{n}\right\}_{n=1}^{\infty}$, Acta Math. Sinica 29, (1986), 285-288.
[8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43, 2 (1974), 337-340.
[9] M. Lin, On the uniform ergodic theorem, II, Proc. Amer. Math. Soc. 46, 2 (1974), 217-225.
[10] S. Macovei, Spectrum of a Family of Operators, Surv. Math. Appl. 6, (2011), 137-159.
[11] S. Macovei, Local Spectrum of a Family of Operators, Ann. Funct. Anal. 4, 2 (2013), 131-143.
[12] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris série I Math. 317, 1 (1993), 1155-1158.
(Received June 3, 2020)

> Abdellah Akrym Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: akrym.maths@gmail.com Abdeslam El Bakkali Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: abdeslamelbakkali@gmail.com; aba101q@yahoo.fr Abdelkhalek Faouzi Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco

[^0]: Mathematics subject classification (2020): 37Axx, 47A35, 47AXX.
 Keywords and phrases: Cesàro mean operator, family of operators, ergodic theorem.

 * Corresponding author.

