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ON SOME GENERALIZED INVERSES OF M∨–MATRICES
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Abstract. In this paper we study a class of generalized M -matrices known as M∨ -matrices. An
M∨ -matrix has the form A = sI−B , with s � ρ(B) and B eventually nonnegative. An attempt
is made to characterize M∨ -matrices, by extending the results of Neumann and Plemmons for
M -matrices. In particular, we characterize two different subclasses of M∨ -matrices in terms of
various types of generalized inverses.

1. Introduction

A real square M -matrix has the form A = sI−B with entry-wise nonnegative ma-
trix B and s � ρ(B) , the spectral radius of B . An extensive theory on the properties
of nonnegative matrices and hence of M -matrices, has been developed due to their role
in numerical analysis, modelling of the economy, optimization and Markov chains [1].
Ever since researchers are interested to generalize the class of M -matrices by general-
izing the class of nonnegative matrices. For a general overview, we refer to [4, 5, 7, 11].
In this paper we consider a particular type of generalized M -matrices, known as M∨ -
matrices, which is obtained by generalizing nonnegative matrices to eventually nonega-
tive matrices. A matrix B is eventually nonnegative if there is a positive integer k0 such
that Bk0 is nonnegative and remains nonnegative afterwards. Eventually nonnegative
matrices B with index(B) � 1, that is, the order of the largest Jordan block of B corre-
sponding to the eigenvalue 0, is at most 1, play an important role in dynamical systems
for qualitative information regarding state evaluation. In particular, this type of matri-
ces arises in the linear differential systems ẋ(t) = Ax(t) , A ∈ R

n,n , x(0) = x0 ∈ R
n ,

t � 0, whose solution become and remains nonnegative. For more detail, we refer [10].
A real square matrix A is called an M∨ -matrix if it can be expressible as A =

sI−B , where B is an eventually nonnegative matrix and s � ρ(B) . This class of ma-
trices were first introduced in [11], and certainly generalizes the class of M -matrices.
One of the well known properties of a nonsingular M -matrix is that it has a nonneg-
ative inverse (see [6, 1]). In [4, 3], the authors generalized this inverse-nonnegativity
property of M -matrices to characterize a subclass of nonsingular M∨ -matrices, known
as pseudo-M -matrices and another class of generalized M -matrices, known as GM -
matrices. The purpose of this paper is to extend the inverse-nonnegativity property to
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a subclass of M∨ -matrices and to characterize this subclass with the help of eventually
positivity property of a generalized inverse. The generalized concepts of monotonicity
and nonnegativity property of a matrix on a set are important in the characterization of
singular M -matrices. These concepts are employed to characterize the M∨ -matrices of
the form A = sI−B with index(B) � 1 after they are extended respectively, to eventu-
ally monotonic and eventually nonnegative property on a set S .

The paper is organized as follows: We begin with some basic notations and pre-
liminary definitions in Section 2. In Section 3, we discuss various properties of M∨ -
matrices. In particular, we prove the existence of eventually positive generalized left-
inverse for a special subclass of M∨ -matrices. We further show that this property does
not carry over to the entire class of M∨ -matrices. Next we introduce the concepts of
eventually monotonicity and eventually nonnegativity, which are used to characterize a
subclass of M∨ -matrices. One important subclass of M -matrices are M -matrices with
‘property c’, that is, M -matrices of the form A = sI −B for which lim

k→∞
(B/s)k exists.

In this case, the matrix T = B/s is known as semiconvergent, and these matrices are
considered as an important tool in investigating the convergent of iterative methods for
singular systems. Finally, we consider analogous subclass of M∨ -matrices to the sub-
class of M -matrices with ‘property c’ and characterize the subclass of M∨ -matrices in
terms of the nonnegativity property of various generalized inverses.

2. Preliminaries

This section contains basic notations and some preliminary definitions. We denote
the set {1,2, . . . ,n} by 〈n〉 . For a real n×m matrix A = [ai, j] we use the following
terminologies and notations.

• A � 0 (A is nonnegative ) if ai, j � 0, for all i ∈ 〈n〉, j ∈ 〈m〉 .
• A > 0 (A is strictly positive) if ai, j > 0, for all i ∈ 〈n〉, j ∈ 〈m〉 .
• N(A) , the nullspace of A , and by n(A) the nullity of A .

• range(A) = {Ax | x ∈ R
m} , the range of A .

If n = m , then we denote by

• σ(A) , the spectrum of A .

• ρ(A) = max
λ∈σ(A)

{|λ |} , the spectral radius of A .

• indexλ (A) , the order of the largest Jordan block associated with the eigenvalue
λ , and we simply write index0(A) as index(A) .

• VA =
∞⋂

k=0

range(Ak) .

We now provide the basic definitions related to M∨ -matrices and various generalized
inverses of a matrix.
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DEFINITION 1. [6, 1] An n×n matrix A is called an M-matrix if it can be written
as A = sI−B , where B � 0 and s � ρ(B) .

DEFINITION 2. [11, 4] A square matrix A is called an eventually nonnegative
(positive) matrix if there is a positive integer n0 such that Ak � 0 (Ak > 0) for all
k � n0 .

DEFINITION 3. [11] A square matrix A is called an M∨ -matrix if it can be ex-
pressed as A = sI−B with eventually nonnegative matrix B and s � ρ(B) .

Various types of generalized inverses have been defined and studied by several
authors. The important classes of generalized inverses for our purpose are those that
leave the subspace VA invariant.

DEFINITION 4. [1] Let A ∈ R
n,n with m = index(A) . Then each Y ∈ R

n,n satis-
fying the condition,

YAx = x for all x ∈VA with VA =
∞⋂

k=0

range(Ak) = range(Am)

is called a generalized left inverse of A . Similarly, each Z ∈ R
n,n satisfying the condi-

tion,
xT AZ = xT for all x ∈VA

is called a generalized right inverse of A .

Note that if Y is a generalized left inverse of A , then Y leaves VA invariant, be-
cause any v ∈VA can be written as v = Am+1u for some u and hence Yv =YA(Amu) =
Amu ∈VA .

Some equivalent definitions of generalized left inverses are given in the following
lemma.

LEMMA 1. [1, 8] Let A ∈ R
n,n . Then the following statements are equivalent for

Y ∈ R
n,n :

(i) Y is a generalized left inverse of A.

(ii) YAm+1 = Am , where m = index(A) .

(iii) YAk+1 = Ak , where k � index(A) .

(iv) YAk+1 = Ak , for some k � 0 .

Similar characterizations can also be given for generalized right inverses.

DEFINITION 5. [1] Let A,Y ∈ R
n,n . Consider the following conditions:

(1) AYA = A .
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(2) YAY = Y .

(3) AY = (AY )T .

(4) YA = (YA)T .

(5) AY = YA .

(6) YAm+1 = Am , m = index(A) .

Let λ be any subset of {1,2,3,4} containing 1. Then a λ -inverse of A is a matrix
Y which satisfies the condition (i) for each i ∈ λ . The Drazin inverse of A is a matrix
Y which satisfies the conditions (2),(5) and (6) , hence it is a generalized left inverse.

3. Characterizations of some subclasses of M∨ matrices

In this section, we discuss various properties of M∨ -matrices of the form A =
sI−B with index(B) � 1, with respect to generalized left inverse and in terms of even-
tually monotonicity and eventually nonnegativity property on the set VA . Lastly, we
generalize the concept of ‘c-property’ of M -matrices to M∨ -matrices and provide char-
acterizations for this subclass of M∨ -matrices.

In [4], the authors characterized nonsingular pseudo-M -matrices in terms of inverse-
eventually positivity. In the next theorem we extend the inverse-eventually positivity
property to a subclass of M∨ -matrices. More specifically, we provide the existence of
an eventually positive generalized left inverse for a subclass of M∨ -matrices.

THEOREM 1. [4] Suppose that B ∈ R
n,n is an eventually nonnegative matrix with

index(B) � 1 . Then, there are positive right and left eigenvectors corresponding to
ρ(B) if and only if B is permutationally similar to a direct sum of irreducible matrices
having the same spectral radius.

THEOREM 2. If A = sI−B is an M∨ -matrix where B is an irreducible eventually
nonnegative matrix with index(B) � 1 , then there always exists an eventually positive
generalized left inverse of A.

Proof. Let A = XJX−1 be the Jordan canonical form of A . As index(B) � 1
and B is irreducible eventually nonnegative matrix, by Theorem 1 there exist positive
vectors x and y such that Ax = (s− ρ)x and yT A = (s− ρ)yT , where ρ = ρ(B) .
Without loss of generality we may assume that X =

[
x, X (1)

]
. Then

A =
[
x, X (1)

][
s−ρ 0

0 D

][
yT

Y (1)

]
,

where D ∈ R
n−1,n−1 is the nonsingular part of the Jordan canonical form J of A .
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Case-I. Let A be singular, that is, s = ρ(B) . Choose a large positive number α such
that α > 1

|λ | for all λ (�= 0) ∈ σ(A) . Consider the matrix

Y1 =
[

α 0
0 D−1

]
.

Take Y = XY1X−1, so for any positive integer k , Yk = XYk
1 X−1 . Then

1
αkY

k =
[
x, X (1)

][
1 0
0 D̃(k)

][
yT

Y (1)

]
,

where D̃(k) = 1
αk

(
D−1

)k
and any eigenvalue λ (k) of D̃(k) is of absolute value

less than 1. Hence it follows that lim
k→∞

D̃(k) = 0 and,

lim
k→∞

1
αk Y k = xyT > 0.

This shows that there exists a positive integer k0 such that Yk > 0 for all k � k0 ,
that is, Y is an eventually positive matrix. We now show that Y is a generalized
left inverse of A . Let m = index(A) . Then,

Y1J
m+1 =

[
α 0
0 D−1

][
0 0
0 Dm+1

]
=

[
0 0
0 Dm

]
= Jm.

Thus XY1X−1XJm+1X−1 = XJmX−1 , or, YAm+1 = Am .

Case-II. Let s > ρ(B) = ρ (say). Set α = 1
s−ρ and take Y as defined in Case-I. Note

that ρ is simple, being B is irreducible, and if the eigenvalues μi of B are ar-
ranged as μ1 = ρ > |μ2| � . . . |μn| , then eigenvalues of D̃(k) are

λi(k) =
(

s−ρ
s− μi

)k

for i = 2, . . .n

Furthermore, for i = 2, . . . ,n , ρ > |μi| � Re(μi) and hence

∣∣∣∣ s−ρ
s− μi

∣∣∣∣2 =
(s−ρ)2

(s−Re(μi))2 + Im(μi)2 <
(s−Re(μi))2

(s−Re(μi))2 + Im(μi)2 � 1

So lim
k→∞

D̃(k) = 0 and hence as shown in the previous case, it can be verified

that Y is a generalized left inverse of A , in fact Y is the inverse of A and Y is
eventually positive. �

Following theorem is a general case of Theorem 2, which covers the eventually
nonnegative matrices in Theorem 1.
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THEOREM 3. Let A = sI −B is a M∨ -matrix with index(B) � 1 and B is per-
mutationally similar to a direct sum of irreducible matrices having the same spectral
radius. Then A has an eventually positive generalized left inverse.

Proof. As A is an M∨ -matrix with index(B) � 1, any permutational similar ma-
trix of A must have the same properties. So we may assume that B is direct sum
of irreducible matrices having the same spectral radius ρ(B) = ρ (say). Write B =
B1 ⊕B2 ⊕ . . .⊕Bm with the order of Bi is ki , each Bi is irreducible and ρ(Bi) = ρ .
Then for i = 1,2, . . . ,m , the ki × ki matrix Ai = sI −Bi is an M∨ -matrix and each Bi

is irreducible eventually nonnegative matrix with index(Bi) � 1. Hence by Theorem 2,
for each i , there exists eventually positive generalized left inverse Yi of Bi . Choose k0

such that Yk
i � 0, for k � k0 and for all i = 1,2, . . . ,m . Set Y = Y1 ⊕Y2 ⊕ . . .⊕Ym .

Then it can be easily checked from Lemma 1 that Y is a generalized left inverse of A
and Yk � 0 for all k � k0 . �

Note that from the above theorem we cannot conclude that every generalized left
inverse of A is eventually positive. The following example illustrates the fact.

EXAMPLE 1. Consider the matrix

A = 8I−B = 8I−
⎡
⎣ 3 2 3

3 6 −1
−1 2 7

⎤
⎦ .

Then Bk > 0 for all k � 3 and so A is an M∨ -matrix satisfying the conditions of the
previous theorem. Let A = XJX−1 be the Jordan canonical form of A where

J =

⎡
⎣ 0 0 0

0 4 1
0 0 4

⎤
⎦ and X =

⎡
⎣0.25 2 0.75

0.25 −2 −0.25
0.25 2 −0.25

⎤
⎦ . (3.1)

Consider the generalized left (Drazin) inverse,

Y = XJ̃X−1 = X

⎡
⎣ 0 0 0

0 0.25 −0.0625
0 0 0.25

⎤
⎦X−1 =

⎡
⎣ 0.0625 −0.125 0.0625

0.0625 0.125 −0.1875
−0.1875 −0.125 0.3125

⎤
⎦ .

Then for any positive integer k , Yk = XJ̃kX−1 . By using induction on k , we can check
that

J̃k =

⎡
⎣ 0 0 0

0 1
4k − k

4k+1

0 0 1
4k

⎤
⎦ ,

which implies

Yk = XJ̃kX−1 =

⎡
⎣ 1

4 2 3
4

1
4 −2 − 1

4
1
4 2 − 1

4

⎤
⎦ J̃kX−1 =

⎡
⎢⎣0 2

4k
3−2k
4k+1

0 − 2
4k

2k−1
4k+1

0 2
4k − 2k+1

4k+1

⎤
⎥⎦

⎡
⎣ 1 2 1

0 − 1
4

1
4

1 0 −1

⎤
⎦ .
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This shows that for any positive integer k , the (1,2)-entry of Yk is always negative.
Hence Y is not an eventually positive matrix.

In Example 1, we observe that the Drazin inverse of A is not eventually posi-
tive. Next example illustrates Theorem 3, that is, the existence of eventually positive
generalized left inverse of A in Example 1.

EXAMPLE 2. Consider the matrix A in Example 1.

Take J̃ =

⎡
⎣ 10 0 0

0 0.25 −0.0625
0 0 0.25

⎤
⎦ and set Y = XJ̃X−1 , where X is defined by the

equation (3.1), so that

Y =

⎡
⎣ 2.5625 4.8750 2.5625

2.5625 5.1250 2.3125
2.3125 4.8750 2.8125

⎤
⎦ > 0

Then YA2 = A and hence Y is the desired (eventually) positive generalized left inverse
of A .

The following example shows that in Theorem 2 and 3, the condition index(B) � 1
cannot be relaxed.

EXAMPLE 3. Consider the M∨ -matrix A = 2I−B , where

B =

⎡
⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 1 1

−1 −1 1 1

⎤
⎥⎥⎦ .

Note that B is an irreducible eventually nonnegative matrix and index(B) = 2. Let Y
be any generalized left inverse of A . As index(A) = 1, by Lemma 1, Y must satisfy
the condition YA2 = A , which implies that Y has the form

Y =

⎡
⎢⎢⎣

1
2 0 a a
0 1

2 b b
1
4

1
4 c+ 1

2 c
− 1

4 − 1
4 d d + 1

2

⎤
⎥⎥⎦

where a,b,c,d are some constants. Consider the following matrices

F =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 1 0 0

−1 −1 0 0

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 1
0 0 −1 −1

⎤
⎥⎥⎦ and E = Y − 1

4
F.

Note that EF = 1
2F, EkF = 1

2k F (for any k ∈ N), FE = 1
2F +(a+b)G, GE = (c+

d + 1
2)G and F2 = 0 = GF . We now show by induction that Yk = Ek +αF +βG , for
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some scalar α,β with α > 0. For k = 1, it is trivial. Assume that Yk = Ek +αF +βG .
Now,

Yk+1 = Yk.Y = (Ek + αF + βG)
(

E +
1
4
F

)

= Ek+1 + αFE + βGE +
1
4
EkF +

α
4

F2 +
β
4

GF

= Ek+1 +
(

α
2

+
1

2k+1

)
F +

(
α(a+b)+ β

(
c+d+

1
2

))
G

= Ek+1 + α ′(k)F + β ′G (3.2)

where α ′(k) = α
2 + 1

2k+1 > 0 and β ′ = α(a+b)+ β (c+d+ 1
2) .

As Yk = Ek +αF +βG and α > 0, so for any positive integer k , the (4,1)-entry
and (4,2)-entry of Yk are always negative. Hence Y is not an eventually nonnegative
matrix.

The following theorem due to Neumann and Plemmons in [8] gives characteriza-
tions of M -matrices in terms of the monotonicity property of a matrix on a particular
set and the nonnegativity property of its generalized left inverses.

THEOREM 4. [8] Let A = sI −B where B � 0 and s > 0 . Then the following
statements are equivalent:

(i) A is an M-matrix.

(ii) A has a nonnegative generalized left inverse Y .

(iii) A has a generalized left inverse Y , which is nonnegative on VA , that is, x �
0 and x ∈VA ⇒ Yx � 0 .

(iv) Every generalized left inverse is nonnegative on VA .

(v) A is monotone on VA , that is, Ax � 0 and x ∈VA ⇒ x � 0 .

Motivated by the above characterizations of M -matrices, we now introduce some
new definitions which are generalizations of nonnegativity [Theorem 4(iii)] and mono-
tonicity [Theorem 4(iv)] of a matrix on a subset of R

n . These generalizations give
some interesting characterizations of a subclass of M∨ -matrices.

DEFINITION 6. Let A ∈ R
n,n and S ⊆ R

n . We say that A is eventually nonneg-
ative on S, if x ∈ S and x � 0 imply that there exists a positive integer k0, such that
Akx � 0, for all k � k0 .

REMARK 1. Note that if A is an eventually nonnegative matrix such that Ak � 0
for all k � g , then we can choose k0 = g .
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DEFINITION 7. Let A ∈ R
n,n and S ⊆ R

n . Then we say that A is eventually
monotone on S, if there exists a positive integer k0, such that for any x ∈ S, Akx � 0,
for all k � k0 , implies x � 0.

The following is an example of a matrix which is eventually monotone on a sub-
space S of R

2.

EXAMPLE 4. Consider the matrix

A =
[

1 0
0 −2

]
.

Take S = R
2 . Let x ∈ S and there exists k0 such that Akx � 0 for all k � k0 so that[

1 0
0 (−2)k

][
x1

x2

]
� 0 for all k � k0,

which implies that x2 = 0 and x1 � 0, hence x � 0 on S . Thus the above matrix is
eventually monotone on S .

Next theorem provides some characterizations of the subclass of M∨ -matrices of
the form A = sI−B with index(B) � 1, in terms of eventually monotonicity and even-
tually nonnegativity property on VA .

THEOREM 5. Let A = sI −B where B is an irreducible eventually nonnegative
matrix with index(B) � 1 . Then the following statements are equivalent:

(i) A is an M∨ -matrix.

(ii) A has a generalized left inverse Y , which is eventually positive.

(iii) A has a generalized left inverse Y , which is eventually nonnegative on VA .

(iv) Every generalized left inverse is eventually nonnegative on VA .

(v) A is eventually monotone on VA .

Proof.

(i) ⇒ (ii): Follows from Theorem 2.

(ii) ⇒ (iii): Obvious.

(iii) ⇔ (iv): Assume that (iii) holds, that is, Y is a generalized inverse of A , which
is eventually nonnegative on VA . Let Z be any generalized inverse of A , and
let x ∈ VA and x � 0. By our assumption there exists an integer k0 such that
Ykx � 0 for all k � k0 . Choose an integer t such that t � max{k0,m} , where
m = index(A) . Let k � t . Then x can be written as x = Am+kz , for some z . Now

Amz = YkAm+kz = Ykx � 0.
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So Zkx = ZkAm+kz = Amz � 0. Thus Zkx � 0 for all k � t . Hence Z is eventually
nonnegative on VA .

Converse part is obvious.

(iv) ⇔ (v): Let Y be a generalized left inverse of A such that if x ∈ VA and x � 0,
then there exists a k̃ such that Ykx � 0 for all k � k̃ . To show that A is eventually
monotone on VA .

Let x∈VA and k1 be a positive integer such that Akx � 0 for all k � k1 and let
m = index(A) . Choose k2 such that k2 � max{k1,m} . Since x ∈ VA = R(Am) ,
there exists a z such that x = Amz . Thus for any k � k2 , Akx = Am+kz ∈VA and
Akx � 0. Again by assumption (iv) , there exists a k3 such that YsAkx � 0 for
all s � k3 and for all k � k2 . Choose k0 � max{k2,k3} . Then for any k � k0 ,
YkAkx � 0, i.e., YkAm+kz � 0. Thus YAk+1 = Ak for all k � m implies that
YAm+1z � 0, or, x = Amz = YAm+1z � 0.

Conversely let A be eventually monotone on VA , i.e., if x ∈ VA and there exists
a k0 such that Akx � 0, for all k � k0 , then x � 0. Let Y be any generalized
inverse of A . To show that Y is eventually nonnegative on VA .

Let y ∈ VA , y � 0 and y = Amx for some x . Write x as x = u + v , for some
u ∈VA and Amv = 0. For any k � m we have that Akv = 0, and u = Akw . Now

Amx = Amu = Am+kw = Ak(Amw) � 0.

Hence by our assumption Amw � 0. Thus Yky =YkAmx =YkAm+kw = Amw � 0.
This shows that Y is eventually monotone on VA .

(iii) ⇒ (i): Let Y be a generalized left inverse of A which is eventually nonnegative
on VA . To show that s � ρ(B) = ρ , and we let s �= ρ .

Choose a nonnegative vector x such that Bx = ρx and thus for any positive inte-
ger k , Akx = (s−ρ)kx and hence x ∈ VA . So, by our assumption there exists a
k0 such that Ykx � 0 for all k � k0 . Take k̃ = max{k0,m} , where m = index(A) .
Then for any k � k̃ ,

(s−ρ)m+kx = Am+kx
= YAm+k+1x
= YkAm+2kx
= (s−ρ)m+2kY kx

.

Thus (s−ρ)kx = (s−ρ)2kY kx for all k � k̃ . As x and Ykx with k � k̃ are all
nonnegative vectors, so we must have s > ρ . Thus s � ρ and hence A is an
M∨ -matrix. �

REMARK 2. In Example 1, we have seen that the Drazin inverse Y is not eventu-
ally nonnegative. But we will verify that Y is eventually nonnegative on VA . Note that
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m = 1 so that VA = range(A) . It can be easily verified that {x : Ax � 0} = {x : x1 =
x2 = x3} = {x : Ax = 0} . Thus VA ∩

(
R

3
)+ = {0} . Thus Y is eventually nonnegative

on VA .

LEMMA 2. Let A be any real square matrix of order n. The we have

(a) If Y is a {1} -inverse of A with range(YA) = range(A) , then

(i) YAx = x , for all x ∈ range(A) .

(ii) YAk+1 = Ak , for all k � 1 . In particular, index(A) � 1 and Y is a gener-
alized left inverse of A.

(b) If Z is a {1} -inverse of A with range(ZT AT ) = range(AT ) , then

(i) xT AZ = xT , for all x ∈ range(A) .

(ii) Ak+1Z = Ak , for all k � 1 . In particular, index(A) � 1 and Z is a gener-
alized right inverse of A.

Proof. We prove Part (a)

(i) Since range(YA) = range(A) , so any x ∈ range(A) can be written as x = YAz ,
for some z and hence YAx = YAYAz = YAz = x .

(ii) We prove it by induction on k . Let k = 1 and x ∈ R
n . Then Ax ∈ range(A) and

hence by the given hypothesis there exists a z such that Ax =YAz , which implies
that YA2x = YAYAz = YAz = Ax . Thus YA2 = A . Now suppose that k > 1 and
YAt+1 = At , for all t < k . Then YAk+1 =YAk ·A = Ak−1 ·A = Ak .

Suppose that, m = index(A) > 1. Then there exists an x , such that x ∈ range(A)
and x /∈ range(A2) . Hence x = Ay for some y ∈ R

n . Take y = u+ v with u ∈
range(Am) and Amv = 0. So, Amy = Amu , or, YAmy =YAmu and since m > 1, so
Am−1y = Am−1u . Repeating this process up to (m−1) steps, we get x = Ay = Au,
hence x ∈ range(Am+1) and m > 1 imply that x ∈ range(A2) , a contradiction.
Thus index(A) � 1.

(b) Proof is similar to that of Part (a) �

LEMMA 3. Let A be any matrix with index(A) � 1 . Then Y is a generalized left
inverse of A if and only if Y is a {1} -inverse of A with range(YA) = range(Y ).

Proof. If index(A) < 1, that is, A is nonsingular, then the result is obviously true,
hence assume that index(A) = 1. The ‘if’ part follows from Lemma 2. Now for the
‘only if part’, let us assume that Y is a generalized left inverse of A . Any x ∈ R

n can
be written as x = u+ v with u ∈ range(A) and Av = 0. Then Ax = Au . Since Y is a
left inverse and index(A) = 1, so we have YAu = u and AYAx = AYAu = Au = Ax and
hence AYA = A .
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Next if x ∈ range(YA) , then as in the earlier case, x can be written as x = YAy
for some y ∈ range(A) . Since Y is a left inverse, x = y ∈ range(A) . Conversely if
x∈ range(A) , then x =YAx and so x∈ range(YA) . Hence range(YA) = range(A) . �

An important subclass of M -matrices is the set of M -matrices with Property c, that
is, matrices of the form A = sI−B , with B � 0, s � ρ(B) such that lim

k→∞
(B/s)k exists.

The following result from [8], gives characterizations of M -matrices with ‘property c’
in terms of some special types of generalized inverses.

THEOREM 6. [8] Let A = sI −B where B � 0 and s > 0 . The following state-
ments are equivalent:

(i) A is an M-matrix with ‘property c’.

(ii) A has a {1} -inverse Y which is a nonnegative matrix and range(YA) = S .

(iii) A has a {1} -inverse Y with range(YA) = S , such that Y is nonnegative on S .

(iv) A has a {1,2} -inverse Z with range(Z) = S , such that Z is nonnegative on S .

(v) A is monotone on S .

In Chapter 6 of [1], the authors proved that an M -matrix A has ‘property c’ if
and only if index(A) � 1. In the next theorem we consider a similar subclass of M∨ -
matrices, that is, M∨ -matrices A with index(A) � 1 and give analogous characteriza-
tions as described in Theorem 6 for the mentioned subclass of M∨ -matrices.

THEOREM 7. Let A = sI−B where B is an eventually positive matrix with index(B)
� 1 . Then for S = range(A) , the following statements are equivalent:

(i) A is an M∨ -matrix with index(A) � 1 .

(ii) A has a {1} -inverse Y which is an eventually nonnegativematrix and range(YA)
=S.

(iii) A has a {1} -inverse Y with range(YA) = S , such that Y is eventually nonnega-
tive on S .

(iv) Every {1} -inverse Y of A with range(YA) = S , is eventually nonnegative on S

(v) A has a {1,2} -inverse Z with range(Z) = S , such that Z is eventually nonneg-
ative on S .

(vi) A is eventually monotone on S .

Proof. From Theorem 5 and Lemma 3, it follows that if index(A) � 1, then con-
ditions (ii), (iii), (iv), (vi) are equivalent to the statement that “A is an M∨ -matrix”.
Thus we have (i) ⇒ (ii) ⇔ (iii) ⇔ (vi) . To complete the proof it is enough to show
(iii) ⇒ (v) ⇒ (i) .
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(iii) ⇒ (v) : Let Y be a {1} -inverse of A such that range(YA) = range(A) and
Y is eventually nonnegative on range(A) . Take Z = YAY . Then it can be easily
checked that Z is a {1,2} -inverse of A . Since Z = YAY and range(YA) = range(A) ,
so range(Z) ⊆ range(A) . Again if x ∈ range(A) , then by Lemma 2(i) , x =YAx = ZAx
and hence range(Z) = range(A) . In order to show that Z is eventually nonnegative on
range(A) , it suffices to show that Zkx = Ykx for all x ∈ range(A) , and for all positive
integer k .

Let x = Au for some u ∈ R
n , then Zx = YAYx = YAYAu = YAu = Yx . Now

assume that k > 1, and Ztx = Ytx , for all x ∈ range(A) and for all t < k . Then Zkx =
Zk−1(Zx) = Zk−1(Yx) = Yk−1(Yx) = Ykx and by induction on k , Zkx = Ykx for all
positive integer k .

(v)⇒ (i) : Suppose that Z is a {1,2} -inverse of A such that range(Z) = range(A)
and Z is eventually nonnegative on range(A) . Then Z is a {1} -inverse implies that
range(ZA) = range(A) and hence by Lemma 2, index(A) � 1 and Z is a generalized
left inverse of A . Hence the generalized left inverse Z is eventually nonnegative on
VA = range(A) and (i) follows from Theorem 5.

Thus conditions (i)− (vi) are equivalent. �

REMARK 3. Similar results can be obtained for generalized right inverses Z , with
S = range(AT ) and range(YA) replaced by range(ZT AT ) in the above statements.

4. Conclusion

The paper characterizes two different subclasses of M∨ -matrices by extending
results obtained by Neumann and Plemmons in [8] for M -matrices, to some subclasses
of M∨ -matrices. We characterized a subclass of M∨ -matrices in terms of eventually
positivity of generalized inverses. We also generalized the concepts of monotonicity
and nonnegativity property on a set S and termed them as eventually monotonicity and
eventually nonnegativity on S , respectively. We used these concepts to characterize
another subclass of M∨ -matrices.
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