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AN EIGENVECTOR–EIGENVALUE–IDENTITY FOR

MATRICES WITH A NON–SEMI–SIMPLE EIGENVALUE

JIAWEN DING AND JIU DING ∗

(Communicated by Z. Drmač)

Abstract. We prove an eigenvector-eigenvalue-identity for a complex matrix, concerning some
orthonormal basis of the generalized eigenspace associated to an eigenvalue that has exactly one
Jordan block in the Jordan canonical form of the matrix. The new formula extends the previous
one for the case of simple or semi-simple eigenvalues.

1. Introduction

Recently, the so-called eigenvector-eigenvalue-identity

|vi j|2 =
∏n−1

k=1[λ j(A)−λk(Ai)]
∏n

k=1,k �= j[λ j(A)−λk(A)]
, (1)

which was named in [2] and obtained independently several times by different authors
for Hermitian matrices and more general normal matrices since the 1960s (see, for ex-
ample, [5, 6] and the references in the expository paper [2]), has inspired much interest
in the literature. The paper [2] surveyed a “surprisingly complicated” history of the
development for the eigenvector-eigenvalue-identity in linear algebra, numerical linear
algebra and the other areas, and provided some extensions for more general matrices.
Inspired by the first proof given in [2] that is based on the concept of the adjugate of a
matrix, and with the help of an orthogonal projection technique, the identity has been
proved to be true in [4] for a class of diagonalizable matrices, based on a more general
result without the original orthogonality assumption of the involved eigenvector to the
ones of other eigenvalues.

The formula (1) expresses the modulus square of the i-th component of the j -th
eigenvector in a normalized eigenvector basis v1, . . . ,vn of Cn in terms of their cor-
responding eigenvalues λ1(A), . . . ,λn(A) of an n×n diagonalizable matrix A and the
eigenvalues λ1(Ai), . . . ,λn−1(Ai) of its sub-matrix Ai that remains after the i-th row
and the i-th column are deleted from A .

It is easy to see that modulus squares of components for a single eigenvector can-
not be uniquely determined by a mathematical formula in terms of only eigenvalues in
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the case that the associated eigenvalue is not simple, because of the fact that either the
corresponding eigenspace is at least two-dimensional or there are generalized eigenvec-
tors for the given eigenvalue. In fact, formula (1) has no meaning when its right-hand
side denominator becomes zero, or equivalently, λ j(A) is a multiple eigenvalue.

Can one discover a relation between eigenvalues and modulus squares of eigen-
vector components for more general matrices? As suggested by Remark 4 of [2], an
extended eigenvector-eigenvalue-identity could be obtained with the help of formula
(11) therein when the matrix A is non-normal but still diagonalizable and the concerned
eigenvalue is simple. An extended eigenvector-eigenvalue formula has been found in
[3] when the concerned eigenvalue is semi-simple for a diagonalizable matrix, based
on a differentiation analysis of the involved determinant functions. However, as men-
tioned above, it appears impossible to determine the component modulus square of an
individual eigenvector from the formula if the eigenvalue has algebraic multiplicity at
least two, but the sum of the modulus squares of the components for all the normalized
eigenvectors, which correspond to the same eigenvalue and form an orthonormal basis
of the eigenspace, can be expressed in terms of the eigenvalues of A and its various
principal sub-matrices that are obtained by deleting several rows and columns of the
same indices up to the order determined by the multiplicity of the eigenvalue.

The question remains whether a similar formula is available when the eigenvalue
is not semi-simple. The present paper aims to address this problem. We shall give an
eigenvector-eigenvalue identity for the sum of the component moduli of the eigenvec-
tor and generalized eigenvectors associated to an eigenvalue that is not semi-simple and
corresponds to only one Jordan block in the Jordan canonical form of the matrix, based
on the concept of the adjugate of a matrix, the differential analysis of the related de-
terminant functions, and a structural analysis for solving the resulting upper-triangular
Toeplitz or more general upper triangular system of equations.

The paper is organized as follows. In the next section we give useful terminologies
and preliminary results for the preparation of proving the main theorems in Sections 3
and 4. An eigenvector-eigenvalue-identity will be proved in detail in Section 3 with a
simple but rather strong assumption. A more general result will be given in Section 4
with a weakened condition. We conclude in Section 5.

2. Basic concepts and three lemmas

A complex number λ is called an eigenvalue of an n× n complex matrix A if
there exists a nonzero n-dimensional complex vector v such that Av = λv . The vector
v is an eigenvector of A associated to eigenvalue λ . A number λ is an eigenvalue of A
if and only if it is a zero of the n -th order characteristic polynomial φ(z) = det(zI−A) .
The power index of the linear factor z−λ in the factorization of φ(z) in the complex
field C is the algebraic multiplicity of λ . The null space N(A− λ I) is called the
eigenspace of λ and its dimension is the geometric multiplicity of λ . It is well-known
that the geometric multiplicity of λ is less than or equal to its algebraic multiplicity. If
they are equal, then the eigenvalue λ is said to be semi-simple. In particular, a semi-
simple eigenvalue of multiplicity one is called simple. A matrix A is diagonalizable if
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there exists a nonsingular matrix V such that V−1AV is a diagonal matrix. The matrix
A is diagonalizable if and only if every eigenvalue is semi-simple.

For an eigenvalue λ , the smallest positive integer r satisfying the equality N[(A−
λ I)r] = N[(A−λ I)r+1] is called the index of λ and is denoted by ν(λ ) . The null space
N[(A−λ I)ν(λ )] is referred to as the generalized eigenspace, and its nonzero elements
that are not eigenvectors are called generalized eigenvectors associated to eigenvalue
λ . It is well-known that ν(λ ) > 1 if and only if the algebraic multiplicity of λ is
greater than its geometric multiplicity.

Although not every matrix is diagonalizable, any square matrix has its Jordan
canonical form. Namely there exists a nonsingular matrix V such that J ≡ V−1AV is
a block diagonal matrix with Jordan matrices as its diagonal blocks. A j× j Jordan
matrix Jj(λ ) associated to eigenvalue λ is a matrix of the form

Jj(λ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0

0 0
. . . λ 1

0 0 · · · · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The Jordan block Jj(λ ) is nonsingular when λ �= 0, and its inverse is

Jj(λ )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ−1 −λ−2 λ−3 · · · · · · (−1) j−1λ− j

0 λ−1 −λ−2 λ−3 · · · (−1) j−2λ−( j−1)

... 0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

0 0
. . .

. . . −λ−2

0 0 · · · · · · 0 λ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The major mathematical concept that will be used to prove the main results in the
next two sections is that of the adjugate of a matrix. Given a square matrix M = [mi j] ,
the cofactor matrix Mi j of its (i, j)-entry mi j is the sub-matrix obtained by deleting the
i-th row and the j -th column of M (see [1], p. 114). If the two indices i and j are the
same, we simplify the notation Mii to Mi . When the cofactor operation is performed in
succession, we write (· · ·(Mi1) · · ·)ir as Mi1,...,ir for the simplicity of notation.

The definition of the adjugate adj M of M is as follows. It is a matrix of the same
order as M and its (i, j)-entry is (−1)i+ j detMji . It is well-known that adj M ·M =
M · adj M = detM · I , so when M is nonsingular,

adj M = detM ·M−1. (4)

The following lemma is Fact 10.12.8 in the book [1] and its proof can be found in
the source reference cited therein.
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LEMMA 2.1. Suppose M = M(z) is a differentiable matrix function from an open
domain of C to Cn×n . Then

d
dz

detM(z) =
n

∑
i=1

detMd
i (z),

where each Md
i (z) is a matrix of the same order as M(z) , which is obtained via differ-

entiating the entries of the i-th row of M(z) .

LEMMA 2.2. Let M ∈Cn×n and z ∈C . Then for a nonnegative integer t < n, the
t -th derivative of the function det(zI−M) with respect to z is

det(t)(zI−M) =
n−t+1

∑
it=1

· · ·
n

∑
i1=1

det(zI−Mi1,...,it )

=
n−t+1

∑
it=1

· · ·
n

∑
i1=1

n−t

∏
k=1

[z−λk(Mi1,...,it )] , (5)

where λk(Mi1,...,it ) are the eigenvalues of the (n− t)× (n− t) matrix Mi1,...,it , counting
the algebraic multiplicities.

Proof. By Lemma 2.1, the fact that the derivative of the i-th row of zI−M is the
i-th row of I , and the Laplace expansion of a determinant along a row,

det′(zI−M) =
n

∑
i=1

det(zI−M)d
i =

n

∑
i=1

det(zI−Mi). (6)

So (5) follows by using repeatedly (6) and the fact that the determinant of a matrix is
the product of its eigenvalues, counting the algebraic multiplicities. �

We also need some properties of Toeplitz upper-triangular matrices.

LEMMA 2.3. Let u1, . . . ,uk and v1, . . . ,vk be two finite sequences of k vectors,
and let c1, . . . ,ck be k numbers that form a k× k upper-triangular Toeplitz matrix C.
Then the following equality holds:

[v1 · · ·vk]

⎡
⎢⎢⎢⎢⎣

c1 c2 · · · ck

0 c1
. . .

...
...

...
. . . c2

0 0 · · · c1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

uH
1

uH
2
...

uH
k

⎤
⎥⎥⎥⎦

= c1

k

∑
i=1

viu
H
i + c2

k−1

∑
i=1

viu
H
i+1 + · · ·+ ck−1

2

∑
i=1

viu
H
i+k−2 + ckv1u

H
k . (7)
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Moreover, if C is nonsingular then⎡
⎢⎢⎢⎢⎣

c1 c2 · · · ck

0 c1
. . .

...
...

...
. . . c2

0 0 · · · c1

⎤
⎥⎥⎥⎥⎦

−1

=
1
c1

⎡
⎢⎢⎢⎢⎣

β1 β2 · · · βk

0 β1
. . .

...
...

...
. . . β2

0 0 · · · β1

⎤
⎥⎥⎥⎥⎦ ,

where the βt are given recursively by

β1 = 1, βt = −α2βt−1−·· ·−αt−1β2−αt , αt =
ct

c1
, t = 2, . . . ,k. (8)

Proof. The proof of (7) and β1 = 1 is direct. For the remaining part, it is enough
to assume that c1 = 1, and so αt = ct for t = 2, . . . ,k . Then, since the inverse of
a Toeplitz upper-triangular matrix is also Toeplitz upper-triangular, letting the (1, t)-
entries of C ·C−1 be 0 gives

βt + α2βt−1 + · · ·+ αt−1β2 + αt = 0, t = 2, . . . ,k,

from which (8) follows. �

3. An eigenvector-eigenvalue-identity

Let A = [ai j] be an n×n complex matrix such that one eigenvalue of A , which is
denoted by λ throughout the paper, is not semi-simple. Hence, A is not diagonalizable.
We list all the eigenvalues of A as

λ1(A), . . . ,λm(A),λm+1(A), . . . ,λn(A),

counting the algebraic multiplicities, where λ1(A) = · · · = λm(A) ≡ λ and λk �= λ for
k = m+1, . . . ,n . We assume that λm+1(A), . . . ,λn(A) are semi-simple eigenvalues for
the convenience of some computations below. Also for the simplicity of analysis, we
assume that the Jordan canonical form J = V−1AV of A has only one Jordan block
associated to eigenvalue λ , which is the first block in J . Thus, ν(λ ) = m , and with V
partitioned as

V = [v1 · · ·vm vm+1 · · ·vn] ,

where v1, . . . ,vn are linearly independent eigenvectors or generalized eigenvectors of
A , its first m columns v1, . . . ,vm satisfy

A[v1 · · ·vm] = [v1 · · ·vm]Jm(λ ), (9)

where Jm(λ ) is given by (2).
By (9), the eigenvector v1 and the generalized eigenvectors v2, . . . ,vm associated

to eigenvalue λ satisfy the recursive relation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A−λ I)v1 = 0,
(A−λ I)v2 = v1,

...
(A−λ I)vm = vm−1,
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from which (A−λ I)mvm = 0 and (A−λ I)m−1vm = v1 �= 0. For any complex number
z that is not an eigenvalue of A , since (zI −A)[v1 · · ·vm] = −[v1 · · ·vm]Jm(λ − z) , we
have

(zI−A)−1[v1 · · ·vm] = −[v1 · · ·vm]Jm(λ − z)−1.

It follows from the inverse formula (3) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(zI−A)−1v1 = (z−λ )−1v1,
(zI−A)−1v2 = (z−λ )−2v1 +(z−λ )−1v2,

...
(zI−A)−1vm = (z−λ )−mv1 + · · ·+(z−λ )−1vm.

(10)

We further assume that the vectors v1, . . . ,vm form an orthonormal basis of the
generalized eigenspace N[(λ I −A)m] , and such an eigenvector and generalized eigen-
vectors associated to λ are orthogonal to the eigenvectors vm+1, . . . ,vn associated to
λm+1(A), . . . ,λn(A) , namely

vH
j vk = 0, ∀ j = 1, . . . ,m, k = m+1, . . . ,n.

Let z be a complex number that is not an eigenvalue of A . Then by (4),

adj(zI−A) = det(zI−A)(zI−A)−1.

Since the determinant of a matrix equals the product of all its eigenvalues counting their
algebraic multiplicities, for s = 1, . . . ,n ,

adj(zI−A)vs =
n

∏
k=1

[z−λk(A)] · (zI−A)−1vs

= g(z)(z−λ )m(zI−A)−1vs, (11)

where g(z) = ∏n
k=m+1 [z−λk(A)] . Then (11) and (10) imply that

adj(zI−A)v1 = g(z)(z−λ )m−1v1,

adj(zI−A)v2 = g(z)(z−λ )m−2 [v1 +(z−λ )v2] ,
... (12)

adj(zI−A)vm−1 = g(z)(z−λ )
[
v1 +(z−λ )v2 + · · ·+(z−λ )m−2vm−1

]
,

adj(zI−A)vm = g(z)
[
v1 +(z−λ )v2 + · · ·+(z−λ )m−1vm

]
,

so letting z → λ leads to ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

adj(λ I−A)v1 = 0,
...

adj(λ I−A)vm−1 = 0,
adj(λ I−A)vm = g(λ )v1.

(13)
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On the other hand, for s = m + 1, . . . ,n , the eigenvalues λs are assumed to be
semi-simple and we have

(zI−A)−1vs = (z−λs)−1vs.

Hence, by (11),

adj(zI−A)vs = g(z)(z−λ )m(z−λs)−1vs

=

(
n

∏
k=m+1,k �=s

[z−λk(A)]

)
(z−λ )mvs (14)

and when z → λ we find that

adj(λ I−A)vs = 0, s = m+1, . . . ,n. (15)

Recall that vm ⊥ {v1, . . . ,vm−1,vm+1, . . . ,vn} by the assumption, and since {v1, . . . ,vn}
is a basis of Cn , it follows from (13) and (15) that

adj(λ I−A) = g(λ )v1v
H
m . (16)

Next, we take derivatives of the functions adj(zI−A)vs with respect to z for each
s . The m formulas of (12) can be written compactly as

adj(zI−A)vs = g(z)
s

∑
k=1

(z−λ )m−s+k−1vk, s = 1, . . . ,m.

Let hs(z) = ∑s
k=1(z−λ )m−s+k−1vk . Then for r = 0, . . . ,m−1,

h(r)
s (z) = r!

s

∑
k=s′

Cm−s+k−1
m−s−r+k−1(z−λ )m−s−r+k−1vk,

where s′ = max{1,s−m+ r +1} and Ci
j = i!/[ j!(i− j)!] is the combination number.

Hence, for s = 1, . . . ,m , the t -th derivative of adj(zI−A)vs is

adj(t)(zI−A)vs = [g(z)hs(z)](t) =
t

∑
r=0

Ct
rg

(t−r)(z)h(r)
s (z)

=
t

∑
r=0

r!Ct
rg

(t−r)(z)
s

∑
k=s′

Cm−s+k−1
m−s−r+k−1(z−λ )m−s−r+k−1vk. (17)

For any t = 0,1, . . . ,m− 1 and s � m− t− 1, since k � 1 and r � t in (17), m− s−
r + k−1 � m− s− r � m− s− t � 1. Thus, all the powers of z−λ in the summation
of (17) have positive indices, from which

adj(t)(λ I−A)vs = lim
z→λ

adj(t)(zI−A)vs = 0, ∀ s = 1, . . . ,m− t−1.
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On the other hand, for s = m− t, . . . ,m , since the powers of z−λ in the inner summa-
tion of (17) have zero index in the first term and positive indices in the following terms,
we see that

adj(t)(λ I−A)vs =
t

∑
r=0

Ct
rg

(t−r)(λ )r!Cr
0vs−m+r+1

= t!
t

∑
r=0

g(t−r)(λ )
(t − r)!

vs−m+r+1 = t!
t

∑
r=m−s

g(t−r)(λ )
(t − r)!

vs−m+r+1,

where we have used the convention that vs−m+r+1 = 0 when s−m+ r+1 < 1.
In particular, as an illustration of the above formula, when t = 1, we have

adj′(λ I−A)vm−1 = g(λ )v1 and adj′(λ I−A)vm = g′(λ )v1 +g(λ )v2, (18)

and if t = m−1, then for s = 1, . . . ,m ,

adj(m−1)(λ I−A)vs = (m−1)!

[
g(s−1)(λ )
(s−1)!

v1 + · · ·+ g(λ )
0!

vs

]
.

Furthermore, from (14) we obtain that

adj(t)(λ I−A)vs = 0, ∀ s = m+1, . . . ,n, t = 0, . . . ,m−1.

We are ready to find the expressions of the derivatives adj (t)(λ I − A) for t =
1, . . . ,m− 1, following the same idea as for the expression (16) of adj(λ I −A) . By
(18) and since that

adj′(λ I−A)vs = 0, s = 1, . . . ,m−2,m+1, . . .,n,

adj′(λ I−A) = [v1 v2]
[

g(λ ) g′(λ )
0 g(λ )

][
vH
m−1

vH
m

]
.

Similarly,

adj′′(λ I−A) = [v1 v2 v3]

⎡
⎣2g(λ ) 2g′(λ ) g′′(λ )

0 2g(λ ) 2g′(λ )
0 0 2g(λ )

⎤
⎦
⎡
⎣ vH

m−2
vH
m−1

vH
m

⎤
⎦ .

In general, for t = 0,1, . . . ,m−1,

adj(t)(λ I−A) = t! [v1 · · ·vt+1]

⎡
⎢⎢⎢⎢⎣

g(λ ) g′(λ ) · · · g(t)(λ )
t!

0 g(λ )
. . .

...
...

...
. . . g′(λ )

0 0 · · · g(λ )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

vH
m−t

vH
m−t+1

...
vH
m

⎤
⎥⎥⎥⎦ .
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Hence, by (7) of Lemma 2.3, for t = 0,1, . . . ,m−1,

adj(t)(λ I−A) = t!

[
g(λ )
0!

t+1

∑
i=1

viv
H
m−t+i−1 +

g′(λ )
1!

t

∑
i=1

viv
H
m−t+i +

· · ·+ g(t−1)(λ )
(t−1)!

2

∑
i=1

viv
H
m+i−2 +

g(t)(λ )
t!

v1v
H
m

]
.

More explicitly, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

adj(0)(λ I−A) = 0!
[

g(λ )
0! v1vH

m

]
,

adj(1)(λ I−A) = 1!
[

g(λ )
0!

(
v1vH

m−1 + v2vH
m

)
+ g′(λ )

1! v1vH
m

]
,

adj(2)(λ I−A) = 2!
[

g(λ )
0!

(
v1vH

m−2 + v2vH
m−1 + v3vH

m

)
+ g′(λ )

1!

(
v1vH

m−1 + v2vH
m

)
+ g′′(λ )

2! v1vH
m

]
,

...

adj(m−1)(λ I−A) = (m−1)!
[

g(λ )
0! ∑m

i=1 vivH
i + g′(λ )

1! ∑m−1
i=1 vivH

i+1+

· · ·+ g(m−2)(λ )
(m−2)! ∑2

i=1 vivH
m+i−2 + g(m−1)(λ )

(m−1)! v1vH
m

]
.

For t = 1, . . . ,m , let

Bt =
adj(m−t)(λ I−A)

(m− t)!
and Xt = v1v

H
t + v2v

H
t+1 + · · ·+ vm−t+1v

H
m

be the n×n matrices. Then the above system can be written as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(λ )
0!

g′(λ )
1!

g′′(λ )
2! · · · g(m−1)(λ )

(m−1)!

0 g(λ )
0!

g′(λ )
1! · · · g(m−2)(λ )

(m−2)!
...

...
. . .

. . .
...

0 0 · · · g(λ )
0!

g′(λ )
1!

0 0 · · · 0 g(λ )
0!

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

X1

X2
...
Xm−1

Xm

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

B1

B2
...
Bm−1

Bm

⎤
⎥⎥⎥⎥⎥⎦ .

From the matrix inverse expression of Lemma 2.3,⎡
⎢⎢⎢⎢⎢⎣

X1

X2
...
Xm−1

Xm

⎤
⎥⎥⎥⎥⎥⎦=

1
g(λ )

⎡
⎢⎢⎢⎢⎢⎣

β1 β2 β3 · · · βm

0 β1 β2 · · · βm−1
...

...
. . .

. . .
...

0 0 · · · β1 β2

0 0 · · · 0 β1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

B1

B2
...
Bm−1

Bm

⎤
⎥⎥⎥⎥⎥⎦ ,

where βt are given by (8), in which αt = g(t−1)(λ )/[(t − 1)!g(λ )] for t = 2, . . . ,m .
Consequently,

m

∑
i=1

viv
H
i = X1 =

1
g(λ )

m

∑
t=1

βtBt =
1

g(λ )

m

∑
t=1

βt
adj(m−t)(λ I−A)

(m− t)!
. (19)
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We are ready to state and prove the main result of this paper.

THEOREM 3.1. Suppose A is an n×n complex matrix with eigenvalues

λ , . . . ,λ ,λm+1(A), . . . ,λn(A),

counting the algebraic multiplicities, such that ν(λ ) = m and λi(A) �= λ for i =
m + 1, . . . ,n. Assume that the Jordan form J = V−1AV of A has Jm(λ ) as the first
Jordan block of J and the eigenvalues λm+1(A), . . . ,λn(A) are semi-simple. If the first
m columns of V = [v1 · · ·vn] form an orthonormal basis of N[(λ I −A)m] and v j is
orthogonal to vk for all j = 1, . . . ,m and k = m + 1, . . . ,n, then for i = 1, . . . ,n, the
following eigenvector-eigenvalue-identity holds for the i-th components vi j of v j with
j = 1, . . . ,m:

m

∑
j=1

|vi j|2 =
1

g(λ )

m

∑
t=1

βt

(m− t)!

n−m+t

∑
im−t=1

· · ·
n−1

∑
i1=1

n−m+t−1

∏
k=1

{
λ −λk

[
(Ai)i1,...,im−t

]}
, (20)

where g(λ )= ∏n
k=m+1 [λ −λk(A)] ,β1, . . . ,βm are given by (8), in which αt = g(t−1)(λ )

(t−1)!g(λ )

for t = 2, . . . ,m, and λk
[
(Ai)i1,...,im−t

]
are the eigenvalues of the matrix (Ai)i1,...,im−t for

k = 1, . . . ,n−m+ t−1 and t = 1, . . . ,m.

Proof. By the definition of the adjugate, the (i, i)-entry of adj (m−t)(λ I − A) is
det(m−t)(λ I−Ai) , which is, by (5) of Lemma 2.2,

det(m−t)(λ I−Ai) =
n−m+t

∑
im−t=1

· · ·
n−1

∑
i1=1

n−m+t−1

∏
k=1

{
λ −λk

[
(Ai)i1,...,im−t

]}
.

Here, the summation notations disappear by convention when t = m .
Since the (i, i)-entry of the left-hand side of the matrix equality (19) is ∑m

j=1 |vi j|2 ,
by equating it to the (i, i) entry of the right-hand side of (19), we obtain the desired
formula (20) for ∑m

j=1 |vi j|2 . �

REMARK. For the matrix A = VJV−1 satisfying the conditions of Theorem 3.1,
let B = QHAQ and U = QHV with Q a unitary matrix. Then B =UJU−1 , so B has the
same Jordan canonical form as A . Since the unitary matrix QH preserves the 2-norm
and orthogonality of vectors, B also satisfies the conditions of the theorem. However,
even though A and B have the same eigenvalues, the equality ∑m

j=1 |ui j|2 = ∑m
j=1 |vi j|2

is not valid in general, because it is not guaranteed that [u1 · · ·um] = [v1 · · ·vm]T for
some unitary matrix T .

Adding up (20) for i = 1, . . . ,n gives the following equality among all the eigen-
values of A and its principal sub-matrices of various orders.
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COROLLARY 3.1. Under the same conditions of Theorem 3.1,

m
n

∏
k=m+1

[λ −λk(A)]

=
n

∑
i=1

m

∑
t=1

βt

(m− t)!

n−m+t

∑
im−t=1

· · ·
n−1

∑
i1=1

n−m+t−1

∏
k=1

{
λ −λk

[
(Ai)i1,...,im−t

]}
.

To have a taste of Theorem 3.1, we present a special case as a corollary.

COROLLARY 3.2. Under the same conditions of Theorem 3.1, if m = 3 , then

|vi1|2 + |vi2|2 + |vi3|2

=
1

2g(λ )

n−2

∑
i2=1

n−1

∑
i1=1

n−3

∏
k=1

{λ −λk [(Ai)i1,i2 ]}−
g′(λ )
g(λ )2

n−1

∑
i1=1

n−2

∏
k=1

{λ −λk [(Ai)i1 ]}

+
[
g′(λ )2

g(λ )3 − g′′(λ )
2g(λ )2

]n−1

∏
k=1

[λ −λk(Ai)], i = 1, . . . ,n. (21)

We illustrate the above identity with the following example.

EXAMPLE. Consider the matrix

A =
1
9

⎡
⎢⎢⎣

2 5 −4 0
2 −4 5 0
8 2 2 0
0 0 0 9

⎤
⎥⎥⎦ .

It has two distinct eigenvalues 0 and 1 with ν(0) = 3. The four vectors

v1 =
1
3

⎡
⎢⎢⎣

1
−2
−2

0

⎤
⎥⎥⎦ , v2 =

1
3

⎡
⎢⎢⎣
−2

1
−2

0

⎤
⎥⎥⎦ , v3 =

1
3

⎡
⎢⎢⎣
−2
−2

1
0

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

constitute an orthonormal basis of C4 such that

Av1 = 0, Av2 = v1, Av3 = v2, Av4 = v4,

so they satisfy the conditions of Theorem 3.1.
Now, from

A1 =
1
9

⎡
⎣−4 5 0

2 2 0
0 0 9

⎤
⎦ ,

we have

(A1)1 =
1
9

[
2 0
0 9

]
, (A1)2 =

1
9

[−4 0
0 9

]
, (A1)3 =

1
9

[−4 5
2 2

]
.
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It follows that

λ1(A1) = 1, λ2(A1) =
√

19−1
9

, λ3(A1) = −
√

19+1
9

;

λ1[(A1)1] =
2
9
, λ2[(A1)1] = 1,λ1[(A1)2] = −4

9
, λ2[(A1)2] = 1,

λ1[(A1)3] =
√

19−1
9

, λ2[(A1)3] = −
√

19+1
9

;

λ1[(A1)1,1] = 1, λ1[(A1)2,1] = 1, λ1[(A1)3,1] =
2
9
,

λ1[(A1)1,2] =
2
9
, λ1[(A1)2,2] = −4

9
, λ1[(A1)3,2] = −4

9
.

Since g(z) = z−1, we see that g(0) = −1,g′(0) = 1, and g′′(0) = 0. Thus the right-
hand side of (21) with n = 4 and i = 1 is

1
2

2

∑
i2=1

3

∑
i1=1

λ1 [(A1)i1,i2 ]−
3

∑
i1=1

2

∏
k=1

λk [(A1)i1 ]+
3

∏
k=1

λk(A1)

=
1
2

(
1+1+

2
9

+
2
9
− 4

9
− 4

9

)

− 2
9

+
4
9

+
√

19−1
9

·
√

19+1
9

−
√

19−1
9

·
√

19+1
9

=
7
9

+
4
9
− 2

9
= 1 = |v11|2 + |v12|2 + |v13|2,

which is the left-hand side of (21) with i = 1. This verifies Corollary 3.2 for i = 1. The
other identities for the components of i = 2,3,4 can be verified in the same way.

4. An extended result

The assumption that v1, . . . ,vm satisfying A[v1 · · ·vm] = [v1 · · ·vm]Jm(λ ) form an
orthonormal basis of the generalized eigenspace N((A−λ I)m) is quite strong in Theo-
rem 3.1. In this section we try to weaken it to get a similar result. The idea is to change
the Jordan block Jm(λ ) to an upper triangular matrix with diagonal elements λ . This
will provide more freedom for the orthogonality condition required in the eigenvector-
eigenvalue-identity. For the simplicity of computation and presentation, we only give
the generalization for m = 3, but the idea is exactly the same for general m .

As in the last section, suppose A has a non-semi-simple eigenvalue λ of algebraic
multiplicity 3 and geometric multiplicity 1. Let u1,u2,u3 be an orthonomal basis of
N[(A−λ I)3] such that

A[u1 u2 u3] = [u1 u2 u3]Λ; Λ =

⎡
⎣λ a b

0 λ c
0 0 λ

⎤
⎦ . (22)
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The condition (22) implies that u j ∈ N[(A − λ I) j] \N[(A − λ I) j−1] for j = 1,2,3.
Conversely, if u j ∈ N[(A− λ I) j] \N[(A− λ I) j−1] for j = 1,2,3, then (A− λ I)u1 =
0,(A− λ I)u2 = au1,(A− λ I)u3 = bu1 + cu2 for some numbers a,b,c , that is (22) is
satisfied. Also it is easy to see that a = uH

1 Au2,b = uH
1 Au3 , and c = uH

2 Au3 .
We further note that if (9) is satisfied for a basis v1,v2,v3 of N[(A−λ I)3] , then

there is an orthonomal basis u1,u2,u3 of N[(A− λ I)3] that satisfies (22) for some
constants a,b,c . In fact, since the Jordan vectors v j ∈N[(A−λ I) j]\N[(A−λ I) j−1] for

j = 1,2,3, starting with u1 = v1/
√

vH
1 v1 , the classic Gram-Schmidt orthogonalization

process will produce an orthonormal basis u1,u2,u3 of N[(A−λ I)3] that satisfies (22).
This shows that there exist orthonormal bases of N[(A−λ I)3] that satisfy the weakened
condition.

The condition (22) implies that (zI − A)[u1 u2 u3] = [u1 · · ·u3](zI − Λ) for any
complex number z , so when z is not an eigenvalue of A ,

(zI−A)−1[u1 u2 u3] = [u1 u2 u3](zI−Λ)−1,

where

(zI−Λ)−1 = (z−λ )−3

⎡
⎣ (z−λ )2 a(z−λ ) b(z−λ )+ac

0 (z−λ )2 c(z−λ )
0 0 (z−λ )2

⎤
⎦ .

Therefore,⎧⎪⎪⎨
⎪⎪⎩

(zI−A)−1u1 = (z−λ )−1u1,
(zI−A)−1u2 = a(z−λ )−2u1 +(z−λ )−1u2,
(zI−A)−1u3 = [b(z−λ )−2 +ac(z−λ )−3]u1 + c(z−λ )−2u2

+ (z−λ )−1u3.

Since adj(zI−A)us = g(z)(z−λ )3(zI−A)−1us for s = 1,2,3,⎧⎪⎪⎨
⎪⎪⎩

adj(zI−A)u1 = g(z)(z−λ )2u1,
adj(zI−A)u2 = g(z)[a(z−λ )u1 +(z−λ )2u2],
adj(zI−A)u3 = g(z){[b(z−λ )+ac]u1+ c(z−λ )u2

+ (z−λ )2u3}.
(23)

Letting z → λ , we have ⎧⎨
⎩

adj(λ I−A)u1 = 0,
adj(λ I−A)u2 = 0,
adj(λ I−A)u3 = acg(λ )u1.

It follows from the above and (15) that

adj(λ I−A) = acg(λ )u1u
H
3 . (24)

Differentiating the expression of each adj(zI−A)us in (23) gives that{
adj′(zI−A)u1 = [g′(z)(z−λ )2 +2g(z)(z−λ )]u1,
adj′′(zI−A)u1 = [g′′(z)(z−λ )2 +4g′(z)(z−λ )+2g(z)]u1;
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⎧⎪⎪⎨
⎪⎪⎩

adj′(zI−A)u2 = a[g′(z)(z−λ )+g(z)]u1

+ [g′(z)(z−λ )2 +2g(z)(z−λ )]u2,
adj′′(zI−A)u2 = a[g′′(z)(z−λ )+2g′(z)]u1

+ [g′′(z)(z−λ )2 +4g′(z)(z−λ )+2g(z)]u2;

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

adj′(zI−A)u3 = [bg′(z)(z−λ )+acg′(z)+bg(z)]u1

+ c[g′(z)(z−λ )+g(z)]u2

+ [g′(z)(z−λ )2 +2g(z)(z−λ )]u3,
adj′′(zI−A)u3 = [bg′′(z)(z−λ )+acg′′(z)+2bg′(z)]u1

+ c[g′′(z)(z−λ )+2g′(z)]u2

+ [g′′(z)(z−λ )2 +4g′(z)(z−λ )+2g(z)]u3.

Taking the limit of z → λ , we see that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

adj′(λ I−A)u1 = 0,
adj′(λ I−A)u2 = ag(λ )u1,
adj′(λ I−A)u3 = [acg′(λ )+bg(λ )]u1 + cg(λ )u2,
adj′′(λ I−A)u1 = 2g(λ )u1,
adj′′(λ I−A)u2 = 2ag′(λ )u1 +2g(λ )u2,
adj′′(λ I−A)u3 = [acg′′(λ )+2bg′(λ )]u1 +2cg′(λ )u2 +2g(λ )u3.

By the same method as in the previous section, we find that

adj′(λ I−A) = [u1 u2]
[

ag(λ ) acg′(λ )+bg(λ )
0 cg(λ )

][
uH

2
uH

3

]
,

adj′′(λ I−A) = [u1 u2 u3]

⎡
⎣ 2g(λ ) 2ag′(λ ) acg′′(λ )+2bg′(λ )

0 2g(λ ) 2cg′(λ )
0 0 2g(λ )

⎤
⎦
⎡
⎣ uH

1
uH

2
uH

3

⎤
⎦ .

Together with (24), we have

adj(λ I−A) = acg(λ )u1uH
3 ,

adj′(λ I−A) = g(λ )(au1uH
2 + cu2uH

3 )+ [acg′(λ )+bg(λ )]u1uH
3 ,

adj′′(λ I−A) = 2g(λ )(u1uH
1 +u2uH

2 +u3uH
3 )+2g′(λ )(au1uH

2 + cu2uH
3 )

+ [acg′′(λ )+2bg′(λ )]u1uH
3 ,

which can be written as

⎡
⎣g(λ ) g′(λ ) ac

2 g′′(λ )+bg(λ )
0 g(λ ) acg′(λ )+bg(λ )
0 0 acg(λ )

⎤
⎦
⎡
⎣X1

X2

X3

⎤
⎦=

⎡
⎢⎣

adj′′(λ I−A)
2

adj′(λ I−A)
adj(λ I−A)

⎤
⎥⎦ ,
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where X1 = u1uH
1 +u2uH

2 +u3uH
3 ,X2 = au1uH

2 + cu2uH
3 ,X3 = u1uH

3 . Thus⎡
⎣X1

X2

X3

⎤
⎦=

⎡
⎣ g(λ ) g′(λ ) ac

2 g′′(λ )+bg(λ )
0 g(λ ) acg′(λ )+bg(λ )
0 0 acg(λ )

⎤
⎦
−1
⎡
⎢⎣

adj′′(λ I−A)
2

adj′(λ I−A)
adj(λ I−A)

⎤
⎥⎦

=

⎡
⎢⎢⎣

1
g(λ ) − g′(λ )

g(λ )2
g′(λ )2

g(λ )3 − g′′(λ )
2g(λ )2 + b

ac

(
g′(λ )
g(λ )2 − 1

g(λ )

)
0 1

g(λ ) − g′(λ )
g(λ )2 − b

acg(λ )

0 0 1
acg(λ )

⎤
⎥⎥⎦
⎡
⎢⎣

adj′′(λ I−A)
2

adj′(λ I−A)
adj(λ I−A)

⎤
⎥⎦ .

Consequently,

u1u
H
1 +u2u

H
2 +u3u

H
3 =

adj′′(λ I−A)
2g(λ )

− g′(λ )
g(λ )2 adj′(λ I−A)

+
[
g′(λ )2

g(λ )3 − g′′(λ )
2g(λ )2 +

b
ac

(
g′(λ )
g(λ )2 −

1
g(λ )

)]
adj(λ I−A).

THEOREM 4.1. Suppose A is an n×n complex matrix with eigenvalues

λ ,λ ,λ ,λ4(A), . . . ,λn(A),

counting the algebraic multiplicities, such that ν(λ ) = 3 and λi �= λ for i = 4, . . . ,n.
Assume that the eigenvalues λ4(A), . . . ,λn(A) are semi-simple. If u1,u2,u3 form an
orthonormal basis of N[(λ I−A)3] that satisfies (22) and they are orthogonal to each of
linearly independent eigenvectors u4, . . . ,un of A associated to the eigenvalues λ4(A),
. . . ,λn(A) respectively, then for i = 1, . . . ,n, the following eigenvector-eigenvalue-iden-
tity holds for the i-th components ui j of u j with j = 1,2,3 :

|ui1|2 + |ui2|2 + |ui3|2

=
1

2g(λ )

n−2

∑
i2=1

n−1

∑
i1=1

n−3

∏
k=1

{λ −λk [(Ai)i1,i2 ]}−
g′(λ )
g(λ )2

n−1

∑
i1=1

n−2

∏
k=1

{λ −λk [(Ai)i1 ]}

+
[
g′(λ )2

g(λ )3 − g′′(λ )
2g(λ )2 +

b
ac

(
g′(λ )
g(λ )2 −

1
g(λ )

)]n−1

∏
k=1

[λ −λk(Ai)],

where g(λ ) = ∏n
k=4[λ −λk(A)] .

REMARK. When a = c = 1 and b = 0, Theorem 4.1 is reduced to Theorem 3.1
with m = 3.

5. Conclusions

We have obtained a new eigenvector-eigenvalue-identity for a general matrix such
that one eigenvalue corresponds to exactly one Jordan block of order more than one, un-
der a proper orthogonality condition among the eigenvectors and generalized eigenvec-
tors that form a basis of the underlying unitary space. This supplements the eigenvector-
eigenvalue-identity when the eigenvalue is semi-simple with multiplicity more than
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one. Such results provide a basis for the eigenvector-eigenvalue-identity of an arbitrary
matrix, that is, the eigenvalue may have several Jordan blocks in the canonical form.
The study of the most general case will be done in the future.
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