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WEIGHTED OPERATOR–VALUED FUNCTION SPACES

APPLIED TO THE STABILITY OF DELAY SYSTEMS

ASMAHAN E. ALAJYAN AND JONATHAN R. PARTINGTON ∗

(Communicated by J. Behrndt)

Abstract. This paper extends the theory of Zen spaces (weighted Hardy/Bergman spaces on the
right-hand half-plane) to the Hilbert-space valued case, and describes the multipliers on them; it
is shown that the methods of H∞ control can therefore be extended to a family of weighted L2

input and output spaces. Next, the particular case of retarded delay systems with operator-valued
transfer functions is analysed, and the dependence of H∞ structure on the delay is determined by
developing an extension of the Walton–Marshall technique used in the scalar case. The method
is illustrated with examples.

1. Introduction

There is an extensive literature on the use of the H∞ norm of an analytic (operator-
valued) function on the right-hand half-plane C+ , which describes the gain of a linear
time-invariant system from (vector-valued) L2(0,∞) inputs to L2(0,∞) outputs; we
mention here some well-known books on the subject, namely, [6, 18, 16]. Some new
contributions to the theory will be presented here. There are two themes: first we extend
the recent theory of Zen spaces [7, 8, 11] to functions taking values in a Hilbert space
H , where the Laplace transform L provides an isometric embedding from a weighted
function space L2(0,∞,w(t)dt;H) into a space A2

ν(C+,H) of analytic operator-valued
functions (all notation will be defined below). In this context we prove a theorem
showing that the H∞ norm can be used to measure the gain (operator norm) of a linear
system defined in the context of a wide variety of weighted L2 spaces; thus we show
that various notions of stability are equivalent.

Second, we apply the analysis to one particular case, namely the H∞ stability of
retarded delay systems with transfer functions of the form

G(s) = (P(s)I +Q(s)e−shA)−1, (1)

where P and Q are real polynomials and A is a bounded operator on a Banach space
X . These arise from delay-differential equations of the form

n

∑
j=0

a j
∂ jx(t)

∂ t j +A
n

∑
k=0

bk
∂ kx(t −h)

∂ tk
= u(t), x(0) = 0,
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where the a j and bk are scalars, by taking Laplace transforms of each side, so that
L x(s) = G(s)L u(s) where G has the form given in (1). We refer to [2, 13] for further
details and other ways of formulating such systems by differential equations.

The example that will illustrate most of our results arises from the delay-differential
equation

ẋ(t)+Ax(t−h) = u(t), x(0) = 0, (2)

and similar equations, with x(t) ∈ X ,u(t) ∈U (where X and U are Banach spaces)
and h is the delay. In this case the operator-valued transfer function is (sI + e−shA)−1

and L2 -to-L2 stability holds if and only if the operator-valued function is bounded in
the right-hand half-plane C+ . The Walton–Marshall method [17, 13] gives such an
analysis in the purely scalar case A = a , say: the method involves increasing h to see
where the zeros of P(s) + aQ(s)e−sh cross the imaginary axis. Additionally, at such
points the direction in which the zeros cross the axis can be identified. Here we develop
the Walton–Marshall method further to apply it to bounded operators.

We recall that a classification of delay systems into retarded, neutral and advanced
type can be found in [2]. We shall show that, even in the operatorial case, for systems
of retarded type (degP > degQ) invertibility of P(s)I +Q(s)e−shA is equivalent to the
inverse function being in H∞ : this is true for retarded systems, but not for systems
of neutral type (degP = degQ). Systems of advanced type (degP < degQ) are never
stable.

We write H∞ for the Hardy space of bounded analytic functions on the right-hand
half-plane C+ , L(U,X) for the bounded operators from U to X , and H∞(C+,L(U,X))
or simply H∞(L(U,X)) for the space of bounded L(U,X)-valued functions, with norm

‖F‖ = sup
s∈C+

‖F(s)‖.

We shall mostly be able to take U = X , and then we write L(X) for L(X ,X) .

2. Stability on weighted L2 spaces

In this section we show that H∞ methods can be applied to stability questions in a
wide variety of weighted L2(0,∞) spaces.

Let w(t) be a positive measurable function. Then for a separable Hilbert space H
we write L2(0,∞,w(t)dt,H) for the space of measurable H -valued functions f such
that the norm ‖ f‖ , given by

‖ f‖2 =
∫ ∞

0
‖ f (t)‖2w(t)dt,

is finite. We start by giving conditions on w for the Laplace transform to induce an
isometry between L2(0,∞,w(t)dt,H) and a space of H -valued analytic functions on
C+ .

Let ν be a positive regular Borel measure satisfying the doubling condition

R := sup
t>0

ν[0,2t)
ν[0,t)

< ∞.
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The Zen space A2
ν(H) is defined to consist of all analytic H -valued functions F on C+

such that the norm, given by

‖F‖2 = sup
ε>0

∫
C+

‖F(s+ ε)‖2 dν(x)dy

is finite, where we write s = x+ iy for x � 0 and y ∈ R .
The best-known examples here are:

1. For ν = δ0 , a Dirac mass at 0 , we obtain the Hardy space H2(C+,H) ;

2. For ν equal to Lebesgue measure (dx ), we obtain the Bergman space A2(C+,H) .

Often we shall have ν{0} = 0, in which case ‖F‖2 can be written simply as
∫

C+
‖F(s)‖2 dν(x)dy.

THEOREM 1. Suppose that w is given as a weighted Laplace transform

w(t) = 2π
∫ ∞

0
e−2rt dν(r), (t > 0). (3)

Then the Laplace transform provides an isometric map

L : L2(0,∞,w(t)dt,H) → A2
ν(H). (4)

Proof. This result was given in the scalar case H = C in [11] (see also [12], where
applications to admissibility and controllability were given, and [7, 8] for earlier related
work). The general case follows using the standard method for proving the Hilbert
space-valued case of Plancherel’s theorem [1, Thm. 1.8.2]: let (en)∞

n=1 be an orthonor-
mal basis for H , and write

f (t) =
∞

∑
n=1

fn(t)en,

where fn ∈ L2(0,∞,w(t)dt,C) . Then F := L f = ∑∞
n=1 Fnen , where Fn = L fn ∈

A2
ν(C) and ‖ fn‖ = ‖Fn‖ from [11, Prop. 2.3].

Now ‖ f‖2 = ∑∞
n=1 ‖ fn‖2 and ‖F‖2 = ∑∞

n=1 ‖Fn‖2 , so the result follows. �
In the case that ν = δ0 , we have the vectorial version of the well-known Paley–

Wiener result linking L2(0,∞) and the Hardy space H2(C+) ; for ν equal to Lebesgue
measure, we recover the fact that the weighted signal space L2(0,∞,dt/t) is isometric
(within a constant) to the Bergman space on C+ .

We now have a result for input–output stability.

THEOREM 2. Let G ∈ H∞(C+,L(H)) . Then the multiplication operator MG de-
fined by

(MGF)(s) = G(s)F(s) (s ∈ C+, F ∈ A2
ν(H))

is bounded on A2
ν(H) with ‖MG‖ � ‖G‖∞ . In the case when the Laplace transform (4)

is surjective onto A2
ν(H) we have equality.
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Proof. It is clear that

sup
ε>0

∫
C+

‖G(s+ ε)‖2‖F(s+ ε)‖2 dν(x)dy � ‖G‖2
∞ sup

ε>0

∫
C+

‖F(s+ ε)‖2 dν(x)dy,

so that ‖MG‖ � ‖G‖∞ .
For the converse inequality we begin by noting that by (3) we have the inequality

w(t)� 2πe−2εtν[0,ε) for every ε > 0. Hence, if z = x+ iy∈C+ , we have for 0< ε < x
the inequality

∫ ∞

0
|e−zt/w(t)|2 w(t)dt �

∫ ∞

0
e−2xt 1

2πν[0,ε)
e2εt dt < ∞.

Thus the function kz : t �→ e−zt/w(t) lies in L2(0,∞,w(t)dt) for every z ∈ C+ , and we
have

L f (z) = 〈 f ,kz〉L2(0,∞,w(t)dt)

for all f ∈ L2(0,∞,w(t)dt) . That is, A2
ν = L L2(0,∞,w(t)dt) is a reproducing kernel

Hilbert space with kernel Kz := L kz (see, for example, [14] for more on such spaces).
For x ∈ H we write Kz ⊗ x for the function s �→ Kz(s)x in A2

ν(H) and note that for a
function F ∈ A2

ν(H) we have 〈F,Kz⊗x〉A2
ν (H) = 〈F(z),x〉H . Moreover ‖Kz⊗x‖A2

ν (H) =
‖Kz‖A2

ν
‖x‖H .

Now for F ∈ A2
ν(H) and G ∈ H∞(L(H)) we have, for every x ∈ H and z ∈ C+ ,

that

〈F,M∗
G(Kz ⊗ x)〉A2

ν(H) = 〈MGF,Kz ⊗ x〉A2
ν(H) = 〈G(z)F(z),x〉H

= 〈F(z),G(z)∗x〉H = 〈F,Kz ⊗G(z)∗x〉,
and so M∗

G(Kz ⊗ x) = Kz ⊗G(z)∗x , and ‖MG‖ = ‖M∗
G‖ � ‖G∗‖∞ = ‖G‖∞ . �

This result will be fundamental to the analysis in the next section.

3. Stability of retarded delay systems

3.1. General results

In Section 2 we gave necessary and sufficient conditions for an operator-valued
function to give a bounded operator on various function spaces. As indicated in the
introduction, we shall apply these results in the context of delay equations. We begin by
reviewing the classical (scalar) case, before providing a generalization to the operator-
valued case.

The 1980s result of Walton and Marshall on the location of the zeros of a scalar
function G(s) = P(s)+Q(s)e−sh is the following.

PROPOSITION 1. [17],[13, p.132] Let P(s) and Q(s) be real polynomials. If

P(s)+Q(s)e−sh, (5)
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where h > 0, has a zero at point s ∈ iR , then such an s satisfies the equation

P(s)P(−s) = Q(s)Q(−s). (6)

Moreover, if P(s),Q(s) are not zero at s , then the direction in which the zeros cross the
axis with increasing h is given by

sgnRe
ds
dh

= sgnRe
1
s

[
Q′(s)
Q(s)

− P′(s)
P(s)

]
.

Our first result analyses the H∞ stability of an operator-valued transfer function
(P(s) + Q(s)e−shA)−1 , linking it to to properties of the function P(s) + λQ(s)e−sh ,
where λ is in the spectrum σ(A) of A .

THEOREM 3. If A is a bounded operator on a Banach space X , and h � 0 and
P(s),Q(s) complex polynomials with degP > degQ, then the following three state-
ments are equivalent:

(i)
(
P(s)I +Q(s)Ae−sh

)−1 ∈ H∞(L(X)).

(ii)
(
P(s)I +Q(s)Ae−sh

)
is invertible ∀s ∈ C+.

(iii) P(s)I + λQ(s)e−sh �= 0 ∀s ∈ C+, ∀λ ∈ σ(A).

Proof. (i) =⇒ (ii) : This is clear.
(ii) =⇒ (iii) : the operator

(
P(s)I +Q(s)Ae−sh

)
is invertible if and only if 0 /∈

σ
[
P(s)I +Q(s)Ae−sh

]
; but for fixed s , we get

σ
[
P(s)I +Q(s)Ae−sh

]
=

{
P(s)I +Q(s)λe−sh : λ ∈ σ(A)

}
,

which means that P(s)I +Q(s)λe−sh �= 0 ∀s ∈ C+, ∀λ ∈ σ(A).
(iii) =⇒ (i) : Suppose P(s)I + Q(s)λe−sh �= 0 ∀s ∈ C+, ∀λ ∈ σ(A) and so(

P(s)I +Q(s)Ae−sh
)

is invertible ∀s ∈ C+. We show that the inverse is bounded as a
function of s .

First: there is an R > 0 such that for s ∈ C+ with |s| > R , we have

|P(s)| > |Q(s)|‖A‖|e−sh|+1,

and so for x ∈ X we get

‖P(s)x‖ >
(
|Q(s)|‖A‖|e−sh|

)
‖x‖+‖x‖,

and so

‖P(s)Ix+Q(s)Ae−shx‖ � ‖P(s)x‖−
(
|Q(s)|‖A‖|e−sh|

)
‖x‖ � ‖x‖.
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That means

‖
(
P(s)I +Q(s)Ae−sh

)−1 ‖ � 1,

and so
(
P(s)I +Q(s)Ae−sh

)−1
is bounded for |s| > R, s ∈ C+ .

Second, to prove
(
P(s)I +Q(s)Ae−sh

)−1
is uniformly bounded for |s| � R, s ∈

C+ , we suppose not, so ∃(xn) ⊂ X , ‖xn‖ = 1 and a sequence (sn) ⊂ S where S = {s ∈
C+ : |s| � R} such that

(
P(sn)I +Q(sn)Ae−snh

)
xn → 0,

and because S is a compact set then there is a subsequence (snk)k�0 and s0 ∈ S such
that (snk ) → s0 . Now

‖P(sn)I +Q(sn)Ae−snh−P(s0)I−Q(s0)Ae−s0h‖→ 0

and so
(
P(s0)I +Q(s0)Ae−s0h

)
xn → 0, which means that

0 ∈ σ
(
P(s0)I +Q(s0)Ae−s0h

)
,

so there exists a λ ∈ σ(A) such that P(s0)I +Q(s0)λe−s0h = 0. �

REMARK 1. (i) The result does not hold in general if A is unbounded (and in
this case the linear system may even be destabilised by an arbitrarily small delay). For
example, if A is a diagonal operator on a Hilbert space with orthonormal eigenvectors
and eigenvalues λn = ni+1/n (n � 1) , then s+λn has no zeros in C+ but (sI +A)−1

is unbounded on C+ .
(ii) The location of the poles of a neutral delay system (degP = degQ) does not

determine its stability; as the following example indicates [3].

Consider G(s) =
1

s+1+ se−s . If Res > 0 then we cannot have e−s = −1− 1
s

,

since the left-hand side has modulus < 1 and the right-hand side has modulus strictly
> 1; thus this system has no poles in C+ , nor indeed on iR (as is easily verified),
although it does have a sequence of poles zn with Imzn ≈ (2n+ 1)π and Rezn → 0.

The system is not stable, as an analysis of its values at s = i

[
(2n+1)π +

1
(2n+1)π

]
,

n ∈ Z , shows that it is not in H∞ .

Since real matrices may have complex spectrum, we require a complex version of
Proposition 1, as follows:

PROPOSITION 2. Let P(s) and Q(s) be real polynomials. If

P(s)+ λQ(s)e−sh

has a zero for some h ∈ R , λ ∈ C and s ∈ iR , then such an s satisfies the equation

P(s)P(−s) = |λ |2Q(s)Q(−s). (7)
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Moreover if P(s),Q(s) are not zero at s and λ �= 0, then we have

sgnRe
ds
dh

= sgnRe
1
s

[
Q′(s)
Q(s)

− P′(s)
P(s)

]
. (8)

Proof. From P(s)+λQ(s)e−sh = 0, we obtain by taking complex conjugates and
noting that s = −s , that P(−s)+ λQ(−s)esh = 0. This establishes (7) on eliminating
the exponential term from the equations.

Next, elementary calculus (performing differentiation with respect to h ) gives us

(P′(s)+ λQ′(s)e−sh −hλQ(s)e−sh)
ds
dh

−λ sQ(s)e−sh = 0,

and using the fact that λe−sh = −P(s)/Q(s) gives us
[
P′(s)− P(s)Q′(s)

Q(s)
+P(s)h

]
ds
dh

= −sP(s)

or
ds
dh

= −s

[
P′(s)
P(s)

− Q′(s)
Q(s)

+h

]−1

Now sgnReu = sgnReu−1 for every u �= 0, and h/s is purely imaginary, so the result
follows. �

REMARK 2. Although it is physically less relevant, we may also consider the case
of complex polynomials P and Q . In this case (7) is replaced by |P(s)|2 = |λ |2|Q(s)|2 .

3.2. Matrices, normal and subnormal operators

In many of the systems occurring in applications we can determine the spectrum
of A , and this makes the analysis above easier to perform explicitly. For systems with
inputs and outputs in Cn or Rn , rather than general Hilbert spaces, we have that A
is a matrix, while, as we explain below, there are classes of operators on infinite-
dimensional spaces for which the analysis can also be performed directly.

A classical theorem of Schur (see, for example, [9, p. 79]) asserts that any finite
square matrix can be transformed into an upper triangular matrix by conjugation with a
unitary matrix. This means that when working with norm estimates for G(s) as in (1)
we may perform calculations using upper triangular matrices (and the spectrum is the
set of diagonal elements when the matrix is in triangular form).

Another important class of infinite-dimensional operators A is the class of normal
operators, such that A∗A = AA∗ . These are unitarily equivalent to multiplication oper-
ators Mg : f �→ f g on an L2(Ω,μ) space, and the spectrum is simply the closure of the
range of Mg . We shall illustrate this by an example in Section 3.3.

Going beyond that we may consider the class of subnormal operators A , for which
good references are [4, 5]. These may be regarded up to unitary equivalence as restric-
tions of normal operators N to invariant subspaces M (that is, N(M ) ⊆ M ) ; as for
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example the unilateral shift operator, or multiplication by the independent variable on
the Hardy space H2 of the disc. Such operators have been considered in a systems-
theory context in [10].

A subnormal operator A has a minimal normal extension N (that is, no proper
restriction of N is a normal extension of A). We mention this because we then have
σ(N) ⊆ σ(A) ⊆ σ(N)∪H(N) , where H(N) is the union of the bounded components
of C\σ(N) (that is, the “holes” in σ(N)).

We therefore have the following immediate Corollary of Theorem 3.

COROLLARY 1. Under the hypotheses of Theorem 3 if N is the minimal nor-
mal extension of A and P(s)+Q(s)λe−sh �= 0 for all λ ∈ σ(N)∪H(N) then (P(s)+
Q(s)Ae−sh)−1 ∈ H∞(L(X)) . Conversely, if (P(s) + Q(s)Ae−sh)−1 ∈ H∞(L(X)) then
P(s)+Q(s)λe−sh �= 0 for all λ ∈ σ(N) .

3.3. Examples

We conclude by showing some examples in which the results of Sections 2 and 3
can be applied directly to stability analysis.

EXAMPLE 1. Let A =

⎡
⎣1 0 0

0 2 1
0 0 2

⎤
⎦ . To apply Theorem 3, with P(s) = s,Q(s) = 1

and the eigenvalues λk ∈ {1,2} we check the zero sets of s+ e−sh and s+2e−sh . The
equations (7) giving the points where zeros cross the axis with increasing h are −s2 = 1
and −s2 = 4, respectively, and from s+λe−sh = 0 we arrive at stability ranges [0,π/2)
and [0,π/4) , respectively. Thus the system (2) is stable for 0 � h < π/4 (it is easily
verified using (8) that poles move from left to right as h increases).

EXAMPLE 2. For the normal matrix A =
[
1 −1
1 1

]
we have the transformation

T = R−1
[
1 −1
1 1

]
R =

[
1+ i 0

0 1− i

]
,

where R = 1√
2

[
1 −i
−i 1

]
, which is unitary.

Now we have to consider the equation (7), obtaining −s2 = 2 and for each eigen-
value λ we perform the analysis for s + λe−sh = 0. Because the λ are not real, we
obtain different values of h for each eigenvalue, which we summarise now:

• For λ = 1+ i , s = i
√

2, we have h = 3π
4
√

2
.

• For λ = 1+ i , s = −i
√

2, we have h = π
4
√

2
.

• For λ = 1− i , s = i
√

2, we have h = π
4
√

2
.
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• For λ = 1− i , s = −i
√

2, we have h = 3π
4
√

2
.

Again it may be checked that the zeros cross from left to right with increasing h . Thus,
we can deduce that system (2) is stable when 0 � h < π

4
√

2
.

EXAMPLE 3. Examples involving subnormal operators are harder to analyse, since
the spectrum of a non-normal subnormal operator cannot be contained in any sim-
ple closed curve [15]. As an example, consider again P(s)I + Q(s)Ae−sh , and let
P(s) = s+1, Q(s) = 1, and A = 1+S , where S is the unilateral shift operator; thus A
is unitarily equivalent to the operator of multiplication by 1+ z on the Hardy space H2

and has spectrum σ(A) = {z ∈ C : |z−1|� 1} .
From Proposition 2 we have at a zero-crossing for λ , that 1− s2 = |λ |2 , and thus

we need only consider the points λ ∈ σ(A) with 1 � |λ | � 2 (a crescent-shaped set).
We see from Proposition 2 that the system is stable for h = 0 and that the poles cross
from left to right as we increase h .

Setting s = iy , with −√
3 � y �

√
3, we then need to work with the equation

e−sh = −(s+1)/λ , or equivalent esh = (s−1)/λ .
For each values of s is easily verified that the λ leading to the smallest stability

margin lies on the circle {z ∈ C : |z− 1| � 1} , and then it is an exercise to verify
that the extreme value λ = 2 corresponding to s = i

√
3 gives the minimal margin of

0 � h < 2π/(3
√

3) .
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