
Operators
and

Matrices

Volume 15, Number 4 (2021), 1309–1317 doi:10.7153/oam-2021-15-82

BANACH WEAK TOPOLOGY ON HILBERT C∗–MODULES

MEHRDAD GOLABI AND KOUROSH NOUROUZI ∗

(Communicated by B. Magajna)

Abstract. In this paper we study the Banach weak topology on Hilbert C∗ -modules. For a
Hilbert C ∗ -module, we show that every sequence that is convergent in the weak module topol-
ogy generated by the inner product is also convergent in the Banach weak topology generated
by continuous linear functionals and the converse is true for the Hilbert C ∗ -modules that their
underlying C ∗ -algebras are either of the form of a c0 -direct sum of matrices or of the form of a
finite-dimensional matrix algebra.

1. Introduction and preliminaries

Let A be a C∗ -algebra and M be a right A -module such that λ (xa) = x(λa) =
(λx)a , for all x ∈ M ,a ∈ A and λ ∈ C . An A -valued inner product in M is a
mapping 〈·, ·〉 : M ×M → A which satisfies the following properties for all x,y,z ∈
M , λ ∈ C and a ∈ A :

(1) 〈x,λy+ z〉= λ 〈x,y〉+ 〈x,z〉 ;
(2) 〈x,x〉 � 0;
(3) 〈x,x〉 = 0 if and only if x = 0;
(4) 〈x,y〉∗ = 〈y,x〉 ;
(5) 〈x,ya〉 = 〈x,y〉a .

If M is complete with respect to the norm defined by ‖x‖ := ‖〈x,x〉‖ 1
2 for any

x ∈M , then M is called a Hilbert A -module or right Hilbert A -module or a Hilbert
C∗ -module over A . Left Hilbert C∗ -modules are defined in a similar manner.

In order to extend the Banach-Saks and Schur properties from the situation of
Banach spaces to the situation of certain Hilbert C∗ -modules, for a Hilbert C∗ -module
M over a C∗ -algebra A , the weak module topology TM ′ generated by A -linear
bounded functionals and the weak module topology TM̂ generated by the inner product
were introduced in [8] (see also [1]) with emphasizing more on TM̂ . More precisely,
the M ′ -weak module topology TM ′ on M is generated by the family of semi-norms

{ϑ f } f∈M ′ , where ϑ f (x) = ‖ f (x)‖, (x ∈ M ),
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in which M ′ is the dual module of M ′ , i.e., the set of all A -linear bounded maps
from M to A , and the M̂ -weak module topology TM̂ on M is generated by the
family of semi-norms

{ωy}y∈M , where ωy(x) = ‖〈y,x〉‖, (x ∈ M ).

Notice that TM̂ ⊆ TM ′ and these two topologies coincide as M is self-dual. Gen-
erally, two weak module topologies TM ′ and TM̂ are distinct (see [8, Example 3.2
]).

In addition to the above two weak module topologies, one can consider the usual
Banach weak topology Tw on Hilbert C∗ -modules, i.e., the weak topology induced
by the continuous linear functionals on M . In this paper, we study the Banach weak
topology Tw of Hilbert C∗ -modules. We give some relations between the topologies
Tw and TM̂ . We show that every sequence that is convergent in the weak module
topology generated by the inner product is also convergent in the Banach weak topology
generated by continuous linear functionals and the converse is true for the Hilbert C∗ -
modules that their underlying C∗ -algebras are either of the form of a c0 -direct sum of
matrices or of the form of a finite-dimensional matrix algebra.

We review some basics which will be needed later.
Any C∗ -algebra A can be considered as a Hilbert C∗ -module over itself under

A -valued inner product 〈a,b〉 = a∗b and a left Hilbert C∗ -module over itself under
〈a,b〉 = ab∗ . In these cases, by the C∗ -identity, the Hilbert module norm coincides
with C∗ -norm on A . Also, when (H,〈·, ·〉H) is a Hilbert space, H can be considered
as a left Hilbert C∗ -module over K(H) , the C∗ -algebra of all compact operators on the
Hilbert space H , if one defines

{ · : K(H)×H → H
f · x = f (x)

for all f ∈ K(H) and x ∈ H and the inner product as

{ 〈·, ·〉K(H) : H ×H → K(H)
〈x,y〉K(H) = ξx,y

in which ξx,y(z) = 〈z,y〉Hx , for all x,y,z ∈H . Note that for every x ∈H , ‖x‖H is equal
to the Hilbert K(H)-module norm and ‖ξx,y‖ = ‖x‖‖y‖ , for all x,y .

For a Hilbert A -module M the closure of the linear span of all 〈x,y〉 , where
x,y ∈ M , denoted by 〈M ,M 〉 , is obviously a two sided ideal of A . A Hilbert A -
module is called full if 〈M ,M 〉 = A . One can always consider any Hilbert module
as a full Hilbert module over the C∗ -algebra 〈M ,M 〉 . The Hilbert A -module M is
called self-dual if the isometric module embedding ∧ : M →M ′ defined as ∧ : x �→ x̂ ,
where x̂ : M → A and x̂(y) = 〈x,y〉 , for all y ∈ M is surjective.

We refer the reader to [11] and [12] for more information about Hilbert C∗ -
modules. The reader is also referred to [8] for the properties “Schur, module Schur,
Banach-Saks, weak Banach-Saks” and “module Banach-Saks”.
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2. Main results

In this section, we give some relations between the weak topologies Tw and TM̂ .
First, it should be noticed that when M is a full Hilbert C∗ -module over a finite dimen-
sional C∗ -algebra, the convergence of a sequence (xn)n∈N of M in one of three weak
topologies implies the convergence of (xn)n∈N in two others. In fact, if xn → x0 in Tw ,
since the mapping 〈·,y〉 : M → A is continuous, it is also (Tw ,Tw )-continuous (see
[3, Theorem 1.1]) and therefore 〈xn,y〉 → 〈x0,y〉 , for all y ∈ M . Hence, xn → x0 in
TM̂ . Now assume that xn → x0 in TM̂ and (xnk)k∈N is a subsequence of (xn)n∈N .
Then 〈xnk ,y〉 → 〈x0,y〉 for all y ∈ M . Therefore, by [8, Proposition 3.3], (xnk)k∈N is
norm bounded and since M is reflexive as a Banach space (see [9, Lemma 2.1] or [6,
Corollary 4.3]), (xnk)k∈N has a subsequence converging to x0 in Tw . Thus, every sub-
sequence of (xn)n∈N has a subsequence which is convergent to x0 in Tw . This implies
that xn → x0 in Tw . Finally assuming xn → x0 in TM̂ , since A is finite-dimensional,
M is self-dual (see [13]), and we have xn → x0 in TM ′ .

PROPOSITION 2.1. Let M be a Hilbert C∗-module over a C∗-algebra A . If

(xn)n∈N is a sequence in M such that xn
TM̂−−−→ x0 , then xn

Tw−−→ x0 .

Proof. Without loss of generality, we can assume that x0 = 0. Since every TM̂ -
convergent sequence is norm bounded (see [8, Proposition 3.3]), (xn)n∈N is norm
bounded by some M0 > 0. Suppose that there is f ∈ M ∗ such that f (xn) � 0. We
can assume, by passing to a subsequence of (xn)n∈N if necessary, that ‖ f (xn)‖ � ε0 ,
for some ε0 > 0. Consider a subsequence (yn)n∈N of (xn)n∈N as follows:

y1 := xn1 = x1

y2 := xn2 with ‖〈xn1 ,xn2〉‖ � 1
n1n2

...
yk := xnk with ‖〈xni ,xnk〉‖ � 1

nink
for all i < k.

There is a subsequence (ynk)k∈N of (yn)n∈N and an α ∈ C such that ‖α‖ = 1 and

Re( f (αynk )) � ε0

3
,

for all k . If zk = αynk , then

⎧⎨
⎩

Re( f (zn)) � ε0
3 n ∈ N,

‖zn‖ � M0 n ∈ N,

‖〈zm,zn〉‖ � 1
mn m,n ∈ N, m �= n.

Now, we show ∑∞
i=1

zi
i is convergent. For any ε > 0 there is a number N such that

1
p2 +

1
(p+1)2 + . . .+

1
q2 < ε,
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for all q � p � N . Therefore,

∥∥∥ zp

p
+

zp+1

p+1
+ . . .+

zq

q

∥∥∥2

=
∥∥∥〈 zp

p
+

zp+1

p+1
+ . . .+

zq

q
,
zp

p
+

zp+1

p+1
+ . . .+

zq

q

〉∥∥∥
�

(M2
0

p2 +
M2

0

(p+1)2 + . . .+
M2

0

q2

)

+
( 1

p2(p+1)2 +
1

p2(p+2)2 + . . .+
1

p2q2

)

+
( 1

(p+1)2p2 +
1

(p+1)2(p+2)2 + . . .+
1

(p+1)2q2

)
+ . . .

� M2
0 ε +

1
p2 ε +

1
(p+1)2 ε + . . .+

1
q2 ε

� εM2
0 + ε2.

Since ε was arbitrary, ∑∞
i=1

zi
i is convergent. But

Re( f (
∞

∑
i=1

zi

i
)) =

∞

∑
i=1

1
i
Re( f (zi)) �

∞

∑
i=1

1
i

ε0

3

leads us to get a contradiction. �

Assume that A is an infinite-dimensional unital C∗ -algebra. Since A lacks the
Schur property (see [10, Lemma 3.8]), there is a sequence (xn)n∈N ⊆ A such that
xn → 0 in Tw but 1 · xn = xn � 0 in norm. Therefore, the converse of Proposition 2.1
is not true for the Hilbert A -module A .

According to the fact that the converse of Proposition 2.1 is not true in general,
we would say that a Hilbert C∗ -module MA (over a C∗ -algebra A ) has the property
(� ) if for every sequence (xn)n∈N ⊆ MA which is convergent to an x0 in Tw , it is
also convergent to x0 in TM̂ . Furthermore, a C∗ -algebra has the property (� ) if, as a
Hilbert C∗ -module over itself, it has the property (� ), or equivalently, for any sequence
(xn)n∈N which is Tw -convergent to 0, we have yxn → 0, for all y ∈ A .

PROPOSITION 2.2. Any C∗ -algebra A of the form of a c0 -direct sum of matri-
ces has the property (� ).

Proof. Consider A as a c0 -direct sum ⊕λ∈ΛMkλ×kλ (C) of matrices. Note that
for every y = {yλ}λ∈Λ ∈ A there exists a countable subset {λ1,λ2, . . .} ⊆ Λ such that
yλ = 0 for all λ /∈ {λ1,λ2, . . .} and limn→∞ yλn = 0. Now, suppose that (xn)n∈N is a
sequence in A such that xn

Tw−−→ 0. We have limn→∞ xλ
n = 0, for every λ ∈ Λ . Let ε >

0 be given. There exists a number N1 such that ‖yλn‖ < ε , for all n > N1 . Also, there
exists a number N2 � N1 such that ‖xλ

n ‖< ε , for all n � N2 and λ ∈ {λ1,λ2, . . . ,λN1} .
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Therefore,

‖yxn‖ = ‖{yλxλ
n }λ∈Λ‖ = sup{‖yλkxλk

n ‖ : k ∈ N} � sup{‖yλkxλk
n ‖ : k � N2}

+ sup{‖yλkxλk
n ‖ : k � N2} � ε‖y‖+ ε sup

n∈N
‖(xn)‖,

for all n � N2 . This implies that yxn → 0 and hence A has (� ). �

PROPOSITION 2.3. Let A be a C∗ -algebra and M be a full Hilbert A -module.

(i) If every Tw -null net in A is a T ˆA -null net, then every Tw -null net in M is a
TM̂ -null net.

(ii) M has (� ) if and only if A has (� ).

Proof. (i): Suppose that Λ is a directed set, (xλ )λ∈Λ
Tw−−→ 0 in M , and y ∈ M .

There exist y1 ∈ M and a1 ∈ A such that y = y1a1 . Since the mapping 〈y1, .〉 :
M → A is (Tw,Tw)-continuous, we have 〈y1,xλ 〉 → 0 in Tw . Therefore 〈y,xλ 〉 =
a∗1〈y1,xλ 〉 → 0 in norm and xλ → 0 in TM̂ .

(ii): Suppose that A has (� ) and xn
Tw−−→ 0 in M . By replacing Λ = N in the

above argument, it gives xn → 0 in TM̂ . Conversely, assume that M has (� ) and
an

Tw−−→ 0 in A . We have
〈m1,m2〉an → 0,

for all m1,m2 ∈ M . Since M is full, we also have ban → 0, for all b ∈ A . That is,
A has (� ). �

Notice that when A is an infinite-dimensional C∗ -algebra, A does not have (� )
and therefore for each full Hilbert A -module M , we have TM̂ � Tw . If A is a C∗ -
algebra satisfying (i) in Proposition 2.3 (for example, when A is finite-dimensional),
then for every full Hilbert A -module M , we have TM̂ ⊆ Tw .

PROPOSITION 2.4. Let H be an infinite-dimensional Hilbert space. Then K(H)
fails to have the property (� ).

Proof. First, notice that since the complex Hilbert space �2 does not have Schur’
property (indeed, for each y ∈ H we have 〈y,en〉 → 0, where (en) is the standard
orthonormal basis of �2 ; that is (en)n∈N → 0 in Tw while en � 0), infinite dimensional
Hilbert spaces do not have the Schur property.

Suppose that (xn)n∈N ⊆ H is a sequence that is Tw -convergent to 0, but xn � 0.
Consider HK(H) as a left Hilbert K(H)-module. For any nonzero element y ∈ HK(H)
we have

‖〈y,xn〉K(H)‖ = ‖ξy,xn‖ = ‖y‖‖xn‖ � 0.

Since every left Hilbert K(H)-module contains HK(H) as a closed left submodule (see
[2, Theorem 3]) and K(H) is a left Hilbert K(H)-module over itself, there exist y′ ∈
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K(H) and a sequence (x′n)n∈N in K(H) such that x′n
Tw−−→ 0 and 〈y′,x′n〉K(H) = y′x′n

∗ �

0. Hence, x′n
∗ Tw−−→ 0, but y′x′n

∗ � 0. This means that the C∗ -algebra K(H) does not
have the property (� ). �

It is worth mentioning that a locally compact Hausdorff space X has discrete topol-
ogy if and only if every compact subset of X is finite. Furthermore, if X is a locally
compact Hausdorff space and K ⊆U ⊆ X , where K is compact and U is open, then
there exists a precompact open set V such that K ⊆V ⊆V ⊆U (see [5, Theorem 4.31]).
Note that if K �= U , we can find V such that V �= U .

In the following, for a locally compact Hausdorff space X , the C∗ -algebra of all
continuous complex-valued functions vanishing at infinity is denoted by C0(X) .

LEMMA 2.5. Let X be a locally compact Hausdorff space. Then C0(X) has the
property (� ) if and only if X has discrete topology.

Proof. Suppose that X does not have discrete topology and K ⊆ X is infinite and
compact. Then, there exists an open subset V ⊆ X such that V is compact and K ⊆V .
There also exists a sequence (Vi)i∈N of nonempty disjoint open subsets of X such that
Vi ⊆V , for all i ∈ N . Indeed, assume that V1,V2, . . . ,Vk are nonempty open subsets of
V that are pairwise disjoint. We want to find k + 1 nonempty open subsets of V that
are pairwise disjoint. If there is i0 such that Vi0 is infinite, then there exists a nonempty
open subset U such that U is compact and U ⊆U � Vi0 . Now, we have k+1 subsets
V1, . . . ,Vi0−1,Vi0 \U ,U,Vi0+1, . . . ,Vk . Otherwise, if each Vi is finite, they are closed and
V \ (∪k

i=1Vi) is nonempty (because K ⊆ V is infinite) and open. In this case we have
the subsets V1, . . . ,Vk,(V \∪k

i=1Vi) of V . Now, for each k ∈ N , choose xk in Vk . By the
locally compact version of Urysohn’s lemma (see e.g., [5, Theorem 4.32]), for every
k ∈ N there is a continuous function fk with the following properties:

⎧⎨
⎩

fk : X → [0,1]
fk(xk) = 1
fk = 0 on Vc

k .

Note that fk ∈C0(X) and ‖ fk‖ � 1, for all k ∈ N . Furthermore, the sequence ( fn)n∈N

is bounded and is convergent pointwise to 0. Therefore, fn
Tw−−→ 0. Again, using

Urysohn’s lemma, let g ∈C0(X) be a function such that g = 1 on V . Since

‖g fn‖ � (g fn)(xn) = g(xn) fn(xn) = 1,

for all n ∈ N , we have g fn � 0. Therefore C0(X) fails to have the property (� ).
Conversely, assume that X is infinite with discrete topology. In this case, C0(X)

is equivalent to a c0 -direct sum of C and therefore by Proposition 2.2 it has (� ). �

The fact that “a C∗ -algebra A is a C∗ -algebra of compact operators if and only
if the spectrum of every maximal commutative C∗ -subalgebra of A is discrete (see [4,
4.7.20])” is crucial for the following result.
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PROPOSITION 2.6. Let M be a full Hilbert C∗ -module over a C∗ -algebra A .
Then, M has the property (� ) if and only if A is ∗ -isomorphic either to a c0 -direct
sum of matrices or to a finite-dimensional matrix algebra.

Proof. Assume that M has the property (� ) and A is not finite-dimensional. By
Proposition 2.3, A and every (maximal) commutative C∗ -subalgebra B of A has
the property (� ), too, and so they are non-unital. Therefore, by Lemma 2.5, every
(maximal) commutative C∗ -subalgebra B of A has discrete spectrum. Thus, A is
∗ -isomorphic to a C∗ -algebra of compact operators. This means that there exist Hilbert
spaces (Hi)i∈I such that A ∼= ⊕i∈IK(Hi) , where the (C∗ -)direct sum consists of ele-
ments (Ti ) of Cartesian product ∏i∈I K(Hi) with ‖Ti‖ → 0. By Proposition 2.4, every
Hilbert space Hi is finite-dimensional. Therefore, A is ∗ -isomorphic to a c0 -direct
sum of matrices.

Conversely, if A is ∗ -isomorphic to a c0 -direct sum of matrices or to a finite-
dimensional matrix algebra, by Propositions 2.2 and 2.3, M has the property (� ). �

It is an immediate consequence of Proposition 2.6 that the convergence of a se-
quence in a Hilbert C∗ -module in the topology Tw and in the topology TM̂ are the
same if and only if the underlying C∗ -algebra is either a c0 -direct sum of matrices or a
finite-dimensional matrix algebra.

Recall that a Hilbert C∗ -module M has the Schur property (module Schur prop-
erty) if every Tw -convergent (TM̂ -convergent) sequence in M is norm convergent
(see [8]). Hence, a Hilbert C∗ -module has the Schur property if and only if it has the
module Schur property and the property (� ).

COROLLARY 2.7. Let M be a full left Hilbert C∗ -module over a C∗ -algebra
A .

(i) If A is ∗ -isomorphic to a C∗ -algebra of compact operators, then M has module
Schur property if and only if the orthogonal dimension of M is finite.

(ii) M has the Schur property if and only if M is of finite dimension as a vector
space. In particular, infinite-dimensional left closed ideals of A do not have the
Schur property.

Proof. (i): Suppose that A is ∗ -isomorphic to a C∗ -algebra of compact operators.
There exist Hilbert spaces Hi such that A = ⊕i∈IK(Hi) and M = ⊕i∈IMi , where
Mi = K(Hi)M for all i ∈ I (see [2]). By [2, Theorem 3], each Mi is a full Hilbert
K(Hi)-module of the form

Mi = ⊕
dimK(Hi)

Mi

Hi

in which dimK(Hi) Mi is the orthogonal dimension of Mi over K(Hi) . Assume that
M has module Schur property. Suppose that dimK(Hi0 ) Mi0 is infinite, for some i0 ∈ I .
Choose a nonzero element h0 ∈ Hi0 . Then, for the sequence

x1 = (h0,0,0, . . .), x2 = (0,h0,0,0, . . .), x3 = (0,0,h0,0,0, . . .), . . .
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of ⊕NHi0 , we have 〈y,xn〉→ 0, for all y ∈⊕NHi0 and xn � 0. But for every i ∈ I , Mi

and so ⊕NHi0 has module Schur property. Thus, dimK(Hi) Mi is finite for every i ∈ I .
On the other hand, as I is infinite, it contains an infinite countable subset {i1, i2, . . .}
and for every n ∈ N we can choose min ∈ Min such that ‖min‖ = 1. Now, for the
sequence

x1 = (mi1 ,0,0, . . .), x2 = (0,mi2 ,0,0, . . .), x3 = (0,0,mi3 ,0,0, . . .), . . .

we have 〈y,xn〉 → 0 for all y ∈ ⊕i∈{i1,i2,...}Mi and xn � 0. Since, ⊕i∈{i1,i2,...}Mi has
the module Schur property, I is finite. This implies that dimA M < ∞ .

Now, assume dimA M < ∞ . If for every i ∈ I , Ui is an orthogonal basis for Mi ,
then ∪i∈IUi is an orthogonal basis for M . Since two orthogonal bases have same
cardinality for M (see [2] or [1]), I and each Ui are finite for every i ∈ I . Hence, by
[8, Proposition 4.8], it is enough to show that Hi as a full left Hilbert K(Hi)-module
has module Schur property for every i ∈ I . But if (xn)n∈N ⊆ Hi and 〈y,xn〉 = ξy,xn → 0
for all y ∈ Hi , then ‖ξy,xn‖ = ‖y‖‖xn‖→ 0, and so xn → 0.

(ii): Since M has Schur property, it has module Schur property and the property
(� ). Therefore, by Proposition 2.6, A is of the form A = ⊕i∈IK(Hi) , where the
Hilbert spaces Hi are of finite dimension. By a similar argument as given in the proof
of part (i), we get I is finite and dimK(Hi) Mi < ∞ for all i ∈ I . Now, by [2, Theorem
1], Mi is algebraically finitely generated for all i ∈ I . This together with the fact that
Hi ’s are finite-dimensional imply that the Hilbert modules Mi and so M are of finite
dimension as vector spaces. �

We end the paper by giving a remark on Banach-Saks property.
Recall that a Banach space X has the Banach-Saks property if every bounded

sequence (xn)n in X has a subsequence (xnk)k such that

lim
k→+∞

‖1
k

k

∑
i=1

xni − x‖ = 0, (2.1)

for some element x ∈ X . And, X has the weak Banach-Saks property if every weakly
null sequence (xn)n in X has a subsequence (xnk)k such that the equality (2.1) is ful-
filled with x = 0 (see [8]). It is obvious that the Banach-Saks property implies the
weak Banach-Saks property and by Proposition 2.1, if a full Hilbert C∗ -module has
the weak Banach-Saks property, then it has the module Banach-Saks property. If A
is a finite-dimensional C∗ -algebra, then all Hilbert A -modules, by [6, Corollary 4.3]
(see also [7]), have Banach-Saks property and so they have weak Banach-Saks prop-
erty. Now assume that A is either of the form of a c0 -direct sum of matrices or of
the form of a finite-dimensional matrix algebra and M is a full Hilbert A -module. If
(xn)n ⊆ M and xn → 0 in Tw , then by Propositions 2.2 and 2.3, we have xn → 0 in
TM̂ , and thus by [8, Theorem 5.3], the sequence (xn)n has a subsequence (xni)i such
that 1

k ∑k
i=1 xni converges in norm to 0. Hence, every full Hilbert A -module has the

weak Banach-Saks property.

Acknowledgements. The authors would like to thank Mohammad Sal Moslehian
for his valuable comments on this paper. The authors are also thankful to the referee
for the constructive comments and suggestions to improve the paper.



BANACH WEAK TOPOLOGY ON HILBERT C ∗ -MODULES 1317

RE F ER EN C ES
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