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THE A–MODEL WITH MUTUALLY EQUAL MODEL

PARAMETERS CAN LEAD TO A HILBERT SPACE MODEL

RYTIS JURŠĖNAS

(Communicated by J. Behrndt)

Abstract. It is known that the A-model for higher order singular perturbations can be considered
as a Hilbert space model if the model parameters are mutually distinct, and that it is necessarily a
Pontryagin space model if otherwise. In this note we demonstrate that the A-model with mutually
equal model parameters can nonetheless lead to a Hilbert space model if the extensions in the
model space are instead described by suitable linear relations.

1. Introduction

As it is known from [17], the A-model for rank one perturbations of class H−m−2 �

H−m−1 , m ∈ N , of a lower semibounded self-adjoint operator L in H0 is considered
in general from the perspective of an indefinite inner product space (Pontryagin space),
which we denote by HA . Here (Hn,〈·, ·〉n)n∈Z is the scale of Hilbert spaces associated
with L , and the Hn -scalar product is defined via an operator bn(L) := ∏n

j=1(L− z j)
with some fixed model parameters z j ∈ resL∩R : 〈·, ·〉n := 〈·,bn(L)·〉0 . The rank of in-
definiteness of HA depends on the Gram matrix GA that determines an indefinite inner
product [·, ·]A in HA . By definition it is assumed that GA is invertible and Hermitian,
but for perturbations of class H−4 or higher (i.e. m � 2), this is not sufficient in order to
apply the extension theory of operators in HA . It appears that for such perturbations ad-
ditional restrictions imposed on GA are needed; for example, for mutually equal model
parameters z j , the Gram matrix GA = ([GA] j j′) must be of an anti-triangular form:

[GA] j j′ =[GA] j′ j ∈ R , j, j′ ∈ {1, . . . ,m} ,

[GA] j j′ =0 , j ∈ {1, . . . ,m−1} , j′ ∈ {1, . . . ,m− j} ,

[GA] jm =[GA] j+1,m−1 , j ∈ {1, . . . ,m−1} .

(1.1)

More generally ([17, Theorem 3.2]), if at least two of the z j ’s are equal, then HA must
have a nontrivial rank of indefiniteness; see also [11, Remark 4.10] with z j = 0. In
contrast, if the points z j are all mutually distinct, then HA can be considered as a

Mathematics subject classification (2020): 47A56, 47B25, 47B50, 35P05.
Keywords and phrases: Finite rank higher order singular perturbation, cascade (A) model, Hilbert

space, scale of Hilbert spaces, Pontryagin space, ordinary boundary triple, Krein Q -function, Weyl function,
gamma field, symmetric linear relation, proper extension, resolvent.

c© � � , Zagreb
Paper OaM-15-83

1319

http://dx.doi.org/10.7153/oam-2021-15-83


1320 R. JURŠĖNAS

Hilbert space, i.e. there exists a positive matrix GA satisfying all necessary conditions
required for the application of the theory of extensions to HA of L .

The main goal of this note is to demonstrate that, for equal z j ’s, we still can extract
a Hilbert space model from the A-model provided that

[GA]mm > 0 , [GA]m−1,m = [GA]m,m−1 ∈ R (1.2)

for m � 2. In fact, we consider rank-d perturbations, with an arbitrary d ∈ N , so that
actually we have that GA = ([GA]σ j,σ ′ j′) is a dm×dm Gram matrix; the indices σ , σ ′
range over an index set S of cardinality d ∈ N . The conditions in (1.1), (1.2) are then
modified appropriately (see (2.5) and (3.1)).

In the A-model, singular perturbations of L in HA are specified by the extensions
of a densely defined, closed, symmetric operator Amin in HA , provided an invertible
Hermitian GA satisfies appropriate conditions (for equal z j ’s these are as in (1.1)).
We recall that Amin is the adjoint in HA of the restriction Amax ⊇ Amin to HA of the
triplet adjoint Lmax of Lmin . The triplet adjoint is taken with respect to the Hilbert
triple Hm ⊆ H0 ⊆ H−m . The operator Lmin is densely defined, closed, symmetric in
Hm , has defect numbers (d,d) , and is essentially self-adjoint in H0 , whose closure is
L . As is usual in extension theory, an extension AΘ ∈ Ext(Amin) is parametrized by a
linear relation Θ in Cd according to domAΘ = { f ∈ domAmax |Γ f ∈ Θ} , where Γ :=
(Γ0,Γ1) : domAmax → Cd ×Cd defines the boundary triple (Cd ,Γ0,Γ1) for Amax =
A∗

min .
To explain our main idea, let us now consider the A-model with equal model

parameters, z j = z1 . For simplicity we let d = 1. Let Hmin
A := HA ∩Hm−2 . The

subscript “min”, indicating the minimality of the space, is due to the following fact.
Because HA is the direct sum of Hm and an m-dimensional space KA spanned by
the singular elements h j ∈ H−m−2+2 j � H−m−1+2 j , we have that Kmin

A ⊆ KA ⊆ H−m ,
where Kmin

A := KA ∩Hm−2 is a minimal subset contained in KA in the sense that
KA ∩Km−1 = {0} .

Consider the domain restriction Amax |Hmin
A

to Hmin
A = Hm �Kmin

A of Amax . Let
Bmax denote a linear relation in HA defined by the componentwise sum of (the graph
of) Amax |Hmin

A
and {0}×H⊥

A . Here H⊥
A denotes the orthogonal complement in HA

of Hmin
A , which is a subset of KA . By the construction, the adjoint Bmin := B∗

max in
HA is a linear relation given by the componentwise sum of (the graph of) Amin |Hmin

A

and {0}×H⊥
A . Assuming only the invertibility and the Hermiticity of GA , the operator

Amin differs from A′
min := Amax |kerΓ (although domAmin = domA′

min ), i.e. Amin is not
symmetric; the symmetry of Amin = A′

min is ensured by (1.1). Now the key point is that,
without assumption (1.1), but instead assuming [GA]m−1,m = [GA]m,m−1 (the second
condition in (1.2)), it holds

(Amin−A′
min)(domAmin∩Hmin

A ) ⊆H⊥
A

i.e. Bmin is a symmetric linear relation in HA . By the same reasoning one shows that
Bmin is also closed. Sequentially, one can apply the extension theory for Bmin , as is
done for Amin .
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For GA as in (1.1), the Weyl function corresponding to a boundary triple for Amax

determined by Γ is the sum of the Krein Q-function q of Lmin and a generalized
Nevanlinna function r (see e.g. [2, Section 4] for the terminology) defined by

r(z) := −
m

∑
j=1

[GA]mj

(z− z1)m− j+1 , z ∈ C�{z1} .

Likewise, for GA as in (1.2), the Weyl function corresponding to the boundary triple
for Bmax , which is determined by restriction to domBmax of Γ , is the sum of the same
Krein Q-function q and now a Nevanlinna function r̂ defined by

r̂(z) :=
[GA]mm

Δ̂− z
, z ∈ C�{Δ̂}

with some real number Δ̂ . The strict inequality [GA]mm > 0 in (1.2) is closely related
to the fact that the subspace Hmin

A = (Hm � Kmin
A , [·, ·]A) of HA is a Hilbert space iff

[GA]mm > 0. Thus, for example, one may take GA as the Gram matrix of vectors h j

generating KA , in which case [GA] j j′ = 〈h j,h j′ 〉−m , and the conditions in (1.2) are all
satisfied. In contrast, the so defined GA does not satisfy (1.1). We remark that, for
m = 1, we have Δ̂ = z1 , and hence r̂ = r , as it should follow from Hmin

A = HA . We
also remark that an analogous development of extension theory for Bmin takes place in
the peak model for singular perturbations, cf. [22].

Because the Weyl function q+ r̂ of Bmin is a (uniformly strict) Nevanlinna func-
tion, it follows from [24, Theorem 2.2] that q+ r̂ is the Weyl function of some closed
simple symmetric operator, corresponding to a certain boundary triple. Following the
terminology in [18], it is precisely in this sense what we mean by saying that the A-
model with mutually equal model parameters leads to a Hilbert space model (of the
function q+ r̂ ). For example, a simple symmetric operator may be considered as the
operator of multiplication by an independent variable in a reproducing kernel Hilbert
space induced by the Nevanlinna pair (1,q+ r̂) ; see e.g. [3, Theorem 6.1], [2, Theo-
rem 4.10], [9, Remark 2.6].

Having determined the extensions to HA of Lmin one then interprets singular per-
turbations of L by means of the compressions to Hm of their resolvents. Thus, for
d = 1, BΘ ∈ Ext(Bmin) , Θ ∈ C∪{∞} , the compressed resolvent of BΘ is represented
in the generalized sense according to

PHm(BΘ − z)−1 |Hm = (L− z)−1 +
〈g(z), ·〉(L− z)−1hm

Θ−q(z)− r̂(z)

for a suitable z∈ resL . Here PHm is a projection in HA onto Hm , g(z)∈H−m �H−m+1

is the eigenvector of Lmax corresponding to the eigenvalue z (in particular h1 = g(z1)),
and 〈·, ·〉 is the duality pairing between H−m and Hm . By the above resolvent formula
one concludes that the spectral properties of (super) singular perturbations in the A-
model with equal model parameters can be described by Nevanlinna functions.

The reasoning behind the above mentioned interpretation of singular perturbations
is that there exists a bijective correspondence between Nevanlinna families and gen-
eralized resolvents of Lmin , and the correspondence is established via a generalized
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Krein–Naimark resolvent formula. Thus, to a rational Nevanlinna function r̂−Θ , with
a real Θ , there corresponds a self-adjoint extension B̃ of Lmin in some larger Hilbert
space H̃ ⊇ Hm , and such that B̃∩L = Lmin . For more details the reader may refer to
[4, 18, 13, 8, 7, 14].

2. A brief overview of the A-model with equal model parameters

Here we restate the main results from [23, 17]; see also [11]. The main tools and
terminology used in the theory of boundary relations of symmetric operators (or linear
relations) are as in [4, 15, 10, 20, 16, 2, 19, 21, 8] and in references therein.

We consider a lower semibounded self-adjoint operator L in a Hilbert space H0 ,
and we let (Hn)n∈Z be the scale of Hilbert spaces associated with L . The scalar product
in Hn is conjugate linear in the first factor and is defined via the scalar product 〈·, ·〉0
in H0 according to

〈·, ·〉n := 〈bn(L)1/2·,bn(L)1/2·〉0 , bn(L) := (L− z1)n

for some fixed model parameter z1 ∈ resL∩R ( resL denotes the resolvent set of L ,
and similarly for other operators). To L = L0 one associates a self-adjoint operator
Ln := L |Hn+2 in Hn , and satisfying Ln+1 ⊂ Ln and resLn = resL . For the reasons just
described we sometimes omit the subscript n in Ln .

Let us fix m , d ∈ N . Let {ϕσ ∈ H−m−2 � H−m−1} be the family of linearly
independent functionals; σ ranges over an index set S of cardinality d . The symmetric
restriction Lmin of L to the domain of f ∈ Hm+2 such that 〈ϕσ , f 〉 = 0, for all σ , is a
densely defined, closed, symmetric operator in Hm , and has defect numbers (d,d) . It
is also essentially self-adjoint operator in H0 . The duality pairing 〈·, ·〉 is defined via
the H0 -scalar product in a usual way. We also define a vector valued functional ϕ via
〈ϕ , ·〉 = (〈ϕσ , ·〉) : Hm+2 → Cd ; hence Lmin = Lm | { f∈Hm+2 | 〈ϕ, f 〉=0} .

The triplet adjoint Lmax of Lmin corresponding to the Hilbert triple Hm ⊂ H0 ⊂
H−m is the operator extending L−m to the domain H−m+2 � Nz(Lmax) (direct sum)
for z ∈ resL . The eigenspace Nz(Lmax) ( := ker(Lmax − z)) is the linear span of the
elements gσ (z) defined in the generalized sense according to

gσ (z) := (L− z)−1ϕσ ∈ H−m �H−m+1 .

Define an md -dimensional linear space

KA := span{hα |α = (σ , j) ∈ S × J} , J := {1,2, . . . ,m}

spanned by the elements

hσ j := b j(L)−1ϕσ ∈ H−m−2+2 j �H−m−1+2 j .

From here it follows that Kmin
A ⊆ KA ⊆ H−m with

Kmin
A := KA ∩Hm−2 = hm(Cd) , hm(c) := ∑

σ
cσ hσm , c = (cσ ) ∈ C

d
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and that in particular Kmin
A = KA for m = 1. Note that KA ∩Hm−1 = {0} .

Because the system {hα} is linearly independent, the matrix

G̃A = ([G̃A]αα ′) ∈ [Cmd ] , [G̃A]αα ′ := 〈hα ,hα ′ 〉−m

is the Gram matrix of vectors generating KA ; hence it is positive definite, Hermitian.
One establishes a bijective correspondence

KA � k ↔ d(k) = (dα(k)) ∈ C
md

via
k = ∑

α
dα(k)hα , d(k) = G̃−1

A 〈h,k〉−m , 〈h, ·〉−m = (〈hα , ·〉−m) .

Here and in what follows d(·) is interpreted as a (bounded) vector valued functional
from KA to Cmd .

Let us define the matrix

G̃min
A = ([G̃min

A ]σσ ′) ∈ [Cd ] , [G̃min
A ]σσ ′ := 〈hσm,hσ ′m〉−m

which is the Gram matrix of vectors generating Kmin
A . Thus G̃min

A is also positive defi-
nite, Hermitian, and one therefore establishes a bijective correspondence

Kmin
A � hm(c) ↔ c ∈ C

d

via
c = (G̃min

A )−1 〈hm,hm(c)〉−m , 〈hm, ·〉−m = (〈hσm, ·〉−m) .

On the other hand, because Kmin
A ⊆ K , to each k = hm(c) ∈ Kmin

A there corresponds
d(k) = η(c) ∈ Cmd , where

η(c) := (δ jmcσ ) .

Consider an indefinite inner product space

HA := (Hm �KA, [·, ·]A)

equipped with an indefinite metric

[ f + k, f ′ + k′]A := 〈 f , f ′〉m + 〈d(k),GAd(k′)〉
Cmd

for f , f ′ ∈ Hm and k , k′ ∈ KA . The matrix GA = ([GA]αα ′) is called the Gram matrix
of the A-model; it is initially assumed to be invertible and Hermitian, but otherwise
arbitrary. Thus in particular GA �= 0. Clearly if GA is positive, then HA becomes a
Hilbert space. Otherwise HA is a Pontryagin space.

For an appropriate GA , the extensions to HA of Lmin are the restrictions to HA of
the triplet adjoint Lmax . Let

Amax := Lmax∩H2
A .



1324 R. JURŠĖNAS

Here and in what follows operators are frequently identified with their graphs. The
operator Amax admits the following representation:

Amax ={( f # +hm+1(c)+ k,Lm f # + z1hm+1(c)+ k̃) | f # ∈ Hm+2 ;

c ∈ C
d ; k, k̃ ∈ KA ; d(k̃) = Mdd(k)+ η(c)} .

An element hm+1(c) ∈ Hm �Hm+1 is defined by

hm+1(c) := ∑
σ

cσ hσ ,m+1 , hσ ,m+1 := bm+1(L)−1ϕσ .

The matrix Md := M⊕ ·· · ⊕M (d times) is the matrix direct sum of d matrices
M = (M j j′) ∈ [Cm] defined as follows: For m � 2

M j j′ := 1J�{m}( j)(δ j j′z1 +1J�{1}( j′)δ j+1, j′)+ δ jmδ j′mz1

for j , j′ ∈ J ; here 1X is the characteristic function of a set X . For m = 1, M := z1 .
By direct computation, the boundary form of Amax is represented in the form

[ f ,Amaxg]A − [Amax f ,g]A =〈d(k),(GM −G∗
M)d(k′)〉

Cmd

+ 〈Γ0 f ,Γ1g〉Cd −〈Γ1 f ,Γ0g〉Cd ,

GM := GAMd

with f = f # + hm+1(c)+ k ∈ domAmax ; g = g# + hm+1(c′)+ k′ ∈ domAmax ; f #,g# ∈
Hm+2 ; c,c′ ∈ Cd ; k,k′ ∈ KA . The operator Γ := (Γ0,Γ1) from domAmax to Cd ×Cd

is defined by

Γ0( f # +hm+1(c)+ k) :=c ,

Γ1( f # +hm+1(c)+ k) :=〈ϕ , f #〉− [GAd(k)]m

with
[GAd(k)]m := ([GAd(k)]σm) ∈ C

d .

In the next lemma we give a description of the adjoint of Amax and, moreover, we show
that Γ is surjective. By considering Γ as a single-valued linear relation from H2

A to
C2d with domΓ = Amax , i.e.

Γ = {(( f ,Amax f ),(Γ0 f ,Γ1 f )
) | f ∈ domAmax}

we recall (e.g. [2, Section 3.1]) that its Krein space adjoint Γ[∗] is a linear relation from
C2d to H2

A , and it consists of
(
(χ ,χ ′),(g,g′)

)
such that (∀ f ∈ domAmax)

[ f ,g′]A − [Amax f ,g]A = 〈Γ0 f ,χ ′〉
Cd −〈Γ1 f ,χ〉

Cd . (2.1)

LEMMA 2.1. Similar to Amax , define the operator A′
max in HA by

A′
max :={( f # +hm+1(c)+ k,Lm f # + z1hm+1(c)+ k̃′) | f # ∈ Hm+2 ;

c ∈ C
d ; k, k̃′ ∈ KA ; d(k̃′) = G−1

A G∗
Md(k)+ η(c)} .

The following statements hold:
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(i) Consider Γ = (Γ0,Γ1) as a single-valued linear relation with domΓ = Amax .
Let Γ[∗] be its Krein space adjoint. Then the inverse (Γ[∗])−1 = (Γ0,Γ1) is a
single-valued linear relation with ranΓ[∗] = A′

max . Moreover, Γ is closed and
surjective.

(ii) The adjoint in HA of a closed operator Amax is the operator

Amin := A∗
max = A′

max |kerΓ .

(iii) Define the operator
A′

min := Amax |kerΓ

in HA . Then A′
min is closed, and its adjoint in HA is A′∗

min = A′
max .

Proof. First we remark that

ranG∗
M ⊆ ranGA (2.2)

so that A′
max is defined correctly. The inclusion in (2.2) is equivalent to the statement

that
(∀ξ ∈ C

md)(∃ξ ′ ∈ C
md) G∗

Mξ = GAξ ′ . (2.3)

For m = 1, GM = z1GA , so ξ ′ = z1ξ solves (2.3) for an arbitrary Hermitian GA .
For m � 2 we have

[GM]σ j,σ ′ j′ =z1[GA]σ j,σ ′ j′ +1J�{1}( j′)[GA]σ j;σ ′, j′−1

and hence

[G∗
M]σ j,σ ′ j′ =z1[GA]σ j,σ ′ j′ +1J�{1}( j)[GA]σ , j−1;σ ′ j′ .

Then G∗
Mξ = GAξ ′ reads

[GA(ξ ′ − z1ξ )]σ j = 1J�{1}( j)[GAξ ]σ , j−1 .

Put
G̊A = ([G̊A]αα ′) ∈ [Cmd ] , [G̊A]σ j,σ ′ j′ := 1J�{1}( j)[GA]σ , j−1;σ ′ j′ .

Then
ran G̊A ⊆ ranGA and GA(ξ ′ − z1ξ ) = G̊Aξ

and therefore
ξ ′ = (z1 +G−1

A G̊A)ξ

solves (2.3) for an arbitrary invertible Hermitian GA .
(i) Letting g = g� + kg and g′ = g′� + kg′ in (2.1) for some g� , g′� ∈ Hm and kg ,

kg′ ∈ KA , and using that

〈〈ϕ , f #〉 ,χ〉
Cd = 〈(L− z1) f #,hm+1(χ)〉m
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and
〈[GAd(k)]m,χ〉

Cd = 〈d(k),X χ〉
Cmd

with
X = ([X ]ασ ) ∈ [Cd ,Cmd ] , [X ]ασ := [GA]α ,σ ′m

we find that (∀ f # ∈ Hm+2) (∀c ∈ C
d) (∀k ∈ KA)

0 =〈 f #,g′�− z1hm+1(χ)〉m −〈L f #,g�−hm+1(χ)〉m
+ 〈c,〈hm+1,g

′�− z1g
�〉m − [GAd(kg)]m − χ ′〉

Cd

+ 〈d(k),GAd(kg′)−G∗
Md(kg)−X χ〉

Cmd (2.4)

with
〈hm+1, ·〉m = (〈hσ ,m+1, ·〉m) .

Thus it follows that

g� = g# +hm+1(χ) , g# ∈ Hm+2 , g′� = Lmg# + z1hm+1(χ)

and
χ ′ = 〈hm+1,(L− z1)g#〉m − [GAd(kg)]m = 〈ϕ ,g#〉− [GAd(kg)]m

and
d(kg′) = G−1

A G∗
Md(kg)+G−1

A X χ , G−1
A X χ = η(χ) .

This shows that

(Γ[∗])−1 = {(( f ,A′
max f ),(Γ0 f ,Γ1 f )

) | f ∈ domAmax} .

Because kerΓ[∗] = mul(Γ[∗])−1 = {0} , it follows that ranΓ = ranΓ = C2d , and it there-
fore remains to verify that Γ is closed.

The closure Γ is the Krein space adjoint of Γ[∗] . Thus it consists
(
(g,g′),(χ ,χ ′)

)∈
H2

A ×C2d such that (∀ f ∈ domAmax) equation (2.4) holds, but with G∗
M replaced by

GM . By repeating the subsequent steps as above, one finds that Γ = Γ .
(ii) The adjoint linear relation Amin consists of (g,g′) ∈H2

A such that (2.4) holds,
but with χ = 0 = χ ′ ; therefore it is the operator as stated in the lemma.

(iii) By the arguments as in the proof of (i), A′∗
max = A′

min ; thus A′
min is a closed

operator whose adjoint in HA is as stated in the lemma. �
For m = 1, the matrix GM = z1GA is automatically Hermitian, while for m � 2,

we have G∗
M = GM iff

[GA]σ j,σ ′ j′ =[GA]σ j′,σ ′ j , j, j′ ∈ J ,

[GA]σ j,σ ′ j′ =0 , j ∈ J �{m} , j′ ∈ {1, . . . ,m− j} ,

[GA]σ j,σ ′m =[GA]σ , j+1;σ ′,m−1 , j ∈ J �{m} .

(2.5)

Note that the entries of GA in (2.5), which are diagonal in σ ∈ S , are real numbers.
Note also that G̃A does not satisfy (2.5), because [G̃A]σ1,σ1 > 0.
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For an Hermitian GM we have A′
max = Amax , A′

min = Amin , and Γ is a unitary
operator, Γ−1 = Γ[∗] . Subsequently [12, Corollary 2.4], the triple (Cd ,Γ0,Γ1) is a
boundary triple for the adjoint Amax = A∗

min of a densely defined, closed, and symmetric
operator Amin in a Pontryagin space HA ; the reader may refer to [8, Definition 2.1],
[7, Definition 3] for the formal definition of a boundary triple. An extension AΘ ∈
Ext(Amin) of Amin , i.e. an operator satisfying Amin ⊆ AΘ ⊆ Amax , is parametrized by a
linear relation Θ in Cd according to

domAΘ = { f ∈ domAmax |Γ f ∈ Θ} .

In particular, AΘ is self-adjoint in HA iff Θ is self-adjoint in Cd , because the adjoint
A∗

Θ in HA of AΘ is given by AΘ∗ , where Θ∗ is the adjoint in Cd of Θ . The Krein–
Naimark resolvent formula for AΘ reads ([7, Theorem 2(iii)])

(AΘ − z)−1 = (A0 − z)−1 + γΓ(z)(Θ−MΓ(z))−1γΓ(z)∗

for z ∈ resA0 ∩ resAΘ . The self-adjoint operator A0 corresponds to the self-adjoint
linear relation {0}×Cd in Cd , and its resolvent is given by

(A0− z)−1( f + k) = (Lm − z)−1 f +∑
α

[(Md − z)−1d(k)]αhα

for f ∈ Hm , k ∈ KA , and z ∈ resA0 = resL � {z1} . The γ -field γΓ and the Weyl
function MΓ corresponding to (Cd ,Γ0,Γ1) are described by

γΓ(z)Cd = Nz(Amax) = {∑
σ

cσFσ (z) |cσ ∈ C} , Fσ (z) :=
gσ (z)

(z− z1)m

and
MΓ(z) = q(z)+ r(z) on C

d

for z ∈ resA0 . The Krein Q-function q of Lmin is defined by

q(z) = ([q(z)]σσ ′) ∈ [Cd ] , [q(z)]σσ ′ := (z− z1)〈ϕσ ,(L− z)−1hσ ′,m+1〉
for z ∈ resL , and the generalized Nevanlinna function r is defined by

r(z) = ([r(z)]σσ ′) ∈ [Cd ] , [r(z)]σσ ′ := −∑
j

[GA]σm,σ ′ j
(z− z1)m− j+1

for z ∈ C�{z1} .
The compressed resolvent of AΘ is represented in the generalized sense according

to

PHm(AΘ − z)−1 |Hm =(L− z)−1

+∑
σ

[(Θ−MΓ(z))−1 〈ϕ ,(L− z)−1·〉]σ (L− z)−1hσm (2.6)

for z ∈ resA0 ∩ resAΘ . As expected, in the A-model with equal model parameters
the spectral properties of singular rank-d perturbations of class H−4 or higher are de-
scribed by a generalized Nevanlinna function MΓ .
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3. Extensions which are linear relations

Let j� ∈ J ; then
Hm∩H−m−2+2 j� = Hm

while
KA ∩H−m−2+2 j� = span{hσ j |(σ , j) ∈ S ×{ j�, . . . ,m}}

is a d(m− j� +1)-dimensional linear space. Choosing j� = m we therefore construct a
d -dimensional subspace Kmin

A of KA , which is minimal in the sense that KA ∩Hm−1 =
{0} . Let

Hmin
A := (Hm �Kmin

A , [·, ·]A) .

That is, Hmin
A is a subspace of HA equipped with an indefinite metric

[ f +hm(c), f ′ +hm(c′)]A = 〈 f , f ′〉m + 〈c,Gmin
A c′〉

Cd

for f , f ′ ∈ Hm and c , c′ ∈ Cd . The matrix

Gmin
A = ([Gmin

A ]σσ ′) ∈ [Cd ] , [Gmin
A ]σσ ′ := [GA]σm,σ ′m

where, as previously, GA is the Gram matrix of the A-model; i.e. it is invertible and
Hermitian. The matrix Gmin

A is Hermitian, and the space Hmin
A is a Hilbert space iff

an Hermitian Gmin
A is positive definite. In this case Hmin

A becomes a subspace of the
positive subspace of the Pontryagin space HA .

LEMMA 3.1. Let H⊥
A denote the orthogonal complement in HA of Hmin

A . Then:

(i) H⊥
A is a subset of KA given by

H⊥
A = {k ∈ KA | [GAd(k)]m = 0} .

(ii) Assume that
[GA]σ ,m−1;σ ′m = [GA]σm;σ ′,m−1 , σ ,σ ′ ∈ S (3.1)

if m � 2 . Then
(A′

max −Amax)Kmin
A ⊆H⊥

A .

Recall that A′
max = Amax if m = 1.

Proof. (i) H⊥
A is the set of g+ k ∈ Hm �KA such that (∀ f ∈ Hm) (∀c ∈ Cd)

0 = 〈 f ,g〉m + 〈η(c),GAd(k)〉
Cmd = 〈 f ,g〉m + 〈c, [GAd(k)]m〉Cd ;

hence such that g = 0 and [GAd(k)]m = 0.
(ii) We have (∀c ∈ Cd)

(A′
max−Amax)hm(c) = k̃′′ ∈ KA , d(k̃′′) = (G−1

A G∗
M −Md)η(c) .
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Then (∀σ ∈ S)

[GAd(k̃′′)]σm =[(G∗
M −GM)η(c)]σm

=∑
σ ′

([GA]σ ,m−1;σ ′m − [GA]σm;σ ′,m−1)cσ ′ .

By hypothesis one therefore sees that k̃′′ ∈ H⊥
A . �

Define a linear relation Bmax in a (generally) Pontryagin space HA by

Bmax := Amax |domAmax∩Hmin
A

+̂({0}×H⊥
A)

(the componentwise sum), where

Amax |domAmax∩Hmin
A

= Amax∩ (Hmin
A ×HA)

is the domain restriction to domAmax∩Hmin
A of Amax . Let also

Bmin := B∗
max

be the adjoint in HA of Bmax .
For m = 1 we have Hmin

A = HA and H⊥
A = {0} , corresponding to Kmin

A = KA .
In this case Bmax = Amax and Bmin = Amin are operators. But for m � 2, Bmax has a
nontrivial multivalued part mulBmax = H⊥

A . The multivalued part of Bmin is also H⊥
A ,

which is seen from mulBmin = (domBmax)⊥ and using that Hm+2 is dense in Hm . We
have, moreover, the next lemma.

LEMMA 3.2. Assume (3.1) if m � 2 . Then

Bmax = A′
max |domAmax∩Hmin

A
+̂({0}×H⊥

A)

and

Bmin =Amin |domAmin∩Hmin
A

+̂({0}×H⊥
A)

=A′
min |domAmin∩Hmin

A
+̂({0}×H⊥

A) .

Moreover, Bmin is a closed symmetric linear relation in HA , whose adjoint in HA is
the linear relation B∗

min = Bmax .

Proof. For m = 1 the statements of the lemma follow from Lemma 2.1, so in what
follows we let m � 2.

The representation of Bmax , as stated, is due to Lemma 3.1. The adjoint of Bmax

is given by (recall e.g. [19, Lemma 2.6])

Bmin = (Amax |domAmax∩Hmin
A

)∗ ∩ ({0}×H⊥
A)∗



1330 R. JURŠĖNAS

with
({0}×H⊥

A)∗ = Hmin
A ×HA .

Because Amax and Hmin
A are closed, by the same argument we also get that

(Amax |domAmax∩Hmin
A

)∗ =[Amax∩ (Hmin
A ×HA)]∗

=Amin +̂({0}×H⊥
A) .

Because
A∗

min +̂({0}×H⊥
A)∗ = Amax +̂(Hmin

A ×HA) = H2
A

is a closed linear relation, we have by [19, Lemma 2.10] that

Amin +̂({0}×H⊥
A) = Amin +̂({0}×H⊥

A)

is also closed. Combining all together we deduce the first representation of Bmin as
stated in the lemma. By using this representation and noting that Amin ⊆ A′

max and
A′

min ⊆ Amax (Lemma 2.1), we deduce also the second formula for Bmin by applying
Lemma 3.1. The computation of the adjoint B∗

min uses the same arguments as that of
B∗

max , and one concludes that Bmin is a closed symmetric linear relation. �
The boundary value space of Bmin is characterized by the next theorem.

THEOREM 3.3. Assume (3.1) if m � 2 , and let Gmin
A be positive definite. Define

the operator Γ′ := (Γ′
0,Γ′

1) : Bmax → C2d by

Γ′
0 f̂ := c , Γ′

1 f̂ := 〈ϕ , f #〉−Gmin
A χ

for f̂ = ( f , f ′) ∈ Bmax ; that is

f = f # +hm+1(c)+hm(χ) , f # ∈ Hm+2 , c,χ ∈ C
d ,

f ′ =Lm f # + z1hm+1(c)+ k̃+ k⊥ , k̃ ∈ KA , k⊥ ∈H⊥
A ,

d(k̃) = Mdη(χ)+ η(c) .

Then (Cd ,Γ′
0,Γ′

1) is a boundary triple for Bmax . The corresponding γ -field γΓ′ and
the Weyl function MΓ′ are bounded analytic operator functions given by

γΓ′(z)Cd = Nz(Bmax) = {(L− z)−1hm(c)+hm(χ) |χ = (z− Δ̂)−1c ; c ∈ C
d} ,

Δ̂ := (Gmin
A )−1Δ ∈ [Cd ] , Δ = (Δσσ ′) = Δ∗ ∈ [Cd ] ,

Δσσ ′ := [GM]σm,σ ′m = z1[Gmin
A ]σσ ′ +1N�2(m)[GA]σ ,m−1;σ ′m

and
MΓ′(z) = q(z)+ r̂(z) , r̂(z) := Gmin

A (Δ̂− z)−1

for z ∈ resL∩ res Δ̂ . Moreover, MΓ′ is a uniformly strict Nevanlinna function.
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Proof. Step 1. In this step we argue as in the proof of Lemma 3.2. Consider Γ′ as
a single-valued linear relation with domΓ′ = Bmax :

Γ′ = {( f̂ ,(Γ′
0 f̂ ,Γ′

1 f̂ )) | f̂ ∈ Bmax} .

Likewise, consider Γ as a single-valued linear relation with domΓ = Amax :

Γ = {( f̂ ,(Γ0 f̂ ,Γ1 f̂ )) | f̂ ∈ Amax} .

Then by definition

Γ′ = (Γ∩M)+̂N , M := (Hmin
A ×HA)×C

2d , N := ({0}×H⊥
A)×{0} .

Then the Krein space adjoint of Γ′ is given by

(Γ′)[∗] = (Γ∩M)[∗]∩N[∗] , N[∗] = C
2d × (Hmin

A ×HA) = M−1 .

Because M is a closed linear relation, and so is Γ by Lemma 2.1(i), the Krein space
adjoint of Γ∩M is given by

(Γ∩M)[∗] = Γ[∗] +̂M[∗] , M[∗] = {0}× ({0}×H⊥
A) = N−1 .

Because Γ+̂M = H2
A ×C2d , it follows that

(Γ∩M)[∗] = Γ[∗] +̂N−1 = [(Γ[∗])−1 +̂N]−1

and therefore

(Γ′)[∗] = [(Γ[∗])−1 +̂N]−1∩M−1 = {[(Γ[∗])−1∩M] +̂N}−1 .

By applying Lemma 2.1(i) and Lemma 3.1(ii), this leads to (Γ′)[∗] = (Γ′)−1 .
Since Γ′ is single-valued, unitary, and with closed domain, we conclude that Γ′ is

surjective, and then the triple (Cd ,Γ′
0,Γ

′
1) is a boundary triple for Bmax .

Step 2. We compute the eigenspace of Bmax . For f ∈ Nz(Bmax) , z ∈ C , we have

0 = (L− z) f # +(z1− z)hm+1(c) , 0 = k̃+ k⊥− zhm(χ) .

Then, for z ∈ resL , the first equation leads to

f # = (z− z1)(L− z)−1hm+1(c) = −hm+1(c)+ (L− z)−1hm(c)

The second equation implies that

0 = d(k̃)+d(k⊥)− zη(χ) or else d(k⊥) = (z−Md)η(χ)−η(c) .

Because k⊥ ∈H⊥
A , we have that [GAd(k⊥)]m = 0; hence

0 = Gmin
A (zχ − c)− [GMη(χ)]m , [GMη(χ)]m = Δχ .
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Because by hypothesis an Hermitian Gmin
A is positive definite, the latter shows that

0 = (z− Δ̂)χ − c ⇒ χ = (z− Δ̂)−1c , z ∈ res Δ̂ .

Step 3. By definition γΓ′(z)c = f ∈ Nz(Bmax) ; thus by Step 2, we get γΓ′(z) as
claimed. Again by definition MΓ′(z)c = Γ′

1( f ,z f ) , f ∈ Nz(Bmax) ; thus by Step 2, we
get MΓ′(z) as stated in the lemma.

Step 4. Because q is the Weyl function corresponding to the boundary triple
(Cd , Γ̊0, Γ̊1) for the adjoint in Hm of Lmin , where ([23, Corollary 7.4])

Γ̊0( f # +hm+1(c)) := c , Γ̊1( f # +hm+1(c)) := 〈ϕ , f #〉 ,

we have by e.g. [15, Theorem 1.4] that q is a uniformly strict Nevanlinna function.
By hypothesis imposed on GA , the matrix Δ is Hermitian, so the matrix function

r̂ is symmetric with respect to the real axis, r̂(z)∗ = r̂(z) , z ∈ res Δ̂ . We prove that
res Δ̂ ⊇ C�R . Because r̂ is analytic on res Δ̂ , and moreover the matrix

ℑr̂(z)
ℑz

= AB(z) , ℑz �= 0 ,

A := (Gmin
A )−2 > 0 , B(z) := r̂(z)∗(Gmin

A )−1r̂(z) > 0

is similar to the positive definite matrix B(z)1/2AB(z)1/2 , this would imply that r̂ is a
uniformly strict Nevanlinna function.

The spectrum of Δ̂ consists of z ∈ C such that the determinant det(Δ̂− z) = 0.
Because Δ̂ is the product of two Hermitian matrices, using their spectral decompo-
sitions we get that z solves det(Y − z) = 0, where the matrix Y := Λ−1X , Λ is the
positive definite diagonal matrix with the eigenvalues of Gmin

A on its diagonal, and X
is an Hermitian matrix. Because Y = Λ−1/2Y ′Λ1/2 is similar to an Hermitian matrix
Y ′ := Λ−1/2XΛ−1/2 , we get that z is an eigenvalue of Y ′ , and hence belongs to R .
Consequently, res Δ̂ ⊇ C�R as claimed.

The sum MΓ′ of two uniformly strict Nevanlinna functions q and r̂ is itself of
the same class, as can be deduced from [5, Lemma 2.6] [6, Proposition 3.2], and this
accomplishes the proof of the theorem. �

Under assumptions of Theorem 3.3, consider Γ′ as a (unitary) single-valued linear
relation with domΓ′ = Bmax . According to [2, Theorem 4.8], if Γ′ is minimal, i.e. if
the closed linear span

Hs := span{Nz(Bmax) |z ∈ regBmin}
( regBmin is the regularity domain of Bmin ; see e.g. [1, Eq. (6.14)]) coincides with HA ,
then MΓ′ must be a generalized Nevanlinna function with a generally nontrivial number
κ of negative squares (where κ is equal to the rank of indefiniteness of the Pontryagin
space HA ). Recall that Hs = HA means also that a closed symmetric linear relation
Bmin is simple. If, however, Γ′ is not minimal, then MΓ′ is a generalized Nevanlinna
function with κ ′ � κ negative squares. By Theorem 3.3 we have κ ′ = 0, and by the
next proposition this corresponds to the fact that Γ′ is not a minimal boundary relation
for Bmax for at least m � 2, unless H⊥

A = {0} ; if the latter holds then by our hypothesis
on GA the space HA = Hmin

A is a Hilbert space (for all m � 1), and hence κ = 0.
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THEOREM 3.4. Under assumptions of Theorem 3.3, /0 �= Hs ⊆ Hmin
A . Moreover,

if the only solutions f ∈ Hm and χ ∈ Cd to

(∀z ∈ C�R) 〈ϕ ,(L− z)−1 f 〉 = r̂(z)χ (3.2)

are f = 0 and χ = 0 , then Hs = Hmin
A .

Proof. First we prove the next lemma.

LEMMA 3.5. (∀k ∈ KA) (∃χ ∈ C
d) (∃k⊥ ∈ H⊥

A) d(k) = η(χ)+d(k⊥) .

Proof. Because every f ∈HA is of the form f = f ′+k⊥ , for some f ′ ∈Hmin
A and

k⊥ ∈ H⊥
A , we have that f ′ = f ′′ + hm(χ) , for some f ′′ ∈ Hm and χ ∈ Cd . Choosing

f ′′ = 0 the claim follows. �
That Hs is nonempty follows from the following lemma (recall that resL∩ res Δ̂ ⊇

C�R).

LEMMA 3.6. regBmin ⊇ resL∩ res Δ̂ .

Proof. We show that, for z∈ resL∩ res Δ̂ , the eigenspace Nz(Bmin) = {0} and the
range ran(Bmin− z) is closed, from which the statement of the lemma follows.

The linear relation Bmin = kerΓ′ explicitly reads

Bmin ={( f # +hm(χ),Lm f # + k̃+ k⊥) | f # ∈ Hm+2 ;χ ∈ C
d ;

k⊥ ∈ H⊥
A ; k̃ ∈ KA ; d(k̃) = Mdη(χ) ; 〈ϕ , f #〉 = Gmin

A χ} .

Therefore f ∈ Nz(Bmin) solves

0 = (Lm − z) f # , 0 = (Δ̂− z)χ , 〈ϕ , f #〉 = Gmin
A χ .

Since z ∈ resLm = resL , this leads to f = 0.
By applying Lemma 3.5 k̃ = hm(Δ̂χ)+ k′⊥ , k′⊥ ∈ H⊥

A . Therefore the range

ran(Bmin− z) ={(Lm − z) f # +hm((Δ̂− z)χ)+ k⊥ | f # ∈ Hm+2 ; χ ∈ C
d ;

k⊥ ∈ H⊥
A ; 〈ϕ , f #〉 = Gmin

A χ} (z ∈ C)

={(Lm − z) f # +hm(χ)+ k⊥ | f # ∈ Hm+2 ; χ ∈ C
d ;

k⊥ ∈ H⊥
A ; 〈ϕ , f #〉 = r̂(z)χ} (z ∈ res Δ̂) .

On the other hand, the closure ran(Bmin − z) , z ∈ resL∩ res Δ̂ , is the orthogonal
complement in HA of Nz(Bmax) ; hence

ran(Bmin− z) ={ f + k ∈ Hm �KA |(∀c ∈ C
d)

0 = 〈 f ,(L− z)−1hm(c)〉m + 〈d(k),GAη(χ)〉
Cmd ;

χ = (z− Δ̂)−1c} .
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Note that resL∩ res Δ̂ ⊇ C�R implies that also z ∈ resL∩ res Δ̂ .
We have

〈 f ,(L− z)−1hm(c)〉m = 〈〈ϕ ,(L− z)−1 f 〉 ,c〉
Cd ,

〈d(k),GAη(χ)〉
Cmd =〈(z− Δ̂∗)−1[GAd(k)]m,c〉

Cd

=−〈r̂(z)(Gmin
A )−1[GAd(k)]m,c〉

Cd .

Putting f # := (L− z)−1 f ∈ Hm+2 and applying Lemma 3.5, i.e.

d(k) =η(χ ′)+ k′′⊥ , k′′⊥ ∈ H⊥
A , χ ′ := (Gmin

A )−1[GAd(k)]m

⇒[GAd(k)]m = Gmin
A χ ′ ,

we deduce that

ran(Bmin− z) ={(Lm − z) f # +hm(χ)+ k⊥ | f # ∈ Hm+2 ; χ ∈ C
d ;

k⊥ ∈H⊥
A ; 〈ϕ , f #〉 = r̂(z)χ} = ran(Bmin− z)

for z ∈ resL∩ res Δ̂ . We remark that the functional

Φ(·) := (Gmin
A )−1[GAd(·)]m : KA → C

d

is surjective, and that therefore χ ′ = Φ(k) ranges over all Cd whenever k ranges over
all KA . This accomplishes the proof of the lemma. �

Because Nz(Bmax) ⊆Hmin
A , z ∈ C , and because C�R ⊆ resL∩ res Δ̂ , it follows

that
H̊s := span{Nz(Bmax) |z ∈ C�R} ⊆Hs ⊆Hmin

A .

By the proof of Lemma 3.6, the orthogonal complement H̊⊥
s in HA of H̊s is given by

H̊⊥
s =

⋂
z∈C�R

ran(Bmin− z) = X [�]H⊥
A

where the subset X ⊆Hmin
A is defined by

X := { f +hm(χ) ∈ Hm �Kmin
A |(∀z ∈ C�R) 〈ϕ ,(L− z)−1 f 〉 = r̂(z)χ}

and [�] indicates the direct sum which is orthogonal with respect to the HA -metric
[·, ·]A . If X = {0} , i.e. if (3.2) has the only solutions f = 0, χ = 0, then H̊⊥

s = H⊥
A

implies H̊s = Hs = Hmin
A . �

Assuming the hypotheses in Theorem 3.3, an extension BΘ ∈Ext(Bmin) parametrized
by a linear relation Θ in Cd is defined by

BΘ := { f̂ ∈ Bmax |Γ′ f̂ ∈ Θ} .

The Krein-Naimark resolvent formula for BΘ is given by (cf. [15, Theorem 4.12])

(BΘ − z)−1 = (B0− z)−1 + γΓ′(z)(Θ−MΓ′(z))−1γΓ′(z)∗ , z ∈ resB0∩ resBΘ

with γΓ′(z)∗ = Γ′
1(B0 − z)−1 . The self-adjoint extension B0 := kerΓ′

0 corresponds to
the self-adjoint linear relation Θ = {0}×C

d . The resolvent of B0 is presented below.
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PROPOSITION 3.7. Assuming the hypotheses in Theorem 3.3 we have

(B0− z)−1( f + k) = (Lm − z)−1 f +hm((Δ̂− z)−1Φ(k))

for f ∈ Hm , k ∈ KA , and z ∈ resB0 = resL∩ res Δ̂ .

Proof. By applying Lemma 3.5

B0 = {( f # +hm(χ),Lm f # +hm(Δ̂χ)+ k⊥) | f # ∈ Hm+2 ; χ ∈ C
d ; k⊥ ∈ H⊥

A} .

Thus the eigenspace

Nz(B0) = Nz(Lm)�hm(Nz(Δ̂)) , z ∈ C .

From here we see that the point spectrum

σp(B0) = σp(L)∪σp(Δ̂) .

Then for z /∈ σp(B0) , the operator

(B0 − z)−1 ={( f +hm(χ)+ k⊥,(Lm − z)−1 f +hm((Δ̂− z)−1χ)) |
f ∈ ran(Lm − z) ; χ ∈ C

d ; k⊥ ∈ H⊥
A}

and it therefore follows that resB0 = resL∩ res Δ̂ . Putting k := hm(χ)+ k⊥ we have
that χ = Φ(k) , and this leads to the resolvent formula as stated. �

In view of Proposition 3.7, the compressed resolvent PHm(BΘ − z)−1 |Hm is given
for z ∈ resB0∩ resBΘ by the right hand side of (2.6), but where now MΓ is replaced by
MΓ′ .
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[10] V. DERKACH, Boundary triplets, Weyl functions, and the Krein formula, volume 1–2 of Operator
Theory, chapter 10, pages 183–218, Springer, Basel, 2015.

[11] V. DERKACH, S. HASSI, AND H. DE SNOO, Singular perturbations of self-adjoint operators, Math.
Phys. Anal. Geom., 6 (4): 349–384, 2003.

[12] V. DERKACH, S. HASSI, M. MALAMUD, AND H. DE SNOO, Boundary relations and their Weyl
families, Trans. Amer. Math. Soc., 358 (12): 5351–5400, 2006.

[13] V. DERKACH, S. HASSI, M. MALAMUD, AND H. DE SNOO, Boundary relations and generalized
resolvents of symmetric operators, Russ. J. Math. Phys., 16 (1): 17–60, 2009.

[14] V. A. DERKACH AND M. M. MALAMUD, Generalized Resolvents and the Boundary Value Problems
for Hermitian Operators with Gaps, J. Func. Anal., 95 (1): 1–95, 1991.

[15] VLADIMIR DERKACH, SEPPO HASSI, AND MARK MALAMUD, Generalized boundary triples, I.
Some classes of isometric and unitary boundary pairs and realization problems for subclasses of
Nevanlinna functions, Mathematische Nachrichten, 293 (7): 1278–1327, 2020.

[16] VLADIMIR DERKACH, SEPPO HASSI, MARK MALAMUD, AND HENK DE SNOO, Boundary triplets
and Weyl functions. Recent developments, In Seppo Hassi, Hendrik S. V. de Snoo, and Fran-
ciszek Hugon Szafraniec, editors, Operator Methods for Boundary Value Problems, London Math.
Soc. Lecture Note Series, volume 404, chapter 7, pages 161–220. Cambridge University Press, UK,
2012.

[17] A. DIJKSMA, P. KURASOV, AND YU. SHONDIN, High Order Singular Rank One Perturbations of a
Positive Operator, Integr. Equ. Oper. Theory, 53: 209–245, 2005.

[18] A. DIJKSMA AND H. LANGER, Compressions of self-adjoint extensions of a symmetric operator and
M. G. Krein’s resolvent formula, Integr. Equ. Oper. Theory, 90 (41): 1–30, 2018.

[19] S. HASSI, H. S. V. DE SNOO, AND F. H. SZAFRANIEC, Componentwise and Cartesian decomposi-
tions of linear relations, Dissertationes Mathematicae, 465: 1–59, 2009.

[20] S. HASSI, M. MALAMUD, AND V. MOGILEVSKII, Unitary equivalence of proper extensions of a
symmetric operator and the Weyl function, Integr. Equ. Oper. Theory, 77 (4): 449–487, 2013.
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