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THE ARVESON BOUNDARY OF A FREE QUADRILATERAL

IS GIVEN BY A NONCOMMUTATIVE VARIETY

ERIC EVERT

(Communicated by I. Klep)

Abstract. Let SMn(R)g denote the set of g -tuples of n× n real symmetric matrices and set
SM(R)g = ∪nSMn(R)g . A free quadrilateral is the collection of tuples X ∈ SM(R)2 which have
positive semidefinite evaluation on the linear equations defining a classical quadrilateral. Such a
set is closed under a generalized type of convex combination called a matrix convex combination.
That is, given elements X = (X1, . . . ,Xg)∈ SMn1 (R)g and Y = (Y1, . . . ,Yg)∈ SMn2 (R)g of a free
quadrilateral Q , one has

VT
1 XV1 +VT

2 YV2 ∈ Q

for any contractions V1 : Rn → Rn1 and V2 : Rn → Rn2 satisfying VT
1 V1 +VT

2 V2 = In . These
matrix convex combinations are a natural analogue of convex combinations in the dimension free
setting.

Elements of a free quadrilateral which cannot be expressed as a nontrivial matrix convex
combination of other elements of the free quadrilateral are called free extreme points. Free
extreme points serve as the minimal set which recovers a free quadrilateral through matrix convex
combinations. In this way, free extreme points are the natural type of extreme point for a free
quadrilateral.

In this article we show that the set of free extreme points of a free quadrilateral is deter-
mined by the zero set of a collection of noncommutative polynomials. More precisely, given a
free quadrilateral Q , we construct noncommutative polynomials p1, p2, p3, p4 such that a tuple
X ∈ SM(R)2 is a free extreme point of Q if and only if X ∈ Q and pi(X) = 0 for i = 1,2,3,4
and X is irreducible.

In addition, we establish several basic results for projective maps of free spectrahedra and
for homogeneous free spectrahedra. In particular, we show that that the image of a free extreme
point under an invertible projective map is again a free extreme point. We also extend a kernel
condition for a tuple to be a free extreme point to the setting of homogeneous free spectrahedra.

1. Introduction

This article studies the free (noncommutative) extreme points of a natural gener-
alization of a quadrilateral to the dimension free setting, namely a free quadrilateral.
Such a set arises by considering those tuples of symmetric matrices with arbitrary size
which have positive semidefinite evaluation on the linear equations defining a classical
quadrilateral. Our main result is a classification of the set of free extreme points of a
free quadrilateral as the zero set of a collection of noncommutative polynomials. In
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pursuit of this result, we establish several results for homogeneous free spectrahedra
and for linear and projective transformations of (homogeneous) free spectrahedra.

The study of extreme points for dimension free sets was initiated by Arveson’s
seminal works [3, 4] in the infinite dimensional setting of operator systems. Extreme
points in this context have has since been considered by many authors [19, 29, 18, 8].
Here, the main question was to determine if an operator system is completely deter-
mined by its boundary representations, objects which serve as a natural class of extreme
point in this infinite dimensional context. This question was affirmatively answered in
the seperable setting nearly forty years after its conception by Arveson [5] following on
work of Dritchel and McCullough [10] and Agler [1]. A few years later, Davidson and
Kennedy [7] settled the issue with a positive answer in the full generality of Arveson’s
original question.

Arveson’s original question in infinite dimensions has a natural translation to the
finite dimensional setting of matrix convex sets: collections of matrix tuples of all sizes
which are closed under matrix (dimension free) convex combinations. Here, the goal
is to find the most restricted type of extreme point for a matrix convex set which re-
covers the set through matrix convex combinations. Free extreme points, the natural
analogue of Arveson’s boundary representations in the finite dimensional setting, were
introduced by Kleski [26]. While it is known that not all matrix convex sets have free
extreme points, e.g. see [12, 27], it has recently been shown that for matrix convex sets
such as free quadrilaterals which arise as the positivity domain of a noncommutative
polynomial, free extreme points span [13]. Other works considering matrix convex sets
and free extreme points include [35, 15, 16, 17, 9, 31, 14, 30].

In addition to matrix convexity, the results in this article have a relationship to the
burgeoning areas of noncommutative function theory and noncommutative real alge-
braic geometry [34, 25, 28, 32, 2, 6, 24, 33, 22]. Here one studies noncommutative
functions and polynomials whose arguments are tuples of matrices of all sizes. In
particular, we show that the set of free extreme points of a free quadrilateral may be
expressed as the intersection of the zero set of a collection of noncommutative polyno-
mials, i.e. a noncommutative variety, with the free quadrilateral. That is, given a free
quadrilateral Q , we construct noncommutative polynomials p1, p2, p3, p4 such that a
tuple of symmetric n× n matrices X = (X1,X2) is a free extreme point of Q if and
only if p1(X) = p2(X) = p3(X) = p4(X) = 0 and X ∈ Q and X is irreducible.

As an example, for the free quadrilateral with defining relations

I +3X1 +2X2 � 0 I− X1
2 +3X2 � 0

I−X1−X2 � 0 I + 3X1
2 −2X2 � 0,

one has that X = (X1,X2) ∈ SMn(R)2 is a free extreme point of Q if and only if X is
irreducible, X ∈ Q , and
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p1(X) = 832+3098X1+656X2−1547X1X1−4228X1X2

−4228X2X1−3003X1X1X1−4522X1X2X1 = 0

p2(X) = 315X1X2−315X2X1−429X1X1X2

−646X1X2X2 +429X2X1X1 +646X2X2X1 = 0

p3(X) = 596+24X1−649X2 +1995X1X2 +1995X2X1

−5957X2X2 +3003X2X1X2 +4522X2X2X2 = 0

p4(X) = 5554+16521X1+5554X2−10207X1X1−15863X1X2

−19328X2X1−6644X2X2−13728X1X1X1

−4719X1X1X2−20672X1X2X1−7106X1X2X2 = 0.

In the remainder of the introduction, we introduce our basic definitions and nota-
tion and give a formal statement of our main results.

1.1. Free convex sets and free spectrahedra

1.1.1. Matrix convex sets

Let SMn(R)g denote the set of g -tuples of real symmetric n× n matrices and
define SM(R)g := ∪nSMn(R)g . That is, an element X ∈ SMn(R)g is a tuple

X = (X1,X2, . . .Xg)

where Xi ∈ Rn×n and Xi = XT
i for each i = 1,2, . . . ,g . Similarly we let Mm×n(R)g and

Mn(R)g denote the sets of g -tuples of m× n matrices and g -tuples of n× n matrices
with real entries, respectively. Given a matrix tuple X ∈ SMn(R)g and matrices V ∈
Mm×n(R) and W ∈ Mn×p(R) , we let VXW denote the coordinate-wise product

VXW = (VX1W, . . . ,VXgW ) ∈ Mm×p(R)g.

Given a finite collection of tuples {Xi}�
i=1 with Xi ∈ SMni(R)g for each i =

1, . . . , � , a matrix convex combination of {Xi}�
i=1 is a finite sum of the form

�

∑
i=1

VT
i XiVi where

�

∑
i=1

VT
i Vi = In.

Here, Vi ∈ Mni×n(R) for each i = 1,2, . . . , � . We emphasize that the matrix tuples Xi

can be of different sizes. That is, the ni need not be equal.
A set K ⊆ SM(R)g is matrix convex if it is closed under matrix convex combina-

tions. The matrix convex hull of a set K ⊆ SM(R)g , denoted comat(K) , is the set of all
matrix convex combinations of elements of K . Equivalently, the matrix convex hull of
K is the smallest matrix convex set which contains K .

For a subset K ⊆ SM(R)g , we call the set K(n) := K∩SMn(R)g the set K at level
n . Say K is closed if K(n) is closed for each n , and say K is bounded if there exists a
constant C > 0 such that C−∑g

i=1 X2
i � 0 for all X ∈ K . In the case that K is matrix

convex, one may show that K is bounded if and only if K(1) is bounded, e.g. see [31].
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1.1.2. Free spectrahedra and linear matrix inequalities

Prototypical examples of matrix convex sets are those defined by linear matrix
inequalities, namely free spectrahedra. Given a g -tuple A of d × d real symmetric
matrices, let ΛA denote the homogeneous linear pencil

ΛA(x) = A1x1 + · · ·+Agxg,

and let LA denote the monic linear pencil

LA(x) = Id +A1x1 + · · ·+Agxg. (1.1)

For a positive integer n ∈ N and a g -tuple X ∈ SMn(R)g , the evaluation of the monic
linear pencil LA on X is

LA(X) := Idn + ΛA(X) = Idn +A1⊗X1 + · · ·+Ag⊗Xg

where ⊗ denotes the Kronecker product. A linear matrix inequality is an inequality of
the form LA(X) � 0.

The free spectrahedron at level n defined by LA , denoted DA(n) , is the set

DA(n) = {X ∈ SMn(R)g| LA(X) � 0},

and the free spectrahedron DA is the dimension free set DA := ∪nDA(n) ⊆ SM(R)g .
In other words,

DA = {X ∈ SM(R)g| LA(X) � 0}.

It straightforward to show that all free spectrahedra are matrix convex.
As a consequence of [11], every closed matrix convex set may be expressed as a

(perhaps infinite) intersection of free spectrahedra. In addition, every matrix convex set
which is the positivity domain of a noncommuative polynomial is a free spectrahedron
[23].

1.1.3. Free polytopes and free quadrilaterals

Free spectrahedra which may be defined by a tuple of diagonal matrices are called
free polytopes. These free polytopes serve as a natural generalization of linear program-
ming to the free setting.

Of particular interest in this article are free quadrilaterals. Say a free spectrahedron
K ⊆ SM(R)2 is a free quadrilateral if K(1) ⊆ R2 is a bounded quadrilateral in the
classical sense and there is a tuple A = (A1,A2) of 4× 4 real diagonal matrices such
K = DA . Equivalently, a free spectrahedron K ⊆ SM(R)2 is a free quadrilateral if K is
bounded and has a minimal defining tuple A ∈ SM4(R)2 of 4×4 diagonal matrices. A
formal definition of a minimal defining tuple is given in Section 2.0.1.
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1.2. Extreme points of free spectrahedra

There are many notions of extreme points for matrix convex sets. Two particu-
larly notable types are classical (Euclidean) and free (Arveson) extreme points. These
respectively represent the least and most restricted types of extreme point for matrix
convex sets.

Given an element X ∈ K(n) of a matrix convex set K ⊆ SM(R)g , say X is a
Euclidean extreme point of K if X is a classical extreme point of K(n) . That is, X
is a Euclidean extreme point of K if X cannot be expressed as a nontrivial convex
combination of elements of K(n) . We let ∂EucK denote the set of Euclidean extreme
points of K .

While Euclidean extreme points are natural to consider when working with clas-
sical convex combinations, the additional freedom provided by matrix convex com-
binations often allows a Euclidean extreme point of a given matrix convex set to be
expressed as a nontrivial matrix convex combination of elements of the set. In contrast,
a free extreme point cannot be expressed as a nontrivial matrix convex combination.

Before giving a formal definition for free extreme points, we give a brief definition.
Given tuples X ,Y ∈ SMn(R)g , if there is an orthogonal (i.e. a real valued unitary)
matrix U such that

UT XU = (UT X1U, . . . ,UT XgU) = (Y1, . . . ,Yg),

then we say X and Y are unitarily equivalent. A subset E ⊆DA of a free spectrahedron
is closed under unitary equivalence if X ∈ E and X is unitarily equivalent to Y implies
Y ∈ E .

A tuple X ∈K(n) is a free extreme point of K if whenever X is written as a matrix
convex combination

X =
k

∑
i=1

VT
i Y iVi where

k

∑
i=1

VT
i Vi = In

with Y i ∈ K(ni) and Vi 	= 0 for each i , then for all i either ni = n and X is unitarily
equivalent to Y i or ni > n and there exists a tuple Zi ∈ K such that X ⊕Zi is unitarily
equivalent to Y i . We let ∂ freeK denote the set of free extreme points of K .

Free extreme points are natural extreme points for free spectrahedra in that they
form the minimal subset of a bounded free spectrahedron which recovers the free spec-
trahedron through matrix convex combinations.

THEOREM 1.1. [13, Theorem 1.1] Let A ∈ SMd(R)g and assume that DA is a
bounded free spectrahedron. Then DA is the matrix convex hull of its free extreme
points. Furthermore, if E ⊆ DA is a set of irreducible tuples which is closed under
unitary equivalence and whose matrix convex hull is equal to DA , then E must contain
the free extreme points of DA .

1.2.1. Irreducibility of matrix tuples

Free extreme points are irreducible as tuples of matrices, a notion we now define.
Given a matrix M ∈R

n×n , a subspace N ⊆R
n is a reducing subspace if both N and N⊥



1356 E. EVERT

are invariant subspaces of M . That is, N is a reducing subspace for M if MN ⊆ N and
MN⊥ ⊆ N⊥ . A tuple X ∈ SMn(R)g is irreducible (over R) if the matrices X1, . . . ,Xg

have no common reducing subspaces in Rn ; a tuple is reducible (over R) if it is not
irreducible (over R).

1.3. Free extreme points and the Arveson boundary

Free extreme points are closely related to the classical dilation theoretic Arveson
boundary. Say a tuple X in a free spectrahedron DA is an Arveson extreme point of DA

if

Y =
(

X β
β T γ

)
∈ DA (1.2)

implies β = 0. The set of Arveson extreme points of a free spectrahedron DA is called
the Arveson boundary of DA and is denoted by ∂ArvDA .

The following theorem illustrates the relationship between the free, Arveson, and
Euclidean extreme points of a free spectrahedron.

THEOREM 1.2. Let A ∈ SMd(R)g and let DA be the associated free spectrahe-
dron.

1. A tuple X ∈DA(n) is a free extreme point of DA if and only if X is an irreducible
Arveson extreme point of DA .

2. If X ∈ DA(n) is an Arveson extreme point of DA , then X is a Euclidean extreme
point of DA .

3. A tuple X ∈ DA is an Arveson extreme point of DA if and only if the only tuple
β ∈ Mn×1(R)g satisfying

kerLA(X) ⊆ kerΛA(β T ) is β = 0. (1.3)

Proof. [14, Theorem 1.1] proves (1) and (2) when working over C . The [14] proof
of (2) can be used over R without change. An adapted proof of (1) which works over
R is given by [13, Theorem 1.2]. Item (3) is proved as [13, Lemma 2.1 (3)]. �

1.4. Main results

1.4.1. Homogeneous free spectrahedra and projective maps

Key ingredients in our study of free quadrilaterals are homogeneous free spectra-
hedra and projective maps of free spectrahedra. We develop several basic results in each
of these directions. Given a g+ 1-tuple (A0,A) = (A0,A1, . . . ,Ag) ∈ SMd(R)g+1 , we
define a homogeneous free spectrahedron to be the set of (X0,X) = (X0,X1, . . . ,Xg) ∈
SM(R)g+1 which satisfy Λ(A0,A)(X0,X) � 0.

We focus our study on the natural class of homogeneous free spectrahedra which
contain the tuple (1,0, . . . ,0) ∈ R

g+1 as an interior point. We say such a homogeneous
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free spectrahedron is positive and, under light assumptions, we show that a homoge-
neous free spectrahedron is positive if and only if A0 � 0. In addition we show that
homogeneous free spectrahedra satisfying these assumptions arise naturally as the ho-
mogenization of a free spectrahedron. Our main result for positive homogeneous free
spectrahedra is an analogue of Theorem 1.2 (3). That is, we establish a kernel condition
in the spirit of equation (1.3) for a tuple to be an Arveson extreme point of a positive
homogeneous free spectrahedron. See Section 2 for formal definitions and details.

Classically, a projective map on Rg may be described as a map which is linear
on the projective space P(Rg) . Informally, a projective map between free spectrahedra
DA and DB is a map which is linear between the homogenizations of DA and DB .
In Theorem 3.7, we show that if P is an invertible projective map which maps a
bounded free spectrahedron DA onto a bounded free spectrahedron DB , then P maps
the Arveson boundary of DA onto the Arveson boundary of DB . In addition, we show
that for any two free quadrilaterals Q1 and Q2 , there exists an invertible projective
map P such that P(Q1) = Q2 . This extends a well known classical result to the free
setting. Projective maps of free spectrahedra are discussed in Section 3.

1.4.2. Noncommutative polynomials and varieties

A noncommutative polynomial in g variables is a finite sum of the form

p(x) = ∑
w

αww ∈ R〈x〉

where αw ∈ R , and the w are words in the noncommutative variables x = (x1, . . . ,xg) .
The degree of a word is the length of the word, and the degree of a noncommutative
polynomial is given by its highest degree word. For example, x1x2 +3x2x1x2 is a non-
commutative polynomial of degree 3. As with linear matrix inequalities, the evaluation
of a noncommutative polynomial p(x) on a matrix tuple X ∈ SM(R)g is obtained by
replacing xi → Xi .

A free set Γ ⊆ SM(R)g is a noncommutative variety if it is the zero set of a finite
collection of noncommutative polynomials. That is, if Γ is a noncommutative variety,
then there exists a finite collection of noncommutative polynomials {p1, . . . , p�} such
that

Γ = {X ∈ SM(R)g| pi(X) = 0 for all i = 1, . . . , �}.
One may readily verify that a noncommutative variety is closed under direct sums and
simultaneous unitary conjugation.

Our main result regarding noncommutative polynomials is that the Arveson bound-
ary of a free quadrilateral is determined by a noncommutative variety.

THEOREM 1.3. Let DA be a free quadrilateral. Then there exist noncommutative
polynomials polynomials p1, p2, p3, p4 in the noncommuting variables x1 and x2 of
degree no more than three such that X ∈ ∂ArvDA if and only if X ∈ DA and pi(X) = 0
for each i = 1, . . . ,4 .
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The proof of Theorem 1.3 is constructive, and a Mathematica notebook which
computes these noncommutative polynomials for any given free quadrilateral is avail-
able in an online appendix: https://github.com/NCAlgebra/UserNCNotebooks/
tree/master/Evert/FreeQuadrilaterals.

1.4.3. Arveson boundaries of other free spectrahedra

Aside from free quadrilaterals, a small number of free spectrahedra are known to
have Arveson boundary given by a noncommutative variety; however, these examples
are comparatively quite simple. A first example is the free cube in g variables, i.e. the
set C g defined by

C g = {X ∈ SM(R)g| X2
i � I for i = 1, . . . ,g}.

As shown by [14, Proposition 7.1], the free cube has Arveson boundary

∂ArvC g = {X ∈ SM(R)g| X2
i − I = 0 for i = 1, . . . ,g},

hence ∂ArvC g is a noncommutative variety.
Other examples include free simplices and the wild disc. Say a bounded free

spectrahedron DA is a free simplex in g variables if there exists a collection {a j}g+1
j=1 ⊆

R
g such that

DA = D⊕g+1
j=1a j .

In words, a free simplex in g variables is a free spectrahedron whose minimal defining
tuple is a g -tuple of commuting g+1×g+1 matrices. For 1 � i < j � g , let ci j(x) =
xix j − x jxi be the commutator of xi with x j , and for i = 1, . . . ,g+ 1, define1 pi(x) =
Π j 	=iLa j (x) . Using [14, Theorem 6.5] one may show that X ∈ SM(R)g is an Arveson
extreme point of D⊕g+1

j=1a j if and only if

ci j(X) = 0 for all 1 � i < j � g and pi(X) = 0 for all i = 1, . . . ,g.

Similarly, [14, Proposition 7.5] has the consequence that the Arveson boundary of
the wild disc is a noncommutative variety. The wild disc is the free spectrahedron with
defining pencil

LA(x1,x2) =
(

1+ x1 x2

x2 1− x1

)
.

A tuple X = (X1,X2) ∈ SM(R)2 is an Arveson extreme point of the wild disc if and
only if I−X2

1 −X2
2 = 0 and X1X2−X2X1 = 0.

The wild disc and free simplicies are examples of minimal matrix convex sets. A
matrix convex set is minimal if it is equal to the matrix convex hull of its first level.
In general, if K ⊆ SM(R)g is minimal matrix convex set determined by a convex set

1The condition ci j(X) = 0 for all 1 � i < j � g enforces that X is a tuple of commuting matrices. It fol-
lows that the Laj (x) may appear in this product in any order without impacting the resulting noncommutative
variety.

https://github.com/NCAlgebra/UserNCNotebooks/tree/master/Evert/FreeQuadrilaterals
https://github.com/NCAlgebra/UserNCNotebooks/tree/master/Evert/FreeQuadrilaterals
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in Rg whose extreme points form a variety, then the Arveson boundary of K is a non-
commutative variety. However, since minimal matrix convex sets can be completely
understood from their first level, this class of examples does not bring deep insight to
the free setting. Furthermore, only a handful of free spectrahedra are known to be min-
imal matrix convex sets. See [31] for an in depth discussion of minimal matrix convex
sets.

To the author’s knowledge, there is no free spectrahedron whose Arveson bound-
ary is known to not be a noncommutative variety; however, the author is also unaware
of other notable examples of free spectrahedra whose Arveson boundary is known to be
a noncommutative variety. Limited numerical evidence suggests that free spectrahedra
with Arveson boundary equal to a noncommutative variety are rare.

1.5. Reader’s guide

Section 2 introduces homogeneous free spectrahedra and establishes several basic
results for them. The main result of the section is Theorem 2.5 which extends the kernel
condition given in Theorem 1.2 (3) for a tuple to be an Arveson extreme point to the
setting of homogeneous free spectrahedra. Section 3 introduces and examines projec-
tive and linear transformations for free and homogeneous free spectrahedra. The main
result in this section is Theorem 3.7 which shows that invertible projective mappings of
bounded free spectrahedra map Arveson boundary onto Arveson boundary. Finally, in
Section 4 we prove our main result, Theorem 1.3. In addition, we show that if DA is
a free quadrilateral, then DA is the matrix convex hull of its Arveson extreme points at
level 2 .

Acknowledgements. The author thanks J. William Helton for helpful discussions
related to this topic and for comments on the original version of the manuscript. The
author also thanks the anonymous referee for helpful suggestions.

2. Homogeneous free spectrahedra

Homogeneous free spectrahedra play an important role in this article. Given a
g+1-tuple (A0,A1, . . . ,Ag) = (A0,A) of d×d symmetric matrices, we define a homo-
geneous free spectrahedron at level n , denoted H(A0,A)(n) , by

H(A0,A)(n) = {(X0,X1, . . . ,Xg) ∈ SMn(R)g+1| Λ(A0,A)(X0,X) � 0}.

The corresponding homogeneous free spectrahedron H(A0,A) is the set ∪nH(A0,A)(n)⊆
SM(R)g . In notation,

H(A0,A) = {(X0,X) ∈ SM(R)g+1| Λ(A0,A)(X0,X) � 0}.

We will often make use of the fact that one may conjugate a tuple (A0,A) with an
invertible matrix without changing the resulting homogeneous free spectrahedron.
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LEMMA 2.1. Let (A0,A) ∈ SMd(R)g+1 and let V ∈Md(R) be any invertible ma-
trix. Then

H(A0,A) = HVT (A0,A)V .

Proof. For any integer n and any tuple (X0,X) ∈ SMn(R)g+1 and any invertible
V ∈ Md(R) one has

ΛVT (A0,A)V (X0,X) = (VT ⊗ In)
(
Λ(A0,A)(X0,X)

)
(V ⊗ In),

hence ΛVT (A0,A)V (X0,X) � 0 if and only if Λ(A0,A)(X0,X) � 0. �
The homogeneous free spectrahedra we consider typically arise as the homoge-

nization of a free spectrahedron, hence the A0 and X0 terms in the g+1-tuples above
are treated specially. In order to well define such a homogenization, we must first intro-
duce the notion of minimal defining tuples for free and homogeneous free spectrahedra.

2.0.1. Minimal defining tuples

Let K ⊆ SM(R)g+1 be a homogeneous free spectrahedron and let (A0,A) ∈
SMd(R)g+1 . Say Λ(A0,A) is a defining pencil for K if K = H(A0,A) . If there is an
orthogonal matrix U ∈ Md(R) such that UT (A0,A)U = (A1

0,A
1)⊕ (A2

0,A
2) , then the

linear pencils Λ(A0,A)(x) and
(
Λ(A1

0,A
1) ⊕Λ(A2

0,A
2)
)
(x) define the same homogeneous

free spectrahedron. For i = 1,2, the linear pencil Λ(Ai
0,A

i) is called a subpencil of

Λ(A0,A) . Say the tuple (A0,A) is a minimal defining tuple for H(A0,A) if for all invert-
ible V ∈ Md(R)g there is no proper subpencil of ΛVT (A0,A)V which is a defining pencil
for H(A0,A) .

For nonhomogeneous free spectrahedra, defining pencils and subpencils are de-
fined analogously. A tuple A ∈ SMd(R)g is a minimal defining tuple for a free spec-
trahedron DA if there is no proper subpencil of LA which is a defining pencil for DA .
Also see [20, 36] for details on minimal defining tuples.

2.0.2. Homogenizations of free spectrahedra

Given a free spectrahedron DA , the homogenization of DA , denoted hom(DA) , is
the homogeneous free spectrahedron H(I,Ǎ) , where Ǎ is any minimal defining tuple for
DA . The fact that a homogenization is well defined is a consequence of [20, Theorem
3.12]. Without requiring the defining tuple to be minimal, a homogenization is not
necessarily well defined, e.g. see the upcoming Remark 2.3.

Similarly, we often consider the “nonhomogeneous” part of a homogeneous free
spectrahedron. Given a homogeneous free spectrahedron H(A0,A) , let hom−1(H(A0,A))
denote the set

hom−1(H(A0,A)) = {X ∈ SM(R)g| (I,X) ∈ H(A0,A)}.
We say that a homogeneous free spectrahedron H(A0,A) is bounded (i.e. has bounded

level sets) if hom−1(H(A0,A)) is bounded. In the case that A0 is positive definite, it is
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easy to verify that hom−1(H(A0,A)) is the free spectrahedron defined by

hom−1(H(A0,A)) = D
A−1/2

0 AA−1/2
0

.

Here A−1/2
0 is the inverse of the positive definite square root of A0 .

All homogeneous free spectrahedra which arise as the homogenization of some
nonhomogeneous free spectrahedron contain the tuple (1,0, . . . ,0) ∈ R

g in their inte-
rior. We call a homogeneous free spectrahedron H(A0,A) which contains (1,0, . . . ,0)
in the interior of H(A0,A)(1) a positive homogeneous free spectrahedron.

2.1. Basic properties of homogeneous free spectrahedra

The following lemma gives several useful properties for homogeneous free spec-
trahedra.

LEMMA 2.2. Let (A0,A) ∈ SMd(R)g+1 and assume H(A0,A) is a positive homo-
geneous free spectrahedron. Then one has the following:

1. The homogeneous component A0 is positive semidefinite. Furthermore, if (A0,A)
is a minimal defining tuple for H(A0,A) , then A0 � 0 .

2. If H(A0,A) is bounded, then for any (X0,X) ∈ H(A0,A) one has

X0 � 0 and X†/2
0 XX†/2

0 ∈ hom−1(H(A0,A))

and
kerX0 ⊆ kerXi for all i = 1, . . . ,g.

Here X†/2
0 is the positive semidefinite square root of the Moore-Penrose pseudo

inverse of X0 .

3. If H(A0,A) is bounded, then the tuple (A0,A) is a minimal defining tuple for

H(A0,A) if and only if A0 � 0 and A−1/2
0 AA−1/2

0 is a minimal defining tuple for

hom−1(H(A0,A)) .

4. A bounded homogeneous free spectrahedron is positive if and only if it can be
expressed as the homogenization of a bounded free spectrahedron.

Proof. To prove item (1), note that by assumption we have (1,0, . . . ,0) ∈H(A0,A) .
Equivalently we have

Λ(A0,A)(1,0, . . . ,0) = A0 � 0.

It remains to show that A0 � 0 if (A0,A) is a minimal defining tuple for H(A0,A) .
To this end, let V be an isometry mapping from the kernel of A0 into Rd . By

assumption we have (1,0, . . . ,0) in the interior of H(A0,A) , so there exists some ε > 0
such that for all x ∈ Rg with ‖x‖2 < ε we have (1,x) ∈ H(A0,A) . Thus we have

VT Λ(A0,A)(1,x)V = ΛVT AV (x) � 0 for all x with ‖x‖2 < ε.
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It follows that ΛVT AV is identically zero, hence VT AV = 0. This implies that there is a
unitary U ∈ Rd such that

UT (A0,A)U = (Ǎ0, Ǎ)⊕ (0,0)

where Ǎ0 � 0. We conclude that if (A0,A) is a minimal defining tuple, then A0 � 0.
We now prove item (2). By assumption H(A0,A) is positive, so using Lemma 2.1

with item (1) we can reduce to the case A0 = I so that

hom−1(H (A0,A)) = DA.

Assume towards a contradiction that there is some (X0,X) ∈ H(I,A)(n) with X0 	� 0.
Then there is an isometry V : R → Rn such that VT X0V < 0. But then we have

(I⊗VT )Λ(I,A)(X0,X)(I⊗V )= Λ(I,A)(V
T X0V,VT XV )= I⊗(VT X0V )+ΛA(VT XV )� 0.

If follows that
ΛA(αVT XV ) � 0 for all α > 0,

from which we conclude αVT XV ∈DA for all α > 0. This contradicts the assumption
that DA = hom−1(H (I,A)) is bounded. Having shown that X0 is positive semidefinite,
it is easy to verify that

X†/2
0 XX†/2

0 ∈ hom−1(H (A0,A)).

The claim
kerX0 ⊆ kerXi for all i = 1, . . . ,g

follows from letting V be an isometry mapping the kernel of X0 into R
n and repeating

the argument above.
For item (3), first assume that (A0,A) is a minimal defining tuple for H(A0,A) . Item

(1) shows that A0 is positive definite so we need only show that A−1/2
0 AA−1/2

0 is a min-
imal defining tuple for hom−1(H(A0,A)) = D

A
−1/2
0 AA

−1/2
0

. Assume towards a contradic-

tion that there is some proper subpencil A1 of A−1/2
0 AA−1/2

0 such that D
A
−1/2
0 AA

−1/2
0

=

DA1 . Equivalently we have

L
A
−1/2
0 AA

−1/2
0

(X) � 0 if and only if LA1(X) � 0. (2.1)

We will show
H

(I,A−1/2
0 AA

−1/2
0 )

= H(I,A1).

Note that H
(I,A−1/2

0 AA
−1/2
0 )

= H(A0,A) is bounded by assumption. Additionally,

H(I,A1) is bounded since hom−1(H(I,A1)) = DA1 is bounded. Using item (2) shows
that if (Y0,Y ) is an element of either H(A0,A) or H(I,A1) , then up to unitary equivalence
we have

(Y0,Y ) = (Y̌0,Y̌ )⊕ (0,0)
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where Y̌0 � 0. Furthermore, for Y̌0 � 0, one has

Λ
(I,A−1/2

0 AA
−1/2
0 )

(Y̌0,Y̌ ) � 0 if and only if L
(A−1/2

0 AA
−1/2
0 )

(Y̌−1/2
0 Y̌Y̌−1/2

0 ) � 0,

and similarly

Λ(I,A1)(Y̌0,Y̌ ) � 0 if and only if LA1(Y̌−1/2
0 Y̌Y̌−1/2

0 ) � 0.

Combining the above with equation (2.1) shows H(A0,A) = H
(I,A−1/2

0 AA−1/2
0 )

= H(I,A1) ,

hence (A0,A) is not a minimal defining tuple for H(A0,A) .
It remains to prove the reverse direction. We now assume that A0 � 0 and show

that if (A0,A) is not a minimal defining tuple for H(A0,A) , then A−1/2
0 AA−1/2

0 is not a
minimal defining tuple for D

A−1/2
0 AA−1/2

0
= hom−1(H(A0,A)) . By definition, there exists

some invertible matrix V ∈ Md(R)g such that

VT (A0,A)V = (A1
0,A

1)⊕ (A2
0,A

2)

and such that H(A0,A) = H(A1
0,A

1) . Since A0 is positive definite and V is invertible, we

have A1
0 � 0, hence

D
A−1/2

0 AA−1/2
0

= hom−1(H(A0,A)) = hom−1(H(A1
0,A

1)) = D(A1
0)

−1/2A1(A1
0)

−1/2 .

The size of the matrices in the tuple (A1
0)

−1/2A1(A1
0)

−1/2 is strictly smaller than that

of the matrices in the tuple A−1/2
0 AA−1/2

0 , so an application [20, Theorem 3.12] shows

that A−1/2
0 AA−1/2

0 is not a minimal defining tuple for D
A
−1/2
0 AA

−1/2
0

.

Item (4) is a straightforward consequence of item (3). �

REMARK 2.3. The assumption that H(A0,A) is bounded in item (3) of Lemma
2.2 is necessary. In the case of unbounded free spectrahedra, it is possible to have
tuples which define the same free spectrahedron, but not the same homogeneous free
spectrahedron. An example in a single variable is as follows. Set

A = 1 and B =
(

1 0
0 1/2

)
.

Then DA = DB while H(I,A) 	= H(I,B) as seen from the fact that (−1,1) ∈ H(I,A) but
(−1,1) /∈H(I,B) . Furthermore, (I,B) is a minimal defining tuple for H(I,B) while B is
not a minimal defining tuple for DB .

REMARK 2.4. [20, Theorem 3.12] (see also [36]) shows that any two minimal
defining tuples for a free spectrahedron DA are unitarily equivalent, hence one may
alternatively define a minimal defining tuple for DA as a defining tuple for DA which
has smallest size. Using Lemma 2.2 (3), one may also define a minimal defining tu-
ple for a bounded positive homogeneous free spectrahedron in this manner. That is,
(A0,A) ∈ SMd(R)g+1 is a minimal defining tuple for H(A0,A) if and only if for any
integer d1 and any tuple (B0,B) ∈ SMd1(R)g+1 such that H(A0,A) = H(B0,B) one has
d � d1 .
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2.2. The Arveson boundary of homogeneous free spectrahedra

Lemma 2.2 allows the Arveson boundary of a bounded positive homogeneous free
spectrahedron H(A0,A) , denoted ∂Arv(H(A0,A)), to be defined in the following way. For
a g + 1-tuple (X0,X) ∈ SMn(R)g+1 , say (X0,X) is in the Arveson boundary of the
bounded positive homogeneous free spectrahedron H(A0,A) if and only if (X0,X) is
unitarily equivalent to a tuple of the form (Y0,Y )⊕ (0,0) where

Y0 � 0 and Y−1/2
0 YY−1/2

0 ∈ ∂Arv(hom−1(H(A0,A))).

The following theorem is an extension of Theorem 1.2 (3) to the setting of homoge-
neous free spectrahedra.

THEOREM 2.5. Let H(A0,A) be a bounded positive homogeneous free spectrahe-
dron with minimal defining tuple (A0,A) . Let (X0,X) ∈ SMn(R)g+1 with X0 � 0 and

set Y = X−1/2
0 XX−1/2

0 . Then (X0,X) ∈ ∂ArvH(A0,A) if and only if for each nonnegative
integer m � n the only β ∈ Mn(R)g satisfying

kerΛ(A0,A)(I,Y ) ⊆ kerΛ(A0,A)(Im ⊕0n−m,β ) (2.2)

is

β =
(

Y11 Y12

0 0n−m

)
. (2.3)

Here, Y and β are written with respect to the block decomposition of Im ⊕0n−m .

Proof. By assumption (A0,A) is a minimal defining tuple for H(A0,A) , so Lemma
2.2 shows that A0 � 0. It is straightforward to check that a tuple (Im⊕0n−m,β ) satisfies
equation (2.2) if and only if

kerΛ
(I,A−1/2

0 AA−1/2
0 )

(I,Y ) ⊆ kerΛ
(I,A−1/2

0 AA−1/2
0 )

(Im ⊕0n−m,β )

so we may without loss of generality reduce to the case A0 = I .
Now, to prove the forward direction of the theorem, note that by assumption the

only β ∈ (Rn×n)g satisfying

kerΛ(I,A)(I,Y ) ⊆ kerΛ(I,A)(0n,β )

is β = 0. It follows from Theorem 1.2 (3) that Y ∈ ∂Arv(DA) and therefore (X0,X) ∈
∂ArvH(I,A) .

We now prove the reverse direction. Observe that for any β ∈ Mn(R)g one has

kerΛ(I,A)

((
Im 0
0 0n−m

)
,

(
β11 β12

β21 β22

))
⊆ kerΛ(I,A)

((
0m 0
0 0n−m

)
,

(
0m 0
β21 β22

))
.

It follows that if β satisfies equation (2.2), then

kerΛ(I,A)(I,Y ) = kerLA(Y ) ⊆ kerΛA

((
0m 0
β21 β22

))
.
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By definition, (X0,X)∈ ∂Arv(HA) if and only if Y ∈ ∂Arv(DA) so again using Theorem
1.2 (3) shows that that β21 = 0 and β22 = 0.

To complete the proof, observe that if β satisfies equation (2.2), then we have

kerΛ(I,A)(I,Y ) ⊆ kerΛ(I,A)(I,Y )−Λ(I,A)(Im ⊕0nm ,β ).

Using β21 = 0 and β22 = 0 gives

kerΛ(I,A)(I,Y )−Λ(I,A)(Im ⊕0nm,β ) = kerΛ(I,A)

((
0m 0
0 In−m

)
,

(
Y11−β11 Y12−β12

Y21 Y22

))

⊆ kerΛ(I,A)

((
0m 0
0 0n−m

)
,

(
Y11−β11 Y12−β12

0 0n−m

))
.

This shows that

kerLA(Y ) ⊆ kerΛA

((
Y11−β11 Y12−β12

0 0

))
.

As before, it follows from Theorem 1.2 (3) that Y11 = β11 and Y12 = β12 . �

3. Linear and projective transformations of homogeneous free spectrahedra

We now discuss linear and projective transformations of free and homogeneous
free spectrahedra. The main goal in this section is to show that the Arveson boundary
of a free spectrahedron is preserved under invertible projective transformations of the
free spectrahedron.

Given a matrix W ∈Mg+1(R) , we define a linear transformation TW on SM(R)g+1

by

TW (X0,X) =
( g+1

∑
j=1

W1 jXj−1, . . . ,
g+1

∑
j=1

WgjXj−1

)
for all (X0,X) ∈ SM(R)g+1.

Note that if we consider x = (x0,x1, . . . ,xg) as a vector of noncommuting indetermi-
nants, then TW (X0,X) is the evaluation of Wx on the tuple (X0,X1, . . . ,Xg) . A linear
transformation of a homogeneous free spectrahedron is the set defined by

TW (H(A0,A)) = {TW (X0,X)| (X0,X) ∈ H(A0,A)}.

One may easily verify that a linear transformation is invertible if and only if the matrix
W is invertible with inverse TW−1 .

3.1. Basic properties of linear and projective transformations

We now establish several basic properties for linear mappings of homogeneous
free spectrahedra. Our first lemma shows that an invertible linear transformation of a
homogeneous free spectrahedron is again a homogeneous free spectrahedron.



1366 E. EVERT

LEMMA 3.1. For any (A0,A),(X0,X) ∈ SM(R)g+1 and W ∈ Mg+1(R) one has

Λ(A0,A)(TW (X0,X)) = ΛTWT (A0,A)(X0,X). (3.1)

As consequence, if W is invertible, then one has

TW (H(I,A)) = HTW−T (I,A). (3.2)

Proof. It is a routine calculation to verify that equation (3.1) holds for any (A0,A) ,
(X0,X) ∈ SM(R)g+1 and any W ∈ Mg+1(R) . In the case that W is invertible, it is
straightforward to check that TW is invertible with inverse TW−1 . Combining these
facts gives TW (H(I,A)) = HTW−T (I,A) . �

We next show that linear transformations are free maps in that they respect direct
sums and left and right element wise matrix multiplications. An important consequence
of this fact is that invertible linear transformations of minimal defining tuples again give
minimal defining tuples.

LEMMA 3.2. Linear transformations of matrix tuples respect direct sums and left
and right matrix multiplication. That is, for any (A0,A),(B0,B) ∈ SM(R)g+1 and W ∈
Mg+1(R) one has

TW ((A0,A)⊕ (B0,B)) = TW (A0,A)⊕TW (B0,B).

If in addition (A0,A) is a g+ 1 -tuple of d × d matrices and U ∈ Mn×d(R) and V ∈
Md×m(R) , then

TW (U(A0,A)V ) = UTW (A0,A)V ∈ Mn×m(R)g+1.

As a consequence, if TW is invertible and (A0,A) ∈ SMd(R)g+1 is a minimal defining
tuple for H(A0,A) , then TW−T (A0,A) is a minimal defining tuple for TW (H(A0,A)) .

Proof. It is a straightforward computation to check that linear transformations re-
spect direct sums and left and right matrix multiplications. To prove the last claim,
assume that W ∈ Mg+1(R) is invertible and that (A0,A) is not a minimal defining tu-
ple for H(A0,A) . We will show that TW−T (A0,A) is not a minimal defining tuple for
TW (H(A0,A)) = HTW−T (A0,A) .

Since (A0,A) is not a minimal defining tuple for H(A0,A) , there is an invertible
matrix V ∈ Md(R) such that VT (A0,A)V = (A1

0,A
1)⊕ (A2

0,A
2) where

Λ(A1
0,A

1)(X0,X) � 0 implies Λ(A2
0,A

2)(X0,X) � 0

for any (X0,X) ∈ SM(R)g+1 . Using the fact that linear transformations respect direct
sums and left and right matrix multiplication, we find that VT TW−T (A0,A)V is equal
to TW−T (A1

0,A
1)⊕TW−T (A2

0,A
2) , and an application of Lemma 3.1 shows that

ΛTW−T (A1
0,A

1)TW (X0,X) � 0 implies ΛTW−T (A2
0,A

2)TW (X0,X) � 0.

We conclude that HTW−T (A1
0,A

1) = HTW−T (A0,A) , hence TW−T (A0,A) is not a minimal

defining tuple. �
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3.2. Projective transformations of free spectrahedra

Suppose we are given a free spectrahedron DA and a matrix W ∈ Mg+1(R) such
that TW (hom(DA)) is a positive homogeneous free spectrahedron. Then we call TW

a positive linear transformation of hom(DA) , and we define the projective transforma-
tion PW of DA by

PW (DA) = hom−1(TW (hom(DA))).

We extend the definitions of hom and hom−1 and PW to matrix tuples as follows.
Given a matrix tuple X ∈ SM(R)g , we define

hom(X) = (I,X) ∈ SM(R)g+1.

Additionally, given a matrix tuple (X0,X) ∈ SM(R)g+1 with X0 � 0, we define

hom−1(X) = X†/2
0 XX†/2

0 ∈ SM(R)g.

Suppose as before that the free spectrahedron DA and matrix W ∈ Mg+1(R) are
chosen so that TW (hom(DA)) is a positive homogeneous free spectrahedron. Then for
X ∈ DA we define

PW (X) = hom−1(TW (hom(X))).

Recall that the homogeneous component of TW (hom(X)) is positive semidefinite as a
consequence of Lemma 2.2, hence PW (X) is well defined.

Using Lemma 3.2 allows us to obtain an analogue of Lemma 3.1 for projective
transformations.

LEMMA 3.3. Let A ∈ SMd(R)g be a minimal defining tuple for the free spectra-
hedron DA and let W ∈ Mg+1(R) be an invertible matrix such that TW is a positive
linear transformation of the homogeneous free spectrahedron H(I,A) . Then

PW (DA) = DPW−T (A). (3.3)

In particular, the image of a free spectrahedron under a projective transformation de-
fined by an invertible matrix is again a free spectrahedron.

Proof. By definition we have hom(DA) = Dhom(A) , so an application of Lemma
3.1 gives

PW (DA) = hom−1(HTW−T (hom(A))).

Furthermore, Lemma 3.2 shows that TW−T (hom(A)) is a minimal defining tuple for
HTW−T (hom(A)) , hence we may use Lemma 2.2 item (1) to conclude that the homoge-
neous component of this matrix tuple is positive definite.

It follows that hom−1(TW−T (hom(A))) is well defined and that

PW (DA) = Dhom−1(TW−T (hom(A))) = DPW−T (A). �

We now show that if DA is a bounded free spectrahedron and PW is a projective
transformation of DA where the matrix W is invertible, then the map X → PW (X)
defined on DA behaves in the expected way.
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LEMMA 3.4. Let DA be a bounded free spectrahedron and let W ∈ Mg+1(R) be
an invertible matrix such that PW is a projective transformation of DA . Then

PW (DA) = {PW (X)| X ∈ DA}.

If in addition PW (DA) is bounded, then the map X → PW (X) defined on DA is
invertible with inverse PW−1 .

Proof. Given an element Y ∈ PW (DA) , we will show that PW (PW−1(Y )) = Y .
Using Lemmas 3.1 and 3.3 shows that

Y ∈ PW (DA) if and only if ΛTW−T (I,A)(I,Y ) = Λ(I,A)TW−1(I,Y ) � 0.

Equivalently, we have Y ∈ PW (DA) if and only if TW−1(I,Y ) ∈ H(I,A) .
Write (X0,X) = TW−1(I,Y ) . Since the matrices (I,Y1, . . . ,Yg) do not have a com-

mon null space, using Lemma 3.2 shows that the matrices (X0,X1, . . . ,Xg) cannot have
a common null space. Moreover, we have assumed DA is bounded, so Lemma 3.1 (2)
shows

X0 � 0 and kerX0 ⊆ kerXi for all i = 1, . . . ,g.

We conclude that X0 � 0 and that PW−1(Y ) = X−1/2
0 XX−1/2

0 . It is then straightforward

to verify that PW (X−1/2
0 XX−1/2

0 ) = Y .
In the case that PW (DA) is also bounded, one may repeat the above argument to

show that PW−1(PW (X)) = X for any X ∈ DA . It follows that if DA and PW (DA)
are both bounded, then PW is invertible with inverse PW−1 . �

For general spectrahedra, a similar argument may be used to show that if W is
invertible, then

PW (DA) = {PW (X)| X ∈ DA}.
Here, the closure is taken level-wise. In particular, PW maps the interior of DA onto
the interior of PW (DA) . In fact, PW is invertible when restricted to the interior of
DA . However, if DA is unbounded while PW (DA) is bounded, then PW cannot map
onto the boundary of PW (DA) .

On the other hand, if DA is bounded while PW (DA) is unbounded, then PW will
map a boundary point of DA to an interior point of PW (DA) . In this case, PW is not
one-to-one on DA . This behaviour is illustrated in the upcoming Example 3.5.

3.2.1. Boundedness of free spectrahedra under projective mappings

We emphasize that a projective transformation PW of a bounded free spectrahe-
dron does not necessarily result in a bounded free spectrahedron. This can occur even
when the matrix W is invertible.
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EXAMPLE 3.5. Let C be the free square. That is C is the free spectrahedron
with defining pencil LC where

C =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

In addition, let W ∈ M3(R) be the matrix

W =

⎛
⎝ 0 1 −1

1 −4 3
−1 5 −3

⎞
⎠ .

Then W is invertible and TW (hom(C )) is a positive homogeneous free spectrahedron,
so PW (C ) is well defined. However, for −1 � y < 1 we have

(1,y) ∈ C (1) and PW (1,y) =
(
−3,3+

1
1− y

)
.

It follows that PW (C ) is not bounded.
We also note that PW is not one-to-one on C . In particular, we have

TW (1,1,1) = (0,0,1)

from which we find PW (1,1) = (0,0) . However, we also have PW (0,−1/3)= (0,0) .
Intuitively, PW fails to be one-to-one because TW ◦hom maps the boundary point

(1,1) ∈ ∂C to a point at infinity in the projective space P(R2) . One may interpret
Lemma 3.1 (2) as showing that a bounded positive homogeneous free spectrahedron
does not contain points at infinity, hence this issue does not occur when PW (DA) is
bounded.

The following lemma gives various conditions related to boundedness of the image
of a free spectrahedron under a projective map.

LEMMA 3.6. Let DA ⊆ SM(R)g be a free spectrahedron, and let W = (wi, j) ∈
Mg+1(R) be an invertible matrix chosen so that PW is a projective transformation of
DA . Then we have the following.

1. If DA is bounded, then the g×g submatrix of W which is obtained by deleting
the first row and column of W is invertible.

2. If PW (DA) is bounded, then w1,1 > 0 .

3. If DA is bounded and w1,1 > 0 and w1, j = 0 for all j > 1 , then PW (DA) is
bounded.



1370 E. EVERT

Proof. We first prove item (2). Considering the image of (1,0, . . . ,0) ∈ Rg+1 un-
der TW shows that (w1,1,w1,2, . . . ,w1,g+1) ∈ TW (hom(DA)) . Furthermore, from our
definitions of projective mappings and boundedness for homogeneous free spectrahe-
dra, we know that TW (hom(DA)) is a bounded positive homogeneous free spectrahe-
dron. Since TW is invertible, we have (w1,1,w1,2, . . . ,w1,g+1) 	= 0, hence an application
of Lemma 2.2 (2) shows w1,1 > 0.

We now prove item (1). In this case PW−1 is a projective transformation mapping
PW (DA) into the bounded free spectrahedron DA , so using item (2) shows that the 1,1
entry of W−1 is positive. The invertibility of the desired submatrix of W follows from
an application of Cramer’s rule.

To prove item (3), observe that if w1, j = 0 for each j > 1, then PW acts as an
invertible affine transformation on Rg . It follows that PW maps bounded subsets of
Rg to bounded subsets of Rg . We conclude that level one of PW (DA) is bounded,
hence PW (DA) is bounded. �

3.3. Projective transformations and the Arveson boundary

We now establish the main result of the section. Namely, we show that invertible
linear and projective transformations of free spectrahedra map Arveson boundary to
Arveson boundary.

THEOREM 3.7. Let A ∈ SMd(R)g and let W ∈ Mg+1(R) be an invertible ma-
trix such that PW is a projective transformation of DA . Assume that both DA and
PW (DA) are bounded free spectrahedra. Then for any X ∈ SM(R)g one has X ∈
∂ArvDA if and only if PW (X) ∈ ∂Arv(PW (DA)) . Equivalently one has

∂Arv(PW (DA)) = PW (∂ArvDA)).

Proof. By assumption both DA and PW (DA) are bounded and W is invertible, so
Lemma 3.4 shows that PW is invertible with inverse PW−1 . Therefore, it is sufficient
to show that if X /∈ ∂ArvDA , then PW (X) /∈ ∂ArvPW (DA) . In particular, we show
that (I,X) /∈ ∂ArvH(I,A) implies TW (I,X) /∈ ∂ArvTW (H(I,A)) . Furthermore, we may
WLOG assume that A is a minimal defining tuple for DA , hence (I,A) is a minimal
defining tuple for H(I,A) .

Assume (I,X) ∈H(I,A) \∂ArvH(I,A) . As a consequence of [13, Lemma 2.1], there
must exist some nonzero tuple β ∈ Mn(R)g such that

kerΛ(I,A)(I,X) ⊆ kerΛ(I,A)(0,β ).

Using Lemma 3.1 we obtain

kerΛTW−T (I,A)TW (I,X) ⊆ kerΛTW−T (I,A)TW (0,β ). (3.4)

Set (Ỹ0,Ỹ ) := TW (I,X) and (B̃0, B̃) = TW−T (I,A) . We first show that B̃0 � 0 and
Ỹ0 � 0.
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From our definition of a projective map, the homogeneous free spectrahedron
HTW−T (I,A) is positive, and Lemma 3.2 shows that TW−T (I,A) is a minimal defin-

ing tuple. It follows from Lemma 2.2 (1) that B̃0 � 0. Furthermore, using Lemma 3.2
together with Lemma 2.2 (2) allows us to conclude that if Ỹ0 has a nontrivial null space,
then each component of TW−1(Ỹ0,Ỹ ) = (I,X) must have a nontrivial null space, which
not possible. Therefore we must have Ỹ0 � 0.

Having shown Ỹ0 � 0 and B̃0 � 0, we introduce the following notation:

(I,Y ) := Ỹ−1/2
0 (Ỹ0,Ỹ )Ỹ−1/2

0 , (γ0,γ) := Ỹ−1/2
0 TW (0,β )Ỹ−1/2

0 ,

(I,B) := B̃−1/2
0 (B̃0, B̃)B̃−1/2

0 .

With this notation, equation (3.4) is equivalent to

kerΛ(I,B)(I,Y ) ⊆ kerΛ(I,B)(γ0,γ). (3.5)

Note that (γ0,γ) 	= 0 since TW is invertible and (0,β ) 	= 0 by assumption. Therefore,
if γ0 = 0, then γ 	= 0. In this case we may use Theorem 1.2 (3) together with equation
(3.5) to conclude (I,Y ) /∈ ∂ArvTW (H(A0,A)) , hence TW (I,X) /∈ ∂ArvTW (H(A0,A)) .

Now assume γ0 	= 0. In this case, equation (3.5) implies

kerΛ(I,B)(I,Y ) ⊆ ker(I⊗ γ†
0 )Λ(I,B)(γ0,γ) = kerΛ(I,B)(γ

†
0 γ0,γ†

0 γ). (3.6)

Note that there exists a unitary U such that UT γ†
0 γ0U = Im ⊕ 0n−m for some positive

integer m � n . Left multiplying equation (3.6) by I ⊗UT and right multiplying by
I⊗U gives

kerΛ(I,B)(I,U
TYU) ⊆ kerΛ(I,B)(Im ⊕0n−m,UT γ†

0 γU). (3.7)

Since the Arveson boundary is closed under unitary conjugation, we can without loss
of generality assume U = I and that γ†

0 γ0 = Im ⊕0n−m .
Write

Y =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
with respect to the block decomposition of Im ⊕ 0n−m , and suppose towards a contra-
diction that (I,Y ) ∈ ∂Arv(H(I,B)) . In this case Theorem 2.5 implies that

(Im,Ψ11) = (Im,VT γ†
0 γV ) (3.8)

where V : Rm → Rn is the isometry

V =
(

Im×m

0(n−m)×m

)
.

Expanding the right hand side of (3.8) gives

(Im,Ψ11) = VT γ†
0 Ỹ

−1/2
0 TW (0,β )Ỹ−1/2

0 V. (3.9)
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Lemma 3.2 shows that linear transformations respect left and right matrix multiplication
so we obtain

(Im,Ψ11) = VT (γ†
0 γ0,γ†

0 γ)V = TW (0,VT γ†
0 Ỹ

−1/2
0 βỸ−1/2

0 V ) (3.10)

or equivalently

TW−1(Im,Ψ11) = (0,VT γ†
0Ỹ

−1/2
0 βỸ−1/2

0 V ). (3.11)

To complete the proof note that (Im,Ψ11)∈TW (H(A0,A)) since homogeneous free
spectrahedra are closed under isometric conjugation, therefore we must have

(0,VT γ†
0 Ỹ

−1/2
0 βỸ−1/2

0 V ) ∈ H(A0,A).

Using Lemma 2.2 (2), we conclude that

(0,VT γ†
0 Ỹ

−1/2
0 βỸ−1/2

0 V ) = (0,0) ∈ SMn(R)g+1,

a contradiction to equation (3.10). We conclude that (I,Y ) /∈ ∂ArvH(A0,A) and moreover
(Ỹ0,Ỹ ) = TW (I,X) /∈ ∂ArvH(A0,A) . �

3.4. Projective transformations vs. Euclidean extreme points

We end the section by briefly examining the relationship between projective trans-
formations and Euclidean extreme points. A perhaps surprising fact is that the image
of a Euclidean extreme point under a projective transformation is not necessarily a Eu-
clidean extreme point.

EXAMPLE 3.8. Let C be the free matrix square as defined in example 3.5. Set

X =

((
1√
2

1√
2

1√
2

−1√
2

)
,

(
1 0
0 0

))
.

The tuple X is a boundary point of C but is not a Euclidean extreme point of C .
However, if one sets

V =
1

280

⎛
⎝306 0 54
−54 63 −108
27 126 27

⎞
⎠ ,

then PV (C ) is a bounded free spectrahedron and PV is an invertible projective map of
C . Moreover, by checking the appropriate kernel condition described in [14, Corollary
2.3], it can be shown that PV (X) is a Euclidean extreme point of PV (C ) .

Note that PV (C ) is a free quadrilateral with defining pencil given by

LA(x) =

⎛
⎜⎜⎝

1+ 46x1
47 + 90x2

47 0 0 0
0 1− 14x1

3 + 294x2
127 0 0

0 0 1+ 2x1
625 − 1242x2

625 0
0 0 0 1+ 635x1

333 − 35x2
37

⎞
⎟⎟⎠ .
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A consequence of this example is that the Arveson boundary of a given free quadrilat-
eral is not necessarily equal to the set of Euclidean extreme points of the free quadri-
lateral. In contrast, the free square has the special property that its Arveson boundary
is equal to its set of Euclidean extreme points, see [14, Proposition 7.1]. In particular,
[14, Proposition 7.1] implies that X is not an Arveson extreme point of C . It follows
from Theorem 3.7 that PV (X) is not an Arveson extreme point of the free quadrilateral
PV (C ) .

4. The Arveson boundary of a free quadrilateral

In this section we give our classification of the Arveson boundary of free quadri-
laterals. We begin by examining the free square. Recall that the free square is the free
spectrahedron in two variables defined by

C = {X ∈ SM(R)2 : I � X2
1 and I � X2

2 }.
Equivalently C is the free spectrahedron defined by the linear pencil

LC(x) = I +

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠x1 +

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎠x2.

As shown by [14, Proposition 7.1], the Arveson boundary of the free square is given by

∂ArvC = ∂EucC = {X ∈ M(R2) : I−X2
1 = 0 and I−X2

2 = 0}.
That is, the Arveson boundary of the free square is a noncommutative variety.

We shall use projective mappings of the free square to obtain noncommutative
polynomials which annihilate the Arveson boundary of any given free quadrilateral. It
is well known in the classical setting that all quadrilaterals are projectively equivalent,
i.e. that they may be mapped to each other via invertible projective transformations.
The following Theorem extends this result to the free setting.

THEOREM 4.1. Let DA and DB be any free quadrilaterals. Then there exists an
invertible projective mapping PW such that PW (DA) = DB .

Before proving the result we note that since a free spectrahedron is not uniquely
determined by its first level, we cannot directly apply the classical result to obtain the
result in the free setting. Similar to the classical case, we prove the result in free set-
ting by constructing a sequence of projective maps which map the defining tuple of
an arbitrary free quadrilateral to a sequence of standard defining tuples. The key issue
compared to the classical setting is showing that one may preserve positivity of the
homogeneous component in each step.

Proof. Given free quadrilaterals DA and DB , we will show that there is an invert-
ible matrix V ∈ M3(R) such that

TV (I,A) = (B̃0, B̃) where B̃0 � 0 and B̃−1/2
0 B̃B̃−1/2

0 = B.
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In this argument we assume that the A and B are minimal defining tuples for the free
quadrilaterals DA and DB , respectively.

Since the composition of projective maps is again a projective map, it is sufficient
to treat the case where B is fixed and A is arbitrary. We set

B1 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ B2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

and for i = 1,2 we let Ai be a 4×4 diagonal matrix with diagonal elements ai j for j =
1,2,3,4. We may rearrange the diagonal elements of the tuple A without changing the
free spectrahedron DA , so we WLOG assume that the diagonal elements are arranged
such that

θ (a11,a21) < θ (a12,a22) < θ (a13,a23) < θ (a14,a24).

Here, θ (a1 j,a2 j) denotes the angle the tuple (a1 j,a2 j) forms with the positive x -axis
when proceeding counter clockwise.

It straightforward to check that there is an invertible matrix U ∈ M3(R) of the
form

U =

⎛
⎝1 0 0

0 u22 u23

0 u32 u33

⎞
⎠

such that TU(I,A1,A2) = (I, B̂1, B̂2) where the matrices B̂1 and B̂2 have the form

B̂1 =

⎛
⎜⎜⎝

b̂11 0 0 0
0 −b̂12 0 0
0 0 −b̂12 0
0 0 0 b̂14

⎞
⎟⎟⎠ B̂2 =

⎛
⎜⎜⎝

b̂21 0 0 0
0 b̂22 0 0
0 0 −b̂23 0
0 0 0 −b̂23

⎞
⎟⎟⎠

and where b̂i j � 0 if either i > 1 or j > 1. An application of Lemma 3.6 (3) shows that
the homogeneous free spectrahedron H(I,B̂1,B̂2) = TU−T H(I,A) is bounded from which

it follows that b̂12 + b̂14 > 0 and b̂22 + b̂23 > 0. Intuitively, TU is a linear map which
sends the quadrilateral with corners (a1 j,a2 j) to a quadrilateral with one side parallel
to the x -axis and an adjacent side parallel to the y-axis.

Now let W ∈ M3(R) be the matrix

W =

⎛
⎜⎜⎝

1 0 0
b̂12−b̂14
b̂12+b̂14

2
b̂12+b̂14

0
b̂23−b̂22
b̂23+b̂22

0 2
b̂23+b̂22

⎞
⎟⎟⎠ .

Then W is invertible and we have

TW (I, B̂1, B̂2) =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

β1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

β2 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .
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Write TW (I, B̂1, B̂2) = (I, B̌1, B̌2). Once again using Lemma 3.6 (3) shows that
the free spectrahedron D(B̌1,B̌2) is bounded. Furthermore, using [21, Proposition 4.3]
shows that 0 must be in interior the convex hull of (β1,β2),(−1,1),(−1,−1), and
(1,−1) . This allows us to conclude that β1 + β2 > 0 and β1 > −1 and β2 > −1.

Finally let Z ∈ M3(R) be the matrix

Z =
1

2+ β1 + β2

⎛
⎝2+ β1 + β2 1−β2 1−β1

β1−β2 1+2β1 + β2 −1+ β1

β2−β1 −1+ β2 1+ β1 +2β2

⎞
⎠

Then Z has determinant

det(Z) =
8(1+ β1)(1+ β2)(β1 + β2)

(2+ β1 + β2)3

hence the constraints β1 + β2 > 0 and β1 > −1 and β2 > −1 guarantee that Z is
invertible. Setting TZ−1(I, B̌1, B̌2) = (B̃0, B̃1, B̃2) we obtain

B̃0 =

⎛
⎜⎜⎜⎜⎝

2+β1+β2
4 0 0 0
0 2+β1+β2

2+2β2
0 0

0 0 2+β1+β2
2(β1+β2)

0

0 0 0 2+β1+β2
2+2β1

⎞
⎟⎟⎟⎟⎠ ,

B̃1 =

⎛
⎜⎜⎜⎜⎝

2+β1+β2
4 0 0 0
0 − 2+β1+β2

2+2β2
0 0

0 0 − 2+β1+β2
2(β1+β2)

0

0 0 0 2+β1+β2
2+2β1

⎞
⎟⎟⎟⎟⎠

and

B̃2 =

⎛
⎜⎜⎜⎜⎝

2+β1+β2
4 0 0 0
0 2+β1+β2

2+2β2
0 0

0 0 − 2+β1+β2
2(β1+β2)

0

0 0 0 − 2+β1+β2
2+2β1

⎞
⎟⎟⎟⎟⎠ .

The constraints on β1 and β2 guarantee that B̃0 is positive definite, and by construction

we have Bi = B̃−1/2
0 B̃iB̃

−1/2
0 for i = 1,2. Setting V =Z−1WU gives an invertiblematrix

such that PV (A) = B . Using Lemma 3.1 we conclude that PV−T (DA) = DB . The fact
that PV−T is invertible as a map from DA to DB follows from Lemma 3.4 together
with the fact that free quadrilaterals are bounded by definition. �

We are now in position to prove that the Arveson boundary of a free quadrilateral
is determined by a noncommutative variety.

Proof of Theorem 1.3. To begin, let CH denote the homogeneous free square. That
is CH = hom(C ) where C is as defined above. Set

c1(x0,x) := x0− x1x
−1
0 x1 c2(x0,x) := x0− x2x

−1
0 x2.
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Then for any tuple (X0,X) ∈ SM(R)g+1 with X0 � 0 one has (X0,X) ∈ ∂ArvCH if and
only c1(X0,X) = c2(X0,X) = 0.

Using Theorem 4.1 shows that there exists an invertible projective map PV such
that PV (DA) = C . It follows that TV is a positive linear mapping of H(I,A) onto CH .
Theorem 3.7 then implies that if X0 is invertible, then (X0,X) ∈ ∂ArvH(I,A) if and only
if (X0,X) ∈ H(I,A) and the rational functions r̂1(x0,x) and r̂2(x0,x) defined by

r̂1(x0,x) := c1(TV (x0,x)) r̂2(x0,x) := c2(TV (x0,x))

satisfy r̂1(X0,X) = r̂2(X0,X) = 0. In particular, we have (I,X)∈ ∂ArvH(I,A) and more-
over X ∈ ∂ArvDA if and only if X ∈ DA and r1(X) = r2(X) = 0 where r1 and r2 are
rational functions defined by

r1(x) := r̂1(1,x) r2(x) := r̂2(1,x).

Using the noncommutative Gröbner basis algorithm found NCAlgebra’s NCGBX
package, it was computed that r1(x) and r2(x) generate a noncommutative Gröbner
basis of the form {p1, p2, p3, p4} where p1, p2, p3, p4 are all noncommutative polyno-
mials having degree three or less. We conclude that the noncommutative polynomials
p1, p2, p3, p4 satisfy pi(X) = 0 for i = 1, . . . ,4 if and only if r1(X) = r2(X) = 0. It
follows that X ∈ ∂ArvDA if and only if X ∈ DA and pi(X) = 0 for i = 1, . . . ,4.

As a technical note, to simplify the Gröbner basis computationwe make the change
of variables z1 := v21 +v22x1 +v23x2 and z2 := v31 +v32x1 +v33x2 where the vi j are the
entries of the matrix V . Using Lemma 3.6 (1), one may show that there exist constants
α0,α1,α2 ∈ R such that

v11 + v12x1 + v13x2 = α0 + α1z1 + α2z2,

hence this change of variables is justified. In addition, the invertibility of V guarantees
that α0 	= 0. �

REMARK 4.2. A step by step computation of the noncommutative Gröbner basis
in the above proof as well as a computation using NCGBX can be found in the online
appendix https://github.com/NCAlgebra/UserNCNotebooks/tree/master/
Evert/FreeQuadrilaterals. In addition, the online appendix contains a Mathe-
matica notebook with functions for computing the noncommutative polynomials which
determine the Arveson boundary of a given free quadrilateral.

4.1. Free extreme points of free quadrilaterals

We end the article with a brief examination of the free extreme points of free
quadrilaterals. In particular we show that a free extreme point of a free quadrilateral
must have bounded size.

COROLLARY 4.3. Let DA be a free quadrilateral. Then all free extreme points of
DA are contained in levels 1 and 2 of DA . As a consequence, one has that DA is the

https://github.com/NCAlgebra/UserNCNotebooks/tree/master/Evert/FreeQuadrilaterals
https://github.com/NCAlgebra/UserNCNotebooks/tree/master/Evert/FreeQuadrilaterals
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matrix convex hull of the set of Arveson extreme points of DA which are elements of
DA(2) . In notation,

DA = comat((∂ArvDA)(2)).

Proof. A consequence of Lemma 3.2 is that the image of a reducible tuple under
an invertible projective map is again reducible. Combining this fact with Theorem 3.7
and Theorem 4.1 allows us to reduce to the case where DA = C is the free matrix
square. The result for the free square is given by [27, Example 7.10]. �

REMARK 4.4. Corollary 4.3 does not generalize to free spectrahedra in more than
two variables. For example, if one considers the g variable free cube C g defined by

C g = {X ∈ SM(R)g| X2
i � I for i = 1, . . . ,g},

then [14, Proposition 7.1] shows that C g has Arveson boundary

∂ArvC g = {X ∈ SM(R)g| I−X2
i = 0 for i = 1, . . . ,g}.

As discussed in [27, Example 7.10], when g > 2 there exist irreducible tuples in X ∈
∂ArvC g(n) for all n , hence C g has free extreme points at all levels n .
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