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REVISITING THE GRÜSS INEQUALITY

H. R. MORADI, S. FURUICHI, Z. HEYDARBEYGI AND M. SABABHEH

(Communicated by F. Kittaneh)

Abstract. In this article, we explore the celebrated Grüss inequality, where we present a new
approach using the Grüss inequality to obtain new refinements of operator means inequalities.
We also present several operator Grüss-type inequalities with applications to the numerical radius
and entropies.

1. Introduction

The celebrated Čebyšev’s inequality [2] states that if h and g are two functions
having the same monotonicity on [a,b] , then

1
b−a

b∫
a

h(t)dt
1

b−a

b∫
a

g(t)dt � 1
b−a

b∫
a

h(t)g(t)dt. (1.1)

Reversing this inequality, Grüss inequality [11] states that, for the same f ,g ,

1
b−a

b∫
a

h(t)g(t)dt− 1
b−a

b∫
a

h(t)dt
1

b−a

b∫
a

g(t)dt � 1
4

(M−m)(N−n)

provided that there exist real numbers m , M , n , N such that

m � h(t) � M & n � g(t) � N; ∀a � t � b.

Grüss inequality has received a considerable attention in the literature, as one can
see in [1, 3, 4, 5, 15, 16].

For a complex Hilbert space H , B(H ) will denote the C∗−algebra of all bounded
operators on H . Upper case letters A,B and T will be used to denote elements in
B(H ) . When A ∈ B(H ), we say that A is positive if 〈Ax,x〉 > 0, for all non-zero
vectors x ∈ H .

In this article, we are interested in obtaining operator versions of the Grüss in-
equality and implementing the Grüss inequality to obtain refinements of some means’
inequalities, as a new approach in this direction.
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2. Scalar versions

The arithmetic-geometric mean inequality (AM-GM inequality) states that

√
ab � a+b

2
, a,b > 0.

The term on the left is called the geometric mean, while the right term is the arithmetic
mean of a and b . The weighted version of this inequality states that

a1−vbv � (1− v)a+ vb, ∀0 � v � 1, a,b > 0.

This inequality is usually referred to as Young’s inequality. For simplicity, we use the
notations

a�vb := a1−vbv and a∇vb = (1− v)a+ vb.

When v = 1
2 , we use � and ∇ instead of � 1

2
and ∇ 1

2
, respectively. Refinements of this

inequality have received a considerable attention in the literature, where many forms
have been found. We refer the reader to [7, 8, 9, 13, 17] as a sample of such refinements.

In this article, we present a new approach to refine the AM-GM inequality, result-
ing in new forms of such refinements. This approach uses the Grüss inequality.

To better state our results, we remind the reader of the so called Heron mean,
which is defined as follows:

Ft,v (a,b) = (1− t)(a�vb)+ t(a∇vb); 0 � t,v � 1.

THEOREM 2.1. Let a,b � 0 . If g : [0,1] → R is non-decreasing on [0,1] and
0 � v � 1, then

a�vb+
4

g(1)−g(0)

∫ 1

0

(
Ft,v(a,b)−F1/2,v(a,b)

)
g(t)dt � a∇vb.

In particular,

a�b+
4

g(1)−g(0)

⎡
⎣ 1∫

0

g(t)Ft,1/2 (a,b)dt−F1/2,1/2 (a,b)
1∫

0

g(t)dt

⎤
⎦� a∇b.

Proof. If a,b > 0, then the function f : [0,1] → R defined by

f (t) = Ft,v(a,b)

is non-decreasing on [0,1] . Furthermore,

f (0) = a�vb & f (1) = a∇vb.

Assume that g is a non-decreasing function on [0,1] . If we write the inequality (1.1)
for the functions f and g , we get

1∫
0

Ft,v(a,b)dt

1∫
0

g(t)dt �
1∫

0

g(t)Ft,v(a,b)dt,
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which can be written as

1
2

(a�vb+a∇vb)
1∫

0

g(t)dt �
1∫

0

g(t)Ft,v(a,b)dt.

This means that

F1/2,v(a,b)
∫ 1

0
g(t)dt �

∫ 1

0
g(t)Ft,v(a,b)dt.

It follows from the Grüss inequality that

0 �
1∫

0

g(t)Ft,v(a,b)dt−F1/2,v

1∫
0

g(t)dt � 1
4

(g(1)−g(0)) (a∇vb−a�vb) .

Equivalently,

a�vb+
4

g(1)−g(0)

∫ 1

0

(
Ft,v(a,b)−F1/2,v(a,b)

)
g(t)dt � a∇vb.

This proves the first inequality.
Letting v = 1

2 in the first inequality yields the second inequality and completes the
proof. �

COROLLARY 2.1. Let a,b � 0 . If g : [0,1]→ R is non-decreasing on [0,1] , then

√
ab � F1/2,1/2 (a,b) �

∫ 1
0 g(t)Ft,1/2 (a,b)dt∫ 1

0 g(t)dt
� a+b

2
.

Applying Grüss inequality, we obtain the following refinement of the AM-GM
inequality, in terms of the Heinz and the logarithmic means. Recall that for two positive
numbers a,b , the Heinz and logarithmic means are defined, respectively, by

Ht(a,b) =
a�t b+b�ta

2
, 0 � t � 1 and L(a,b) =

b−a
lnb− lna

.

THEOREM 2.2. Let g be a non-decreasing function on [1/2,1] . Then for any
a,b > 0 ,

a�b+
2

g(1)−g
(

1
2

)
⎡
⎢⎣

1∫
1
2

g(t)Ht(a,b)dt−L(a,b) ·
1∫

1
2

g(t)dt

⎤
⎥⎦� a∇b.

Proof. For x > 0, define

f (t) =
xt + x1−t

2
, t ∈

[
1
2
,1

]
.
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This function is non-decreasing on [1/2,1]. Furthermore,

f

(
1
2

)
=
√

x & f (1) =
1+ x

2
.

Assume that g is a non-decreasing function on [1/2,1] . If we write the inequality (1.1)
for the functions f and g , we get

1∫
1
2

xt + x1−t

2
dt ·

1∫
1
2

g(t)dt � 1
2

1∫
1
2

g(t)
xt + x1−t

2
dt.

or equivalently (
x−1
2lnx

)
·

1∫
1
2

g(t)dt � 1
2

1∫
1
2

g(t)
xt + x1−t

2
dt.

It follows from the Grüss inequality that

1
2

1∫
1
2

g(t)
xt + x1−t

2
dt−

(
x−1
2lnx

)
·

1∫
1
2

g(t)dt �
(

g(1)−g
(1

2

)
4

)(
1+ x

2
−√

x

)
.

Therefore,

√
x+

2

g(1)−g
(1

2

)
⎡
⎢⎣

1∫
1
2

g(t)
xt + x1−t

2
dt−

(
x−1
lnx

)
·

1∫
1
2

g(t)dt

⎤
⎥⎦� 1+ x

2
.

Replacing x by b
a , we obtain the desired inequality. �

If we take g(t) = t in Theorem 3.2, we get

COROLLARY 2.2. For any x � 0 ,

√
x+

4

ln2x

(
1
8

(x−1)lnx+
√

x− x+1
2

)
� 1+ x

2
.

Corollary 2.2 implies the following refined arithmetic-geometric mean inequality
with the logarithmic mean.

COROLLARY 2.3. For any a,b > 0 ,

a�b+ γ(a,b) ·L(a,b) � a∇b,

where

γ(a,b) :=
ln2 b/a

2(ln2 b/a+4)
� 0.
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Proof. From Corollary 2.2, we have

ln2 x

2(ln2 x+4)
x−1
lnx

� x+1
2

−√
x. (2.1)

Replacing x by b
a implies the desired inequality and completes the proof. �

It is interesting to compare (2.1) with the following inequality [18]:

ln2 x
8

√
x � x+1

2
−√

x. (2.2)

However, there is no ordering between L.H.S. in (2.1) and L.H.S. in (2.2), since we
have √

x � x−1
lnx

,
1

2(ln2 x+4)
� 1

8

for x > 0. Actually, for a small x > 0, we have the ordering

1

2(ln2 x+4)
x−1
lnx

� 1
8

√
x,

but we have the opposite inequality for a large x > 0, for example x > 11288.

3. Non-commutative versions that follow from the scalar ones

In this section, we present some non-commutative versions for the scalar inequal-
ities we have shown earlier. The arithmetic and geometric means of two positive
A,B ∈ B(H ) are defined, respectively, by

A∇vB = (1− v)A+ vB and A�vB = A
1
2

(
A− 1

2 BA− 1
2

)v
A

1
2 , 0 � v � 1.

Similar to the scalar case, we have the so called operator arithmetic geometric mean
inequality

A�vB � A∇vB,A,B ∈ B(H ) being positive and 0 � v � 1.

Refining the operator AM-GM inequality has received a considerable interest in the
literature, as one can see in [7, 9, 13, 18]. In the next result, we present a new type of
such refinements, where we employ Grüss inequality. The first result, is the following
operator version of Theorem 2.1, in which we still adopt the notation

Ft,v(A,B) = (1− t)(A�vB)+ t(A∇vB);

as the operator weighted Heron mean of the positive operators A,B .

THEOREM 3.1. Let A,B ∈ B(H ) be positive operators and let 0 � v � 1. If
g : [0,1] → R is non-decreasing on [0,1] , then

A�vB+
4

g(1)−g(0)

∫ 1

0

(
Ft,v(A,B)−F1/2,v(A,B)

)
g(t)dt � A∇vB.
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Proof. Letting a = 1 in Theorem 2.1, we have

bv+
4

g(1)−g(0)

∫ 1

0

(
{(1−t)bv+t(1−v+vb)}−1

2

(√
b+

1+b
2

))
g(t)dt � 1−v+vb.

Applying a standard functional calculus argument with b = A− 1
2 BA− 1

2 , then multiply-
ing both sides of the inequality by A

1
2 imply the desired inequality. �

On the other hand, an operator version of Theorem 3.2 may be stated as follows.
The proof is similar to that of Theorem 3.1, hence is not included.

THEOREM 3.2. Let A,B∈B(H ) be positive and let g be a non-decreasing func-
tion on [1/2,1]. Then

A�B+
2

g(1)−g
(

1
2

)
⎡
⎢⎣

1∫
1
2

g(t)
A�tB+A�1−tB

2
dt−(B−A)S0(A|B)−1A ·

1∫
1
2

g(t)dt

⎤
⎥⎦� A∇B,

where S0(A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2 is the relative operator entropy of the

positive operators A,B [6].

For the next result, we define

Amt,vB = A
1
2

(
(1− v)I + v

(
A− 1

2 BA− 1
2

)t
) 1

t

A
1
2 ,

for the positive A,B ∈ B(H ) , −1 � t � 1 and 0 � v � 1. In this result, we present
a refinement of the operator AM-GM inequality, without using a functional calculus
argument.

THEOREM 3.3. Let A,B ∈ B(H ) be two positive operators. If g : [0,1] → R is
non-decreasing on [0,1] , then

A�vB+
4

g(1)−g(0)

⎡
⎣ 1∫

0

(Amt,vB)g(t)dt−
1∫

0

(Amt,vB)dt

1∫
0

g(t)dt

⎤
⎦� A∇vB.

Proof. Define

f (t) = 〈(Amt,vB)x,x〉 , for any x ∈ H .

Of course, f is non-decreasing on [−1,1] (since Amt,vB is an operator mean). In
particular, we have

f (−1) = 〈(A!vB)x,x〉 , f (0) = 〈(A�vB)x,x〉 , f (1) = 〈(A∇vB)x,x〉 ,
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where A!vB = ((1−v)A−1 +vB−1)−1 is the harmonic mean of A,B . From the inequal-
ity (1.1), we have

1∫
0

〈(Amt,vB)x,x〉dt

1∫
0

g(t)dt �
1∫

0

〈(Amt,vB)x,x〉g(t)dt,

which is equivalent to〈⎛⎝ 1∫
0

(Amt,vB)dt

1∫
0

g(t)dt

⎞
⎠x,x

〉
�
〈⎛⎝ 1∫

0

(Amt,vB)g(t)dt

⎞
⎠x,x

〉
.

Now, Grüss inequality implies〈⎡
⎣ 1∫

0

(Amt,vB)g(t)dt−
1∫

0

(Amt,vB)dt

1∫
0

g(t)dt

⎤
⎦x,x

〉

�
〈[(

g(1)−g(0)
4

)
(A∇vB−A�vB)

]
x,x

〉
,

for any vector x ∈ H . Therefore we obtain

A�vB+
4

g(1)−g(0)

⎡
⎣ 1∫

0

(Amt,vB)g(t)dt−
1∫

0

(Amt,vB)dt

1∫
0

g(t)dt

⎤
⎦� A∇vB.

Therefore the desire inequality is obtained. �
On the other hand, a refinement of the operator geometric-harmonicmean inequal-

ity can be stated as follows. The proof is similar to the above arguments, and hence we
omit it.

THEOREM 3.4. Let A,B ∈ B(H ) be two positive operators. If g : [−1,0] → R

is non-decreasing on [−1,0] , then

A!vB+
4

g(0)−g(−1)

⎡
⎣ 0∫
−1

(Amt,vB)g(t)dt−
0∫

−1

(Amt,vB)dt

0∫
−1

g(t)dt

⎤
⎦� A�vB

We conclude this section by presenting the following application towards relative
operator entropies.

THEOREM 3.5. Let A,B ∈ B(H ) be positive and 0 < s < 1 . Then

S0(A|B)+2

1∫
0

(2t−1)Sst(A|B)dt � Ss(A|B),

where Sp(A|B) := A1/2 lnp
(
A−1/2BA−1/2

)
A1/2 is Tsallis relative operator entropy [10]

and S0(A|B)= lim
p→0

Sp(A|B)= A1/2 log
(
A−1/2BA−1/2

)
A1/2 is relative operator entropy.
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Proof. Define

f (t) =
xts −1

ts
, x > 0, 0 � s � 1, t ∈ [0,1].

Then

f (0) = logx and f (1) =
xs −1

s
.

Now, from the Grüss inequality

1∫
0

xts −1
ts

g(t)dt−
1∫

0

xts −1
ts

dt

1∫
0

g(t)dt �
(

g(1)−g(0)
4

)(
xs −1

s
− logx

)
.

Namely,

logx+
4

g(1)−g(0)

⎡
⎣ 1∫

0

xts −1
ts

g(t)dt−
1∫

0

xts −1
ts

dt

1∫
0

g(t)dt

⎤
⎦� xs −1

s
.

If we set g(t) := 2t , then the above inequality is written by

logx+2

1∫
0

(2t−1)(xst −1)
st

dt � lns x,

where lns x := xs−1
s . Applying functional calculus argument in the above inequality

implies

S0(A|B)+2

1∫
0

(2t−1)Sst(A|B)dt � Ss(A|B),

where Sp(A|B) := A1/2 lnp
(
A−1/2BA−1/2

)
A1/2 is Tsallis relative operator entropy and

S0(A|B)= lim
p→0

Sp(A|B)= A1/2 log
(
A−1/2BA−1/2

)
A1/2 is relative operator entropy. This

completes the proof. �
Theorem 3.5 gives a refinement of S0(A|B) � Ss(A|B) shown in [10, Proposition

3.1].

4. Sharpening Grüss inequality and covariance versions

We conclude this article by presenting some covariance inequalities that are of
Grüss type, with an application to the numerical radius.

THEOREM 4.1. Let T ∈ B(H ) and x ∈ H be a unit vector. Then

|〈|T | |T ∗|x,x〉− 〈|T |x,x〉 〈|T ∗|x,x〉| � ‖|T |x‖‖|T ∗|x‖− |〈Tx,x〉|2 .
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Proof. Let A,B ∈ B(H ) be two positive operators and x ∈ H be a unit vector.
Then

|〈ABx,x〉− 〈Ax,x〉 〈Bx,x〉| = |〈(B−〈Bx,x〉 I)x,(A−〈Ax,x〉 I)x〉|
� ‖(A−〈Ax,x〉 I)x‖‖(B−〈Bx,x〉 I)x‖

=
(〈

A2x,x
〉−〈Ax,x〉2

) 1
2
(〈

B2x,x
〉−〈Bx,x〉2

) 1
2

(4.1)

�
√
〈A2x,x〉〈B2x,x〉− 〈Ax,x〉〈Bx,x〉 , (4.2)

where (4.2) follows from the inequality
(
a2−b2

)(
c2−d2

)
� (ac−bd)2 , a,b,c,d ∈

R . Notice that (4.1) is meaningful, since for any self-adjoint operator X ∈ B(H ) , we
have

〈Xx,x〉2 �
〈
X2x,x

〉
.

Therefore,

〈Ax,x〉〈Bx,x〉+ |〈ABx,x〉− 〈Ax,x〉〈Bx,x〉| �
√
〈A2x,x〉 〈B2x,x〉. (4.3)

Now, replacing A and B by |T | and |T ∗| , respectively, then we get

〈|T |x,x〉 〈|T ∗|x,x〉+ |〈|T | |T ∗|x,x〉− 〈|T |x,x〉 〈|T ∗|x,x〉| �
√〈

|T |2x,x
〉〈

|T ∗|2x,x
〉
.

On the other hand, since (see e.g., [12, pp. 75–76])

|〈Tx,x〉| �
√
〈|T |x,x〉 〈|T ∗|x,x〉,

we infer that

|〈Tx,x〉|2 + |〈|T | |T ∗|x,x〉− 〈|T |x,x〉〈|T ∗|x,x〉| �
√〈

|T |2x,x
〉〈

|T ∗|2x,x
〉
,

as desired �
As an application, we present the following numerical radius inequality that refines

the celebrated Kittaneh result in [14]. The notation ω(T ) denotes the numerical radius
of the operator T .

COROLLARY 4.1. Let T ∈ B(H ) . Then

ω2 (T )+ inf
x∈H
‖x‖=1

{|〈|T | |T ∗|x,x〉− 〈|T |x,x〉 〈|T ∗|x,x〉|} � 1
2

∥∥∥|T |2 + |T ∗|2
∥∥∥ .

Proof. Applying the arithmetic-geometric mean inequality, Theorem 4.1 implies

|〈Tx,x〉|2 + |〈|T | |T ∗|x,x〉− 〈|T |x,x〉 〈|T ∗|x,x〉| �
〈(

|T |2 + |T ∗|2
2

)
x,x

〉
.
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Consequently, by taking supremum over all unit vector x ∈ H , we get

ω2 (A)+ inf
x∈H
‖x‖=1

{|〈|T | |T ∗|x,x〉− 〈|T |x,x〉 〈|T ∗|x,x〉|} � 1
2

∥∥∥|T |2 + |T ∗|2
∥∥∥ .

This completes the proof. �

REMARK 4.1. From the inequality (4.3), we obtain the covariance inequality

〈Ax,x〉〈Bx,x〉− |〈ABx,x〉| �
√
〈A2x,x〉 〈B2x,x〉− 〈Ax,x〉 〈Bx,x〉 ,

for the positive operators A,B ∈ B(H ) . Thus,

〈Ax,x〉 〈Bx,x〉 �
√〈A2x,x〉 〈B2x,x〉+ |〈ABx,x〉|

2
,

which implies

〈Ax,x〉2〈Bx,x〉2 �
(√

〈A2x,x〉〈B2x,x〉+ |〈ABx,x〉|
2

)2

�
〈
A2x,x

〉〈
B2x,x

〉
+ |〈ABx,x〉|2

2
�
〈
A2x,x

〉〈
B2x,x

〉
.

This provides two refining terms of the celebrated inequality

〈Ax,x〉2〈Bx,x〉2 �
〈
A2x,x

〉〈
B2x,x

〉
.

We conclude this article by presenting some covariance inequalities similar to Re-
mark 4.1, but in a more elaborated form. First, a scalar inequality.

LEMMA 4.1. Let a,b,c,d > 0 . Then

1
2

(
a2d2−b2c2

)2

a2d2 +b2c2 +
(
a2−b2)(c2 −d2)� (ac−bd)2.

Proof. Since

(
a+b

2

)2

−ab =
(

a+b
2

−
√

ab

)(
a+b

2
+
√

ab

)
,

we have (
a+b
2

)2 −ab
a+b
2 +

√
ab

=
a+b

2
−
√

ab.
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Equivalently, (
a+b
2 +

√
ab

2

)−1 ( a+b
2

)2−ab

2
=

a+b
2

−
√

ab.

Now, by applying the arithmetic-geometric mean inequality, we obtain

1
4

(a−b)2

a+b
� a+b

2
−
√

ab � 1
8

(a−b)2√
ab

.

Rearranging the terms, we get

1
2

(
a2d2−b2c2

)2

a2d2 +b2c2 +
(
a2−b2)(c2 −d2)� (ac−bd)2,

as desired. �

THEOREM 4.2. Let A,B ∈ B(H ) be positive operators such that mI � A � MI
nI � B � NI , for some positive scalars m,M,n,N . Then for any unit vector x ∈ H ,

|〈ABx,x〉− 〈Ax,x〉 〈Bx,x〉|

� (M−m)(N−n)
4

−

⎛
⎜⎝√C (A,x)C (B,x)+

(
(M−m)2C (B,x)−(N−n)2C (A,x)

)2

8(M−m)2C (B,x)+(N−n)2C (A,x)

⎞
⎟⎠ ,

where

C (A,x) = 〈(M−A)(A−m)x,x〉 and C (B,x) = 〈(N−B)(B−n)x,x〉 .

Proof. It has been shown in (4.1) that

|〈ABx,x〉− 〈Ax,x〉〈Bx,x〉| �
(〈

A2x,x
〉−〈Ax,x〉2

)(〈
B2x,x

〉−〈Bx,x〉2
)

.

By the arithmetic-geometric mean inequality, we have

〈
A2x,x

〉−〈Ax,x〉2
= (M−〈Ax,x〉) (〈Ax,x〉−m)−〈(MI−A)(A−mI)x,x〉

�
(

M−m
2

)2

−〈(MI−A)(A−mI)x,x〉 ,
(4.4)

and similarly

〈
B2x,x

〉−〈Bx,x〉2 �
(

N−n
2

)2

−〈(NI−B)(B−nI)x,x〉 .
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Now, by applying Lemma 4.1, we get

|〈ABx,x〉− 〈Ax,x〉 〈Bx,x〉|

�

√√√√((
M−m

2

)2

−C (A,x)

)((
N−n

2

)2

−C (B,x)

)

� (M−m)(N−n)
4

−

⎛
⎜⎝√C (A,x)C (B,x)+

(
(M−m)2C (B,x)−(N−n)2C (A,x)

)2

8
(
(M−m)2C (B,x)−(N−n)2C (A,x)

)
⎞
⎟⎠ .

This completes the proof of the theorem. �

REMARK 4.2. Since

(NI−B)(B−nI) =
(

N−n
2

)2

I−
∣∣∣∣B− N +n

2
I

∣∣∣∣
2

,

and

(MI−A)(A−mI) =
(

M−m
2

)2

I−
∣∣∣∣A− M +m

2
I

∣∣∣∣
2

,

we infer from (4.4) that

〈
A2x,x

〉−〈Ax,x〉2 �
〈∣∣∣∣A− M +m

2
I

∣∣∣∣
2

x,x

〉

and 〈
B2x,x

〉−〈Bx,x〉2 �
〈∣∣∣∣B− N +n

2
I

∣∣∣∣
2

x,x

〉
.

This in turns implies that

|〈ABx,x〉− 〈Ax,x〉 〈Bx,x〉| �
∥∥∥∥A− M +m

2
I

∥∥∥∥
∥∥∥∥B− N +n

2
I

∥∥∥∥ .

Since mI � A � MI and nI � B � NI , then∣∣∣∣
〈(

A− M +m
2

I

)
x,x

〉∣∣∣∣� M−m
2

,

and ∣∣∣∣
〈(

B− N +n
2

I

)
x,x

〉∣∣∣∣� N−n
2

.

The above relations imply ∥∥∥∥A− M +m
2

I

∥∥∥∥� M−m
2

,
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and ∥∥∥∥B− N +n
2

I

∥∥∥∥� N−n
2

.

Consequently,

|〈ABx,x〉− 〈Ax,x〉 〈Bx,x〉| �
∥∥∥∥A− M +m

2
I

∥∥∥∥
∥∥∥∥B− N +n

2
I

∥∥∥∥
� (M−m)(N−n)

4
.
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