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THE APS–INDEX AND THE SPECTRAL FLOW
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Abstract. We study the Atiyah-Patodi-Singer (APS) index, and its equality to the spectral flow,
in an abstract, functional analytic setting. More precisely, we consider a (suitably continuous or
differentiable) family of self-adjoint Fredholm operators A(t) on a Hilbert space, parametrised
by t in a finite interval. We then consider two different operators, namely D := d

dt + A (the

abstract analogue of a Riemannian Dirac operator) and D := d
dt − iA (the abstract analogue of

a Lorentzian Dirac operator). The latter case is inspired by a recent index theorem by Bär and
Strohmaier (Amer. J. Math. 141 (2019), 1421–1455) for a Lorentzian Dirac operator equipped
with APS boundary conditions. In both cases, we prove that the Fredholm index of the operator
D equipped with APS boundary conditions is equal to the spectral flow of the family A(t) .

1. Introduction

The relation between the index of a Riemannian Dirac operator and the spectral
flow of a family of Dirac operators on hypersurfaces has been known since the work
of Atiyah, Patodi, and Singer [2]. This relation has been generalised to a more abstract
setting by Robbin and Salamon [18]. As index theory focuses primarily on elliptic
operators, there has not been much work on index theory in the Lorentzian setting (the
Lorentzian Dirac operator is hyperbolic instead of elliptic). Nevertheless, some work
has been done in this direction. For instance, the index of the scattering operator for
the Dirac equation (on a cylindrical Lorentzian manifold) has been studied in [9] (see
also references therein). The Fredholm property and index of the (second-order) wave
operator are studied in certain situations in [11].

In a recent paper [5], Bär and Strohmaier first considered the index of the Lorentzian
Dirac operator with APS boundary conditions. They derived a Lorentzian version of
the Atiyah-Patodi-Singer (APS) index theorem for globally hyperbolic spacetimes with
future and past spacelike boundaries. One major aspect of their work is a Lorentzian
version of the classical equality between the (APS) index and the spectral flow. The
main purpose of this article is to recast this ‘APS index = spectral flow’ equality in a
more abstract, functional analytic setting. For the sake of completeness and compari-
son, we will also discuss the ordinary Riemannian version of the Atiyah-Patodi-Singer
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index in this abstract setting. Both in the Riemannian (elliptic) and in the Lorentzian
(hyperbolic) case, we aim to prove the ‘APS index = spectral flow’ equality under min-
imal (functional analytic) assumptions, and we hope our work clarifies the differences
and similarities between the two cases.

As the motivating example for this article, let us briefly recall the setting of [5].
Consider an even-dimensional, oriented, time-oriented Lorentzian spin manifold (X ,g) .
We will assume that (X ,g) is globally hyperbolic, which implies [6, Theorem 1.1] that
it is isometric to (R×Σ,−N2dt2 +gt) , where the Cauchy hypersurface Σ is a smooth
manifold with a family of Riemannian metrics {gt}t∈R , and the lapse function N is a
smooth function R×Σ → (0,∞) . Furthermore, as in [5] we assume that the Cauchy
hypersurface Σ is compact (for the noncompact case, see [7]).

Let ν be the past-directed unit normal vector field, and let β = γ(ν) be Clifford
multiplication by ν . Since X is even-dimensional, the spinor bundle decomposes into
spinors of positive and negative chirality. Identifying the positive and negative chirality
spinors using β , the Lorentzian Dirac operator takes the form [21, Eq. (11)]

/D =
(

0 −∇ν + iA(t)− n
2H

−∇ν − iA(t)− n
2H 0

)
,

where A = {A(t)}t∈R is the family of Dirac operators on the Cauchy hypersurfaces
{t}×Σ , and H is the mean curvature of the hypersurfaces {t}×Σ . If X is a metric
product (i.e. g = −dt2 + g0 , where the metric g0 on Σ is independent of t ), then we
have N ≡ 1, H ≡ 0, and A(t) = A0 , and we obtain

/D =
(

0 ∂t + iA0

∂t − iA0 0

)
.

In general, if X is not a metric product, we can use parallel transport along the curves
R → X given by t �→ (t,x) for some x∈ Σ , to show that we have [21, Proposition III.5]

/D �
(

0 N− 1
2 ∂tN− 1

2 + iB(t)
N− 1

2 ∂tN− 1
2 − iB(t) 0

)
,

where � denotes unitary equivalence and B(t) is obtained from A(t) via the parallel
transport isomorphism. The bottom left corner of the Dirac operator shall be denoted

D := −∇ν − iA(t)− n
2H � N− 1

2 ∂tN
− 1

2 − iB(t).

We now restrict the globally hyperbolic spacetime X = R× Σ to a finite time
interval [0,T ] . Thus we consider the globally hyperbolic spacetime M := [0,T ]×Σ ,
with past and future spacelike boundaries {0}×Σ and {T}×Σ (respectively). Since
these spacelike boundaries are Riemannian manifolds, we can use the Dirac operators
A(0) and A(T ) to define Atiyah-Patodi-Singer (APS) boundary conditions (i.e., the
domain is restricted to those functions f with f (0) in the range of the negative spectral
projection of A(0) and f (T ) in the range of the positive spectral projection of A(T )).
Thus equipping D with APS boundary conditions, Bär and Strohmaier [5] then prove
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that the resulting operator DAPS is Fredholm, and that its index can be computed by
the same formula as in the original (Riemannian) Atiyah-Patodi-Singer index theorem
[1]. A crucial step in their proof is to relate this index to the spectral flow sf(A) of the
family {A(t)}t∈[0,T ] of Dirac operators on the Cauchy hypersurfaces:

ind(DAPS) = sf(A). (1)

Suppose now that our globally hyperbolic spacetime M := [0,T ]×Σ is of product form
near the boundary. Then in particular the lapse function N is equal to 1 near the
boundary, so multiplication by N

1
2 preserves the APS boundary conditions. Hence we

can consider the new operator

N
1
2 DAPSN

1
2 � ∂t − iN

1
2 B(t)N

1
2

(where � denotes unitary equivalence). Thus, writing Ã(t) := N
1
2 B(t)N

1
2 , we can

summarise the above as follows: we wish to study the Fredholm index of an operator
of the form ∂t − iÃ(t) with APS boundary conditions. The purpose of this article is to
rederive Eq. (1) for such operators in a more general functional analytic setting:

• A = {A(t)}t∈[0,T ] is a strongly continuously differentiable family of self-adjoint
Fredholm operators on a Hilbert space H with constant domain W ;

• DAPS is the closure of the operator

D :=
d
dt

− iA

on L2([0,T ],H ) , equipped with APS boundary conditions.

Furthermore, for the sake of completeness and comparison, we will also discuss the
‘Riemannian’ analogue, namely the operator d

dt +A with APS boundary conditions.
Let us briefly summarise the contents of this article. First, in Section 2, some

basic facts regarding strongly continuously differentiable families of operators will be
derived for later use. In Section 3, we review the notion of spectral flow, following
[17]. We prove in Theorem 3.5 that the spectral flow of a norm-continuous family
A = {A(t)}t∈[0,T ] is equal to the relative index of the pair (P<0(0),P<0(T )) of negative
spectral projections of A at the endpoints, provided that (P<0(0),P<0(t)) is a Fredholm
pair for each t ∈ [0,T ] . This generalises a known result [15, Theorem 3.6] in the special
case where P<0(0)−P<0(t) is compact (cf. Remark 3.6).

In Section 4, we describe the abstract analogue of the Riemannian APS-index.
We note that, on a Riemannian manifold M = [0,T ]×Σ with the product metric g =
dt2 +g0 , the Dirac operator is of the form

/D =
(

0 −∂t +A0

∂t +A0 0

)
,

where A0 denotes the Dirac operator on the hypersurface Σ . We consider in Section 4
the more general setting where A = {A(t)}t∈[0,T ] is a norm-continuous family of self-
adjoint operators on a Hilbert space H with constant domain W , where the inclusion
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W ↪→ H is compact. We then study the operator

D :=
d
dt

+A

equipped with APS boundary conditions. We can extend A to a family Ã on the whole
real line. We then recall from [2] the classical ‘index = spectral flow’ result:

ind

(
d
dt

+ Ã

)
= sf(Ã). (2)

This equality has been rigorously proven by Robbin and Salamon [18] for a suitable
differentiable family of operators Ã = {Ã(t)}t∈R . In fact, the assumption of differen-
tiability is not necessary, and Eq. (2) remains valid for norm-continuous families (see
[4, Theorem 2.1] and [22, Theorem 5.2]). We will prove (see Theorem 4.9) that the
operator DAPS is Fredholm, and that we also have the equality

ind(DAPS) = sf(A).

The proof is based on relating the index of DAPS (on the interval [0,T ] with APS
boundary conditions) to the index of the extension d

dt + Ã (on the complete line R).
The main issue to overcome is that Eq. (2) is only valid for families with invertible
endpoints, and we show that we may always perturb A to a family with invertible
endpoints, without changing its spectral flow or the index of DAPS .

In Section 5, we finally describe the abstract analogue of the Lorentzian APS-
index. In this case, we consider the operator

D :=
d
dt

− iA

equipped with APS boundary conditions. Here we need to assume in addition that A
is strongly continuously differentiable. The additional −i before the family A leads to
qualitatively very different behavior of the operator D . For instance, for the operator
d
dt +A on the real line, both the norm of d

dt f and of A f can be estimated by the graph
norm ‖ f‖ d

dt +A (cf. [18]). For the operator D = d
dt − iA , however, the equation Df = 0

has solutions with arbitrarily large d
dt f and A f . In fact, the equation has a unique

solution for any initial value: indeed, the Cauchy problem corresponding to D is well-
posed (see Theorem 5.4). Moreover, solutions to Df = 0 will not be square-integrable
on R , which necessitates restricting to a finite interval [0,T ] (and introducing boundary
conditions).

In Section 5.1, we introduce the evolution operator Q , which describes solutions
to the initial value problem

Df = 0, f (s) = x.

The construction of this evolution operator, following [16, Ch. 5], requires the assump-
tion that A is strongly continuously differentiable. We then use the evolution operator
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in Section 5.2 to relate the index of DAPS to the (relative) index of a certain Fredholm
pair of spectral projections at the endpoints of the interval, corresponding to the family
of ‘evolved’ operators

Â(t) = Q(0,t)A(t)Q(t,0).

We show in section 5.3 that Â is again strongly continuously differentiable and there-
fore norm-continuous. In particular, we then know from Theorem 3.5 that the (relative)
index of the pair of spectral projections of Â(0) and Â(T ) is equal to the spectral flow
of A . Thus we combine our results to prove the main theorem:

MAIN THEOREM. If (D|[0,t])APS is Fredholm for all t ∈ [0,T ] , we have

ind(DAPS) = sf(A).

Here D|[0,t] is the ‘restriction’ of D to the interval [0,t] . It follows from results in
[5] that the Lorentzian Dirac operator studied there satisfies the hypothesis of our main
theorem (see Example 5.10). The general idea and some parts of the proof of our main
theorem are similar as in [5], while other parts are different. In particular, the use of
Fredholm pairs and the aforementioned spectral projections allows for a much wider
generalisation than a straightforward adaptation of the arguments of [5] would.

Finally, Section 5.4 will describe a counterexample which shows that Fredholm-
ness of (D|[0,t])APS is not a consequence of the other assumptions.

This article is largely based on the Master’s thesis by the second author ([19]),
advised by Matthias Lesch and the first author. Several proofs which are only sketched
in this article, can be found in more detail in [19].

The authors would like to thank Matthias Lesch for interesting discussions and
for his helpful comments on this manuscript. The authors also thank the anonymous
referees for their comments.

Notation

Let H denote a separable, infinite-dimensional Hilbert space. For an operator T
on H and subspaces X ,Y ⊂ H satisfying X ⊂ DomT and RanT ⊂Y , we denote by
T |X→Y the restriction of T to X with codomain Y .

Integrals and Lp -spaces of Banach-space-valued functions should be understood
in the sense of Bochner integration (for details, see e.g. [12, Ch. 3]).

2. Families of operators

For this whole section, let X , Y and Z be Banach spaces, and let a,b ∈ R . A
family of operators S : [a,b] → B(X ,Y ) is called strongly continuous, if it is contin-
uous with respect to the strong operator topology on B(X ,Y ) . It is called strongly
continuously differentiable, if it is differentiable with respect to the strong operator
topology and the derivative is strongly continuous. Explicitly, this means that there ex-
ists a strongly continuous family S′ : [a,b]→ B(X ,Y ) such that for each x ∈ X we have
d
dt

(
S(t)x

)
= S′(t)x .
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By the Banach-Steinhaus Theorem (or Uniform Boundedness Principle), strongly
continuous families are uniformly bounded. As composition is continuous with respect
to the strong topology when restricted to bounded subsets (in the operator norm), the
composition of two strongly continuous families is again strongly continuous.

LEMMA 2.1. Let S : [a,b]→B(X ,Y) be strongly continuously differentiable. Then
the following statements hold:

1. S is norm-continuous.

2. If S(t) is invertible for all t ∈ [a,b] , then the family

S−1 : [a,b]→ B(Y,X), t �→ S(t)−1

is strongly continuously differentiable with derivative −S−1S′S−1 .

Proof. Norm-continuity at t ∈ [a,b] is a consequence of the Banach-Steinhaus
Theorem applied to

F :=
{

1
s− t

(S(s)−S(t))
∣∣∣∣ s ∈ [a,b]\ {t}

}
.

As the inversion map is norm-continuous as well, also S−1 is norm-continuous (and
in particular uniformly bounded). Let t ∈ [a,b] and h ∈ R small enough such that
t + h ∈ [a,b] . Then for y ∈ Y we have (with the “little oh”-notation o(h) referring to
the norm in Y )

(S(t +h)−1−S(t)−1)y = S(t +h)−1(S(t)−S(t +h))S(t)−1y

= −S(t +h)−1(hS′(t)S(t)−1y+o(h)
)

= −hS(t)−1S′(t)S(t)−1y+o(h),

which proves the second statement. �

PROPOSITION 2.2. Let X0 ⊆ X be a dense subspace, and let Y0 ⊆ Y be a sub-
space of Y with a stronger norm that turns it into a Banach space. Consider a family
of operators S : [a,b] → B(X ,Y0) .

1. Suppose S : [a,b] → B(X ,Y0) is strongly continuous and S : [a,b] → B(X ,Y ) is
strongly continuously differentiable. If R : [a,b] → B(Y,Z) is a strongly con-
tinuous family that restricts to a strongly differentiable family in B(Y0,Z) , then
t �→ R(t)S(t) is strongly continuously differentiable in B(X ,Z) , with derivative
R′(t)S(t)+R(t)S′(t) .

2. Suppose that the restriction S|X0 : [a,b] → B(X0,Y ) is strongly continuously dif-
ferentiable, such that the derivative extends to a strongly continuous family
S′ : [a,b] → B(X ,Y0) . Then S : [a,b] → B(X ,Y0) is also strongly continuously
differentiable with derivative S′ .
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Proof. Since Banach-Steinhaus guarantees uniform boundedness of the differen-
tial quotients, composition can be treated like a continuous bilinear map and the cal-
culation used to show the usual product rule can be applied verbatim to prove the first
statement.

Regarding the second statement, for x ∈ X0 , we have

S(t)x = S(t0)x+
t∫

t0

S′(r)xdr,

with the integral being taken in Y . Since the integrals in Y0 and Y coincide and both
sides are bounded linear functions of x , we get the same equality in Y0 for any x ∈
X . �

REMARK 2.3. The above proposition asserts in particular that pointwise compo-
sitions of strongly continuously differentiable families of operators are again strongly
continuously differentiable. We also note that this implies the analogous result for eval-
uation instead of composition: if f : [0,T ] → Y is a function, we can set S : [0,T ] →
B(C,Y ) , S(t)(1) = f (t) . Then R(t) f (t) has the same regularity properties as R(t)S(t)
in the strong topology.

3. Spectral flow

ASSUMPTION 3.1. Let H be a separable Hilbert space, let W ⊆ H be a dense
subspace, and let {A(t)}t∈[0,T ] be a family of unbounded self-adjoint Fredholm opera-
tors on H with constant domain W . We equip W with the graph norm of A(0) . We
assume that the family A is a norm-continuous map from [0,T ] to B(W,H) .1

The notion of spectral flow for a path of self-adjoint operators was first defined by
Atiyah and Lusztig, and it appeared in the work of Atiyah, Patodi, and Singer [2, §7].
Heuristically, the spectral flow of the family A counts the number of eigenvalues of
A(t) (counted with multiplicities) crossing 0 as t varies from 0 to T , i.e. the number
of negative eigenvalues becoming positive minus that of positive eigenvalues becoming
negative. In this article we will follow the analytic definition of spectral flow given by
Phillips in [17].

DEFINITION 3.2. Consider an interval I ⊂R , and let χI denote the characteristic
function of I . For t ∈ [0,T ] , consider the spectral projection of A(t) and the corre-
sponding spectral subspace given by

PI(t) := χI(A(t)), HI(t) := Ran(PI(t)).

For a ∈ R , we will simply write

P<a(t) := P(−∞,a)(t), H<a(t) := Ran(P<a(t)),

and similarly for � a .
1We note here that W is complete (since A(0) is closed), and it is then a consequence of the closed graph

theorem that automatically A(t) ∈ B(W,H ) for each t ∈ [0,T ] .
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DEFINITION 3.3. ([17]) A partition

0 = t0 < t1 < .. . < tN = T

together with numbers an ∈ R�0 for 1 � n � N will be called a flow partition (for
A), if for each n and t ∈ [tn−1,tn] we have an /∈ spec(A(t)) and H[0,an)(t) is finite
dimensional. For such a partition, the spectral flow is defined as

sf(A) =
N

∑
n=1

Dim(H[0,an)(tn))−Dim(H[0,an)(tn−1)).

The spectral flow is well-defined, i.e. a flow partition exists and the spectral flow is
independent of the choice of flow partition ([17]). We also note that the spectral flow is
unchanged by conjugating with unitaries, as this does not change the dimensions of the
spectral subspaces.

A pair (P,Q) of projections on H is called a Fredholm pair, if the restricted oper-
ator Q|Ran(P)→Ran(Q) is Fredholm. In this case the (relative) index of (P,Q) is defined to
be the Fredholm index of Q|Ran(P)→Ran(Q) . If P−Q is a compact operator, then (P,Q)
is a Fredholm pair. For more details regarding the index of a pair of projections, we
refer to [3]. We also quote the following result, which states that continuous families of
Fredholm pairs have constant index:

LEMMA 3.4. ([15, Lemma 3.2]) If P,Q : [0,1] → B(H ) are continuous paths of
projections in some Hilbert space H , such that (P(t),Q(t)) is a Fredholm pair for all
t ∈ [0,1] , then

ind(P(0),Q(0)) = ind(P(1),Q(1)).

The following result relates the spectral flow of a family to the relative index of
the spectral projections at the endpoints. Its proof combines arguments from [5, §4.2]
(reformulated in terms of spectral projections) with Lemma 3.4.

THEOREM 3.5. If (P<0(0),P<0(t)) is a Fredholm pair for all t ∈ [0,T ] , we have

sf(A) = ind(P<0(0),P<0(T )).

Proof. Let (tn) , (an) be a flow partition for A . For any a ∈ R , let P<a(t)r denote
the restriction

P<a(t)r := P<a(t)
∣∣
H<0(0)→H<a(t)

.

Since (P<0(0),P<0(t)) is a Fredholm pair, we know that P<0(t)r is Fredholm. Fix
n � N . For t ∈ [tn−1,tn] , let

Pt := P<0(t)
∣∣
H<an(t)→H<0(t)

be the restriction of P<0(t) , which is Fredholm since H[0,an)(t) is finite-dimensional.
We have

P<0(t)r = PtP<an(t)r.
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As P<0(t)r and Pt are Fredholm, it follows that P<an(t)r is Fredholm as well, and we
have

ind(P<0(t)r) = ind(Pt)+ ind(P<an(t)r) = Dim(H[0,an)(t))+ ind(P<an(t)r).

Since an /∈ spec(A(t)) for t ∈ [tn−1,tn] , it follows from [14, Ch. 6, Theorem 5.12] that
P<an(t)r is continuous in t on [tn−1,tn] . By Lemma 3.4, (P<0(0),P<an(t)) has constant
index for t ∈ [tn−1, tn] . Thus we have

ind(P<an(tn)r) = ind(P<0(0),P<an(tn)) = ind(P<0(0),P<an(tn−1)) = ind(P<an(tn−1)r).

Moreover, as P<0(0)r is the identity on H(−∞,0)(0) , it has index 0. Combining every-
thing, we get:

ind(P<0(0),P<0(T )) = ind(P<0(T )r)
= ind(P<0(T )r)− ind(P<0(0)r)

=
N

∑
n=1

ind(P<0(tn)r)− ind(P<0(tn−1)r)

=
N

∑
n=1

Dim(H[0,an)(tn))+ ind(P<an(tn)r)

−Dim(H[0,an)(tn−1))− ind(P<an(tn−1)r)

=
N

∑
n=1

Dim(H[0,an)(tn))−Dim(H[0,an)(tn−1))

= sf(A). �

REMARK 3.6. A similar theorem was proven in [15, Theorem 3.6]. There, the
family A is only assumed to ‘Riesz continuous’ (instead of norm-continuous). On
the other hand, [15, Theorem 3.6] makes the additional assumption that the differ-
ence A(t)− A(0) is relatively compact (with respect to A(0)). The latter assump-
tion ensures (by [15, Corollary 3.5]) that P<0(0)−P<0(t) is compact, so in particu-
lar (P<0(0),P<0(t)) is a Fredholm pair for all t ∈ [0,T ] . Thus, in the case of norm-
continuous families, our Theorem 3.5 generalises [15, Theorem 3.6], since we do not
require compactness of P<0(0)−P<0(t) .

4. The ‘Riemannian’ APS-index

In this section, we slightly strengthen Assumption 3.1 by assuming that A(t) is
not only Fredholm but in fact has compact resolvents. Thus throughout this section we
consider the following setting.

ASSUMPTION 4.1. Let H be a separable Hilbert space, let W ⊆ H be a dense
subspace such that the inclusion is compact, and let {A(t)}t∈[0,T ] be a family of un-
bounded self-adjoint operators on H with constant domain W . We equip W with
the graph norm of A(0) . We assume that the family A : [0,T ] → B(W,H ) is norm-
continuous.
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We continuously extend the family {A(t)}t∈[0,T ] to a family {Ã(t)}t∈R parametri-
sed by the whole real line, defined by

Ã(t) :=

⎧⎪⎨⎪⎩
A(0), if t � 0,

A(t), if 0 � t � T,

A(T ), if t � T.

We introduce the following spaces:

W := L2(R,W )∩H1(R,H ),

WAPS :=
{

f ∈ L2([0,T ],W )∩H1([0,T ],H ) : f (0) ∈ H<0(0), f (T ) ∈ H�0(T )
}
,

W †
APS :=

{
f ∈ L2([0,T ],W )∩H1([0,T ],H ) : f (0) ∈ H�0(0), f (T ) ∈ H<0(T )

}
.

Here H1(R) ⊂ L2(R) denotes the standard first Sobolev space, and H1(R,H ) �
H1(R)⊗H (as a completed tensor product).

We note that the evaluation evt : H1(R,H ) → H , f �→ f (t) , is well-defined
(since elements in H1(R) are continuous).

DEFINITION 4.2. We consider the following operators:

• D̃ := ∂t + Ã on the Hilbert space L2(R,H ) with initial domain C1
c (R,W ) , and

D̃ :=
(

0 −∂t + Ã
∂t + Ã 0

)
on the Hilbert space L2(R,H )⊕2 with initial domain C1

c (R,W )⊕2 .

• DAPS := ∂t +A on the Hilbert space L2([0,T ],H ) with initial domain

DomDAPS :=
{

f ∈C1([0,T ],W ) : f (0) ∈ H<0(0), f (T ) ∈ H�0(T )
}
,

and

DAPS :=
(

0 −∂t +A
∂t +A 0

)
on the Hilbert space L2([0,T ],H )⊕2 with initial domain DomDAPS⊕DomD†

APS ,
where

DomD†
APS :=

{
f ∈C1([0,T ],W ) : f (0) ∈ H�0(0), f (T ) ∈ H<0(T )

}
.

PROPOSITION 4.3.

1. The closure of the operator D̃ is self-adjoint on the domain W ⊕2 , and for any
f ∈C0(R) , the operators f · (D̃ ± i)−1 on L2(R,H ) are compact.

2. The closure of the operator DAPS is self-adjoint on the domain WAPS ⊕W †
APS ,

and the operators (DAPS ± i)−1 on L2([0,T ],H ) are compact. In particular,
DAPS is Fredholm.
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Proof. The self-adjointness of D̃ on W ⊕2 follows as in [22, Proposition 3.16].
Moreover, we know from [22, Proposition 4.1] (cf. the proof of [13, Theorem 6.7]) that
f · (D̃ ± i)−1 is compact for every f ∈C0(R) , which proves (1).

Next, we will prove the self-adjointness of DAPS . Since A is norm-continuous,
we can pick 0 < ε < 1

2 small enough such that

sup
t∈[0,ε]

∥∥(A(t)−A(0)
)(

A(0)− i
)−1∥∥<

1
2
, sup

t∈[T−ε,T ]

∥∥(A(t)−A(T)
)(

A(0)− i
)−1∥∥<

1
2
.

We consider a new norm-continuous family AL : [0,∞) → B(W,H ) given by

AL(t) :=

{
A(t), if 0 � t � ε,

A(ε), if t � ε.

Consider the operators

D0 :=
(

0 −∂t +A(0)
∂t +A(0) 0

)
, DL :=

(
0 −∂t +AL

∂t +AL 0

)
,

on the Hilbert space L2([0,∞),H ) with domain WL ⊕W †
L , where we introduce the

spaces

WL :=
{

f ∈ L2([0,∞),W )∩H1([0,∞),H ) : f (0) ∈ H<0(0)
}
,

W †
L :=

{
f ∈ L2([0,∞),W )∩H1([0,∞),H ) : f (0) ∈ H�0(0)

}
.

We recall that the operator D0 is self-adjoint (see [1, Proposition 2.12] or, for the more
abstract setting, [8, Corollary 4.6] and [10, Proposition 4.11]). As in the proof of [22,
Lemma 3.13], we can estimate∥∥(DL −D0)(D0 − i)−1

∥∥�
∥∥(AL −A(0))(A(0)− i)−1

∥∥ ∥∥(A(0)− i)(D0− i)−1
∥∥

� sup
t∈[0,ε]

∥∥(A(t)−A(0)
)(

A(0)− i
)−1∥∥<

1
2
,

where we have used that
∥∥(A(0)− i)(D0 − i)−1

∥∥ � 1. By the Kato-Rellich Theorem,

it then follows that DL is also self-adjoint on the domain WL ⊕W †
L . Similarly, the

operator

DR :=
(

0 −∂t +AR

∂t +AR 0

)
, AR(t) :=

{
A(T − ε), if t � T − ε,

A(t), if T − ε � t � T,

is self-adjoint on the domain WR ⊕W †
R , where

WR :=
{

f ∈ L2((−∞,T ],W )∩H1((−∞,T ],H ) : f (T ) ∈ H�0(T )
}
,

W †
R :=

{
f ∈ L2((−∞,T ],W )∩H1((−∞,T ],H ) : f (T ) ∈ H<0(T )

}
.

Now pick smooth functions χL,χI,χR : R → [0,1] such that {χ2
L,χ2

I ,χ2
R} is a partition

of unity subordinate to the open cover {(−∞,ε),(0,T ),(T − ε,∞)} of R . For λ > 0,
we define

R±(λ ) := χL(DL ± iλ )−1χL + χI(D̃ ± iλ )−1χI + χR(DR ± iλ )−1χR.
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Since DAPS agrees with DL on [0,ε) , agrees with D̃ on (0,T ) , and agrees with DR

on (T − ε,T ] , we note that RanR±(λ ) ⊂ WAPS ⊕W †
APS , and we can compute

(DAPS ± iλ )R±(λ ) = Id+K±(λ ),

K±(λ ) := [DL,χL](DL ± iλ )−1χL +[D̃,χI](D̃ ± iλ )−1χI +[DR,χR](DR ± iλ )−1χR.

By choosing λ large enough, we may ensure that ‖K±(λ )‖ < 1, so that Id+K±(λ ) is

invertible, and then R±(λ )
(
Id+K±(λ )

)−1
is a right inverse for DAPS ± iλ . Similarly,

we can also construct a left inverse for DAPS± iλ . Thus DAPS± iλ is invertible, which
proves that DAPS is self-adjoint.

Finally, we know from (1) that χI(D̃ ± iλ )−1 is compact. Furthermore, the opera-
tor χL(D0± iλ )−1 is compact by [10, Proposition 4.14], and since DomDL = DomD0

this implies that χL(DL± iλ )−1 is compact. Similarly, also χR(DR± iλ )−1 is compact.
Hence also R±(λ ) is compact, and therefore (DAPS ± i)−1 is compact. This completes
the proof of (2). �

4.1. APS-index and spectral flow

We first consider the special case where the family A is invertible at the endpoints
of the interval [0,T ] . In this case, we recall the following equality between index and
spectral flow on the real line.

THEOREM 4.4. ([4, Theorem 2.1]) If A(0) and A(T ) are invertible, then the op-
erator D̃ is Fredholm, and we have the equality

ind(D̃) = sf(A).

PROPOSITION 4.5. Assume that A(0) and A(T ) are invertible. Then we have
isomorphisms

KerDAPS � KerD̃, KerDAPS
∗ � KerD̃∗,

and consequently we have the equality

ind(DAPS) = ind(D̃).

Proof. The proof is an adaptation of the argument in [1, Proposition 3.11]. Let
{ψλ (t)}λ∈spec(A(t)) be an orthonormal basis of H consisting of eigenvectors ψλ (t) of
A(t) with eigenvalue λ (where the eigenvalues are counted with multiplicities). For any
element f ∈KerDAPS , we can write f (0) = ∑λ μλ ψλ (0) , for some μλ ∈C (recall that
the evaluation evt : DomDAPS → H is well-defined, since DomDAPS ⊂ H1(R,H )).
We will extend f to an element f̃ ∈Ker D̃ , as follows. Solving (∂t + Ã) f̃ = 0 for t < 0
yields

∂
∂ t

〈
ψλ (0), f̃ (t)

〉
= −λ

〈
ψλ (0), f̃ (t)

〉
,

which implies
f̃ (t) = ∑

λ<0

e−λ tμλ ψλ (0), t � 0.
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Here we have used the APS boundary condition f (0) ∈ H<0(0) , which tells us that
μλ = 0 whenever λ � 0. Writing instead f (T )= ∑λ νλ ψλ (T ) and solving (∂t +Ã) f̃ =
0 for t > T , we similarly obtain

f̃ (t) = ∑
λ>0

e−λ (t−T)νλ ψλ (T ), t � T,

where we have used that A(T ) is invertible, so that λ �= 0. We can then define a map
ι : KerDAPS → KerD̃ by defining

ι( f )(t) :=

⎧⎪⎨⎪⎩
∑λ<0 e−λ tμλ ψλ (0), if t � 0,

f (t), if 0 � t � T,

∑λ>0 e−λ (t−T)νλ ψλ (T ), if t � T.

This map ι is clearly injective. Conversely, given any ξ ∈ Ker D̃ , the requirement that
ξ is square-integrable ensures that ξ must have the above form on (∞,0] and on [T,∞) .
By continuity, this implies that ξ |[0,T ] satisfies the boundary conditions ξ (0)∈H<0(0)
and ξ (T ) ∈ H>0(T ) , and we conclude that ξ = ι(ξ |[0,T ]) . Thus we have shown that ι
yields an isomorphism KerDAPS

�−→ Ker D̃ . Similarly, we also obtain an isomorphism
ι : KerD∗

APS
�−→ KerD̃∗ given by

ι ( f )(t) :=

⎧⎪⎨⎪⎩
∑λ>0 eλ tμλ ψλ (0), if t � 0,

f (t), if 0 � t � T,

∑λ<0 eλ (t−T)νλ ψλ (T ), if t � T.

Since we know from Proposition 4.3 that DAPS is Fredholm, and from Theorem 4.4
that D̃ is Fredholm, the final statement follows immediately. �

Proposition 4.5 and Theorem 4.4 then immediately yield:

COROLLARY 4.6. If A(0) and A(T ) are invertible, then

ind(DAPS) = sf(A).

Next, we will prove the equality ind(DAPS) = sf(A) in general, by reducing to the
special case with invertible endpoints, as follows.

DEFINITION 4.7. Consider a smooth function χ : R→ [0,1] such that χ ≡ 1 near
0 and suppχ ⊂ (−ε,ε) for some ε < 1

2T . We define a family of compact operators
{K(t)}t∈R on H by

K(t) := χ(t)P0(A(0))+ χ(T − t)P0(A(T ))

Here P0(A(t)) denotes the projection onto the kernel of A(t) . We then obtain a new
family {B(t)}t∈[0,T ] of unbounded self-adjoint operators on H with constant domain
W , given by

B(t) := A(t)+K(t), t ∈ [0,T ].

We note that the family {B(t)}t∈[0,T ] is again norm-continuous, and therefore satisfies

Assumption 4.1. As above, we continuously extend {B(t)}t∈[0,T ] to a family {B̃(t)}t∈R
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on the real line. As in Definition 4.2 and Proposition 4.3, we then define the operators

D̃′ := ∂t + B̃, on DomD̃′ := W ⊕2,

D′
APS := ∂t +B, on DomD′

APS := WAPS ⊕W †
APS.

Let us make a few observations. First of all, the family {K(t)}t∈[0,T ] is chosen
such that the operators B(0) and B(T ) are invertible. Second, we note that, in our con-
ventions of both the spectral flow and the APS boundary conditions, zero belongs to the
positive spectrum. Since the operators K(0) and K(T ) move the kernels of A(0) and
A(T ) (respectively) into the strictly positive spectrum of B(0) and B(T ) (respectively),
we have P�0(B(0)) = P�0(A(0)) and P�0(B(T )) = P�0(A(T )) . Consequently, we find
that replacing A by B does not affect the APS boundary conditions, and we have the
equality

DomD′
APS = DomDAPS.

LEMMA 4.8. We have the equalities

sf(B) = sf(A), ind(D′
APS) = ind(DAPS).

Proof. We first prove the equality sf(B) = sf(A) . Since K(t) is a family of com-
pact operators, we can consider the straight-line homotopy Bs := A + sK = {A(t) +
sK(t)}t∈[0,1] for s ∈ [0,1] . It then follows from [20, Cor. 3.4] that sf(B) = sf(A) , if
the spectral flows sf

({Bs(0)}s∈[0,1]
)

and sf
({Bs(T )}s∈[0,1]

)
are both identically zero.

That the latter condition is satisfied can be checked directly, using that the spectral
projections P�0(Bs(0)) and P�0(Bs(T )) are constant.

Regarding the second equality, we recall from Proposition 4.3 that DAPS and D′
APS

are Fredholm. We have already seen that D′
APS and DAPS have the same APS bound-

ary conditions and therefore the same domain. Since the difference D′
APS −DAPS is

bounded and DAPS has compact resolvents by Proposition 4.3, we see that D′
APS is a

relatively compact perturbation of DAPS , and therefore the index is the same. �

THEOREM 4.9. We have the equality

ind(DAPS) = sf(A).

Proof. Combining the equalities from Lemma 4.8 with Corollary 4.6, we obtain
the sequence of equalities

ind(DAPS) = ind(D′
APS) = sf(B) = sf(A). �

5. The ‘Lorentzian’ APS-index

In this section, we strengthen Assumption 3.1 by assuming that A(t) is not only
norm-continuous but in fact is strongly continuously differentiable. Thus throughout
this section we consider the following setting.
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ASSUMPTION 5.1. Let H be a separable Hilbert space, let W ⊆ H be a dense
subspace, and let {A(t)}t∈[0,T ] be a family of unbounded self-adjoint Fredholm opera-
tors on H with constant domain W . We equip W with the graph norm of A(0) . We
assume that the family A : [0,T ] → B(W,H ) is strongly continuously differentiable.

DEFINITION 5.2. For s < t ∈ [0,T ] , let D|[s,t] denote the closure in L2([s,t],H )
of

d
dt

− iA

with initial domain C1([s,t],H )∩C([s,t],W ) . Define D := D|[0,T ] .

5.1. The evolution operator

THEOREM 5.3. ([16, Ch. 5]) There is a family of bounded operators Q(t,s) : H
→ H for s, t ∈ [0,T ] , satisfying the following conditions (for all s,t,r ∈ [0,T ]):

1. Q(s,s) = Id ;

2. Q(t,s)Q(s,r) = Q(t,r);

3. Q(t,s) is an isometry (of H );

4. Q(t,s)(W ) ⊆W and Q(t,s) : W →W is bounded;

5. Q is strongly continuously differentiable in B(W,H ) with derivatives

∂
∂ t

Q(t,s) = iA(t)Q(t,s)

and
∂
∂ s

Q(t,s) = −Q(t,s)iA(s).

6. Q(t,s)x (as a function of s and t ) is continuous in H for x∈H and continuous
in W for x ∈W .

Proof. Most of the statement is proven in [16, Ch. 5] for a more general situation
(without assuming A(t) to be self-adjoint). To be precise, [16, Ch. 5, Theorem 4.8]
provides the operator Q(t,s) for t � s , satisfying for all t � s � r the conditions 1,
2, 4, and 6 (for 4 we note that the boundedness of Q(t,s) : W →W follows from the
inclusion Q(t,s)(W ) ⊆ W and the closed graph theorem), as well as the equalities
∂
∂ t

+
Q(t,s) = iA(t)Q(t,s) and ∂

∂ sQ(t,s) = −Q(t,s)iA(s) . For x ∈W , the calculation

∂
∂ t

+

||Q(t,s)x||2 = 2Re(〈Q(t,s)x, iA(t)Q(t,s)x〉) = 0

together with Q(s,s) = Id shows that Q(t,s) is an isometry, so in fact 3 is also satisfied.
Similarly, we obtain the operator Q′ associated to the family −A(T − ·) . Then

the operator Q(t,s) := Q′(T − t,T − s) satisfies the same conditions for all r � s � t .
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Since both definitions agree at t = s , we get a strongly continuous family Q(t,s) for
all t and s . For s � t , we compute (using Proposition 2.2)

∂
∂ t

+

Q(s, t)Q(t,s) = −Q(s,t)iA(T − (T − t))Q(t,s)+Q(s,t)iA(t)Q(t,s) = 0.

Thus Q(s, t) and Q(t,s) are mutually inverse (as this holds at t = s), and we find that
2 is in fact satisfied for arbitrary s,t,r . Finally, as

∂
∂ t

±
Q(t,s) =

∂
∂ r

±
Q(r,t)

∣∣∣∣
r=t

Q(t,s) = iA(t)Q(t,s),

we get the t -derivatives in 5, and we note that Q(t,s) is strongly continuously differ-
entiable in B(W,H ) because A(t)Q(t,s) is strongly continuous in B(W,H ) . �

We will refer to Q as the evolution operator. The unitary operator Q(t,s) can be
thought of as evolving the initial data at time s to the final data at time t , subject to the
equation Df = 0. More precisely, the function f (t) := Q(t,s)x is the unique solution
to the equations

Df = 0, f (s) = x,

When replacing Df = 0 with Df = g for some g ∈ L2([0,T ],H ) , the equations still
have a unique solution:

THEOREM 5.4. (Well-posedness of the Cauchy problem) The domain Dom(D) is
a subspace of C([0,T ],H ) (with maximum norm) with bounded inclusion. For all
t ∈ [0,T ] the map

D⊕ evt : Dom(D) → L2([0,T ],H )⊕H

is an isomorphism, where evt : C([0,T ],H ) → H denotes evaluation at t .

Proof. For the first statement, let f ∈ C1([0,T ],H )∩C([0,T ],W ) . Using that
Re
(〈 f (t), iA(t) f (t)〉)= 0, we have

T‖ f (t)‖2−‖ f‖2
L2 =

T∫
0

(‖ f (t)‖2−‖ f (s)‖2)ds =
T∫

0

t∫
s

d
dr

‖ f (r)‖2drds

=
T∫

0

t∫
s

2Re

(〈
f (r),

d
dr

f (r)
〉)

drds

=
T∫

0

t∫
s

2Re
(〈 f (r),Df (r)〉 )drds.
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This allows us to estimate

T‖ f (t)‖2−‖ f‖2
L2 �

T∫
0

2‖ f‖L2‖Df‖L2ds � T‖ f‖2
D,

which ensures that the inclusion C1([0,T ],H )∩C([0,T ],W ) ↪→C([0,T ],H ) extends
to a bounded inclusion Dom(D) ↪→C([0,T ],H ) .

The second statement follows by checking that the map Fs : L2([0,T ],H )⊕H →
Dom(D) , given for g ∈ L2([0,T ],H ) and x ∈ H by

Fs(g,x)(t) := Q(t,s)x+
t∫

s

Q(t,r)g(r)dr,

is an inverse for D⊕evs . We first note that Fs maps the dense subset C1([0,T ],W )⊕W
to the initial domain C1([0,T ],H )∩C([0,T ],W ) of D . Furthermore, an explicit com-
putation shows that Fs◦(D⊕evs) and (D⊕evs)◦Fs are the identity on C1([0,T ],H )∩
C([0,T ],W ) and C1([0,T ],W )⊕W respectively. For ( f ,x) in the latter space, we can
then estimate

‖Fs( f ,x)‖2
L2 � 2‖Q(·,s)x‖2

L2 +2

∥∥∥∥∫ ·

s
Q(·,r) f (r)dr

∥∥∥∥2

L2

� 2‖x‖2
L2 +2

∥∥∥∥∫ ·

s
‖ f (r)‖dr

∥∥∥∥2

L2

� 2T‖x‖2 +2T‖ f‖2
L1 � 2T‖x‖2 +2CT‖ f‖2

L2 ,

for some C > 0. It follows that

‖Fs( f ,x)‖2
D = ‖Fs( f ,x)‖2

L2 +‖ f‖2
L2 � (1+2T +2CT)(‖ f‖2

L2 +‖x‖2).

Thus Fs extends to a continuous map L2([0,T ],H )⊕H →Dom(D) , whence the two
compositions are the identity everywhere. �

Using the above theorem, we can rewrite the evolution operator in a concise way
that highlights its connection to the Cauchy problem:

Q(t,s)x = evt ◦(D⊕ evs)−1(0,x). (3)

5.2. The APS-index and spectral projections

In the following, we will use the splitting of H in positive and negative spectral
subspaces of A(t) , in order to define APS boundary conditions. For any t ∈ [0,T ] , we
consider (as before) the spectral projections

P<0(t) := P(−∞,0)(t), P�0(t) := P[0,∞)(t) = Id−P<0(t),

and the corresponding subspaces

H<0(t) := Ran(P<0(t)), H�0(t) := Ran(P�0(t)).
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DEFINITION 5.5. For s < t ∈ [0,T ] , let (D|[s,t])APS be the restriction of D|[s,t] to
the domain

Dom
(
(D|[s,t])APS

)
:=
{

f ∈ Dom(D) : f (s) ∈ H<0(s), f (t) ∈ H�0(t)
}
.

We will write
DAPS := (D|[0,T ])APS.

We will relate the index of DAPS to the index of a pair of spectral projections. For
this purpose, we consider the evolved spectral projections defined as

P̂<a(t) := Q(0,t)P<a(t)Q(t,0).

Let P̂<a(t)r be the restriction of P̂<a(t) to H<0(0) with codomain Q(0,t)H<a(t) :

P̂<a(t)r := P̂<a(t)
∣∣
H<0(0)→Q(0,t)H<a(t)

.

We note that P̂<a(t) is the projection onto Q(0,t)H<a(t) , and that (by construction)
P̂<a(t)r is Fredholm with index k if and only if the pair (P<0(0), P̂<a(t)) is Fredholm
with index k . The following result is partly based on the arguments from [5, §3].

THEOREM 5.6. DAPS and P̂<0(T )r have isomorphic kernel and cokernel. In par-
ticular, DAPS is Fredholm with index k if and only if (P<0(0), P̂<0(T )) is a Fredholm
pair with index k .

REMARK 5.7. By replacing A by A|[0,t] , we obtain for any t ∈ [0,T ] that (D|[0,t])APS

is Fredholm with index k if and only if (P<0(0), P̂<0(t)) is Fredholm with index k .

Proof. We have

Ker(DAPS) = { f ∈ Dom(D) : Df = 0, f (0) ∈ H<0(0), f (T ) ∈ H�0(T )}
∼= { f (0) ∈ H<0(0) : Q(T,0) f (0) ∈ H�0(T )}
= H<0(0)∩Q(0,T )H�0(T )

= Ker(P̂<0(T )r),

where in the second line, we use that Df = 0 implies f (t) = Q(t,0) f (0) , so f �→ f (0)
is an isomorphism.

For g ∈ L2([0,T ],H ) define

E(g) := evT ◦(D⊕ ev0)−1(g,0).

Note that
evT ◦(D⊕ ev0)−1(g,x) = E(g)+Q(T,0)x.

We will first show that E : L2([0,T ],H ) → H is surjective. Thus, we need to
show that functions in Dom(D) that vanish at 0 can take any value at T . For z ∈ H
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choose f ∈ Dom(D) with f (T ) = z (a possible choice is f (t) = Q(t,T )z) and let
φ(t) := t

T . Since multiplication with φ preserves Dom(D) , we have φ f ∈ Dom(D) ,
with φ(0) f (0) = 0 and φ(T ) f (T ) = z . We get

E(D(φ f )) = evT ◦(D⊕ ev0)−1(D(φ f ),0) = evT (φ f ) = z.

As z was arbitrary, E is surjective.
To determine the cokernel of DAPS , we need to characterise its range. For g ∈

L2([0,T ],H ) , we have the following chain of equivalences:

g ∈ Ran(DAPS) ⇔∃ f ∈ Dom(D) : f (0) ∈ H<0(0)∧ f (T ) ∈ H�0(T )∧Df = g

⇔∃ f (0) ∈ H<0(0) : evT (D⊕ ev0)−1(g, f (0)) ∈ H�0(T )
⇔∃ f (0) ∈ H<0(0) : ∃z ∈ H�0(T ) : E(g)+Q(T,0)( f (0)) = z

⇔∃x ∈ Q(T,0)H<0(0) : ∃z ∈ H�0(T ) : E(g) = z− x

⇔ E(g) ∈ Q(T,0)H<0(0)+H�0(T )

Defining

V := Q(T,0)H<0(0)+H�0(T ) = P<0(T )Q(T,0)H<0(0)+H�0(T ),

(with the latter sum being orthogonal), we get

Ran(DAPS) = {g ∈ L2([0,T ],H ) : E(g) ∈V} = E−1(V ).

In particular, this also implies that Ker(E) = E−1({0}) ⊂ Ran(DAPS) . By the surjec-
tivity of E , we therefore obtain the isomorphism

L2([0,T ],H )/Ran(DAPS) ∼= H /V.

We can now conclude

Coker(DAPS) = L2([0,T ],H )/Ran(DAPS)
∼= H /V
∼= H<0(T )/

(
P<0(T )Q(T,0)H<0(0)

)
∼= (Q(0,T )H<0(T ))/

(
Q(0,T )P<0(T )Q(T,0)H<0(0)

)
= Coker(P̂<0(T )r). �

5.3. APS-index and spectral flow

We recall that the strongly continuously differentiable family {A(t)}t∈[0,T ] is norm-
continuous by Lemma 2.1.1, so in particular the results from Section 3 apply. In or-
der to combine Theorems 3.5 and 5.6, we need to consider a new ‘evolved’ family
Â : [0,T ] → B(W,H ) given by

Â(t) := Q(0,t)A(t)Q(t,0).
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For every t ∈ [0,T ] , Â(t) is self-adjoint and Fredholm, with domain W (as Q(t,0)−1(W )
=W ). As functional calculus is equivariant under conjugation with isometries, we find
that the spectral projections of Â(t) correspond precisely to the evolved spectral pro-
jections from subsection 5.2:

χ(−∞,a)(Â(t)) = Q(0,t)χ(−∞,a)(A(t))Q(t,0) = P̂<a(t).

Before we can apply Theorem 3.5 to Â , we need to ensure that Â is again norm-
continuous, and we will prove that it is in fact strongly continuously differentiable in
B(W,H ) .

LEMMA 5.8. Â : [0,T ] → B(W,H ) is strongly continuously differentiable with
derivative

Â′(t) = Q(0,t)A′(t)Q(t,0).

Proof. Let R(t) := (A(t)− i)−1 for t ∈ [0,T ] . Â(t) is differentiable at t if and
only if

Â(t)− i = Q(0,t)(A(t)− i)Q(t,0)

is. As Q(t,0) and Q(0,t) are strongly continuously differentiable in B(W,H ) and
R(t) is strongly continuously differentiable in B(H ,W ) , we get from Lemma 2.1.2
and Proposition 2.2.1 that

(Â(t)− i)−1 = Q(0,t)R(t)Q(t,0)

is strongly differentiable in B(W,H ) . Its derivative is

d
dt

(Â(t)− i)−1

=
d
dt

Q(0, t)R(t)Q(t,0)

= Q(0, t)R(t)iA(t)Q(t,0)−Q(0,t)R(t)A′(t)R(t)Q(t,0)−Q(0,t)iA(t)R(t)Q(t,0)
= −Q(0, t)R(t)A′(t)R(t)Q(t,0).

As this is strongly continuous in B(H ,W ) , Proposition 2.2.2 implies that (Â(t)− i)−1

is strongly continuously differentiable in B(H ,W ) . By Lemma 2.1.2, Â(t)− i and
hence Â(t) are strongly continuously differentiable, with derivative

Â′(t) =
d
dt

(
(Â(t)− i)−1)−1

= −(Â(t)− i)
(

d
dt

(Â(t)− i)−1
)

(Â(t)− i)

= Q(0,t)A′(t)Q(t,0). �

We now have all the pieces in place to prove our main result.
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THEOREM 5.9. If (D|[0,t])APS is Fredholm for all t ∈ [0,T ] , we have

ind(DAPS) = sf(A).

Proof. From Lemma 5.8 we know that Â satisfies Assumption 5.1. In particular,
Â is norm-continuous by Lemma 2.1.1, so we may apply Theorem 3.5. The spectral
projections of Â are given by

χ(−∞,0)(Â(t)) = P̂<0(t).

Using Theorem 5.6, we know that (P̂<0(0), P̂<0(t)) is a Fredholm pair for all t ∈ [0,T ] .
Thus we obtain

ind(DAPS)
5.6= ind(P<0(0), P̂<0(T )) = ind(P̂<0(0), P̂<0(T )) 3.5= sf(Â) = sf(A),

where in the last step we used that the spectral flow is invariant under unitary conjuga-
tion. �

EXAMPLE 5.10. Consider the Lorentzian Dirac operator on a globally hyperbolic
spacetime M = Σ×R , as studied in [5] (and as described in the Introduction). It is
shown in [5, Lemma 2.6], using methods of Fourier integral operators, that the operator

Q−−(t,0) := P<0(t)Q(t,0)
∣∣
H<0(0)→H<0(t)

is Fredholm for each t ∈ [0,T ] . Since P̂<0(t)r = Q(0,t)Q−−(t,0) and Q(0,t) is an
invertible map between the codomains, it then follows that P̂<0(t)r is also Fredholm
(and has the same index) for each t ∈ [0,T ] . Using Theorems 5.6 and 5.9, we thus
recover the equality2 ind(DAPS) = sf(A) from [5, §4.1].

It may be difficult to determine a priori whether (D|[0,t])APS is Fredholm for all
t ∈ [0,T ] . The following result provides a sufficient condition.

PROPOSITION 5.11. If A′(t) is compact in B(W,H ) for all t ∈ [0,T ] (i.e., it is
relatively compact with respect to A(0)), then DAPS is Fredholm and

ind(DAPS) = sf(A).

Proof. By Lemma 5.8, Â′ is compact as well. This implies that Â(t)−A(0) is
compact in B(W,H ) for every t ∈ [0,T ] . From [15, Corollary 3.5], it follows that
P̂<0(t)−P<0(0) is compact, so (P<0(0), P̂<0(t)) is a Fredholm pair. By Theorems 5.6
and 5.9, we get the desired result. �

REMARK 5.12. The counterexample in the next section shows that it is not suffi-
cient to ask for relative compactness of A(t)−A(0) .

2In [5, §4.1], there is actually an additional summand on the right hand side coming from the kernel of
A(T) , due to a slightly different choice of boundary conditions.
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5.4. A counterexample with bounded perturbation

In this section an example is given to illustrate that DAPS will not always be Fred-
holm. There might be “infinite exchange” between the positive and the negative spectral
subspace. This is possible, even if A(t) has only discrete spectrum and its difference
from A(0) is bounded. The idea is to choose a bounded perturbation A(t)= A(0)+B(t)
such that the corresponding evolution operator Q(T,0) interchanges the positive and
negative eigenspaces of A(0) and A(T ) . The first step is to show that such an ex-
change works in a two dimensional subspace, with suitable bounds on the derivative
of the perturbation. These bounds will then allow us to pass to an infinite direct
sum, in which all positive and negative eigenspaces are interchanged. This means that
Ker(DAPS) ∼= H<0(0)∩Q(0,T )H�0(T ) will be infinite-dimensional, whence DAPS is
not Fredholm.

LEMMA 5.13. There exists a positive number c > 0 , such that for any

a =
(

λ1 0
0 λ2

)
,

with λ1,λ2 ∈ R , there is a smooth family (b(t))t∈[0,1] of self-adjoint operators on C2

such that for λ := |λ1−λ2|+1 we have

‖b(t)‖ � 2, ‖b′(t)‖ � cλ , b(0) = b(1) = 0, q(1,0)e1 ∈ span(e2).

where q is the evolution operator associated with a + b(t) , and ei denotes the ith

standard unit vector.

Proof. Let φ : [0,1] → [0, π
2 ] be a smooth function (chosen independently of the

λi ) satisfying

|φ ′(t)| � 2, φ(0) = 0, φ(1) =
π
2

, φ ′(0) = φ ′(1) = 0.

Consider the self-adjoint family

b(t) :=
(

0 iφ ′(t)exp(i(λ1 −λ2)t)
−iφ ′(t)exp(i(λ2−λ1)t) 0

)
.

Then the evolution operator of a+b(t) is given by

q(t,0) :=
(

exp(iλ1t)cos(φ(t)) −exp(iλ1t)sin(φ(t))
exp(iλ2t)sin(φ(t)) exp(iλ2t)cos(φ(t))

)
.

Indeed, a straightforward calculation shows that q(0,0) = Id and

d
dt

q(t,0) = i(a+b(t))q(t,0).

The required properties for b are easily checked, and the requirement q(1,0)e1 ∈
span(e2) follows since q(1,0) is off-diagonal. �
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PROPOSITION 5.14. Let H :=
∞⊕

i=0
C2 and let (λi)i�0 be an unbounded increas-

ing sequence of positive real numbers. Consider the unbounded self-adjoint operator
(with compact resolvents) given by

A0 :=
∞⊕

i=0

ai, ai =
(−λi 0

0 λi

)
.

There is a bounded family B : [0,1] → B(H ) such that A(t) := A0 + B(t) satisfies
Assumption 5.1 and such that DAPS is not Fredholm.

Proof sketch. For i � 0, let bi and qi be chosen as b and q in Lemma 5.13 with
λ1 = −λi and λ2 = λi . Define

B :=
∞⊕

i=0

bi, Q :=
∞⊕

i=0

qi.

Q is the evolution operator associated to the family A(t) := A0 +B(t) . Let ιi denote the
inclusion of the ith summand C2 ↪→ H . For all i ∈ N , ιi(e1) is a negative eigenvector
of A(0) = A0 , but

Q(1,0)ιi(e1) = ιi(qi(1,0)e1) ∈ span(ιi(e2))

is a positive eigenvector of A(1) = A0 by construction. Thus

Ker(DAPS) ∼= Ker(P̂<0(1)r) = H<0(0)∩Q(0,1)H�0(1) = {span{ιi(e1)|i ∈ N}

is infinite-dimensional and hence DAPS is not Fredholm. �
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